JP3484385B2 - Diffraction grating, method for manufacturing the same, and method for manufacturing composite optical element - Google Patents

Diffraction grating, method for manufacturing the same, and method for manufacturing composite optical element

Info

Publication number
JP3484385B2
JP3484385B2 JP32810599A JP32810599A JP3484385B2 JP 3484385 B2 JP3484385 B2 JP 3484385B2 JP 32810599 A JP32810599 A JP 32810599A JP 32810599 A JP32810599 A JP 32810599A JP 3484385 B2 JP3484385 B2 JP 3484385B2
Authority
JP
Japan
Prior art keywords
diffraction grating
glass
manufacturing
mold
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32810599A
Other languages
Japanese (ja)
Other versions
JP2001147309A (en
Inventor
梅谷  誠
継博 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32810599A priority Critical patent/JP3484385B2/en
Publication of JP2001147309A publication Critical patent/JP2001147309A/en
Application granted granted Critical
Publication of JP3484385B2 publication Critical patent/JP3484385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高精度で信頼性の
高い安価な回折格子及びその製造方法、並びに複合光学
素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly accurate, highly reliable and inexpensive diffraction grating, a method for manufacturing the same, and a method for manufacturing a composite optical element.

【0002】[0002]

【従来の技術】従来、微細パターンを形成して構成され
る回折格子は、製造コストの高いドライエッチング法を
用いて製造されていたが、最近では、比較的低コストが
期待できる成形法によって微細パターンを形成する方法
が提案されている。
2. Description of the Related Art Conventionally, a diffraction grating formed by forming a fine pattern has been manufactured by a dry etching method, which is expensive to manufacture. A method of forming a pattern has been proposed.

【0003】図6に、特開平9−230121号、特開
平10−293205号、特開平4−100835号の
各公報などに開示された成形法によって作製された回折
格子の断面構造を示す。これらの公報などに開示された
成形法によって作製された回折格子は、図6に示すよう
に、樹脂やガラスに回折格子形状を形成した基板61の
表面に、反射防止膜や反射膜62を形成して構成されて
いる。
FIG. 6 shows a sectional structure of a diffraction grating manufactured by the molding method disclosed in Japanese Patent Laid-Open Nos. 9-230121, 10-293205 and 4-100835. As shown in FIG. 6, the diffraction grating manufactured by the molding method disclosed in these publications has an antireflection film or a reflection film 62 formed on the surface of a substrate 61 having a diffraction grating shape formed of resin or glass. Is configured.

【0004】このような回折格子は、図7(a)、
(b)に示すように、樹脂やガラス材料71の表面に、
射出成形法やプレス成形法を用いて、回折格子形状72
を形成した後、図7(c)に示すように、樹脂やガラス
材料71の表面に反射防止膜や反射膜73を形成するこ
とにより、作製される。
Such a diffraction grating is shown in FIG.
As shown in (b), on the surface of the resin or glass material 71,
The diffraction grating shape 72 is formed by using an injection molding method or a press molding method.
After the formation, as shown in FIG. 7C, it is manufactured by forming an antireflection film or a reflection film 73 on the surface of the resin or glass material 71.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような転
写方法では、加熱軟化した被成形物を型と接触させて冷
却するので、被成形物と型との熱膨張係数の差に起因し
て熱応力が発生する。その結果、被成形物に転写される
パターンの精度が低下してしまう。特に、型の中心から
外周に向けて距離が長くなるほど、パターンずれが大き
くなる。また、被成形物に樹脂材料を用いた場合には、
被成形物の熱膨張係数が型の材料として用いられる石英
などの材料の熱膨張係数に比べて1〜2桁程度も大きく
なるので、最悪の場合には、型によって被成形物がえぐ
られてしまう虞れがある。実際、本発明者等が具体的に
検討したところ、型を用いて樹脂基板(被成形物)にパ
ターンを転写した場合には、ミクロンオーダーのレベル
で溝の幅が広がり、溝形状が乱れてしまった。この現象
は、冷却時に樹脂基板(被成形物)が型よりも大きく収
縮するために、樹脂基板(被成形物)がその転写中央部
に向かって収縮した結果であると考えられる。樹脂材料
は低温で成形でき、製造コスト上も有利であるにも拘わ
らず、プレス成形によってパターンを転写しようとする
と、微細なパターンを正確に転写することができないと
いう問題があった。
However, in such a transfer method, since the heat-softened material to be molded is brought into contact with the mold to be cooled, it is caused by the difference in thermal expansion coefficient between the material to be molded and the mold. Thermal stress occurs. As a result, the accuracy of the pattern transferred to the molding target decreases. In particular, the longer the distance from the center of the mold to the outer periphery, the larger the pattern shift. Further, when a resin material is used for the molding target,
The coefficient of thermal expansion of the object to be molded becomes larger by one to two orders of magnitude than the coefficient of thermal expansion of a material such as quartz used as the material of the mold. There is a risk of being lost. In fact, as a result of a specific study by the present inventors, when a pattern was transferred to a resin substrate (object to be molded) using a mold, the width of the groove widened at the level of micron order and the groove shape was disturbed. Oops. It is considered that this phenomenon is a result of the resin substrate (molding object) shrinking toward the transfer center portion because the resin substrate (molding object) shrinks more than the mold during cooling. Although a resin material can be molded at a low temperature and is advantageous in terms of manufacturing cost, when a pattern is transferred by press molding, there is a problem that a fine pattern cannot be transferred accurately.

【0006】また、回折格子全体を樹脂で構成した場
合、熱膨張係数が大きいために周囲の温度変化によって
回折格子が変形し、信頼性を十分に確保することができ
ないという問題もある。
Further, when the entire diffraction grating is made of resin, there is also a problem that the diffraction grating is deformed due to a change in ambient temperature due to a large coefficient of thermal expansion and sufficient reliability cannot be ensured.

【0007】本発明は、従来技術における前記課題を解
決するためになされたものであり、高精度で、かつ、十
分な信頼性を有する安価な回折格子及びその製造方法を
提供することを目的とする。
The present invention has been made to solve the above problems in the prior art, and an object of the present invention is to provide an inexpensive diffraction grating with high accuracy and sufficient reliability, and a manufacturing method thereof. To do.

【0008】また、本発明は、高精度で、信頼性の高い
複合光学素子を安価に製造することのできる複合光学素
子の製造方法を提供することを目的とする。
Another object of the present invention is to provide a method of manufacturing a composite optical element, which is capable of manufacturing a highly accurate and highly reliable composite optical element at low cost.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る回折格子の構成は、平面ガラス基板上
に、回折格子の各突起となるライン部分が分離して形成
され、前記ライン部分が熱可塑性樹脂あるいは低融点ガ
ラスからなることを特徴とする。この回折格子の構成に
よれば、回折格子の各突起となるライン部分が分離して
形成され、しかも平面ガラス基板上に強固に接着される
こととなるので、高精度で、かつ、周囲の温度が変化し
ても回折格子パターンの変形が少なく、十分な信頼性を
有する回折格子を安価に実現することができる。
In order to achieve the above object, the structure of the diffraction grating according to the present invention is such that the line portions to be the protrusions of the diffraction grating are formed separately on a flat glass substrate, It is characterized in that the portion is made of a thermoplastic resin or a low melting point glass. According to this structure of the diffraction grating, the line portions that become the protrusions of the diffraction grating are formed separately and are firmly bonded to the flat glass substrate. Therefore, the accuracy of the ambient temperature is high. Even if the value changes, the diffraction grating pattern is hardly deformed, and a diffraction grating having sufficient reliability can be realized at low cost.

【0010】また、本発明に係る回折格子の製造方法
は、平面ガラス基板上に、熱可塑性樹脂あるいは低融点
ガラスを載せ、前記熱可塑性樹脂あるいは低融点ガラス
を加熱軟化させた後、回折格子の表面形状の反転形状を
有する型を用いて、その先端部が前記平面ガラス基板の
表面に接するまでプレス成形することを特徴とする。こ
の回折格子の製造方法によれば、プレス成形時の型との
熱収縮差による微細パターンのずれを極力低減して、精
密転写が可能な回折格子を安価に製造することができ
る。
Further, in the method for manufacturing a diffraction grating according to the present invention, a thermoplastic resin or a low melting point glass is placed on a flat glass substrate, the thermoplastic resin or the low melting point glass is heated and softened, and then the diffraction grating It is characterized in that a mold having an inverted shape of the surface shape is used, and press-molding is performed until the tip portion of the mold contacts the surface of the flat glass substrate. According to this method of manufacturing a diffraction grating, it is possible to manufacture a diffraction grating capable of precise transfer at a low cost by minimizing the deviation of the fine pattern due to the difference in heat shrinkage from the die during press molding.

【0011】また、本発明に係る複合光学素子の製造方
法は、ガラスを加熱軟化させてプレス成形することによ
り、複数の平面からなるプリズムを形成し、前記プリズ
ムの平面上に、熱可塑性樹脂あるいは低融点ガラスを載
せ、前記熱可塑性樹脂あるいは低融点ガラスを加熱軟化
させた後、回折格子の表面形状の反転形状を有する型を
用いて、その先端部が前記プリズムの表面に接するまで
プレス成形することを特徴とする。この複合光学素子の
製造方法によれば、高精度で、信頼性の高い複合光学素
子を安価に製造することができる。
In the method for manufacturing a composite optical element according to the present invention, glass is heated and softened and press-molded to form a prism having a plurality of flat surfaces, and a thermoplastic resin or a plastic resin is formed on the flat surfaces of the prisms. After placing the low melting point glass and heating and softening the thermoplastic resin or the low melting point glass, press molding is performed using a mold having an inverted shape of the surface shape of the diffraction grating until the tip of the glass contacts the surface of the prism. It is characterized by According to this method of manufacturing a composite optical element, a highly accurate and highly reliable composite optical element can be manufactured at low cost.

【0012】[0012]

【発明の実施の形態】以下、実施の形態を用いて本発明
をさらに具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to embodiments.

【0013】〈第1の実施の形態〉図1は本発明の第1
の実施の形態における回折格子の製造方法を示す工程断
面図である。本実施の形態の回折格子を製造するに際し
ては、まず、図1(a)、(b)に示すように、平面ガ
ラス基板11上に、熱可塑性樹脂あるいは低融点ガラス
12を載せる。次いで、図1(b)、(c)に示すよう
に、熱可塑性樹脂あるいは低融点ガラス12を加熱軟化
させた後、回折格子の表面形状の反転形状を有する型を
用いて、その先端部が平面ガラス基板11の表面に接す
るまでプレス成形することにより、各突起となるライン
部分12aを分離して形成する。次いで、図1(c)、
(d)に示すように、ライン部分12aが形成された平
面ガラス基板11の表面に、反射防止膜あるいは反射膜
13を形成する。ここで、回折格子が透過型である場合
には反射防止膜が形成され、反射型である場合には反射
膜が形成される。
<First Embodiment> FIG. 1 shows a first embodiment of the present invention.
FIG. 6 is a process sectional view illustrating the method for manufacturing the diffraction grating in the embodiment. When manufacturing the diffraction grating of the present embodiment, first, as shown in FIGS. 1A and 1B, a thermoplastic resin or low melting point glass 12 is placed on a flat glass substrate 11. Next, as shown in FIGS. 1 (b) and 1 (c), after the thermoplastic resin or the low-melting glass 12 is softened by heating, a tip having a shape in which the surface shape of the diffraction grating is inverted is used. By press-molding until it comes into contact with the surface of the flat glass substrate 11, the line portions 12a to be the protrusions are formed separately. Then, as shown in FIG.
As shown in (d), an antireflection film or a reflection film 13 is formed on the surface of the flat glass substrate 11 on which the line portion 12a is formed. Here, an antireflection film is formed when the diffraction grating is a transmission type, and a reflection film is formed when the diffraction grating is a reflection type.

【0014】反射防止膜あるいは反射膜13の材料とし
ては、MgF2 、SiO2 、Al、Au等を用いること
ができる。
As the material of the antireflection film or the reflection film 13, MgF 2 , SiO 2 , Al, Au or the like can be used.

【0015】図2は本実施の形態のプレス成形工程にお
ける成形前の状態を示す断面図である。図2に示す回折
格子の表面形状の反転形状を有する型23は、以下のよ
うにして作製した。すなわち、まず、厚さ2mm、縦5
mm×横5mmの石英ガラス基板を平面に研磨した後、
通常のフォトレジストを用いたパターニング法により、
矩形状回折格子のパターンを形成した。次いで、ドライ
エッチング法を用いて、石英ガラス基板の全面に、回折
格子のスペース部分(溝部分)に相当する凸部分(断面
形状;高さ0.5μm×幅5μmの突起)を、10μm
ピッチで形成した。
FIG. 2 is a sectional view showing a state before molding in the press molding process of this embodiment. The mold 23 having an inverted shape of the surface shape of the diffraction grating shown in FIG. 2 was manufactured as follows. That is, first, the thickness is 2 mm and the length is 5
After polishing a quartz glass substrate (mm x width 5 mm) into a flat surface,
By patterning method using ordinary photoresist,
A rectangular diffraction grating pattern was formed. Then, using a dry etching method, a convex portion (cross-sectional shape; a protrusion having a height of 0.5 μm × a width of 5 μm) corresponding to the space portion (groove portion) of the diffraction grating is formed on the entire surface of the quartz glass substrate by 10 μm.
Formed on the pitch.

【0016】本実施の形態の回折格子を製造するに際
し、まず、厚さ2mm、縦5mm×横5mmの平面に研
磨したガラス基板21(屈折率1.5、熱膨張係数70
×10 -7/K)上に、ポリオレフィン系の熱可塑性樹脂
22を載せた。次いで、前記の石英ガラス製の型23
を、離型剤を塗布した後、ポリオレフィン系の熱可塑性
樹脂22上に載せて、プレス成形機26のヒーターを内
蔵した下ヒーターブロック24上に置いた。図2はこの
状態を示している。
In manufacturing the diffraction grating of this embodiment,
First, grind a flat surface with a thickness of 2 mm, a length of 5 mm and a width of 5 mm.
Polished glass substrate 21 (refractive index 1.5, thermal expansion coefficient 70
× 10 -7/ K) on top of the polyolefin-based thermoplastic resin
I put 22. Then, the above-mentioned quartz glass mold 23
After applying the release agent,
Place on the resin 22 and put the heater of the press molding machine 26 inside.
It was placed on the lower heater block 24 stored. Figure 2 is this
It shows the state.

【0017】この状態で、上下のヒーターブロック2
5、24を180℃に昇温し、上ヒーターブロック25
をゆっくり下降させ、圧力を加えてプレスした。石英ガ
ラス製の型23の凸部分の先端が、ガラス基板21の表
面に接するまでプレスを続け(図3参照)、そのままの
状態で冷却し、室温となったところで、プレスを解放し
て、成形された基板を取り出した。このときの基板は、
平面ガラス基板21の上に、各突起となるライン部分3
1が分離された状態で形成されたものである。このよう
に、回折格子のライン部分31はそれぞれ分離され、さ
らに、ガラス基板21に強固に接着されているので、型
23との熱収縮差によるパターンずれが非常に小さく、
型23の形状がそのまま良好に転写されたものとなって
いる。
In this state, the upper and lower heater blocks 2
5 and 24 are heated to 180 ℃, the upper heater block 25
Was slowly lowered, and pressure was applied to press. Pressing is continued until the tip of the convex portion of the mold 23 made of quartz glass comes into contact with the surface of the glass substrate 21 (see FIG. 3), cooled in that state, and at room temperature, the press is released to perform molding. The obtained substrate was taken out. The substrate at this time is
On the flat glass substrate 21, the line portions 3 that will be the protrusions
1 is formed in a separated state. In this way, since the line portions 31 of the diffraction grating are separated from each other and further firmly adhered to the glass substrate 21, the pattern shift due to the difference in thermal contraction with the mold 23 is very small,
The shape of the mold 23 has been satisfactorily transferred as it is.

【0018】次いで、この取り出した基板の全面に、A
lを反射膜13として蒸着によって形成した。
Next, on the entire surface of the taken-out substrate, A
The reflective film 13 was formed by vapor deposition.

【0019】以上の工程により、図4に示す反射型回折
格子が得られた。
Through the above steps, the reflection type diffraction grating shown in FIG. 4 was obtained.

【0020】この回折格子は、そのライン部分42にポ
リオレフィン系の熱可塑性樹脂を使用しているが、各ラ
イン部分42がそれぞれ分離し、平面ガラス基板41に
強固に接着し、さらに、全面に反射膜43が形成された
構成となっているので、周囲環境の温度変化による形状
変化もほとんど無い。従って、この回折格子は、十分な
実用性を備えている。
In this diffraction grating, a polyolefin thermoplastic resin is used for the line portion 42, but each line portion 42 is separated and firmly adhered to the flat glass substrate 41, and is further reflected on the entire surface. Since the film 43 is formed, there is almost no change in shape due to temperature changes in the surrounding environment. Therefore, this diffraction grating has sufficient practicality.

【0021】尚、本実施の形態においては、熱可塑性樹
脂としてポリオレフィン系のものを用いているが、必ず
しもこれに限定されるものではなく、例えば、ポリカー
ボネート系、ノルボルネン系等の他の熱可塑性樹脂を用
いることもできる。
In this embodiment, a polyolefin resin is used as the thermoplastic resin, but the thermoplastic resin is not necessarily limited to this. For example, another thermoplastic resin such as a polycarbonate resin or norbornene resin is used. Can also be used.

【0022】〈第2の実施の形態〉図5は本発明の第2
の実施の形態における複合光学素子の製造方法を示す工
程断面図である。
<Second Embodiment> FIG. 5 shows a second embodiment of the present invention.
FIG. 6 is a process sectional view illustrating the method for manufacturing the composite optical element in the embodiment of FIG.

【0023】まず、図5(a)、(b)に示すように、
超硬合金素材を斜めに平面研磨し、離型用保護膜である
貴金属合金膜を形成した金型(厚さ10mm、縦5mm
×横5mm)を用いて、被成形用ガラス51(屈折率
1.5、熱膨張係数70×10 -7/K)を、700℃で
加熱軟化させてプレス成形することにより、三角プリズ
ム54(厚さ2mm、縦5mm×横5mm)を作製し
た。
First, as shown in FIGS. 5 (a) and 5 (b),
It is a protective film for mold release, which is obtained by polishing the cemented carbide material diagonally and flatly.
Mold with a precious metal alloy film (thickness 10 mm, length 5 mm
X glass 5 mm (width 5 mm) is used to mold glass 51 (refractive index
1.5, coefficient of thermal expansion 70 × 10 -7/ K) at 700 ° C
Triangular prism by heat-softening and press molding
Mum 54 (thickness 2 mm, length 5 mm x width 5 mm)
It was

【0024】そして、予め、回折格子の表面形状の反転
形状を有する型を、以下の方法によって作製した。すな
わち、まず、厚さ10mm、縦5mm×横5mmの超硬
合金素材を斜めに平面研磨し、斜めに平面研磨した面の
上に離型膜として貴金属合金薄膜を成膜した後、通常の
フォトレジストを用いたパターニング法により、回折格
子のパターンを形成した。次いで、ドライエッチング法
を用いて、超硬合金素材に成膜した貴金属合金薄膜の全
面に、回折格子のスペース部分(溝部分)に相当する凸
部分(断面形状;高さ0.5μm×幅5μmの突起)
を、10μmピッチで形成した。
Then, a mold having an inverted shape of the surface shape of the diffraction grating was prepared in advance by the following method. That is, first, a thickness of 10 mm, a cemented carbide material for longitudinal 5mm × horizontal 5mm ground flat diagonally polished surface plane obliquely
After forming the noble metal alloy thin film as a release film above, the patterning method using a conventional photoresist to form a pattern of the diffraction grating. Then, using the dry etching method, the entire surface of the noble metal alloy thin film formed cemented carbide material, a convex portion (cross-sectional shape corresponding to the space portion of the diffraction grating (groove portion); Height 0.5 [mu] m × width 5μm Projection)
Were formed at a pitch of 10 μm.

【0025】次いで、図5(c)に示すように、三角プ
リズム54の平面部分上に、同じ屈折率の低融点ガラス
52を載せた。
Next, as shown in FIG. 5C, a low melting point glass 52 having the same refractive index was placed on the plane portion of the triangular prism 54.

【0026】次いで、回折格子の表面形状の反転形状を
有する前記型を、三角プリズム54の平面部分上の低融
点ガラス52の上に載せて、図2に示すプレス成形機2
6の下ヒーターブロック24上に置いた。この状態で、
上下のヒーターブロック25、24を550℃に昇温
し、上ヒーターブロック25をゆっくり下降させ、圧力
を加えてプレスした。超硬合金製の型の凸部分の先端
が、三角プリズム54の表面に接するまでプレスを続け
(図3参照)、そのままの状態で冷却し、室温となった
ところで、プレスを解放して、成形された基板を取り出
した。このときの基板は、三角プリズム54の上に、各
突起となるライン部分52aが分離された状態で形成さ
れたものである(図5(d)参照)。このように、回折
格子のライン部分52aはそれぞれ分離され、さらに、
三角プリズム54に強固に接着しているので、型との熱
収縮差によるパターンずれが非常に小さく、型の形状が
そのまま良好に転写されたものになっている。
Next, the mold having the inverted shape of the surface shape of the diffraction grating is placed on the low melting point glass 52 on the plane portion of the triangular prism 54, and the press molding machine 2 shown in FIG.
6 was placed on the lower heater block 24. In this state,
The upper and lower heater blocks 25, 24 were heated to 550 ° C., the upper heater block 25 was slowly lowered, and pressure was applied to press. Pressing is continued until the tip of the convex portion of the cemented carbide die contacts the surface of the triangular prism 54 (see FIG. 3), and the cooling is continued in that state, and when the temperature reaches room temperature, the press is released to perform molding. The obtained substrate was taken out. The substrate at this time is formed on the triangular prism 54 in a state where the line portions 52a to be the respective projections are separated (see FIG. 5D). In this way, the line portions 52a of the diffraction grating are separated from each other, and further,
Since it is firmly adhered to the triangular prism 54, the pattern shift due to the difference in heat contraction with the mold is very small, and the shape of the mold is transferred well as it is.

【0027】次いで、図5(e)に示すように、この取
り出した基板の全面に、MgF2 を反射防止膜53とし
て蒸着によって形成した。
Next, as shown in FIG. 5E, MgF 2 was formed as an antireflection film 53 on the entire surface of the taken-out substrate by vapor deposition.

【0028】以上の工程により、複合光学素子が得られ
た。
A composite optical element was obtained through the above steps.

【0029】この複合光学素子は、各ライン部分52a
がそれぞれ分離し、三角プリズム54に強固に接着し、
さらに、全面に反射防止膜53が形成された構成となっ
ているので、周囲環境の温度変化による形状変化もほと
んど無い。従って、この複合光学素子は、十分な実用性
を備えている。
This composite optical element has a line portion 52a.
Are separated and firmly adhered to the triangular prism 54,
Furthermore, since the antireflection film 53 is formed on the entire surface, there is almost no change in shape due to temperature changes in the surrounding environment. Therefore, this composite optical element has sufficient practicality.

【0030】以上のように、本実施の形態の方法によれ
ば、プリズムの機能と回折格子の機能を一体化した複合
光学素子を非常に安価に、かつ、高精度に製造すること
ができる。
As described above, according to the method of the present embodiment, a composite optical element in which the function of a prism and the function of a diffraction grating are integrated can be manufactured very inexpensively and highly accurately.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
型材と被成形物との熱膨張係数の差によって成形時の冷
却工程で発生する熱収縮によるパターンずれを著しく小
さくすることができるので、精度の高い回折格子パター
ンを効率良く成形することが可能となる。従って、安価
な回折格子及び複合光学素子を効率良く製造することが
可能となる。
As described above, according to the present invention,
Since the pattern deviation due to the thermal contraction generated in the cooling step during molding due to the difference in the coefficient of thermal expansion between the mold material and the object to be molded can be significantly reduced, it is possible to efficiently mold a highly accurate diffraction grating pattern. Become. Therefore, it becomes possible to efficiently manufacture an inexpensive diffraction grating and composite optical element.

【0032】また、本発明によれば、周囲の温度の変化
に対する形状変化が小さく、非常に信頼性の高い回折格
子を実現することが可能となる。
Further, according to the present invention, it is possible to realize a highly reliable diffraction grating with a small change in shape due to a change in ambient temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態における回折格子の
製造方法を示す工程断面図
FIG. 1 is a process sectional view showing a method of manufacturing a diffraction grating according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態のプレス成形工程に
おける成形前の状態を示す断面図
FIG. 2 is a cross-sectional view showing a state before molding in a press molding process according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態のプレス成形工程に
おける成形後の状態を示す断面図
FIG. 3 is a cross-sectional view showing a state after molding in the press molding process according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態における回折格子を
示す断面図
FIG. 4 is a sectional view showing a diffraction grating according to the first embodiment of the present invention.

【図5】本発明の第2の実施の形態における複合光学素
子の製造方法を示す工程断面図
FIG. 5 is a process sectional view showing the method of manufacturing the composite optical element according to the second embodiment of the invention.

【図6】従来の成形法によって作製された回折格子を示
す断面図
FIG. 6 is a cross-sectional view showing a diffraction grating manufactured by a conventional molding method.

【図7】従来技術における回折格子の製造方法を示す工
程断面図
7A to 7C are process cross-sectional views showing a method of manufacturing a diffraction grating in a conventional technique.

【符号の説明】[Explanation of symbols]

11、21、41 平面ガラス基板 12a、31、42、52a 回折格子のライン部分 13 反射防止膜あるいは反射膜 22 ポリオレフィン系の熱可塑性樹脂 23 回折格子の表面形状の反転形状を有する型 24 下ヒーターブロック 25 上ヒーターブロック 26 プレス成形機 43 反射膜 51 被成形用ガラス 52 低融点ガラス 53 反射防止膜 54 三角プリズム 11, 21, 41 Flat glass substrate 12a, 31, 42, 52a Line portion of diffraction grating 13 Antireflection film or reflection film 22 Polyolefin-based thermoplastic resin 23 A mold having an inverted shape of the surface shape of the diffraction grating 24 Lower heater block 25 Upper heater block 26 Press molding machine 43 Reflective film 51 Glass for molding 52 Low melting glass 53 Antireflection film 54 triangular prism

フロントページの続き (56)参考文献 特開 昭63−9037(JP,A) 特開 昭62−246003(JP,A) 特開 平10−96808(JP,A) 特開 昭62−225273(JP,A) 特開 平10−232306(JP,A) 特開 平7−198944(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 5/18 Continuation of the front page (56) References JP 63-9037 (JP, A) JP 62-246003 (JP, A) JP 10-96808 (JP, A) JP 62-225273 (JP , A) JP 10-232306 (JP, A) JP 7-198944 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 5/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平面ガラス基板上に、回折格子の各突起
となるライン部分が分離して形成され、前記ライン部分
が熱可塑性樹脂あるいは低融点ガラスからなることを特
徴とする回折格子。
1. A diffraction grating, characterized in that line portions to be the respective protrusions of the diffraction grating are formed separately on a flat glass substrate, and the line portions are made of thermoplastic resin or low melting point glass.
【請求項2】 平面ガラス基板上に、熱可塑性樹脂ある
いは低融点ガラスを載せ、前記熱可塑性樹脂あるいは低
融点ガラスを加熱軟化させた後、回折格子の表面形状の
反転形状を有する型を用いて、その先端部が前記平面ガ
ラス基板の表面に接するまでプレス成形することを特徴
とする回折格子の製造方法。
2. A thermoplastic resin or low-melting glass is placed on a flat glass substrate, the thermoplastic resin or low-melting glass is heated and softened, and then a mold having an inverted surface shape of the diffraction grating is used. A method for manufacturing a diffraction grating, characterized in that press-molding is performed until the tip portion thereof comes into contact with the surface of the flat glass substrate.
【請求項3】 ガラスを加熱軟化させてプレス成形する
ことにより、複数の平面からなるプリズムを形成し、前
記プリズムの平面上に、熱可塑性樹脂あるいは低融点ガ
ラスを載せ、前記熱可塑性樹脂あるいは低融点ガラスを
加熱軟化させた後、回折格子の表面形状の反転形状を有
する型を用いて、その先端部が前記プリズムの表面に接
するまでプレス成形することを特徴とする複合光学素子
の製造方法。
3. A glass having a plurality of flat surfaces is formed by heat-softening and press-molding the glass, and a thermoplastic resin or a low-melting glass is placed on the flat surfaces of the prisms, and the thermoplastic resin or the low-melting glass is used. A method for producing a composite optical element, comprising heating and softening a melting point glass, and then press-molding a mold having an inverted shape of the surface shape of a diffraction grating until the tip of the glass contacts the surface of the prism.
JP32810599A 1999-11-18 1999-11-18 Diffraction grating, method for manufacturing the same, and method for manufacturing composite optical element Expired - Fee Related JP3484385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32810599A JP3484385B2 (en) 1999-11-18 1999-11-18 Diffraction grating, method for manufacturing the same, and method for manufacturing composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32810599A JP3484385B2 (en) 1999-11-18 1999-11-18 Diffraction grating, method for manufacturing the same, and method for manufacturing composite optical element

Publications (2)

Publication Number Publication Date
JP2001147309A JP2001147309A (en) 2001-05-29
JP3484385B2 true JP3484385B2 (en) 2004-01-06

Family

ID=18206567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32810599A Expired - Fee Related JP3484385B2 (en) 1999-11-18 1999-11-18 Diffraction grating, method for manufacturing the same, and method for manufacturing composite optical element

Country Status (1)

Country Link
JP (1) JP3484385B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566054B1 (en) * 2003-08-14 2006-03-31 주식회사 엘지에스 An optical pickup grating and a method of fabrication an optical pickup grating
US20090128908A1 (en) * 2005-11-09 2009-05-21 Tatsuhiro Nakazawa Polarization Split Element and Production Method Thereof, and Optical Pickup, Optical Device, Optical Isolator and Polarizing Hologram Provided with the Polarization Split Element
JP4643431B2 (en) * 2005-12-16 2011-03-02 独立行政法人理化学研究所 Reflective diffraction grating and method of manufacturing the same
JP2015212765A (en) * 2014-05-02 2015-11-26 Hoya株式会社 Coloring structure and component

Also Published As

Publication number Publication date
JP2001147309A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
JP3229871B2 (en) Method for transferring fine shape and method for manufacturing optical component
JP3338660B2 (en) optical disk
US6875379B2 (en) Tool and method for forming an integrated optical circuit
JP3205227B2 (en) Optical waveguide element and manufacturing method thereof
WO2007111077A1 (en) Composite optical element
JP3484385B2 (en) Diffraction grating, method for manufacturing the same, and method for manufacturing composite optical element
US5271801A (en) Process of production of integrated optical components
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JP2001133650A (en) Optical waveguide substrate, method for manufacturing the optical waveguide substrate, optical waveguide part and method for manufacturing the optical waveguide part
JP3279859B2 (en) Manufacturing method of plastic molded products
JP2002255566A (en) Die for forming glass and method for manufacturing product of formed glass
JP2002071993A (en) Optical waveguide substrate, method of manufacturing the same, optical waveguide parts and method of manufcturing the same
JP4779866B2 (en) Method for manufacturing antireflection structure
JP3566635B2 (en) Optical article manufacturing method
JP4164888B2 (en) Microlens and microlens array manufacturing method
US20010024560A1 (en) Optical fiber array
JP3414350B2 (en) Method of manufacturing master mold for optical element
JPH10139450A (en) Mold for molding optical element
JP2000158532A (en) Method for transferring fine pattern and manufacture of optical component
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP4554835B2 (en) Mold for glass and method for producing glass molded product
JP2001322830A (en) Press forming method for glass optical element and glass optical element formed by the same
JPH11295511A (en) Diffraction optical element
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JPS6195912A (en) Molding method of microlens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees