JP3483688B2 - Refrigeration cycle device with dryer - Google Patents

Refrigeration cycle device with dryer

Info

Publication number
JP3483688B2
JP3483688B2 JP31671095A JP31671095A JP3483688B2 JP 3483688 B2 JP3483688 B2 JP 3483688B2 JP 31671095 A JP31671095 A JP 31671095A JP 31671095 A JP31671095 A JP 31671095A JP 3483688 B2 JP3483688 B2 JP 3483688B2
Authority
JP
Japan
Prior art keywords
refrigerant
dryer
refrigeration cycle
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31671095A
Other languages
Japanese (ja)
Other versions
JPH09159325A (en
Inventor
博志 小暮
功一 福島
一朗 藤林
康裕 小井土
董 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31671095A priority Critical patent/JP3483688B2/en
Priority to TW085114080A priority patent/TW305920B/en
Priority to KR1019960061195A priority patent/KR100200388B1/en
Priority to MYPI96005079A priority patent/MY123746A/en
Priority to CN96118596A priority patent/CN1107842C/en
Publication of JPH09159325A publication Critical patent/JPH09159325A/en
Application granted granted Critical
Publication of JP3483688B2 publication Critical patent/JP3483688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、乾燥器付き冷凍サ
イクル装置に係り、特に、冷凍サイクル内の水分を少な
くするために乾燥器を取り付けた冷暖房冷凍サイクルに
おける、信頼性の高い、乾燥器の取付け構造に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus with a drier, and more particularly to a highly reliable drier for a cooling / heating refrigeration cycle equipped with a drier to reduce water in the refrigeration cycle. It relates to a mounting structure.

【0002】[0002]

【従来の技術】冷凍サイクル内に乾燥器を設けた冷凍サ
イクルの構成としては、例えば、実公昭55−2678
号公報記載の冷凍サイクル図中に示す如く、凝縮器と減
圧器(キャピラリチュ−ブ)との間に乾燥器を設けて、
冷凍サイクル内の水分を吸着していた。上記公知例で示
すように、乾燥器に液冷媒が流れるときは流速が遅く、
乾燥器内の粒状合成ゼオライトが流動して破壊し、粉化
物や破砕片が発生するようなことは極めて少ない。
2. Description of the Related Art The structure of a refrigerating cycle in which a dryer is provided in the refrigerating cycle is, for example, Jikkou 55-2678.
As shown in the refrigeration cycle diagram described in the publication, a dryer is provided between the condenser and the pressure reducer (capillary tube),
Water in the refrigeration cycle was absorbed. As shown in the above known example, when the liquid refrigerant flows through the dryer, the flow velocity is slow,
It is extremely unlikely that the granular synthetic zeolite in the drier will flow and break, resulting in generation of powder and crushed pieces.

【0003】しかし、冷暖房タイプの空気調和機用冷凍
サイクルのように、冷媒が減圧器を通った後に乾燥器に
流入するときは、冷媒は液−ガスの二相流で乾燥器に流
入することになり、乾燥器に入る流速が速くなり、その
流速で合成ゼオライトがこすれて粉化したり動いて破壊
するようなことが発生する問題があった。合成ゼオライ
トの粉化物や破砕片は、冷凍サイクル内を移動して圧縮
機内に入り、可動部分に損傷を起させて圧縮機の信頼性
を低下させたり、細径配管部や四方弁の制御器に付着し
て流体制御の経時劣化を起こす等の問題があつた。
However, when the refrigerant flows into the dryer after passing through the decompressor, as in a cooling / heating type air conditioner refrigeration cycle, the refrigerant must flow into the dryer in a two-phase liquid-gas flow. Therefore, there is a problem that the flow velocity into the dryer becomes high and the synthetic zeolite is rubbed at the flow velocity to be powdered or move to be destroyed. The powder and crushed pieces of synthetic zeolite move in the refrigeration cycle and enter the compressor, causing damage to the moving parts and reducing the reliability of the compressor, or the controller of small diameter piping and four-way valve. However, there was a problem that the fluid adhered to the surface and deteriorated with time of fluid control.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、冷暖房
タイプの空気調和機用冷凍サイクルのように、冷媒の流
れを変化させるとともに、乾燥器に流れる冷媒の方向も
可変とする乾燥器付き冷凍サイクル装置において、乾燥
器内を流れる冷媒の動きにより、乾燥器内の合成ゼオラ
イトが破壊し、その粉化物や破砕片が圧縮機内の可動部
分に損傷を起させることがあつた。
In the prior art, a refrigeration cycle with a drier, which changes the flow of the refrigerant and changes the direction of the refrigerant flowing to the drier, as in a refrigeration cycle for an air conditioner of a heating and cooling type. In the apparatus, the movement of the refrigerant flowing in the dryer may destroy the synthetic zeolite in the dryer, and the powdered material or crushed pieces may damage the moving parts in the compressor.

【0005】本発明は、上記従来技術の問題点を解決す
るためになされたもので、その目的は、乾燥器内を流れ
る冷媒流速を低下させるような冷凍サイクルとすること
により、乾燥器内の合成ゼオライトが、冷媒の動きによ
り破壊し、その破片により圧縮機が損傷するのを防止
し、圧縮機の信頼性の向上を計りうる乾燥器付き冷凍サ
イクル装置を提供することにある。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a refrigerating cycle in which the flow velocity of the refrigerant flowing through the dryer is reduced to thereby improve the internal temperature of the dryer. It is an object of the present invention to provide a refrigeration cycle device with a dryer, which prevents synthetic zeolite from being broken by the movement of a refrigerant and prevents the compressor from being damaged by the fragments thereof, and which can improve the reliability of the compressor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る乾燥器付き冷凍サイクル装置の構成
は、圧縮機、四方弁、室外側熱交換器、減圧器、室内側
熱交換器、およびこれらを接続する配管からなるHFC
系冷媒を用いた冷凍サイクルにおいて、前記減圧器と前
記室内側熱交換器との間に、分岐手段を介して所定長さ
を限って分流する2つの流路を設け、1方の流路に、金
属カチオンとしてカリウムを主たるものとした合成ゼオ
ライトの入つた乾燥器を設けたものである。
In order to achieve the above object, the structure of the refrigerating cycle apparatus with a dryer according to the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer and an indoor heat exchanger. HFC consisting of a vessel and piping connecting them
In a refrigeration cycle using a system refrigerant, two flow paths are provided between the decompressor and the indoor heat exchanger, the flow paths being divided by a branching means so as to limit a predetermined length. , A dryer containing a synthetic zeolite containing potassium as a main metal cation is provided.

【0007】より詳しくは、上記乾燥器における合成ゼ
オライトは、その細孔径の平均値として2.8Å<細孔
径<3.3Åの小穴を有するものである。また、分岐手
段として二叉パイプを用いて、冷媒を液冷媒とガス冷媒
とに分ける二つの流路を設け、金属カチオンとしてカリ
ウムを主たるものとした合成ゼオライトの入つた乾燥器
を設けた一方の流路に主として液冷媒が流れるように、
前記二つの流路を構成する2本の接続パイプで流量を調
整したものである。
More specifically, the synthetic zeolite in the dryer has pores having an average pore diameter of 2.8Å <pore diameter <3.3Å. Further, by using a bifurcated pipe as a branching means, two flow paths for dividing the refrigerant into a liquid refrigerant and a gas refrigerant are provided, and a dryer provided with a synthetic zeolite containing potassium as a main metal cation is provided. As the liquid refrigerant mainly flows in the flow path,
The flow rate is adjusted by the two connecting pipes forming the two flow paths.

【0008】上記技術的手段を開発した考え方は、乾燥
器内の合成ゼオライトの破壊を防止するために、乾燥器
内の流速を遅くし、流動による合成ゼオライトの動きを
無くすることにより実現できる。特に、冷媒が液−ガス
の二相流で流れるときは、流速が速くなるが、乾燥器と
バイパス流路を設けることにより、常に遅い流速で乾燥
器内に冷媒を流すことを考えたものである。
The idea of developing the above technical means can be realized by slowing the flow rate in the dryer to prevent the movement of the synthetic zeolite due to the flow in order to prevent the destruction of the synthetic zeolite in the dryer. In particular, when the refrigerant flows in a two-phase flow of liquid-gas, the flow velocity becomes faster, but by providing a dryer and a bypass flow passage, it is considered that the refrigerant always flows at a low flow velocity in the dryer. is there.

【0009】すなわち、上記技術的手段による働きは次
のとおりである。乾燥器をバイパスした流路を設けると
ともに、乾燥器側と前記バイパスとに流れる流量比を規
定するような流路、換言すれば、乾燥器には液冷媒が流
れるようにした抵抗を持った流路を構成することによ
り、減圧前の液冷媒を流したときと減圧後の冷媒を流し
たときの乾燥器を流れる流速を、合成ゼオライトに粉化
破壊が発生しない低い流速とする。これにより、乾燥器
内の合成ゼオライトの破壊を防止することができ、圧縮
機の信頼性の向上を計ることができる。
That is, the function of the above technical means is as follows. A flow path that bypasses the dryer is provided, and a flow path that regulates the flow rate ratio between the dryer side and the bypass, in other words, a flow with a resistance that allows the liquid refrigerant to flow through the dryer. By constructing the passage, the flow rate of the liquid flowing through the dryer when the liquid refrigerant before depressurization and when the refrigerant after depressurization is caused to flow is set to a low flow rate at which pulverization and destruction of the synthetic zeolite does not occur. As a result, the destruction of the synthetic zeolite in the dryer can be prevented, and the reliability of the compressor can be improved.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態を、従来
技術と対比して説明する。 〔実施の形態 1〕図1は、本発明の一実施形態を示す
乾燥器付き冷暖房冷凍サイクルの系統図、図2は、従来
の乾燥器付き冷暖房冷凍サイクルの系統図、図3は、一
般的な乾燥器の内部を流れる冷媒の流速を示す線図であ
る。図1,図2において、同一機器構成のものは同一符
号で示している。図1,2において、実線矢印は冷房時
の冷媒の流れの方向、破線矢印は暖房時の冷媒の流れの
方向を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in comparison with prior art. [Embodiment 1] FIG. 1 is a system diagram of a cooling / heating and refrigerating cycle with a dryer showing one embodiment of the present invention, FIG. 2 is a system diagram of a conventional cooling / heating and refrigerating cycle with a dryer, and FIG. It is a diagram showing the flow velocity of the refrigerant flowing inside the different dryer. In FIGS. 1 and 2, components having the same device configuration are designated by the same reference numerals. 1 and 2, solid arrows indicate the direction of the refrigerant flow during cooling, and broken arrows indicate the direction of the refrigerant flow during heating.

【0011】図1において、1は圧縮機、2は四方弁、
3は室外側熱交換器、4は減圧器(膨張弁)、5,9
は、分岐手段に係る二叉パイプ、6,7は、二叉パイプ
5,9の間を限って分流する2つの流路を構成する接続
パイプ、6a,7aは、接続パイプに6,7に必要に応
じて減圧するために設けたキャピラリチューブ、8は、
接続パイプ6側の流路に設けた乾燥器、10a,10
b,11a,11bは、冷媒配管系統のジョイント、1
2は室内側熱交換器である。また、13は、乾燥器8内
の合成ゼオライトで、細孔径の平均値として2.8Å<
細孔径<3.3Åの小穴を有する調整された多孔質のも
のである。14は、合成ゼオライト13を多孔板間に充
填するためのばねである。
In FIG. 1, 1 is a compressor, 2 is a four-way valve,
3 is an outdoor heat exchanger, 4 is a pressure reducer (expansion valve), 5, 9
Is a bifurcating pipe according to the branching means, 6, 7 are connecting pipes that form two flow paths that divide only between the bifurcating pipes 5 and 9, and 6a and 7a are connecting pipes. Capillary tube provided to reduce the pressure as necessary, 8,
Dryers 10a, 10 provided in the flow path on the side of the connection pipe 6
b, 11a and 11b are joints of the refrigerant piping system, 1
2 is an indoor heat exchanger. In addition, 13 is a synthetic zeolite in the dryer 8, which has an average pore diameter of 2.8Å <
It is of controlled porosity with small holes of pore size <3.3Å. Reference numeral 14 is a spring for filling the synthetic zeolite 13 between the porous plates.

【0012】図2は従来の乾燥器付き冷暖房冷凍サイク
ルであり、二叉パイプ5,9、乾燥器8をバイパスする
接続パイプ7がない冷暖房冷凍サイクルを示す。図3
は、乾燥器8の円筒部を流れる冷媒の流速を示したもの
で、横軸に乾き度x、縦軸に冷媒の流速v(m/s)を
とり、冷媒流量を50kg/h(冷媒R-22)、乾燥
器8の円筒部の内径を25mmとしたときの流速の例を
示している。
FIG. 2 shows a conventional cooling / heating refrigeration cycle with a dryer, which does not have a connecting pipe 7 for bypassing the bifurcated pipes 5, 9 and the drying machine 8. Figure 3
Represents the flow rate of the refrigerant flowing through the cylindrical portion of the dryer 8. The horizontal axis represents the dryness x, the vertical axis represents the refrigerant flow rate v (m / s), and the refrigerant flow rate is 50 kg / h (refrigerant R -22) shows an example of the flow velocity when the inner diameter of the cylindrical portion of the dryer 8 is 25 mm.

【0013】まず初めに、図1を参照して冷房運転状態
を説明する。圧縮機1で圧縮された高温高圧の冷媒は実
線矢印の如く流れ、四方弁2を経て室外側熱交換器3に
至り、室外空気と熱交換して凝縮液化する。液化された
冷媒は、減圧器4で減圧され液−ガス混合の冷媒(乾き
度x=0.2程度)となり、二叉パイプ5で分岐された
冷媒は接続パイプ6,7の内径d、長さl等を変化させ
て、流通抵抗を変えておくことにより、当該接続パイプ
6,7で流量を調整されて分流する。
First, the cooling operation state will be described with reference to FIG. The high-temperature and high-pressure refrigerant compressed by the compressor 1 flows as shown by a solid arrow, reaches the outdoor heat exchanger 3 through the four-way valve 2, and exchanges heat with outdoor air to be condensed and liquefied. The liquefied refrigerant is decompressed by the decompressor 4 to become a liquid-gas mixed refrigerant (dryness x = about 0.2), and the refrigerant branched by the bifurcated pipe 5 has an inner diameter d of the connecting pipes 6, 7 and a long length. By changing the flow rate and the like to change the flow resistance, the flow rate is adjusted by the connection pipes 6 and 7, and the flow is divided.

【0014】接続パイプ6には、液−ガス混合の冷媒の
うち、流れが遅いときに重力の作用で、液−ガス混合の
冷媒のうち液冷媒が流れるように調整され、接続パイプ
6を流れた液冷媒は乾燥器8内の合成ゼオライト13の
間を流れ、冷凍サイクル中の水分は取り除かれる。一
方、接続パイプ7には、液−ガス混合の冷媒のうちガス
冷媒が流れる。前記乾燥器8を経た接続パイプ6の冷媒
は、二叉パイプ9で接続パイプ7を流れたガス冷媒と合
流し、その冷媒は室内側熱交換器12に至り、室内空気
と熱交換して冷媒は蒸発する。その蒸発潜熱で室内を冷
やす。
[0014] The connection pipe 6, the liquid - out of the refrigerant gas mixture, under the action of gravity when the slow flow, liquid - is adjusted so out liquid refrigerant in the refrigerant gas mixture is flow, the connecting pipe 6 The liquid refrigerant that has flowed flows between the synthetic zeolites 13 in the dryer 8 to remove water in the refrigeration cycle. On the other hand, a gas refrigerant of the liquid-gas mixed refrigerant flows through the connection pipe 7. The refrigerant in the connection pipe 6 passing through the dryer 8 merges with the gas refrigerant flowing in the connection pipe 7 in the bifurcated pipe 9, and the refrigerant reaches the indoor heat exchanger 12 to exchange heat with the indoor air. Evaporates. The latent heat of vaporization cools the room.

【0015】ここで、図2に示す従来の冷凍サイクルの
場合、乾燥器8内を流れる流速は、図3から読み取られ
るように乾き度x=0.2程度であるから約0.2m/
sとなる。もし、減圧器4の前に乾燥器8を置いたと考
えると、冷媒は液冷媒(乾き度x=0)のため、乾燥器
8内を流れる流速は図3から見て約0.025m/sと
なる。
Here, in the case of the conventional refrigeration cycle shown in FIG. 2, the flow rate in the drier 8 is about 0.2 m / m because the dryness x is about 0.2 as can be read from FIG.
s. If the dryer 8 is placed in front of the decompressor 4, since the refrigerant is a liquid refrigerant (dryness x = 0), the flow velocity in the dryer 8 is about 0.025 m / s as seen in FIG. Becomes

【0016】ところで、本実施の形態における、図1の
冷凍サイクルにおいては、乾燥器8内を流れる冷媒の流
速は、主に接続パイプ6,7の抵抗で決まるものであ
る。次式(1)を用いて、接続パイプ6,7に流れる流
量を求めることになる。 Dp=A・r・l/d5・G2 −−−−−−−−−− (1) 但し Dp:圧力差 A:摩擦係数 r :比重 l:パイプ長さ d :パイプ内径 G:流量
By the way, in the refrigerating cycle of FIG. 1 in the present embodiment, the flow velocity of the refrigerant flowing in the dryer 8 is mainly determined by the resistance of the connecting pipes 6, 7. The flow rate flowing through the connecting pipes 6 and 7 is obtained by using the following equation (1). Dp = A · r · l / d 5 · G 2 −−−−−−−−−−− (1) where Dp: Pressure difference A: Friction coefficient r: Specific gravity l: Pipe length d: Pipe inner diameter G: Flow rate

【0017】冷媒流量を50kg/h、乾き度(x)を
0.2、接続パイプ6には液冷媒40kg/h、接続パ
イプ7にはガス冷媒10kg/hが流れるようにし、液
冷媒の比重1130kg/m3、ガス冷媒の比重66k
g/m3と仮定し、パイプの内径を同じとして接続パイ
プ6,7の長さ比(l7/l6)を(1)式より求めると
約1/3となる。このようにすることにより、乾燥器8
内には液冷媒を流すことができ、その流速は0.02m
/sと非常に遅くできる。
The flow rate of the refrigerant is 50 kg / h, the dryness (x) is 0.2, the liquid refrigerant is 40 kg / h in the connecting pipe 6, and the gas refrigerant is 10 kg / h in the connecting pipe 7. 1130kg / m 3 , specific gravity of gas refrigerant 66k
Assuming g / m 3 , the length ratio (l 7 / l 6 ) of the connecting pipes 6 and 7 is about 1/3 when the inner diameters of the pipes are the same and calculated from the equation (1). By doing this, the dryer 8
Liquid refrigerant can be flowed inside, and the flow velocity is 0.02m
/ S can be done very late.

【0018】ここで、二叉パイプ5で液冷媒とガス冷媒
に分離しないで接続パイプ6,7に液−ガス混合の冷媒
(乾き度x=0.2位)を流したとする。そして、乾燥
器8内を流れる冷媒の流速を液冷媒が流れた時の約0.
025m/sにするためには、パイプの内径を同じとし
て接続パイプ6,7の長さ比(l7/l6)を(1)式よ
り求めると約1/49となり、現実的ではない。
Here, it is assumed that the liquid-gas mixed refrigerant (dryness x = about 0.2) is flown through the connecting pipes 6 and 7 without separating into the liquid refrigerant and the gas refrigerant by the bifurcated pipe 5. The flow velocity of the refrigerant flowing in the dryer 8 is about 0.
In order to obtain 025 m / s, the length ratio (l 7 / l 6 ) of the connecting pipes 6 and 7 is about 1/49 when calculated from the equation (1) with the inner diameters of the pipes being the same, which is not realistic.

【0019】暖房運転時の冷媒は破線矢印の如く流れ、
室内側熱交換器12で液化された冷媒は、二叉パイプ9
で分岐されたのち、接続パイプ6,7で流量を調整され
て流れる。接続パイプ6の方を流れる冷媒は乾燥器8の
合成ゼオライト13の間を流れ、冷凍サイクル中の水分
が取り除かれることになる。接続パイプ6,7に流れる
冷媒流量は液冷媒となる。そして、接続パイプ6,7の
長さ比(l7/l6)を約1/3とすると、液冷媒の流量
比(G7/G6:G6接続パイプ6を流れる流量、G7接続
パイプ7を流れる流量)を求めると約1.7/1とな
る。すなわち、G6=19kg/h,G7=31kg/h
位になり、乾燥器8内を流れる冷媒は液冷媒で流速は
0.01m/sと非常に遅くできる。
Refrigerant during heating operation flows as indicated by the broken line arrow,
The refrigerant liquefied in the indoor heat exchanger 12 is the forked pipe 9
After being branched at, the flow rate is adjusted by the connecting pipes 6 and 7 to flow. The refrigerant flowing through the connection pipe 6 flows between the synthetic zeolites 13 of the dryer 8 to remove the water in the refrigeration cycle. The flow rate of the refrigerant flowing through the connection pipes 6 and 7 becomes the liquid refrigerant. When the length ratio (l 7 / l 6 ) of the connection pipes 6 and 7 is set to about 1/3, the flow ratio of the liquid refrigerant (G 7 / G 6 : G 6 flow amount flowing in the connection pipe 6, G 7 connection). The flow rate flowing through the pipe 7) is about 1.7 / 1. That is, G 6 = 19 kg / h, G 7 = 31 kg / h
The refrigerant flowing in the dryer 8 is a liquid refrigerant and the flow velocity can be very slow at 0.01 m / s.

【0020】本実施の形態によれば、暖房運転および冷
房運転とも液冷媒を流したときの流速0.025m/s
より遅くでき、乾燥器8の合成ゼオライト13の破損を
防ぎ、圧縮機1の信頼性を維持できるようになる。
According to the present embodiment, the flow velocity of 0.025 m / s when the liquid refrigerant flows in both the heating operation and the cooling operation.
It can be slowed down, the damage of the synthetic zeolite 13 of the dryer 8 can be prevented, and the reliability of the compressor 1 can be maintained.

【0021】このような乾燥器付き冷暖房冷凍サイクル
は、冷媒R−22(HCFC−22)の代替として考え
られているHFC系冷媒(HFC−32,HFC−2
6,HFC−134a等)を用いた冷凍サイクルにおい
て特に有効である。なぜならば、HFC系冷媒を用いた
冷凍サイクル用圧縮機1の冷凍機油としてエステル系の
油が考えられておい、エステル系の油は水分が入ると加
水分解を起こし、酸を発生させる。この酸は機械部分を
腐食させ圧縮機1の信頼性を低下させる問題がある。そ
こで、冷凍サイクル内の水分を除くために、乾燥器8に
は、HFC系冷媒(例えば、HFC−32の分子直径
3.2Å,HFC−125の分子直径4.2Å,HFC
−134aの分子直径4.2Å)は主には吸着せず、水
分(分子直径2.8Å)を主体に吸着する合成ゼオライ
ト13を採用している。
Such a cooling / heating refrigeration cycle with a dryer has HFC refrigerants (HFC-32, HFC-2) which are considered as a substitute for the refrigerant R-22 (HCFC-22).
6, HFC-134a, etc.) is particularly effective in a refrigeration cycle. This is because an ester oil is considered as a refrigerating machine oil of the refrigeration cycle compressor 1 using an HFC refrigerant, and the ester oil causes hydrolysis when water enters and generates an acid. This acid has a problem that it corrodes mechanical parts and reduces the reliability of the compressor 1. Therefore, in order to remove water in the refrigeration cycle, the dryer 8 is provided with an HFC-based refrigerant (for example, HFC-32 has a molecular diameter of 3.2Å, HFC-125 has a molecular diameter of 4.2Å, HFC-125).
-134a does not mainly adsorb the molecular diameter of 4.2 Å, but adopts the synthetic zeolite 13 that mainly adsorbs water (molecular diameter of 2.8 Å).

【0022】合成ゼオライト13は、細孔径の平均値と
してはとして2.8Å<(細孔径)<3.3Åの小穴径
のものが特に有効であり、細孔径のばらつきも考えて上
記の範囲に入る物が最とも効率が良い。合成ゼオライト
の基本的化学式としは、下記のように表わすことができ
る。
It is particularly effective for the synthetic zeolite 13 to have a small hole diameter of 2.8Å <(pore diameter) <3.3Å as an average value of the pore diameters. The ones that come in are the most efficient. The basic chemical formula of synthetic zeolite can be represented as follows.

【化1】 この合成ゼオライトは、金属カチオンとしてカリウムを
主たる成分にしたものであり、ユニオン昭和(株)製モ
レキュラ−シ−ブスXH−10Cなどが代表的なもので
ある。
[Chemical 1] This synthetic zeolite contains potassium as a main component as a metal cation, and representative ones include Molecular Sieves XH-10C manufactured by Union Showa Co., Ltd.

【0023】〔実施の形態 2〕図4は、本発明の他の
実施形態を示す乾燥器付き冷暖房冷凍サイクルを示し、
(a)は要部系統図、(b)は、図(a)のA矢視拡大
断面図であり、図4は主として分配器を示すものであ
る。図中、図1と同一符号のものは先の実施形態と同等
であり、図4に図示しない冷凍サイクル機器は図1と同
じである。分配器15は、図1に示した先の実施の形態
と同様の作用,効果を、部品を少なくして低原価に、コ
ンパクトに実現しようとするものである。
[Embodiment 2] FIG. 4 shows a cooling and heating refrigeration cycle with a drier according to another embodiment of the present invention.
(A) is a main part systematic diagram, (b) is an expanded sectional view on arrow A of FIG. (A), and FIG. 4 mainly shows a distributor. In the figure, those having the same reference numerals as those in FIG. 1 are the same as those in the previous embodiment, and refrigeration cycle equipment not shown in FIG. 4 is the same as that in FIG. The distributor 15 is intended to realize the same operation and effect as those of the previous embodiment shown in FIG. 1 in a low cost and compact form with a reduced number of parts.

【0024】図4に示す乾燥器付き冷暖房冷凍サイクル
では、分岐手段として分配器15を用いるもので、この
分配器15は、該分配器内を連通可能に仕切る上,下2
つのピ−ス7P,6Pを設け、これら上,下ピ−ス7
P,6Pの間に減圧器4と接続される接続口15aを備
え、前記下ピ−ス6P側の端に乾燥器8側の接続パイプ
6に通じる接続口15bを備え、前記上ピ−ス7P側の
他端には室内側熱交換器12側の冷凍サイクル配管に通
じる接続口15dを備え、前記上ピ−ス7Pと接続口1
5dとの中間部に乾燥器8側の接続パイプ6との合流口
15cを備えている。しかして、これら上,下2つのピ
−ス7P,6Pには、それぞれの接続パイプへ流れる流
量を調整しうる連通孔7h,6hを設けたものである。
In the cooling / heating / refrigerating cycle with a dryer shown in FIG. 4, a distributor 15 is used as a branching means. The distributor 15 divides the inside of the distributor into upper and lower sections.
Two pieces 7P and 6P are provided, and these upper and lower pieces 7P
A connection port 15a connected to the pressure reducer 4 is provided between P and 6P, a connection port 15b communicating with the connection pipe 6 on the dryer 8 side is provided at the end on the side of the lower piece 6P, and the upper pipe is provided. The other end on the 7P side is provided with a connection port 15d leading to the refrigeration cycle pipe on the indoor heat exchanger 12 side, and the upper piece 7P and the connection port 1 are provided.
A merging port 15c with the connection pipe 6 on the dryer 8 side is provided in an intermediate portion with 5d. Then, these upper and lower two pieces 7P, 6P are provided with communication holes 7h, 6h capable of adjusting the flow rates of the respective connecting pipes.

【0025】より詳しく述べれば、上ピース7Pには、
その中心部に連通孔7hを有し、膨張弁4を経て接続口
15aから分配器15に入った液−ガス混合の冷媒を、
分配器15における合流口15c,接続口15dに冷媒
ガスを送る流通抵抗を与える。一方、下ピース6Pに
は、その中心部に連通孔6hを有し、分配器15におけ
る接続口15b,接続パイプ6に冷媒液を送る流通抵抗
を与える。接続パイプ6を流れる冷媒は、乾燥器8の合
成ゼオライト13の間を流れ、冷凍サイクル中の水分が
取り除かれることは先の図1の実施の形態と同様であ
る。図4に示す冷凍サイクルにおいて、合成ゼオライト
13の細孔径の平均値や、液冷媒を乾燥器8に流れるよ
うにすること、冷凍サイクルの作用,効果などすべて先
の図1の実施の形態と同様である。
More specifically, the upper piece 7P includes:
It has a communication hole 7h in its center, and the liquid-gas mixed refrigerant entering the distributor 15 from the connection port 15a via the expansion valve 4,
A flow resistance for sending the refrigerant gas is given to the merging port 15c and the connection port 15d in the distributor 15. On the other hand, the lower piece 6P has a communication hole 6h at the center thereof, and gives a flow resistance for sending the refrigerant liquid to the connection port 15b and the connection pipe 6 in the distributor 15. The refrigerant flowing through the connection pipe 6 flows between the synthetic zeolites 13 of the dryer 8 to remove water in the refrigeration cycle, as in the previous embodiment shown in FIG. In the refrigeration cycle shown in FIG. 4, the average value of the pore diameter of the synthetic zeolite 13, the flow of the liquid refrigerant into the dryer 8, the action and effects of the refrigeration cycle, etc. are all the same as those in the embodiment of FIG. Is.

【0026】〔実施の形態 3〕図5は、本発明のさら
に他の実施形態を示す乾燥器付き冷暖房冷凍サイクルの
系統図である。図中、図1と同一符号のものは先の第一
の実施形態と同等機器であるから、その説明を省略す
る。図5に示す実施の形態は、乾燥器8を冷房運転時
に、冷凍サイクルの高圧部分に設けた例である。すなわ
ち、減圧器4と室外側熱交換器3との間に、2叉パイプ
5,9を介して所定範囲を限って分流する2つの接続パ
イプ6,7を設け、接続パイプ6側に乾燥器8を設けて
いる。
[Third Embodiment] FIG. 5 is a system diagram of a cooling and heating refrigeration cycle with a drier, which shows still another embodiment of the present invention. In the figure, components having the same reference numerals as those in FIG. 1 are equivalent devices to the first embodiment described above, and therefore description thereof will be omitted. The embodiment shown in FIG. 5 is an example in which the dryer 8 is provided in the high pressure portion of the refrigeration cycle during the cooling operation. That is, between the decompressor 4 and the outdoor heat exchanger 3, two connecting pipes 6 and 7 for dividing the flow into a predetermined range are provided via the bifurcated pipes 5 and 9, and a dryer is provided on the connecting pipe 6 side. 8 are provided.

【0027】冷房運転時の冷媒は、実線矢印の如く流
れ、室外側熱交換器3で液化された冷媒は2叉パイプ5
で分岐されたのち、抵抗の大きい接続パイプ6,7で流
量を調整されて流れる。このとき、乾燥器8には液冷媒
が流れるため、流速も遅くなっている。暖房運転時の冷
媒は、破線矢印の如く流れ、室内側熱交換器12で液化
された冷媒は減圧器(膨張弁)4で減圧され液−ガス混
合の冷媒となり、2叉パイプ9で分岐された冷媒は、接
続パイプ6側は液冷媒、接続パイプ7側はガス冷媒が流
れるように、図1の先の実施の形態で説明したような抵
抗を付けてある。
During the cooling operation, the refrigerant flows as shown by the solid arrow, and the refrigerant liquefied in the outdoor heat exchanger 3 is the two-forked pipe 5.
After being branched at, the flow rate is adjusted by the connection pipes 6 and 7 having high resistance to flow. At this time, since the liquid refrigerant flows through the dryer 8, the flow velocity is also slow. The refrigerant during the heating operation flows as indicated by the broken line arrow, and the refrigerant liquefied in the indoor heat exchanger 12 is decompressed by the decompressor (expansion valve) 4 to become a liquid-gas mixed refrigerant and branched by the two-way pipe 9. The refrigerant has resistance as described in the previous embodiment of FIG. 1 so that liquid refrigerant flows on the connection pipe 6 side and gas refrigerant flows on the connection pipe 7 side.

【0028】図5に示す冷凍サイクルにおいて、合成ゼ
オライト13の細孔径の平均値や、液冷媒を乾燥器8に
流れるようにすること、冷凍サイクルの作用,効果など
すべて先の図1の実施の形態と同様である。また、図示
しないが、乾燥器8を冷房運転時に、冷凍サイクルの高
圧部分に設けた図5の例で、先の図4の分配器15を適
用して原価低減を図ることも可能であることは言うまで
もない。
In the refrigerating cycle shown in FIG. 5, the average value of the pore diameter of the synthetic zeolite 13, the flow of the liquid refrigerant into the dryer 8, the action and effect of the refrigerating cycle, etc. It is similar to the form. Although not shown, it is also possible to reduce the cost by applying the distributor 15 of FIG. 4 in the example of FIG. 5 in which the dryer 8 is provided in the high pressure portion of the refrigeration cycle during the cooling operation. Needless to say.

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明によ
れば、乾燥器内を流れる冷媒流速を低下させるような冷
凍サイクルとすることにより、乾燥器内の合成ゼオライ
トが、流動する冷媒の動きにより破壊し、その破片によ
り圧縮機が損傷するのを防止し、圧縮機の信頼性の向上
を計りうる乾燥器付き冷凍サイクル装置を提供すること
ができる。
As described above in detail, according to the present invention, the refrigerating cycle is such that the flow rate of the refrigerant flowing through the dryer is reduced, whereby the synthetic zeolite in the dryer is It is possible to provide a refrigeration cycle device with a drier that can be broken by movement and can be prevented from damaging the compressor due to the fragments thereof, and that the reliability of the compressor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す乾燥器付き冷暖房冷
凍サイクルの系統図である。
FIG. 1 is a system diagram of a cooling and heating refrigeration cycle with a dryer according to an embodiment of the present invention.

【図2】従来の乾燥器付き冷暖房冷凍サイクルの系統図
である。
FIG. 2 is a system diagram of a conventional cooling / heating refrigeration cycle with a dryer.

【図3】一般的な乾燥器の内部を流れる冷媒の流速を示
す線図である。
FIG. 3 is a diagram showing a flow velocity of a refrigerant flowing inside a general dryer.

【図4】本発明の他の実施形態を示す乾燥器付き冷暖房
冷凍サイクルの要部系統図である。
FIG. 4 is a main part system diagram of a cooling / heating and refrigerating cycle with a dryer according to another embodiment of the present invention.

【図5】本発明の更に他の実施形態を示す乾燥器付き冷
暖房冷凍サイクルの系統図である。
FIG. 5 is a system diagram of a cooling and heating refrigeration cycle with a dryer according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外側熱交換器、4…減
圧器(膨張弁)、5,9…二叉パイプ、6,7…接続パ
イプ、6P,7P…ピ−ス、6h,7h…連通孔、8…
乾燥器、10,11…ジョイント、12…室内側熱交換
器、13…合成ゼオライト、15…分配器。
1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Decompressor (expansion valve), 5, 9 ... Forked pipe, 6, 7 ... Connection pipe, 6P, 7P ... Pace, 6h, 7h ... communication hole, 8 ...
Dryer, 10, 11 ... Joint, 12 ... Indoor heat exchanger, 13 ... Synthetic zeolite, 15 ... Distributor.

フロントページの続き (72)発明者 藤林 一朗 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部栃木本 部内 (72)発明者 小井土 康裕 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部栃木本 部内 (72)発明者 飯塚 董 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部栃木本 部内 (56)参考文献 特開 平6−288662(JP,A) 特開 平7−159004(JP,A) 実開 昭61−195272(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/00 Continuation of the front page (72) Inventor Ichiro Fujibayashi 800 Tomita, Ohira-machi, Shimotsuga-gun, Tochigi Inside Tochigi HQ, Hitachi, Ltd. Hitachi Co., Ltd. Tochigi Headquarters (72) Inventor Toru Iizuka No. 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Hitachi Co., Ltd. Tochigi Headquarters (56) References JP-A-6-288662 ) Japanese Patent Laid-Open No. 7-159004 (JP, A) Actual Development Sho 61-195272 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 43/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、四方弁、室外側熱交換器、減圧
器、室内側熱交換器、およびこれらを接続する配管から
なるHFC系冷媒を用いた冷凍サイクルにおいて、前記
減圧器と前記室内側熱交換器との間に、分岐手段を介し
、冷房運転時に前記減圧器で減圧された液−ガス混合
の冷媒のうち、重力の作用で調整されて液冷媒が流れる
流路と、ガス冷媒が流れる流路とを設け、前記液冷媒が
流れる流路に、金属カチオンとしてカリウムを主たるも
のとした合成ゼオライトの入つた乾燥器を設けたことを
特徴とする乾燥器付き冷凍サイクル装置。
1. A refrigeration cycle using a HFC refrigerant comprising a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, and a pipe connecting these components, in the pressure reducer and the chamber. Liquid-gas mixture decompressed by the decompressor during cooling operation via a branching means between the inner heat exchanger and the inner heat exchanger.
Of the above refrigerant, the liquid refrigerant flows by being adjusted by the action of gravity.
A flow path and a flow path through which the gas refrigerant flows are provided, and the liquid refrigerant is
A refrigeration cycle apparatus with a dryer, characterized in that a dryer containing a synthetic zeolite containing potassium as a main metal cation is provided in a flowing channel.
【請求項2】合成ゼオライトは、その細孔径の平均値と
して2.8Å<Y細孔径<3.3Åの小穴を有すること
を特徴とする請求項1記載の乾燥器付き冷凍サイクル装
置。
2. The refrigeration cycle apparatus with a drier according to claim 1, wherein the synthetic zeolite has small holes with an average pore diameter of 2.8Å <Y pore diameter <3.3Å.
【請求項3】分岐手段として二叉パイプを用いて、冷媒
を液冷媒とガス冷媒とに分ける二つの流路を設け、金属
カチオンとしてカリウムを主たるものとした合成ゼオラ
イトの入つた乾燥器を設けた一方の流路に主として液冷
媒が流れるように、前記二つの流路を構成する2本の接
続パイプで流量を調整したことを特徴とする請求項1記
載の乾燥器付き冷凍サイクル装置。
3. A bifurcating pipe is used as a branching means to provide two channels for dividing a refrigerant into a liquid refrigerant and a gas refrigerant, and a dryer containing a synthetic zeolite containing potassium as a main metal cation is provided. The refrigeration cycle apparatus with a drier according to claim 1, wherein the flow rate is adjusted by the two connecting pipes forming the two flow paths so that the liquid refrigerant mainly flows in the one flow path.
【請求項4】分岐手段として分配器を用いるものとし、
この分配器は、該分配器内を連通可能に仕切る上下2つ
のピ−スを設け、これら上下ピ−スの間に減圧器と接続
される接続口を備え、前記下ピ−スの端に乾燥器側の接
続パイプに通じる接続口を、前記上ピ−スの他端には室
内側熱交換器側の接続パイプに通じる接続口を有すると
ともに、これら上下2つのピ−スにそれぞれの接続パイ
プへ流れる流量を調整しうる連通孔を設けたことを特徴
とする請求項1記載の乾燥器付き冷凍サイクル装置。
4. A distributor is used as the branching means,
This distributor is provided with two upper and lower pieces that partition the inside of the distributor so that they can communicate with each other, and a connection port connected to the pressure reducer is provided between the upper and lower pieces, and the end of the lower piece is provided. The upper pipe has a connection port communicating with the connection pipe on the dryer side, and the other end of the upper pipe has a connection port communicating with the connection pipe on the indoor heat exchanger side. The refrigeration cycle apparatus with a drier according to claim 1, wherein a communication hole capable of adjusting a flow rate flowing to the pipe is provided.
【請求項5】圧縮機、四方弁、室外側熱交換器、減圧
器、室内側熱交換器、およびこれらを接続する配管から
なるHFC系冷媒を用いた冷凍サイクルにおいて、前記
減圧器と前記室外側熱交換器との間に、分岐手段を介し
て、暖房運転時に前記減圧器で減圧された液−ガス混合
の冷媒のうち、重力の作用で調整されて液冷媒が流れる
流路と、冷媒が流れる流路とを設け、前記液冷媒が流れ
流路に、金属カチオンとしてカリウムを主たるものと
した合成ゼオライトの入つた乾燥器を設けたことを特徴
とする乾燥器付き冷凍サイクル装置。
5. A refrigeration cycle using an HFC refrigerant comprising a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, and a pipe connecting these components, in the refrigeration cycle and the chamber. Liquid-gas mixture decompressed by the decompressor during heating operation via a branching means between the outer heat exchanger and the outer heat exchanger.
Of the above refrigerant, the liquid refrigerant flows by being adjusted by the action of gravity.
A flow path and a flow path through which the refrigerant flows are provided, and the liquid refrigerant flows
That the flow path, the dryer with the refrigeration cycle apparatus is characterized by providing the incoming ivy dryer synthetic zeolite potassium as a metal cation and the main ones.
【請求項6】合成ゼオライトは、その細孔径の平均値と
して2.8Å<細孔径<3.3Åの小穴を有することを
特徴とする請求項5記載の乾燥器付き冷凍サイクル装
置。
6. The refrigerating cycle apparatus with a drier according to claim 5, wherein the synthetic zeolite has small holes having an average pore diameter of 2.8Å <pore diameter <3.3Å.
【請求項7】分岐手段として二叉パイプを用いて、冷媒
を液冷媒とガス冷媒とに分ける二つの流路を設け、金属
カチオンとしてカリウムを主たるものとした合成ゼオラ
イトの入つた乾燥器を設けた一方の流路に主として液冷
媒が流れるように、前記二つの流路を構成する2本の接
続パイプで流量を調整したことを特徴とする請求項5記
載の乾燥器付き冷凍サイクル装置。
7. A bifurcating pipe is used as a branching means to provide two channels for dividing a refrigerant into a liquid refrigerant and a gas refrigerant, and a dryer containing a synthetic zeolite containing potassium as a main metal cation is provided. The refrigeration cycle apparatus with a dryer according to claim 5, wherein the flow rate is adjusted by the two connecting pipes forming the two flow paths so that the liquid refrigerant mainly flows in the one flow path.
【請求項8】分岐手段として分配器を用いるものとし、
この分配器は、該分配器内を連通可能に仕切る上下2つ
のピ−スを設け、これら上下ピ−スの間に減圧器と接続
される接続口を備え、前記下ピ−スの端に乾燥器側の接
続パイプに通じる接続口を、前記上ピ−スの他端には室
外側熱交換器側の接続パイプに通じる接続口を有すると
ともに、これら上下2つのピ−スにそれぞれの接続パイ
プへ流れる流量を調整しうる連通孔を設けたことを特徴
とする請求項5記載の乾燥器付き冷凍サイクル装置。
8. A distributor is used as the branching means,
This distributor is provided with two upper and lower pieces that partition the inside of the distributor so that they can communicate with each other, and a connection port connected to the pressure reducer is provided between the upper and lower pieces, and the end of the lower piece is provided. A connection port leading to a connection pipe on the dryer side and a connection port leading to the connection pipe on the outdoor heat exchanger side are provided at the other end of the upper piece, and the upper and lower two pieces are respectively connected. The refrigeration cycle apparatus with a drier according to claim 5, wherein a communication hole capable of adjusting a flow rate flowing to the pipe is provided.
JP31671095A 1995-12-05 1995-12-05 Refrigeration cycle device with dryer Expired - Fee Related JP3483688B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31671095A JP3483688B2 (en) 1995-12-05 1995-12-05 Refrigeration cycle device with dryer
TW085114080A TW305920B (en) 1995-12-05 1996-11-16 A heat cycle for an air conditioner
KR1019960061195A KR100200388B1 (en) 1995-12-05 1996-12-03 Refrigerating cycle with dryer
MYPI96005079A MY123746A (en) 1995-12-05 1996-12-04 A heat cycle for an air conditioner.
CN96118596A CN1107842C (en) 1995-12-05 1996-12-05 Heat cycle for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31671095A JP3483688B2 (en) 1995-12-05 1995-12-05 Refrigeration cycle device with dryer

Publications (2)

Publication Number Publication Date
JPH09159325A JPH09159325A (en) 1997-06-20
JP3483688B2 true JP3483688B2 (en) 2004-01-06

Family

ID=18080046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31671095A Expired - Fee Related JP3483688B2 (en) 1995-12-05 1995-12-05 Refrigeration cycle device with dryer

Country Status (5)

Country Link
JP (1) JP3483688B2 (en)
KR (1) KR100200388B1 (en)
CN (1) CN1107842C (en)
MY (1) MY123746A (en)
TW (1) TW305920B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320643B2 (en) * 1997-10-13 2002-09-03 三菱電機株式会社 Refrigeration cycle
CN107144123A (en) * 2017-07-18 2017-09-08 合肥万都云雅制冷科技股份有限公司 A kind of heat pump dryer system
JP2019100638A (en) * 2017-12-05 2019-06-24 パナソニックIpマネジメント株式会社 Expansion valve control sensor and refrigeration system using the same

Also Published As

Publication number Publication date
MY123746A (en) 2006-06-30
TW305920B (en) 1997-05-21
JPH09159325A (en) 1997-06-20
KR100200388B1 (en) 1999-06-15
CN1107842C (en) 2003-05-07
CN1157895A (en) 1997-08-27
KR970047463A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
US6334323B1 (en) Centrifugal heat transfer engine and heat transfer systems embodying the same
JPH10332212A (en) Refrigeration cycle of air conditioner
JP4209860B2 (en) Air conditioner using flammable refrigerant
JP3483688B2 (en) Refrigeration cycle device with dryer
JP3900976B2 (en) Air conditioner and method of operating air conditioner
JP2000179957A (en) Air conditioner
JP2004108715A (en) Air conditioner for many rooms
JP3435164B2 (en) Sorachi Harmonizer
JPH10111034A (en) Refrigerating cycle with drying device
JPH109718A (en) Air conditioner
JP3480205B2 (en) Air conditioner
JPH0579726A (en) Freezing cycle device
JP3326578B2 (en) Air conditioner dryer
JPH109714A (en) Freezer
JPH08261604A (en) Dryer for air conditioner
JP2000337739A (en) Air-conditioner
JP2002106985A (en) Air-conditioning and refrigerating device
JP3379426B2 (en) Thermal storage type air conditioner
JPH0989398A (en) Refrigerating cycle
KR100519989B1 (en) Refrigerant inlet pipe of evaporator with a bubble extinction tool
JP3123868B2 (en) Heat exchanger
JPH07103585A (en) Refrigerating equipment
JPH07151425A (en) Refrigerator
JPH08278068A (en) Vapor compression type refrigerator
JPH07133965A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees