JP3483208B2 - Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use - Google Patents

Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use

Info

Publication number
JP3483208B2
JP3483208B2 JP2003044989A JP2003044989A JP3483208B2 JP 3483208 B2 JP3483208 B2 JP 3483208B2 JP 2003044989 A JP2003044989 A JP 2003044989A JP 2003044989 A JP2003044989 A JP 2003044989A JP 3483208 B2 JP3483208 B2 JP 3483208B2
Authority
JP
Japan
Prior art keywords
air
nitrogen oxides
parallel plates
pair
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003044989A
Other languages
Japanese (ja)
Other versions
JP2003251147A (en
Inventor
茂 田中
雅則 藤井
和明 飯嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Keio University
Original Assignee
Sanki Engineering Co Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Keio University filed Critical Sanki Engineering Co Ltd
Priority to JP2003044989A priority Critical patent/JP3483208B2/en
Publication of JP2003251147A publication Critical patent/JP2003251147A/en
Application granted granted Critical
Publication of JP3483208B2 publication Critical patent/JP3483208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大気浄化処理装
置、特に、空調装置の空気流路または排気ガス処理装置
のガス流路に付設して用いるのに適した拡散スクラバ法
による大気浄化処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air purification processing apparatus, and more particularly to an air purification processing apparatus by a diffusion scrubber method suitable for being attached to an air flow path of an air conditioner or a gas flow path of an exhaust gas processing apparatus. Regarding

【0002】[0002]

【従来の技術】大気中の窒素酸化物を除去する技術開発
は、主として、工場、自動車等の発生源対策を中心に行
われており、大規模な工場等から排出する数千ppmと
言った高濃度の窒素酸化物については、アンモニアとの
反応により窒素と水に還元する「選択接触還元法」がこ
れまで実用化されてきた。また、ガソリンエンジン車か
らの窒素酸化物の排出は、「三元触媒」、「リーンバー
ン」等の導入で改善されてきた。
2. Description of the Related Art Development of technology for removing nitrogen oxides in the atmosphere is mainly carried out mainly on measures against sources such as factories and automobiles, and it is said that thousands of ppm emitted from large-scale factories, etc. For high-concentration nitrogen oxides, the "selective catalytic reduction method" of reducing nitrogen and water by reaction with ammonia has been put into practical use. Emissions of nitrogen oxides from gasoline engine vehicles have been improved by introducing "three-way catalyst" and "lean burn".

【0003】酸化チタン光触媒を用い、太陽光を利用し
て大気中の窒素酸化物を浄化する技術も知られており、
舗装道路や道路構造物に酸化チタンを塗布することが、
最近、地方自治体の道路沿道で行われ、その浄化性能が
確認されてきた(竹内浩士、「光触媒による環境大気の
浄化・修復技術」、大気環境学会誌、33、139−1
50、1998年)。また、道路トンネルの排気設備に
酸化チタンを用いた例も報告されている(西方聡、「低
濃度脱硝装置」、工業材料、45、86−88、199
7年)。
There is also known a technology for purifying nitrogen oxides in the atmosphere by utilizing sunlight using a titanium oxide photocatalyst,
Applying titanium oxide to paved roads and road structures,
Recently, the purification performance has been confirmed along the roads of local governments (Hiroshi Takeuchi, "Purification / restoration technology for environmental air using photocatalyst", Journal of Atmospheric Environment, 33, 139-1).
50, 1998). Also, an example of using titanium oxide for the exhaust equipment of a road tunnel has been reported (Satoshi Nishikata, “Low-concentration denitration equipment”, Industrial Materials, 45, 86-88, 199.
7 years).

【0004】その他、酸化チタン光触媒を用いた大気中
の窒素酸化物の除去手段としては、「自動車トンネル用
換気設備」(特開平5−237381号公報)、「汚染
物質の除去方法及び浄化材」(特開平6−315614
号公報)、「トンネル空気浄化装置」(特開平8−15
1899号公報)、「トンネル内空気浄化装置およびそ
の装置に用いられるトンネル内装板」(特開平9−27
1635号公報)、「高速道路上の汚染空気の浄化方
法」(特開平10−151323号公報)、「気体浄化
・吸音部材、気体浄化装置及び気体浄化システム」(特
開平10−249167号公報)等が公知である。
In addition, as means for removing nitrogen oxides in the air using a titanium oxide photocatalyst, "Ventilation equipment for automobile tunnel" (Japanese Patent Laid-Open No. 5-237381), "Method for removing pollutants and purification material" (JP-A-6-315614
Japanese Unexamined Patent Publication No. 8-15).
1899), "Tunnel air purifying device and tunnel interior plate used for the device" (JP-A-9-27).
1635), "Purification method for polluted air on highways" (JP-A-10-151323), "Gas cleaning / sound absorbing member, gas cleaning device and gas cleaning system" (JP-A-10-249167). Etc. are known.

【0005】酸化チタン微粒子によって気体中の窒素酸
化物を吸着する際に、酸化チタン微粒子にハイドロキシ
アパタイト粉末を混合することによって吸着効率を高め
ることができることも知られている(Y.Komazakiet a
l.,Atoms.Environ.,33,4363〜4371,(1999))。
It is also known that, when adsorbing nitrogen oxides in a gas by titanium oxide fine particles, the adsorption efficiency can be increased by mixing hydroxyapatite powder with the titanium oxide fine particles (Y. Komazaki et a.
L., Atoms. Environ., 33, 4363-4371, (1999)).

【0006】[0006]

【発明が解決しようとする課題】大気汚染への社会的関
心の高まりから、種々の空気清浄技術の研究が行われて
きている。しかしながら、問題の重要性に比較して、そ
の多くの技術は、既存のフィルタ法、活性炭等の吸着剤
等による除去技術を単に転用したものに過ぎず、その処
理能力や処理量に疑問を持たざるを得ないものも多い。
Various air purification techniques have been researched due to increasing social concern about air pollution. However, compared with the importance of the problem, many of the technologies are merely diversions of existing filter methods and removal technologies using adsorbents such as activated carbon, and there are doubts about their processing capacity and throughput. There are many things that cannot be helped.

【0007】最近では、酸化チタン光触媒を利用した空
気清浄技術も開発されてきた。この技術は、特殊な装置
を必要とせず、NOXの経済的な浄化技術ではあるが、
反応槽でのバッチ的な汚染空気処理技術であるために、
汚染空気処理量が毎分数リットル程度と少なく、多量の
汚染空気処理に関しては問題である。また、塗布された
酸化チタン表面での除去効果はあるとしても、広範な空
間に拡散したNOXを効率的に除去することは原理的に
困難である。
Recently, an air cleaning technique utilizing a titanium oxide photocatalyst has been developed. This technology does not require special equipment and is an economical NO x purification technology,
Because it is a batch-type contaminated air treatment technology in the reactor,
The amount of treated contaminated air is as small as several liters per minute, which is a problem for treating a large amount of contaminated air. In addition, even if there is a removing effect on the coated titanium oxide surface, it is theoretically difficult to efficiently remove the NO x diffused in a wide space.

【0008】そこで、従来の技術の延長ではなく、有害
ガス成分を効率良く完全に除去し、しかも、大量の汚染
空気の処理を行える革新的な空気清浄技術の開発が必要
である。
Therefore, it is necessary to develop an innovative air cleaning technology capable of efficiently and completely removing harmful gas components and treating a large amount of contaminated air, rather than extending the conventional technology.

【0009】[0009]

【課題を解決するための手段】本発明者は、酸化チタン
超微粒子光触媒を用いて高いNOX除去効率を有する連
続使用可能な窒素酸化物除去装置について研究開発を続
けた結果、拡散スクラバ法による除去装置によって空気
中の代表的な有害ガス成分の窒素酸化物を効率的に除去
できることを見出した。
The inventors of the present invention continued to research and develop a nitrogen oxide removing apparatus which has a high NO x removal efficiency and uses a titanium oxide ultrafine particle photocatalyst, and as a result, a diffusion scrubber method was used. It has been found that the removal device can efficiently remove nitrogen oxide, which is a typical harmful gas component in the air.

【0010】すなわち、本発明は、(1)一対の平行板
の狭い隙間に汚染空気を流し、拡散係数の小さい粒子は
該一対の平行板の狭い隙間をそのまま通過させて該一対
平行板の出口から排出させかつ該一対の平行板の内
壁面に汚染空気中の有害ガス成分を拡散させて該内壁表
面に吸着させるための、平行に向き合わせた一対の平行
板からなり該隙間は下記の式(Gormleyの理論式)を
満たす間隔とし、該一対の平行板の内壁表面に酸化チ
タン超微粒子光触媒と吸着剤とからなる塗布層を設ける
とともに該隙間内に光を照射できる構造としたことを特
徴とする大気中の窒素酸化物の除去処理装置、である。式:f=1−[0.910exp(−3.77μ)+
0.0531exp(−42.8μ)]、μ=bDL/
aQ (ただし、f:除去効率、D:対象とするガスの拡散係
数(cm 2 /秒)、a:平行板の間隔(cm)、L:平
行板の長さ(cm)、μ:沈着パラメータ、Q:大気吸
引流量(cm 3 /秒)、b:平行板の幅(cm)であ
る。) また、本発明は、(2)該塗布層がバインダーと
してポリテトラフロロエチレンを用いて設けられている
ことを特徴とする上記(1)の大気中の窒素酸化物の除
去処理装置、である。 また、本発明は、(3)該吸着剤
としてヒドロキシアパタイトを用いたことを特徴とする
上記(1)又は(2)の大気中の窒素酸化物の除去処理
装置、である
That is, according to the present invention, (1) polluted air is caused to flow in a narrow gap between a pair of parallel plates , and particles having a small diffusion coefficient are
The pair of parallel plates are passed through the narrow gap as they are,
Is discharged from the outlet of the parallel plates, and the by diffusing harmful gas components contaminated in the air to the inner wall surface of the pair of parallel plates for adsorbing to the inner wall surface, parallel pair that has parallel opposed
It consists of a plate, and the gap is calculated by the following formula (Gormley's theoretical formula)
And satisfy interval, titanium oxide on the inner wall surface of the pair of parallel plates
An apparatus for removing nitrogen oxides from the atmosphere , comprising a coating layer comprising a tan ultrafine particle photocatalyst and an adsorbent and having a structure capable of irradiating light into the gap. Formula: f = 1− [0.910exp (−3.77μ) +
0.0531 exp (-42.8 μ)], μ = bDL /
aQ (However, f: removal efficiency, D: target gas diffusion coefficient
Number (cm 2 / sec), a: Distance between parallel plates (cm), L: Flat
Row length (cm), μ: deposition parameter, Q: atmospheric absorption
Draw flow rate (cm 3 / sec), b: width of parallel plate (cm)
It ) Further , in the present invention, (2) the coating layer comprises a binder.
And provided with polytetrafluoroethylene
Removal of nitrogen oxides in the atmosphere according to (1) above
It is an aftertreatment device. The present invention also provides (3) the adsorbent.
Characterized by using hydroxyapatite as
Removal treatment of nitrogen oxides in the atmosphere of (1) or (2) above
Device .

【0011】また、本発明は、()空調装置の空気流
路または排気ガス処理装置のガス流路に付設されて用い
られることを特徴とする上記(1)ないし(3)のいず
れかの大気中の窒素酸化物の除去処理装置、である。ま
た、本発明は、()一般家庭での可搬型空気清浄装置
として使用することを特徴とする上記(1)ないし
(3)のいずれかの大気中の窒素酸化物の除去処理装
置、である。また、本発明は、(6)水を注入して洗浄
することによって酸化チタン超微粒子光触媒と吸着剤と
からなる塗布層上で酸化・吸着された窒素酸化物をNO
2 - 、NO 3 - イオンとして水で回収することを特徴とする
上記(1)ないし(5)のいずれかの窒素酸化物の除去
処理装置の使用方法、である。また、本発明は、(
水を注入して洗浄することによって酸化チタン超微粒子
光触媒と吸着剤とからなる塗布層上で酸化・吸着された
窒素酸化物をNO 2 - 、NO 3 - イオンとして水で回収した
後、空気を流して酸化チタン超微粒子光触媒と吸着剤と
からなる塗布層表面を乾燥し、繰り返して窒素酸化物の
除去処理を行うことを特徴とする上記(1)ないし
(5)のいずれかの窒素酸化物の除去処理装置の使用方
法、である。
( 4 ) Any one of the above (1) to (3) , wherein the present invention is used by being attached to an air passage of an air conditioner or a gas passage of an exhaust gas treatment device.
A device for removing nitrogen oxides in the atmosphere. Further, the present invention ( 5 ) is used as a portable air cleaning device in a general household, wherein the above (1) to (1)
An apparatus for removing atmospheric nitrogen oxides according to any one of (3) . The present invention also provides (6) water injection for cleaning.
By using ultrafine titanium oxide photocatalyst and adsorbent
Nitrogen oxides oxidized and adsorbed on the coating layer consisting of NO
2 -, NO 3 - and recovering water as ion
Removal of nitrogen oxide according to any one of (1) to (5) above
A method of using the processing device. The present invention also provides ( 7 )
Titanium oxide ultrafine particles by injecting water and washing
Oxidized / adsorbed on the coating layer consisting of photocatalyst and adsorbent
Nitrogen oxides NO 2 -, NO 3 - was collected with water as ion
After that, air is passed to the titanium oxide ultrafine particle photocatalyst and the adsorbent.
The surface of the coating layer consisting of
The above-mentioned (1) to (1) characterized in that the removal processing is performed
How to use the nitrogen oxide removal treatment device of any of (5)
Is the law.

【0012】本発明において使用する拡散スクラバ法と
は、(1)平行板内壁面へガスが拡散する、(2)内壁
面へ到達したガスが内壁表面で吸着除去されるという、
拡散を利用したガスの捕集・除去法であり、ガスと粒子
の拡散係数が大きく異なることを利用し、ガスを選択的
に除去する方法である。図7に拡散スクラバ法を模式的
に示す。
The diffusion scrubber method used in the present invention means that (1) the gas diffuses to the inner wall surface of the parallel plate, and (2) the gas reaching the inner wall surface is adsorbed and removed on the inner wall surface.
It is a method of collecting and removing gas using diffusion, and it is a method of selectively removing gas by utilizing the fact that the diffusion coefficients of gas and particles are greatly different. FIG. 7 schematically shows the diffusion scrubber method.

【0013】この拡散スクラバ法において、大気中のガ
ス成分の除去効率は、下記のGormley理論式
(P.G.Gormley,Proceedings of the Royal Irish Acade
my,Vol.45,59-63,(1938))に基づいて算出できる。
In this diffusion scrubber method, the removal efficiency of gas components in the atmosphere is determined by the following Gormley 's theoretical formula (PG Gormley, Proceedings of the Royal Irish Academy).
It can be calculated based on my, Vol.45,59-63, (1938) .

【0014】f=1−[0.910exp(−3.77
μ)+0.0531exp(−42.8μ)]、μ=b
DL/aQ なお、上記の式において、f:除去効率、D:対象とす
るガスの拡散係数(cm2/秒、a:平行板の間隔
(cm)、L:平行板の長さ(cm)、μ:沈着パラメ
ータ、Q:大気吸引流量(cm3/秒)、b:平行板の
幅(cm)である。
F = 1− [0.910exp (−3.77)
μ) + 0.0531exp (−42.8μ)], μ = b
DL / aQ In the above formula, f: removal efficiency, D: diffusion coefficient of target gas (cm 2 / sec ) , a: distance between parallel plates
(Cm) , L: parallel plate length (cm), μ: deposition parameter, Q: atmospheric suction flow rate (cm 3 / sec), b: parallel plate width (cm).

【0015】本発明の除去処理装置は、表面の平らな平
行板の内壁表面に酸化チタン超微粒子光触媒と吸着剤
平らな塗布層を設け、平行板の隙間を流れる空気中の有
害ガス成分を平行板の内壁の塗布面で除去するものであ
る。平行板の隙間に空気を流すので、フィルタ等の濾過
方式とは異なり、通気抵抗は極めて少ない。
In the removal treatment apparatus of the present invention, a flat coating layer of titanium oxide ultrafine particle photocatalyst and adsorbent is provided on the inner wall surface of a parallel plate having a flat surface to remove harmful gas components in the air flowing through the gap between the parallel plates. It is to be removed on the coated surface of the inner wall of the parallel plate. Since air flows through the gaps between the parallel plates, the ventilation resistance is extremely low, unlike filtration methods such as filters.

【0016】光触媒を用いた「光脱硝法」の場合には、
NOXをNO2やHNO3に化学変化させ、これを水で洗
い流すので、平行板は極めて腐食性の高い条件で使用さ
れるために耐蝕性が大きいステンレス鋼板が適する。ま
た、ステンレス鋼板は、その表面にTiO2ヒドロキ
シアパタイト(以下適宜、「HAP」と表記する)をポ
リテトラフロロエチレン等のバインダとアセトンなどの
有機溶媒中で混合して塗布乾燥するだけで優れた接着性
を示し、かつ長期間の使用において強度、耐久性に問題
がない。
In the case of the "photodenitrification method" using a photocatalyst,
Since NO x is chemically changed to NO 2 or HNO 3 , and this is washed away with water, the parallel plate is used under extremely corrosive conditions, and therefore a stainless steel plate having high corrosion resistance is suitable. Also, the stainless steel plate has TiO 2 and hydroxyl on its surface.
Siapatite (hereinafter appropriately referred to as " HAP ") is mixed in a binder such as polytetrafluoroethylene in an organic solvent such as acetone, coated and dried to show excellent adhesion, and for long-term use There is no problem in strength and durability.

【0017】平行板の大きさは、装置の規模に応じて適
宜定めることができるが、例えば、図3に示すように、
空気の流路面が10×0.5cm(通気断面積5c
2)、流路長35cm程度の基本ユニットを製作し、
この様なユニットを装置の規模に応じて積層して組み合
わせて使用すればよい。
The size of the parallel plate can be appropriately determined according to the scale of the apparatus. For example, as shown in FIG.
Air flow surface is 10 x 0.5 cm (ventilation cross section 5c
m 2 ), manufacture a basic unit with a flow path length of about 35 cm,
Such units may be laminated and used according to the scale of the device.

【0018】平行板の間隔は、平行板の内壁表面が有害
ガス成分に対して理想的な完全吸着面と仮定した図7に
模式的に示す拡散スクラバ法におけるGormley
理論式により設定することができる。上記の基本ユニッ
トの場合、通気流量10リットル/分(風速0.33m
/秒)の条件で、0.5cm程度の平行板の間隔にすれ
ば、ほぼ100%近く有害ガス成分を除去できる。
The distance between the parallel plates is determined by Gormley 's theoretical formula in the diffusion scrubber method schematically shown in FIG. 7 assuming that the inner wall surface of the parallel plates is an ideal perfect adsorption surface for harmful gas components. Can be set. In the case of the above basic unit, the ventilation flow rate is 10 liters / minute (wind speed 0.33 m
/ Sec), if the distance between the parallel plates is about 0.5 cm, the harmful gas component can be removed by almost 100%.

【0019】図2には、平行板の内壁表面が有害ガス成
分の窒素酸化物に対して完全吸着面であると仮定したG
ormleyの理論式によって求めた除去効率と小型平
行板型拡散スクラバの窒素酸化物除去装置ユニットによ
る除去効率(実験値)とを比較して示す。(1)TiO
2:平均粒径100nm/HAP:平均粒径30μmの
組み合わせの塗布面では、◇印で示す様に、窒素酸化物
の除去効率は理論値より低い結果であるが、(2)Ti
2:平均粒径7nm/HAP:平均粒径3μmの組み
合わせの塗布面の場合には、△印で示す様に、理論値の
線と一致し、風速0.33m/秒でほぼ100%近い除
去効率が得られる。この結果から、TiO2とHAPの
特定の組み合わせによって窒素酸化物に対して理想的な
完全吸着面を形成できることが分かる。
In FIG. 2, it is assumed that the inner wall surface of the parallel plate is a perfect adsorption surface for nitrogen oxide, which is a harmful gas component.
The removal efficiency obtained by the Ormley's theoretical formula and the removal efficiency (experimental value) by the nitrogen oxide removal device unit of the small parallel plate type diffusion scrubber are shown in comparison. (1) TiO
2 : On the coated surface of the combination of the average particle diameter of 100 nm / HAP: the average particle diameter of 30 μm, the nitrogen oxide removal efficiency is lower than the theoretical value, as indicated by ⋄, but (2) Ti
In the case of the coated surface having a combination of O 2 : average particle size 7 nm / HAP: average particle size 3 μm, as indicated by the triangle, it coincides with the theoretical value line, and is almost 100% at a wind speed of 0.33 m / sec Removal efficiency is obtained. From this result, it can be seen that an ideal complete adsorption surface for nitrogen oxide can be formed by a specific combination of TiO 2 and HAP.

【0020】大気の通気流量が大きくなるとNOガスが
装置内に滞在する時間が短くなり、当然のことながらN
Xの除去効率は低下する。また、導入するNO濃度が
高いと除去効率が低下する傾向がみられる。これは、T
iO2の表面に発生しているラジカル量の分だけしかN
Oとの反応が起こらないためであり、導入されるNOの
量があまり多くなると壁面へ拡散しても反応せず、平行
板型拡散スクラバを通過するNOが多くなる。
As the air flow rate increases, the time during which the NO gas stays in the device shortens.
O X removal efficiency decreases. Further, when the introduced NO concentration is high, the removal efficiency tends to decrease. This is T
The amount of radicals generated on the surface of iO 2 is N
This is because the reaction with O does not occur, and when the amount of introduced NO is too large, it does not react even if it diffuses to the wall surface, and more NO passes through the parallel plate diffusion scrubber.

【0021】本発明の装置によるNOXの除去容量は、
TiO/HAPの単位塗布面積当たり、100mmol
/m2と極めて高く、1ppmのNOXの空気を2400
3除去処理することが可能である。また、トンネル内
の空気中のNOX濃度は数ppmに達する場合もあると
報告されているが、表1に示すように、本発明の装置に
よるppmレベルのNOガスの除去効率はほぼ100%
近くにすることができる。
The NO x removal capacity of the device of the present invention is
100 mmol per unit coating area of TiO / HAP
/ M 2 and very high, the air 1ppm of NO X 2400
m 3 removal treatment is possible. Further, it is reported that the NO x concentration in the air in the tunnel may reach several ppm, but as shown in Table 1, the removal efficiency of the NO level of the NO level of the apparatus of the present invention is almost 100%.
Can be close.

【0022】本発明の拡散スクラバ法による大気浄化処
理装置の構造は、簡便な構造であり、既存の空調施設等
に簡単に組み込むことができ、また、単なる水の循環使
用により有害ガス成分を効率的に除去処理できる。した
がって、温度・湿度の調整のために行ってきたビル等に
おける空調装置に本発明の大気浄化処理装置を付設して
有害ガス成分を除去処理し、質の高い生活環境を提供す
ることができる。
The structure of the air purification treatment apparatus by the diffusion scrubber method of the present invention is a simple structure and can be easily incorporated into an existing air conditioning facility or the like, and the toxic gas component can be efficiently used by simply circulating water. Can be removed. Therefore, the air purification device of the present invention can be attached to an air conditioner in a building or the like that has been used for adjusting temperature and humidity to remove harmful gas components and provide a high quality living environment.

【0023】また、本発明の大気浄化処理装置は、ビル
の空調設備に組み込むばかりでなく、自動車トンネル、
地下駐車場等の空気循環経路の空調設備や建設・工事車
両等の群小固定発生源の排気ガス処理装置に付設して効
率的なNOX除去処理が行える。さらに、装置自身は簡
単に小型化できるので、一般家庭での可搬型空気清浄装
置としても使用できること等極めて応用範囲が多岐に亘
る。
Further, the air purification processing device of the present invention is not only incorporated into the air conditioning equipment of a building, but also an automobile tunnel,
Efficient NO X removal processing can be performed by attaching it to an air-conditioning system for an air circulation route such as an underground parking lot or an exhaust gas treatment device of a small fixed source such as construction and construction vehicles. Further, since the device itself can be easily miniaturized, it can be used as a portable air cleaning device in a general household, and thus has a very wide range of applications.

【0024】[0024]

【作用】本発明の拡散スクラバ法を用いた大気浄化処理
装置による大気中NOXの除去原理を図1に示す。Ti
2 /HAP(1)を表面に塗布した平行板、例えば、
ステンレス鋼板(2)を2枚向き合わせ、2枚のステン
レス鋼板(2)の隙間にはUVランプ(5)等により光
を照射してTiO2を活性化させる。
[Action] The removal principle of atmospheric NO X by diffusion scrubber method air purification processing apparatus using the present invention shown in FIG. Ti
A parallel plate whose surface is coated with O 2 / HAP (1), for example,
Two stainless steel plates (2) are faced to each other, and the gap between the two stainless steel plates (2) is irradiated with light from a UV lamp (5) or the like to activate TiO 2 .

【0025】一端側を汚染空気の入口として、2枚のス
テンレス鋼板の隙間に汚染空気(3)を流すと、拡散係
数の大きいNOXガス(4)は、TiO2/HAP(1)
が塗布されたステンレス鋼板(2)の内壁面へ拡散す
る。内壁表面へ到達したNOXガス(4)は、TiO2
より生じたHO2、OHラジカルによりNO2、HNO3
に酸化され、TiO2/HAP(1)の表面に吸着さ
れ、汚染空気中から除去され、清浄空気(7)が出口側
から排出される。TiO2は、吸着したNO、NO2を保
持する能力が低いために、NO2がHNO3になる前に脱
着してしまう可能性が高い。この脱着したNO2を確実
に除去するために、NO2の吸着剤としてHAPをTi
2に混合して使用する。
When polluted air (3) is caused to flow through the gap between the two stainless steel plates with one end side being the inlet for polluted air, NO x gas (4) having a large diffusion coefficient is converted into TiO 2 / HAP (1).
Diffuses to the inner wall surface of the coated stainless steel plate (2). NO X gas having reached the inner wall surface (4), NO 2, HNO 3 by HO 2, OH radicals generated by TiO 2
Is oxidized to be adsorbed on the surface of TiO 2 / HAP (1), removed from the polluted air, and clean air (7) is discharged from the outlet side. Since TiO 2 has a low ability to retain adsorbed NO and NO 2 , there is a high possibility that it will be desorbed before NO 2 becomes HNO 3 . In order to surely remove the desorbed NO 2 , HAP is used as an NO 2 adsorbent.
Used as a mixture with O 2 .

【0026】一方、除去装置を使用する層流条件では拡
散係数の小さい粒子(6)は壁面へ拡散しない内に一対
のステンレス鋼板(2)の平行板をそのまま通過してし
まう。そして、一対のステンレス鋼板(2)の平行板の
出口側から排出される。したがって、原理的に空気中の
粒子はステンレス鋼板の平行板内に付着せず、空気を処
理する際の粒子による除去装置への汚れの影響は極めて
少ない。
On the other hand, under the laminar flow condition using the removing device, the particles (6) having a small diffusion coefficient pass through the parallel plates of the pair of stainless steel plates (2) without being diffused to the wall surface. Then, it is discharged from the exit side of the parallel plates of the pair of stainless steel plates (2). Therefore, in principle, particles in the air do not adhere to the parallel plate of the stainless steel plate, and the influence of dirt on the removing device by the particles when processing the air is extremely small.

【0027】TiO2やHAPの表面に吸着したNO2
HNO3は、水で簡単に洗い流すことができるので、定
期的に塗布した表面を水で洗うことにより半永久的に使
用できる。吸着剤としては活性炭等も知られているが、
活性炭の場合は水洗して再使用することが困難である。
The NO 2 and HNO 3 adsorbed on TiO 2 and HAP surfaces, it is possible to wash easily with water, semipermanently usable by washing regularly coated surface with water. Activated carbon is also known as an adsorbent,
In the case of activated carbon, it is difficult to wash it with water and reuse it.

【0028】この様に、拡散スクラバ法を用いると、汚
染空気を濾過する化学フィルタの原理とは全く異なり、
一対の平行板の隙間に汚染空気を流すので通気抵抗によ
る圧力損失が非常に少なく、小さなエネルギで大容量の
汚染空気を清浄化処理できる。
As described above, when the diffusion scrubber method is used, the principle of a chemical filter for filtering contaminated air is completely different,
Since the contaminated air flows through the gap between the pair of parallel plates, the pressure loss due to the ventilation resistance is very small, and a large amount of contaminated air can be cleaned with a small amount of energy.

【0029】[0029]

【発明の実施の形態】本発明は、「拡散スクラバ法」の
原理に基づき、平行に向き合わせた一対の平行板の狭い
隙間に汚染空気を流し、その平行板の内壁面に拡散して
きたガス成分を内壁表面で除去処理する方法であり、汚
染空気を流しながら連続的に有害ガスの除去処理が行え
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is based on the principle of the "diffusion scrubber method", in which contaminated air is caused to flow through a narrow gap between a pair of parallel plates facing in parallel, and the gas diffused to the inner wall surface of the parallel plates. It is a method of removing components on the inner wall surface, and can continuously remove harmful gas while flowing contaminated air.

【0030】平行板は、耐蝕性に優れたステンレス鋼板
が好ましいが、ステンレス鋼板に限定されるものではな
い。平行板に塗布するTiO2超微粒子としては平均粒
径7nm程度が最も好ましい。また、HAP微粒子とし
ては、平均粒径3μm程度が最も好ましい。TiO2
微粒子とHAP微粒子は、重量比が2:1〜1:2にな
るようにアセトン等の有機溶媒中で混合し、これにポリ
テトラフロロエチレン等のバインダを適宜加えて公知の
塗布手段、例えば、スプレーガン等により乾燥後の厚み
が10mg/cm2(厚さ数十μm)程度となるように
塗布する。
The parallel plate is preferably a stainless steel plate having excellent corrosion resistance, but is not limited to the stainless steel plate. The average particle size of about 7 nm is most preferable for the TiO 2 ultrafine particles applied to the parallel plates. The HAP fine particles most preferably have an average particle size of about 3 μm. The TiO 2 ultrafine particles and the HAP fine particles are mixed in an organic solvent such as acetone so that the weight ratio is 2: 1 to 1: 2, and a binder such as polytetrafluoroethylene is appropriately added to the mixture, and the known coating means is used. For example, it is applied by a spray gun or the like so that the thickness after drying is about 10 mg / cm 2 (thickness: several tens of μm).

【0031】この平行板(2)を2枚を用いて塗布面を
向かい合わせて、図3に示すように、5mm程度の狭い
間隔で平行に並べて平行板の両端の保持部材8を固定部
材9で固定し、平行板(2)の一端側の隙間に極細のU
Vランプ(5)を設置して隙間内に光を照射できる構造
とし、小型平行板型拡散スクラバ法による大気浄化処理
装置ユニットとする。
Two parallel plates (2) are used so that their coating surfaces face each other, and as shown in FIG. 3, the holding members 8 at both ends of the parallel plates are arranged in parallel at a narrow interval of about 5 mm, and the fixing members 9 are provided. Fixed with a U-shaped thin plate in the gap on one end side of the parallel plate (2).
A V-lamp (5) is installed to have a structure capable of irradiating light into the gap, and an air purification treatment device unit by a small parallel plate type diffusion scrubber method is used.

【0032】このユニットの大きさは、本体は440×
150×38mm、TiO2/HAPを塗布してある通
気流路面は350×100mm(面積、350cm2
である。このユニットを単体または所定枚数を組み合わ
せて大気浄化処理装置とし、これを空調設備等に付設
し、汚染空気を平行板(2)の隙間に流し、UVランプ
(5)によって光触媒面に紫外線を照射すると、NOX
が内壁表面のTiO2/HAPによって酸化、吸着除去
される。
The size of this unit is 440 × for the main body.
150 × 38 mm, the ventilation channel surface coated with TiO 2 / HAP is 350 × 100 mm (area, 350 cm 2 ).
Is. This unit is used alone or in combination with a predetermined number to form an air purification treatment device, which is attached to an air conditioner or the like, and contaminated air is caused to flow in the gap between the parallel plates (2) and the photocatalyst surface is irradiated with ultraviolet rays by the UV lamp (5). Then NO X
Are oxidized and adsorbed and removed by TiO 2 / HAP on the inner wall surface.

【0033】図1に原理を示した様に、紫外線の照射下
でTiO2/HAP上で、窒素酸化物(NO、NO2
は、NO2またはHNO3に酸化され、吸着除去される。
その後、水を注入して洗浄することによってTiO2
HAP上で酸化・吸着された窒素酸化物をNO2 -、NO
3 -イオンとして水で簡単に回収することができる。
As shown in the principle of FIG. 1, nitrogen oxides (NO, NO 2 ) were formed on TiO 2 / HAP under irradiation of ultraviolet rays.
Is oxidized to NO 2 or HNO 3 and adsorbed and removed.
Then, by injecting water and washing, TiO 2 /
The nitrogen oxides are oxidized and adsorbed on the HAP NO 2 -, NO
It can be easily recovered with water as 3 - ions.

【0034】水で回収されたNO2 -、NO3 -イオンは、
イオン交換樹脂により簡単に処理できる。そして、水に
よる洗浄後、空気を流しTiO2/HAP表面が乾燥す
れば、繰り返して窒素酸化物(NO、NO2)の除去処
理を行うことができる。この様にして、本発明の除去処
理装置は長期間に亘り水を循環処理しながら窒素酸化物
(NO、NO2)を除去処理することが可能である。
The NO 2 and NO 3 ions recovered with water are
Can be easily treated with ion exchange resin. Then, after washing with water, if air is passed and the TiO 2 / HAP surface is dried, the removal treatment of nitrogen oxides (NO, NO 2 ) can be repeated. In this way, the removal treatment apparatus of the present invention can remove nitrogen oxides (NO, NO 2 ) while circulating water for a long period of time.

【0035】[0035]

【実施例】実施例1 TiO2粉末(和光純薬工業、平均粒径100nm)と
HAP粉末(信州セラミックス、平均粒径30μm)を
33.3重量%:33.3重量%の割合で33.3重量
%のテトラフロロエチレン樹脂バインダ(TiO2:H
AP:PTFE=1:1:1)とアセトン等の有機溶媒
中で混合し、スプレーガンによりステンレス鋼板表面に
塗布し、乾燥した。このステンレス鋼板を用いて実施態
様に記載した図3に示すユニットを製作した。UVラン
プとしては、外径、4mmφのもの(東芝冷陰極蛍光ラ
ンプ)を用いた。
Example 1 TiO 2 powder (Wako Pure Chemical Industries, average particle size 100 nm) and HAP powder (Shinshu Ceramics, average particle size 30 μm) were used at a ratio of 33.3% by weight: 33.3% by weight to 33. 3% by weight of tetrafluoroethylene resin binder (TiO 2 : H
AP: PTFE = 1: 1: 1) was mixed with an organic solvent such as acetone, coated on the surface of a stainless steel plate with a spray gun, and dried. Using this stainless steel plate, the unit shown in FIG. 3 described in the embodiment was manufactured. A UV lamp having an outer diameter of 4 mmφ (Toshiba cold cathode fluorescent lamp) was used.

【0036】このユニットについて、下記により評価試
験を行った。NOの標準ガスボンベより供給されたNO
ガスを、清浄空気により数ppmの濃度レベルに適宜希
釈し、この希釈されたNOガスをUVランプ(5)を点
灯していない状態で、小型平行板型拡散スクラバ除去装
置へ導入し、装置通過後のガスのNO濃度を測定した。
除去装置の入口、出口のNO濃度が一致したのを確認し
た後にUVランプ(5)を点灯し、ランプ点灯後の除去
装置出口のNO濃度の変化から除去装置によるNOの除
去効率を算出した。除去効率は前述した式によって求め
た。
An evaluation test was conducted on this unit as follows. NO supplied from a standard NO gas cylinder
The gas is appropriately diluted with clean air to a concentration level of several ppm, and the diluted NO gas is introduced into a small parallel plate type diffusion scrubber removal device without turning on the UV lamp (5) and passed through the device. The NO concentration of the latter gas was measured.
After confirming that the NO concentrations at the inlet and outlet of the removing device were the same, the UV lamp (5) was turned on, and the NO removing efficiency by the removing device was calculated from the change in the NO concentration at the outlet of the removing device after the lamp was turned on. The removal efficiency was obtained by the above-mentioned formula.

【0037】通気流量4L/min、NO濃度673p
pbの条件で空気を処理した場合の汚染空気処理のNO
濃度変化およびNOX除去効率の経時変化を図4に示
す。図4より、UVランプ(5)を点灯すると673p
pbのNO濃度が急激に下がり75ppb以下となり、
時間とともに除去装置を通過後のNO濃度が僅かづつ上
昇してくることが判る。これは、TiO2に付着したH
NO3がTiO2に光が当たるのを阻害しているためであ
る。しかしながら、約7時間経過しても除去効率の大幅
な低下は認められず、その後、UVランプを消灯すると
NO濃度がランプ点灯前の673ppbに戻った。図4
より、この実施例1においては、NOXを80%以上の
高い除去効率で除去できることが確認された。
Ventilation flow rate 4 L / min, NO concentration 673 p
NO for treating contaminated air when treating air under pb conditions
FIG. 4 shows changes in concentration and NO X removal efficiency with time. From Figure 4, 673p when the UV lamp (5) is turned on.
The NO concentration of pb drops sharply to 75 ppb or less,
It can be seen that the NO concentration after passing through the removing device gradually increases with time. This is the H attached to TiO 2.
This is because NO 3 prevents the TiO 2 from being exposed to light. However, no significant decrease in removal efficiency was observed even after about 7 hours, and when the UV lamp was turned off thereafter, the NO concentration returned to 673 ppb before the lamp was turned on. Figure 4
From this, in this Example 1, it was confirmed that NO X can be removed with a high removal efficiency of 80% or more.

【0038】実施例2 実施例1と同じ装置を用いて、通気流量4L/mi
n、NO濃度2705ppb、通気流量10L/mi
n、NO濃度2645ppbの各条件で空気を処理した
ところ、除去効率は、表1に示すとおり、が83.0
%、が46.0%であった。の条件で汚染空気を処
理した場合のNO濃度の経時変化を図5に示す。
Example 2 Using the same apparatus as in Example 1, the ventilation flow rate was 4 L / mi.
n, NO concentration 2705 ppb, aeration flow rate 10 L / mi
When the air was treated under the conditions of n and NO concentration of 2645 ppb, the removal efficiency was 83.0 as shown in Table 1.
% Was 46.0%. FIG. 5 shows the change over time in the NO concentration when the contaminated air was treated under the conditions of.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例3 TiO2として、平均粒径7nm(石原産業ST−0
1)、HAPとして平均粒径3μm(富田製薬)とした
以外は実施例1と同じ装置で、通気流量4L/mi
n、NO濃度3205ppb、通気流量10L/mi
n、NO濃度3341ppb、通気流量15L/mi
n、NO濃度3222ppbの各条件で汚染空気を処理
したところ、除去効率は、表1に示すとおり、が10
0.0%、が95.7%、が89.0%と非常に高
い除去効率が得られた。の条件で汚染空気を処理した
場合のNO濃度と除去効率の経時変化を図6に示す。
Example 3 As TiO 2 , an average particle size of 7 nm (Ishihara Sangyo ST-0
1), the same device as in Example 1 except that the HAP had an average particle size of 3 μm (Tomita Pharmaceutical Co., Ltd.), and an air flow rate of 4 L / mi.
n, NO concentration 3205 ppb, ventilation flow rate 10 L / mi
n, NO concentration 3341 ppb, ventilation flow rate 15 L / mi
When the contaminated air was treated under the conditions of n and NO concentration of 3222 ppb, the removal efficiency was 10 as shown in Table 1.
A very high removal efficiency of 0.0%, 95.7%, and 89.0% was obtained. FIG. 6 shows the changes over time in the NO concentration and removal efficiency when the contaminated air was treated under the conditions.

【0041】実施例4 実施例1と同じ装置を用いて、TiO2:HAPの比を
1:2に変えて実施例2のの条件で汚染空気を処理し
た場合のNO濃度の経時変化を実施例2のの条件の場
合と比較して図5に示す。図5より、初期のNO除去効
率は、実施例2のTiO2:HAP=1:1の場合が若
干優れているが、NOの除去容量については実施例4の
TiO2:HAP=1:2の方が優れていた。
Example 4 Using the same apparatus as in Example 1, the NO concentration was changed with time when the contaminated air was treated under the conditions of Example 2 while changing the TiO 2 : HAP ratio to 1: 2. FIG. 5 shows a comparison with the case of the condition of Example 2. From FIG. 5, the initial NO removal efficiency is slightly superior in the case of TiO 2 : HAP = 1: 1 of Example 2, but the NO removal capacity is TiO 2 : HAP = 1: 2 of Example 4. Was better.

【0042】実施例5 図3に示した小型平行板型拡散スクラバによる窒素酸化
物除去装置ユニットを50枚束ねた直方体の装置を製作
した。ステンレス鋼板に50×50cmのエリアで酸化
チタン超微粒子光触媒(石原産業ST−01、平均粒径
7nm)とヒドロキシアパタイト微粒子(富田製薬、平
均粒径3μm)をテトラフロロエチレン樹脂バインダを
用いて塗布した。この装置により小型平行板型拡散スク
ラバ式窒素酸化物除去装置ユニットの250倍の窒素酸
化物NOXの除去処理能力を有し、毎分2.5m3(15
0m3/h)の空気を処理することができた。
Example 5 A rectangular parallelepiped apparatus was manufactured by bundling 50 units of nitrogen oxide removing apparatus units by the small parallel plate type diffusion scrubber shown in FIG. Titanium oxide ultrafine particle photocatalyst (Ishihara Sangyo ST-01, average particle size 7 nm) and hydroxyapatite fine particles (Tomita Pharmaceutical Co., Ltd., average particle size 3 μm) were applied to a stainless steel plate in an area of 50 × 50 cm using a tetrafluoroethylene resin binder. . With this device, it has 250 times more nitrogen oxide NO x removal processing capacity than a small parallel plate type diffusion scrubber type nitrogen oxide removal device unit, and it has a capacity of 2.5 m 3 (15
0 m 3 / h) of air could be treated.

【0043】[0043]

【発明の効果】本発明の大気浄化浄処理装置は、光触
媒を塗布した平行板による単純な構造の処理装置である
こと、空気中の粒子は平行板の除去装置を原理的に通
過し、平行板の内壁表面に付着しないので粒子による除
去装置への汚れの影響は少ないこと、単なる水を洗浄
液として用いて除去した有害ガス成分のNOXをNO2 -
およびNO3 -として簡単に回収でき、除去装置を乾燥す
れば繰り返し連続して使用できること、洗浄液の再生
処理も既存のイオン交換樹脂を使用でき、省エネルギ・
ランニングコストの面で優れていること、フィルタに
よる濾過捕集とは異なり通気抵抗が小さく空気の処理量
が極めて大きいこと、除去装置の構造がシンプルであ
り、移動でき、又、トンネル、屋内駐車場等の既存の空
調設備等にも簡単に組み込めること等実用的な価値が高
い。
EFFECT OF THE INVENTION The air purification processing apparatus of the present invention is a processing apparatus having a simple structure with parallel plates coated with a photocatalyst, and particles in the air pass through the parallel plate removing apparatus in principle, it does not adhere to the inner wall surface of the plate influences the stains on the removal device according particles less, the nO X of harmful gas components were removed using a simple water as a wash nO 2 -
And NO 3 - as can be easily recovered and removing apparatus that can be used repeatedly continuously be dried, also can use the existing ion exchange resin regeneration process of the cleaning solution, saving energy
It is excellent in running cost, has a small ventilation resistance unlike filtration and collection by a filter, and has an extremely large amount of air to be treated. The structure of the removing device is simple and mobile, and it can be used in tunnels and indoor parking lots. It has a high practical value such that it can be easily incorporated into existing air-conditioning equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、TiO2超微粒子とヒドロキシアパタ
イト微粒子の混合物を用いた平行板型拡散スクラバによ
る窒素酸化物除去処理装置の原理を示す模式図である。
FIG. 1 is a schematic diagram showing the principle of a nitrogen oxide removing treatment apparatus by a parallel plate type diffusion scrubber using a mixture of TiO 2 ultrafine particles and hydroxyapatite fine particles.

【図2】図2は、Gormley理論式より算出した
大気中窒素酸化物の理論効率と実験値との比較を示すグ
ラフである。
FIG. 2 is a graph showing a comparison between the theoretical efficiency of nitrogen oxides in the atmosphere calculated from the theoretical equation of Gormley and the experimental value.

【図3】図3は、本発明の平行板型拡散スクラバ法を用
いた窒素酸化物除去処理装置の斜視図である。
FIG. 3 is a perspective view of a nitrogen oxide removing apparatus using the parallel plate type diffusion scrubber method of the present invention.

【図4】図4は、実施例1における汚染空気処理のNO
濃度変化およびNOX 除去効率を示すグラフである。
[Fig. 4] Fig. 4 is NO of polluted air treatment in Example 1.
Is a graph showing the change in concentration and NO X removal efficiency.

【図5】図5は、実施例2および実施例4における汚染
空気処理のNO濃度変化を示すグラフである。
FIG. 5 is a graph showing changes in NO concentration during treatment of polluted air in Example 2 and Example 4.

【図6】図6は、実施例4における汚染空気処理のNO
濃度変化およびNOX 除去効率を示すグラフである。
FIG. 6 is a NO of polluted air treatment in Example 4.
Is a graph showing the change in concentration and NO X removal efficiency.

【図7】図7は、Gormley理論式に基づく大気
中ガス成分の除去効率の算出式のための拡散スクラバ法
の模式図である。
Figure 7 is a schematic diagram of diffusion scrubber method for calculation formula removal efficiency of atmospheric gas components based on the theoretical formula of Gormley.

───────────────────────────────────────────────────── フロントページの続き 早期審査対象出願 (72)発明者 飯嶋 和明 東京都千代田区有楽町1−4−1 三機 工業株式会社内 (56)参考文献 特開2002−126451(JP,A) 特開 平10−253508(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 ─────────────────────────────────────────────────── ─── Continuation of the front page Application for accelerated examination (72) Inventor Kazuaki Iijima 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Sanki Industry Co., Ltd. (56) Reference JP 2002-126451 (JP, A) JP, 10-253508 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の平行板の狭い隙間に汚染空気を流
し、拡散係数の小さい粒子は該一対の平行板の狭い隙間
をそのまま通過させて該一対の平行板の出口から排出
かつ該一対の平行板の内壁面に汚染空気中の有害ガ
ス成分を拡散させて該内壁表面に吸着させるための、平
行に向き合わせた一対の平行板からなり、該隙間は下記
の式(Gormleyの理論式)を満たす間隔とし、該一対の
平行板の内壁表面に酸化チタン超微粒子光触媒と吸着
剤とからなる塗布層を設けるとともに該隙間内に光を照
射できる構造としたことを特徴とする大気中の窒素酸化
物の除去処理装置。式:f=1−[0.910exp(−3.77μ)+
0.0531exp(−42.8μ)]、μ=bDL/
aQ (ただし、f:除去効率、D:対象とするガスの拡散係
数(cm 2 /秒)、a:平行板の間隔(cm)、L:平
行板の長さ(cm)、μ:沈着パラメータ、Q:大気吸
引流量(cm 3 /秒)、b:平行板の幅(cm)であ
る。)
1. A flow of contaminated air to the narrow gap pair of parallel plates, small particles of the diffusion coefficient is discharged from the outlet of the pair of parallel plates as it is passed through a narrow gap <br/> of the pair of parallel plates It
Allowed, and for adsorbing to the inner wall surface by diffusing harmful gas components of the inner wall surface contamination in the air of the pair of parallel plates, flat
It consists of a pair of parallel plates facing each other, and the gap is
Expression of the interval satisfying (theoretical formula of Gormley), the pair of <br/> the inner wall surface of the adsorption and the titanium oxide ultrafine particles photocatalyst parallel plate
Nitrogen oxidation in the atmosphere , characterized in that a coating layer made of an agent is provided and the structure is such that light can be irradiated into the gap.
Object removal processing equipment. Formula: f = 1− [0.910exp (−3.77μ) +
0.0531 exp (-42.8 μ)], μ = bDL /
aQ (However, f: removal efficiency, D: target gas diffusion coefficient
Number (cm 2 / sec), a: Distance between parallel plates (cm), L: Flat
Row length (cm), μ: deposition parameter, Q: atmospheric absorption
Draw flow rate (cm 3 / sec), b: width of parallel plate (cm)
It )
【請求項2】該塗布層がバインダーとしてポリテトラフ
ロロエチレンを用いて設けられていることを特徴とする
請求項1記載の大気中の窒素酸化物の除去処理装置。
2. The coating layer comprises polytetraf as a binder.
It is characterized by being provided by using polyethylene glycol
The apparatus for removing atmospheric nitrogen oxides according to claim 1.
【請求項3】該吸着剤としてヒドロキシアパタイトを用
いたことを特徴とする請求項1又は2記載の大気中の窒
素酸化物の除去処理装置。
3. Use of hydroxyapatite as the adsorbent
The atmospheric nitrogen according to claim 1 or 2, characterized in that
Equipment for removing elemental oxides.
【請求項4】 空調装置の空気流路または排気ガス処理
装置のガス流路に付設されて用いられることを特徴とす
る請求項1ないし3のいずれかに記載の大気中の窒素酸
化物の除去処理装置。
4. Nitrogen acid in the atmosphere according to any one of claims 1 to 3 is attached to the gas flow path of the air passage or the exhaust gas treatment device characterized in that it is used in the air conditioner
Compound removal treatment equipment.
【請求項5】 一般家庭での可搬型空気清浄装置として
使用することを特徴とする請求項1ないし3のいずれか
に記載の大気中の窒素酸化物の除去処理装置。
5. Use as a portable air purifying device in a general household .
The apparatus for removing atmospheric nitrogen oxides according to 1 .
【請求項6】 水を注入して洗浄することによって酸化
チタン超微粒子光触 媒と吸着剤とからなる塗布層上で酸
化・吸着された窒素酸化物をNO 2 - 、NO 3 - イオンとし
て水で回収することを特徴とする請求項1ないし5のい
ずれかに記載の窒素酸化物の除去処理装置の使用方法。
6. Oxidation by washing with water
Acid on the coating layer composed of titanium ultrafine particles light catalytic and adsorbent
Reduction and adsorbed nitrogen oxides NO 2 -, NO 3 - and ion
And recovering with water.
A method for using the nitrogen oxide removal treatment device according to any one of the above.
【請求項7】 水を注入して洗浄することによって酸化
チタン超微粒子光触媒と吸着剤とからなる塗布層上で酸
化・吸着された窒素酸化物をNO 2 - 、NO 3 - イオンとし
て水で回収した後、空気を流して酸化チタン超微粒子光
触媒と吸着剤とからなる塗布層表面を乾燥し、繰り返し
て窒素酸化物の除去処理を行うことを特徴とする請求項
1ないし5のいずれかに記載の窒素酸化物の除去処理装
置の使用方法。
7. Oxidation by injecting water and washing
Acid on the coating layer consisting of titanium ultrafine particle photocatalyst and adsorbent
Reduction and adsorbed nitrogen oxides NO 2 -, NO 3 - and ion
After recovering with water, air is blown and the titanium oxide ultrafine particle light is emitted.
The coating layer surface consisting of catalyst and adsorbent is dried and repeated.
A process for removing nitrogen oxides is performed by using
1. A device for removing nitrogen oxides according to any one of 1 to 5.
How to use the table.
JP2003044989A 2003-02-21 2003-02-21 Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use Expired - Fee Related JP3483208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044989A JP3483208B2 (en) 2003-02-21 2003-02-21 Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044989A JP3483208B2 (en) 2003-02-21 2003-02-21 Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000318316A Division JP2002126451A (en) 2000-10-18 2000-10-18 Device for removing nitrogen oxides in air

Publications (2)

Publication Number Publication Date
JP2003251147A JP2003251147A (en) 2003-09-09
JP3483208B2 true JP3483208B2 (en) 2004-01-06

Family

ID=28672893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044989A Expired - Fee Related JP3483208B2 (en) 2003-02-21 2003-02-21 Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use

Country Status (1)

Country Link
JP (1) JP3483208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025467A (en) * 2008-07-22 2010-02-04 Taisei Corp Air cleaner and air cleaning method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661054B2 (en) * 2004-01-30 2011-03-30 パナソニック株式会社 Fuel cell power generator
JP2005245550A (en) * 2004-03-02 2005-09-15 Hokuei:Kk Air control method of air cleaner using photocatalyst
JP4843907B2 (en) * 2004-04-23 2011-12-21 パナソニック株式会社 Fuel cell power generator
JP7375100B1 (en) 2022-04-27 2023-11-07 日機装株式会社 air purifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025467A (en) * 2008-07-22 2010-02-04 Taisei Corp Air cleaner and air cleaning method

Also Published As

Publication number Publication date
JP2003251147A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
CN102811794B (en) System and method for air purification using enhanced multi-functional coating based on pn-situ photocatalytic oxidation and ozonation
US5449443A (en) Photocatalytic reactor with flexible supports
CN105311931A (en) Industrial VOC waste gas decomposition purification treatment method and equipment
CN205199268U (en) Industry VOCs waste gas decomposes purifier treatment equipment
JP4035441B2 (en) Ozone removing material and method for producing the same
JP3483208B2 (en) Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use
JP5008193B2 (en) Water-soluble gas collection structure
JP2002126451A (en) Device for removing nitrogen oxides in air
JP4524397B2 (en) Air purification device
JP2001046906A (en) Air cleaning device
JP2005131553A (en) Air cleaning apparatus and air cleaning system
JP2009183919A (en) Air cleaning apparatus
CN211069617U (en) Waste gas treatment equipment
JP3529122B2 (en) Hazardous gas removal method and equipment
JP2002316021A (en) Contaminated gas treating device and purifying device using the same
JP3476302B2 (en) Method and apparatus for removing harmful gas
JP3981386B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
Yu Ambient air treatment by titanium dioxide (TiO2) based photocatalyst in Hong Kong
KR102520510B1 (en) Air purifying device
JP4201465B2 (en) Nitrogen oxide processing equipment
JPH11123316A (en) Apparatus for producing ultra-pure air
JP3346687B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
KR100570099B1 (en) Photocatalytic air purifier comprising photocatalytic washer
JPH0810576A (en) Removing method of harmful gas and device therefor
JP6580187B1 (en) Air purification unit

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees