JP2002126451A - Device for removing nitrogen oxides in air - Google Patents
Device for removing nitrogen oxides in airInfo
- Publication number
- JP2002126451A JP2002126451A JP2000318316A JP2000318316A JP2002126451A JP 2002126451 A JP2002126451 A JP 2002126451A JP 2000318316 A JP2000318316 A JP 2000318316A JP 2000318316 A JP2000318316 A JP 2000318316A JP 2002126451 A JP2002126451 A JP 2002126451A
- Authority
- JP
- Japan
- Prior art keywords
- air
- nitrogen oxides
- titanium oxide
- photocatalyst
- removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 168
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 53
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims abstract description 53
- 239000007789 gas Substances 0.000 claims abstract description 43
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002245 particle Substances 0.000 claims abstract description 33
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000010419 fine particle Substances 0.000 claims abstract description 29
- 239000011941 photocatalyst Substances 0.000 claims abstract description 28
- 239000003463 adsorbent Substances 0.000 claims abstract description 20
- 239000011247 coating layer Substances 0.000 claims abstract description 8
- 239000011882 ultra-fine particle Substances 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 238000010276 construction Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 32
- 229910010413 TiO 2 Inorganic materials 0.000 description 29
- 238000009792 diffusion process Methods 0.000 description 24
- 229910001220 stainless steel Inorganic materials 0.000 description 14
- 239000010935 stainless steel Substances 0.000 description 14
- 238000009423 ventilation Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 238000000746 purification Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- 241000644035 Clava Species 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、大気中の窒素酸化
物(NOX )の除去処理装置、特に、空調装置の空気流
路または排気ガス処理装置のガス流路に付設して用いる
のに適した窒素酸化物の拡散スクラバ法による除去処理
装置に関する。BACKGROUND OF THE INVENTION The present invention provides apparatus for removing nitrogen oxides in the atmosphere (NO X), in particular, for use in annexed to the gas flow path of the air passage or the exhaust gas treatment apparatus of the air conditioner The present invention relates to a suitable nitrogen oxide removal treatment apparatus by a diffusion scrubber method.
【0002】[0002]
【従来の技術】大気中の窒素酸化物を除去する技術開発
は、主として、工場、自動車等の発生源対策を中心に行
われており、大規模な工場等から排出する数千ppmと
言った高濃度の窒素酸化物については、アンモニアとの
反応により窒素と水に還元する「選択接触還元法」がこ
れまで実用化されてきた。また、ガソリンエンジン車か
らの窒素酸化物の排出は、「三元触媒」、「リーンバー
ン」等の導入で改善されてきた。2. Description of the Related Art Technology for removing nitrogen oxides from the atmosphere is mainly developed for factories, automobiles, and other sources of emission, and said to be several thousand ppm emitted from large-scale factories. Regarding high-concentration nitrogen oxides, the "selective catalytic reduction method" in which nitrogen oxides are reduced to water by reaction with ammonia has been put to practical use. In addition, the emission of nitrogen oxides from gasoline engine vehicles has been improved by introducing "three-way catalysts", "lean burns" and the like.
【0003】酸化チタン光触媒を用い、太陽光を利用し
て大気中の窒素酸化物を浄化する技術も知られており、
舗装道路や道路構造物に酸化チタンを塗布することが、
最近、地方自治体の道路沿道で行われ、その浄化性能が
確認されてきた(竹内浩士、「光触媒による環境大気の
浄化・修復技術」、大気環境学会誌、33、139−1
50、1998年)。また、道路トンネルの排気設備に
酸化チタンを用いた例も報告されている(西方聡、「低
濃度脱硝装置」、工業材料、45、86−88、199
7年)。[0003] There is also known a technique for purifying nitrogen oxides in the atmosphere using sunlight using a titanium oxide photocatalyst.
Applying titanium oxide to paved roads and road structures,
Recently, the purification performance has been confirmed along the roads of local governments, and its purification performance has been confirmed (Hiroshi Takeuchi, "Purification and Restoration Technology of Environmental Air by Photocatalyst", Journal of the Japan Society for Atmospheric Environment, 33, 139-1).
50, 1998). In addition, an example in which titanium oxide is used for exhaust equipment of a road tunnel has been reported (Satoshi Nishikata, “Low-concentration denitration equipment”, Industrial Materials, 45, 86-88, 199).
7 years).
【0004】その他、酸化チタン光触媒を用いた大気中
の窒素酸化物の除去手段としては、「自動車トンネル用
換気設備」(特開平5−237381号公報)、「汚染
物質の除去方法及び浄化材」(特開平6−315614
号公報)、「トンネル空気浄化装置」(特開平8−15
1899号公報)、「トンネル内空気浄化装置およびそ
の装置に用いられるトンネル内装板」(特開平9−27
1635号公報)、「高速道路上の汚染空気の浄化方
法」(特開平10−151323号公報)、「気体浄化
・吸音部材、気体浄化装置及び気体浄化システム」(特
開平10−249167号公報)等が公知である。Other means for removing nitrogen oxides in the atmosphere using a titanium oxide photocatalyst include "ventilation equipment for automobile tunnels" (JP-A-5-237381) and "method for removing pollutants and purification material". (JP-A-6-315614
JP-A-8-15), "Tunnel air purification device" (JP-A-8-15)
No. 1899), “Air purification device in tunnel and tunnel interior plate used in the device” (JP-A-9-27)
No. 1635), “A method for purifying contaminated air on expressways” (JP-A-10-151323), “Gas purification / sound absorbing member, gas purification device and gas purification system” (JP-A-10-249167). Etc. are known.
【0005】酸化チタン微粒子によって気体中の窒素酸
化物を吸着する際に、酸化チタン微粒子にハイドロキシ
アパタイト粉末を混合することによって吸着効率を高め
ることができることも知られている(Y.Komazaki et a
l.,Atoms.Environ.,33,4363〜4371,(1999) )。It is also known that when nitrogen oxides in a gas are adsorbed by titanium oxide fine particles, the adsorbing efficiency can be increased by mixing hydroxyapatite powder with the titanium oxide fine particles (Y. Komazaki et al.).
l., Atoms. Environ., 33, 4363-4371, (1999)).
【0006】[0006]
【発明が解決しようとする課題】大気汚染への社会的関
心の高まりから、種々の空気清浄技術の研究が行われて
きている。しかしながら、問題の重要性に比較して、そ
の多くの技術は、既存のフィルタ法、活性炭等の吸着剤
等による除去技術を単に転用したものに過ぎず、その処
理能力や処理量に疑問を持たざるを得ないものも多い。With the increasing public interest in air pollution, various air purifying technologies have been studied. However, compared to the importance of the problem, many of the technologies are merely diversions of the existing filtering method and the removal technology using an adsorbent such as activated carbon, and there are doubts regarding the processing capacity and the throughput. There are many things that have to be done.
【0007】トンネル、地下道路、地下駐車場等では、
個々の自動車発生源から排出され、空気中で希釈された
比較的低濃度(数ppm)のNOX の除去が対象とな
り、「選択接触還元法」は、除去対策技術として原理的
に有効ではなく、また、処理施設および設備・運転費用
が膨大なものとなるので、NOX 除去技術としては使用
されていない。In tunnels, underground roads, underground parking lots, etc.,
Is discharged from the individual car sources of, removal of the NO X in the relatively low concentration diluted in air (number ppm) becomes the target, "selective catalytic reduction method" is not theoretically effective removal countermeasure technology in addition, since the processing facilities and equipment and operating costs will be enormous, not used as nO X removal technique.
【0008】最近では、酸化チタン光触媒を利用した空
気清浄技術も開発されてきた。この技術は、特殊な装置
を必要とせず、NOX の経済的な浄化技術ではあるが、
反応槽でのバッチ的な汚染空気処理技術であるために、
汚染空気処理量が毎分数リットル程度と少なく、多量の
汚染空気処理に関しては問題である。また、塗布された
酸化チタン表面での除去効果はあるとしても、広範な空
間に拡散したNOX を効率的に除去することは原理的に
困難である。Recently, an air cleaning technology using a titanium oxide photocatalyst has also been developed. This technique does not require special equipment, albeit an economical purification techniques NO X,
Because it is a batch-type contaminated air treatment technology in a reaction tank,
The amount of contaminated air treatment is as small as several liters per minute, which is a problem for treating a large amount of contaminated air. Moreover, the effect of removing the coating titanium oxide surface as is, it is basically difficult to remove NO X diffused in a wide space efficiently.
【0009】そこで、従来の技術の延長ではなく、有害
ガス成分を効率良く完全に除去し、しかも、大量の汚染
空気の処理を行える革新的な空気清浄技術の開発が必要
である。本発明は、日本をはじめとして世界各国の大都
市圏で長年の問題となっている大気中のNOX 、特に、
トンネル、地下駐車場、建設・工事車両(群小固
定発生源)で排出されるNOX を除去するのに好適な低
コストでエネルギ消費が少なく、継続的に使用できる循
環効率的な装置を開発することを課題とする。Therefore, it is necessary to develop not only an extension of the conventional technology but also an innovative air cleaning technology capable of efficiently and completely removing harmful gas components and treating a large amount of contaminated air. The present invention, NO X in the atmosphere has become a long-standing problem in metropolitan areas around the world including the Japanese, in particular,
Development tunnel, underground parking, less energy consumption in a suitable low-cost to remove NO X discharged in construction and construction vehicles (Gunsho stationary sources), a circular efficient device that can be used continuously The task is to
【0010】[0010]
【課題を解決するための手段】本発明者らは、先に、酸
化チタン(TiO2 )微粒子光触媒とヒドロキシアパタ
イト(HAP)粉末にバインダをブレンドして、これを
ガラス管の内壁面に成膜固定し、外管のガラス管と内管
の石英管との隙間をサンプリング用のガス流路とし、該
ガス流路のガラス管の内壁面に紫外線を照射する手段を
設けて、ガス中のNOX をガラス管の内壁面に吸着し
て、吸着量からガス中のNOX の濃度を測定する吸着管
を開発した(特開平8−94502号公報)。しかし、
この吸着管は、ガス中のNOX を吸着して単に測定、分
析する管であって、上記の課題を解決できるような装置
ではなかった。The present inventors first blended a binder with a titanium oxide (TiO 2 ) fine particle photocatalyst and hydroxyapatite (HAP) powder, and formed a film on the inner wall surface of a glass tube. Fixing the gap between the outer glass tube and the inner quartz tube as a gas flow path for sampling, and providing a means for irradiating the inner wall surface of the glass pipe of the gas flow path with ultraviolet light, so that NO in the gas is provided. and the X adsorbed on the inner wall surface of the glass tube, has been developed suction tube to measure the concentration of the NO X in the gas from the adsorption amount (JP-a-8-94502). But,
The suction tube is measured simply by adsorbing NO X in the gas, a tube for analysis, was not a device that can solve the above problems.
【0011】本発明者は、酸化チタン超微粒子光触媒を
用いて高いNOX 除去効率を有する連続使用可能な窒素
酸化物除去装置について研究開発を続けた結果、拡散ス
クラバ法による除去装置によって空気中の窒素酸化物を
効率的に除去できることを見出した。また、この装置に
おいて、平行板の内壁表面に特定の割合で塗布した酸化
チタン超微粒子光触媒とハイドロキシアパタイト微粒子
吸着剤(以下適宜、「TiO 2 /HAP」と表記する)
によって長期間に亘って連続的に高い除去効率で汚染空
気中のNOX を除去できることを見出した。The present inventors have developed a titanium oxide ultrafine particle photocatalyst.
High NO usingXContinuously usable nitrogen with removal efficiency
As a result of continuing research and development on oxide removal equipment,
Nitrogen oxides in the air are removed by the removal device using the Clava method
It has been found that it can be efficiently removed. Also, this device
The oxidation applied to the inner wall surface of the parallel plate at a specific rate.
Ultrafine titanium photocatalyst and hydroxyapatite fine particles
Adsorbent (hereinafter referred to as “TiO Two/ HAP ")
Contaminated sky with high removal efficiency continuously over a long period of time
NO in the airXCan be removed.
【0012】すなわち、本発明は、1対の平行板の狭い
隙間に空気を流し、平行板内を流れる間に空気中の窒素
酸化物が平行板内壁面に拡散し、酸化チタン超微粒子光
触媒とヒドロキシアパタイト微粒子吸着剤からなる塗布
層を設けた内壁表面で吸着除去されることを特徴とする
大気中の窒素酸化物の除去処理装置である。That is, according to the present invention, air flows in a narrow gap between a pair of parallel plates, and nitrogen oxides in the air are diffused on the inner wall surface of the parallel plates while flowing through the parallel plates. An apparatus for removing nitrogen oxides in the air, wherein the apparatus is adsorbed and removed on an inner wall surface provided with a coating layer made of a hydroxyapatite fine particle adsorbent.
【0013】また、本発明は、除去処理装置の仕様は、
平行板の内壁表面が窒素酸化物の理想的な完全吸着面で
あると仮定したGormley−Kennedyの理論
式により設定されることを特徴とする上記の大気中の窒
素酸化物の除去処理装置である。Further, according to the present invention, the specifications of the removal processing apparatus are as follows:
The above apparatus for removing nitrogen oxides from the atmosphere, wherein the inner wall surface of the parallel plate is set by Gormley-Kennedy's theoretical formula assuming that it is an ideal perfect adsorption surface of nitrogen oxides. .
【0014】また、本発明は、1対の平行板の内壁表面
に、酸化チタン超微粒子光触媒とヒドロキシアパタイト
微粒子吸着剤からなる塗布層を設け、窒素酸化物の完全
吸着面を実現したことを特徴とする上記の大気中の窒素
酸化物の除去処理装置であるFurther, the present invention is characterized in that a coating layer comprising a titanium oxide ultrafine particle photocatalyst and a hydroxyapatite fine particle adsorbent is provided on the inner wall surfaces of a pair of parallel plates to realize a complete adsorption surface of nitrogen oxides. An apparatus for removing nitrogen oxides in the atmosphere described above.
【0015】また、本発明は、酸化チタン超微粒子光触
媒は、平均粒径10nm以下の超微粒子であり、ヒドロ
キシアパタイト微粒子吸着剤は、平均粒径5μm以下の
微粒子であり、酸化チタン超微粒子光触媒対ヒドロキシ
アパタイト微粒子の重量比が2:1〜1:2であること
を特徴とする上記の大気中の窒素酸化物の除去処理装置
である。Further, according to the present invention, the titanium oxide ultrafine particle photocatalyst is an ultrafine particle having an average particle diameter of 10 nm or less, the hydroxyapatite fine particle adsorbent is an average particle diameter of 5 μm or less, The above apparatus for removing nitrogen oxides from the atmosphere, wherein the weight ratio of the hydroxyapatite fine particles is 2: 1 to 1: 2.
【0016】また、本発明は、空調装置の空気流路また
は排気ガス処理装置のガス流路に付設されて用いられる
ことを特徴とする上記の大気中の窒素酸化物の除去処理
装置である。Further, the present invention is the above-mentioned apparatus for removing nitrogen oxides from the atmosphere, which is used by being attached to an air flow path of an air conditioner or a gas flow path of an exhaust gas processing apparatus.
【0017】本発明において使用する拡散スクラバ法と
は、(1)平行板内壁面へガスが拡散する、(2)内壁
面へ到達したガスが内壁表面で吸着除去されるという、
拡散を利用したガスの捕集・除去法であり、ガスと粒子
の拡散係数が大きく異なることを利用し、ガスを選択的
に除去する方法である。図7に拡散スクラバ法を模式的
に示す。この拡散スクラバ法において、大気中のガス成
分の除去効率は、下記のGormley−Kenned
y理論式(P.G.Gormley,M.Kennedy,Proceedings of the
Royal Irish Academy,Vol.52A,163-169,(1949) )に基
づいて算出できる。 f=1−[0.910exp(−3.77μ)+0.0
531exp(−42.8μ)]、μ=bDL/aQ なお、上記の式において、f:除去効率、D:対象とす
るガスの拡散係数(cm2 /秒、a:平行板の間隔、
L:平行板の長さ(cm)、μ:沈着パラメータ、Q:
大気吸引流量(cm3 /秒)、b:平行板の幅(cm)
である。The diffusion scrubber method used in the present invention means that (1) gas is diffused to the inner wall surface of the parallel plate, and (2) gas reaching the inner wall surface is adsorbed and removed on the inner wall surface.
This is a method of collecting and removing gas using diffusion, and is a method of selectively removing gas by utilizing the fact that the diffusion coefficients of gas and particles are significantly different. FIG. 7 schematically shows the diffusion scrubber method. In this diffusion scrubber method, the removal efficiency of gas components in the atmosphere is determined by the following Gormley-Kenned:
y Theoretical formula (PG Gormley, M. Kennedy, Proceedings of the
Royal Irish Academy, Vol. 52A, 163-169, (1949)). f = 1- [0.910 exp (-3.77 .mu.) + 0.0
531 exp (−42.8 μ)], μ = bDL / aQ In the above equation, f: removal efficiency, D: diffusion coefficient of the target gas (cm 2 / sec, a: interval between parallel plates,
L: length (cm) of parallel plate, μ: deposition parameter, Q:
Atmospheric suction flow rate (cm 3 / sec), b: width of parallel plate (cm)
It is.
【0018】本発明は、酸化チタン超微粒子光触媒とガ
ス吸着剤のヒドロキシアパタイト微粒子とをNOX の分
解、吸着に用いた「光脱硝法」と、簡便な装置による有
害ガス成分の除去方法である従来の「拡散スクラバ法」
とを特定の条件で組み合わせることによって、大気中の
低濃度のNOX を濃縮することなく、直接、連続的に長
時間に亘り除去・処理できる手段を提供するものであ
る。The present invention, decomposing the hydroxyapatite particles of titanium oxide ultrafine particles photocatalyst and a gas adsorbent NO X, was used to adsorb an "optical denitration method" is the method of removing harmful gas components by a simple apparatus Conventional “diffusion scrubber method”
By combining a particular condition the door, without concentration the NO X in low concentrations in the atmosphere directly, there is provided a means for removing and processing continuously for a long period of time.
【0019】本発明の除去処理装置は、表面の平らな平
行板の内壁表面に酸化チタン超微粒子光触媒とガス吸着
剤のヒドロキシアパタイト微粒子の平らな塗布層を設
け、平行板の隙間を流れる空気中の窒素酸化物を平行板
の内壁の塗布面で除去するものである。平行板の隙間に
空気を流すので、フイルタ等の濾過方式とは異なり、通
気抵抗は極めて少ない。The removal treatment apparatus of the present invention provides a flat coated layer of a titanium oxide ultrafine particle photocatalyst and a hydroxyapatite fine particle of a gas adsorbent on the inner wall surface of a parallel plate having a flat surface. Is removed on the coating surface of the inner wall of the parallel plate. Since air flows through the gap between the parallel plates, the airflow resistance is extremely low unlike a filtering method such as a filter.
【0020】酸化チタン超微粒子光触媒とガス吸着剤の
ヒドロキシアパタイト微粒子とを用いた「光脱硝法」で
は、NOX をNO2 やHNO3 に化学変化させ、これを
水で洗い流すので、平行板は極めて腐食性の高い条件で
使用されるために耐蝕性が大きいステンレス鋼板が適す
る。また、ステンレス鋼板は、その表面にTiO2 とH
APをポリテトラフロロエチレン等のバインダとアセト
ンなどの有機溶媒中で混合して塗布乾燥するだけで優れ
た接着性を示し、かつ長期間の使用において強度、耐久
性に問題がないIn the "photo-denitrification method" using a titanium oxide ultrafine particle photocatalyst and a hydroxyapatite fine particle as a gas adsorbent, NO x is chemically changed into NO 2 or HNO 3 and this is washed away with water. A stainless steel plate having high corrosion resistance is suitable because it is used under extremely corrosive conditions. In addition, a stainless steel plate has TiO 2 and H
It shows excellent adhesiveness only by mixing AP in a binder such as polytetrafluoroethylene and an organic solvent such as acetone and then coating and drying, and has no problem in strength and durability in long-term use
【0021】平行板の大きさは、装置の規模に応じて適
宜定めることができるが、例えば、図3に示すように、
空気の流路面が10×0.5cm(通気断面積5c
m2 )、流路長35cm程度の基本ユニットを製作し、
この様なユニットを装置の規模に応じて積層して組み合
わせて使用すればよい。The size of the parallel plate can be appropriately determined according to the scale of the apparatus. For example, as shown in FIG.
Air flow path surface is 10 × 0.5cm (Ventilation cross section 5c)
m 2 ), make a basic unit with a flow path length of about 35 cm,
Such units may be stacked and combined according to the scale of the apparatus and used.
【0022】平行板の間隙は、平行板の内壁表面が窒素
酸化物に対して理想的な完全吸着面と仮定した図7に模
式的に示す拡散スクラバ法におけるGormley−K
ennedy理論式により設定することができる。上記
の基本ユニットの場合、通気流量10リットル/分(風
速0.33m/秒)の条件で、0.5cm程度の平行板
の間隔にすれば、ほぼ100%近く窒素酸化物を除去で
きる。The gap between the parallel plates is determined by Gormley-K in the diffusion scrubber method schematically shown in FIG. 7 on the assumption that the inner wall surface of the parallel plate is an ideal perfect adsorption surface for nitrogen oxides.
It can be set according to the equation of endy. In the case of the above basic unit, nearly 100% of nitrogen oxides can be removed by setting the interval between the parallel plates of about 0.5 cm under the condition of a ventilation flow rate of 10 liter / min (wind velocity of 0.33 m / sec).
【0023】平行板の表面に塗布する酸化チタン超微粒
子光触媒とヒドロキシアパタイト微粒子との組み合わせ
については、使用する酸化チタン超微粒子光触媒の粒径
が小さい程、表面積が大きくなり窒素酸化物の除去に有
利に作用する。したがって、塗布する酸化チタン超微粒
子光触媒の平均粒径は10nm以下が好ましい。また、
ヒドロキシアパタイト微粒子吸着剤は、平均粒径は5μ
m以下が好ましい。With regard to the combination of the titanium oxide ultrafine particle photocatalyst and the hydroxyapatite fine particle applied to the surface of the parallel plate, the smaller the particle size of the titanium oxide ultrafine particle photocatalyst is, the larger the surface area becomes, which is advantageous for removing nitrogen oxides. Act on. Therefore, the average particle diameter of the titanium oxide ultrafine particle photocatalyst to be applied is preferably 10 nm or less. Also,
The average particle size of the hydroxyapatite fine particle adsorbent is 5μ.
m or less is preferable.
【0024】酸化チタン超微粒子光触媒対ヒドロキシア
パタイト微粒子の重量混合比は2:1〜1:2が好まし
い。この範囲を外れた場合は、塗布した平行板の内壁表
面が窒素酸化物に対して完全吸着面として作用しないの
で好ましくない。この重量混合比で混合して塗布した場
合、酸化チタン超微粒子光触媒とヒドロキシアパタイト
微粒子吸着剤の粒径は上記のとおり大きな差があるた
め、アパタイト微粒子の周りに酸化チタン超微粒子が均
一に分散した状態になっている。The weight mixing ratio of the titanium oxide ultrafine particle photocatalyst to the hydroxyapatite fine particle is preferably 2: 1 to 1: 2. Outside of this range, the inner wall surface of the coated parallel plate does not act as a complete adsorption surface for nitrogen oxides, which is not preferable. When mixed and applied at this weight mixing ratio, the titanium oxide ultrafine particle photocatalyst and the hydroxyapatite fine particle adsorbent have a large difference as described above, and thus the titanium oxide ultrafine particles are uniformly dispersed around the apatite fine particles. It is in a state.
【0025】HAPの割合が多いほど多量のNOx を除
去できる。しかし、塗布するTiO 2 の割合が多い方が
除去効率は高い。なお、「除去効率」とは以下の式を用
いて算出した値をいう。 除去効率(%)=100(C1−C2)/C1(C1:
紫外線ランプ点灯前のNO濃度[ppb]、C2:紫外
線ランプ点灯直後のNO濃度[ppb])The higher the proportion of HAP, the more NOxExcluding
You can leave. However, the TiO TwoWho have a higher percentage of
The removal efficiency is high. Note that “removal efficiency” uses the following equation.
Means the value calculated. Removal efficiency (%) = 100 (C1-C2) / C1 (C1:
NO concentration before ultraviolet lamp lighting [ppb], C2: ultraviolet
NO concentration [ppb] immediately after lighting of line lamp
【0026】図2には、平行板の内壁表面が窒素酸化物
に対して完全吸着面であると仮定したGormley−
Kennedyの理論式によって求めた除去効率と小型
平行板型拡散スクラバの窒素酸化物除去装置ユニットに
よる除去効率(実験値)とを比較して示す。(1)Ti
O2 :平均粒径100nm/HAP:平均粒径30μm
の組み合わせの塗布面では、◇印で示す様に、窒素酸化
物の除去効率は理論値より低い結果であるが、(2)T
iO2 :平均粒径7nm/HAP:平均粒径3μmの組
み合わせの塗布面の場合には、△印で示す様に、理論値
の線と一致し、風速0.33m/秒でほぼ100%近い
除去効率が得られる。この結果から、TiO2 とHAP
の特定の組み合わせによって窒素酸化物に対して理想的
な完全吸着面を形成できることが分かる。FIG. 2 shows that the inner wall surface of the parallel plate has a perfect adsorption surface for nitrogen oxides.
The removal efficiency obtained by the Kennedy's theoretical formula is compared with the removal efficiency (experimental value) of the small parallel plate type diffusion scrubber by the nitrogen oxide removal unit. (1) Ti
O 2 : average particle size 100 nm / HAP: average particle size 30 μm
In the coated surface of the combination of (2), as shown by the mark ◇, the removal efficiency of nitrogen oxides is a result lower than the theoretical value.
In the case of a coating surface having a combination of iO 2 : average particle diameter of 7 nm / HAP: average particle diameter of 3 μm, as indicated by a mark, it coincides with the theoretical value line, and is almost 100% at a wind speed of 0.33 m / sec. Removal efficiency is obtained. From this result, TiO 2 and HAP
It can be understood that a specific combination of the above can form an ideal perfect adsorption surface for nitrogen oxides.
【0027】TiO2 とHAPによるNOx の除去機構
には、主に、以下のA、Bの2パターンがある。(A)
NO2 の状態でHAP表面に吸着。(B)HNO3 の状
態でTiO2 表面に吸着。このAのメカニズムは、NO
がTiO2 の光触媒反応によってNO2 になった時点で
HAPに吸着されて、光触媒として働くTiO2 表面に
HNO3 が付着してしまうのを防ぐ役割を果たすと考え
ることができる。よって、HAPの割合が多いほどAの
メカニズムによる除去の割合が多くなり、長時間、除去
能力を維持できるが、TiO2 の割合が多いほどNOか
らNO2への酸化の能力が大きく、初期の除去効率は高
くなる。しかし、次第にBのメカニズムにより酸化能が
低下してしまい除去効率は低下する。 [0027] The removal mechanism of the NO x by TiO 2 and HAP, mainly, there are two patterns of the following A, B. (A)
Adsorbed on the HAP surface in the state of NO 2 . (B) Adsorbed on TiO 2 surface in HNO 3 state. The mechanism of A is NO
There can be considered is adsorbed to HAP when it becomes NO 2 by the photocatalytic reaction of TiO 2, and serves to prevent the on TiO 2 surface which acts as a photocatalyst HNO 3 adheres. Therefore, as the ratio of HAP increases, the ratio of removal by the mechanism A increases, and the removal ability can be maintained for a long time. However, as the ratio of TiO 2 increases, the ability of oxidation from NO to NO 2 increases, Removal efficiency is higher. However, the oxidizing ability gradually decreases due to the mechanism of B, and the removal efficiency decreases.
【0028】酸化チタン超微粒子光触媒とヒドロキシア
パタイト微粒子吸着剤からなる塗布層の厚みは10mg
/cm2 (厚さ数十μm)程度あれば十分である。NO
x との反応は塗布層の表面層で起こるため、塗布層をよ
り厚くしても反応に寄与しないので、格別厚くする必要
はない。The thickness of the coating layer comprising the titanium oxide ultrafine particle photocatalyst and the hydroxyapatite fine particle adsorbent is 10 mg.
/ Cm 2 (thickness of several tens μm) is sufficient. NO
Since the reaction with x occurs in the surface layer of the coating layer, even if the coating layer is made thicker, it does not contribute to the reaction, so that it is not necessary to make it particularly thick.
【0029】大気の通気流量が大きくなるとNOガスが
装置内に滞在する時間が短くなり、当然のことながらN
Ox の除去効率は低下する。また、導入するNO濃度が
高いと除去効率が低下する傾向がみられる。これは、T
iO2 の表面に発生しているラジカル量の分だけしかN
Oとの反応が起こらないためであり、導入されるNOの
量があまり多くなると壁面へ拡散しても反応せず、平行
板型拡散スクラバを通過するNOが多くなる。As the flow rate of the air increases, the time during which the NO gas stays in the apparatus becomes shorter.
Removal efficiency of O x is reduced. Also, when the concentration of NO to be introduced is high, the removal efficiency tends to decrease. This is T
Only the amount of radicals generated on the surface of iO 2 is N
This is because the reaction with O does not occur. If the amount of NO introduced is too large, it does not react even if it diffuses to the wall surface, and the amount of NO passing through the parallel plate type diffusion scrubber increases.
【0030】本発明の装置によるNOx の除去容量は、
TiO/HAPの単位塗布面積当たり、100mmol
/m2 と極めて高く、1ppmのNOX の空気を240
0m 3 除去処理することが可能である。また、トンネル
内の空気中のNOx 濃度は数ppmに達する場合もある
と報告されているが、表1に示すように、本発明の装置
によるppmレベルのNOガスの除去効率はほぼ100
%近くにすることができる。NO by the apparatus of the present inventionxThe removal capacity of
100 mmol per unit coating area of TiO / HAP
/ MTwoExtremely high and 1 ppm NOX240 air
0m ThreeRemoval processing is possible. Also tunnel
NO in air insidexConcentrations can reach several ppm
However, as shown in Table 1, the apparatus of the present invention
NO gas removal efficiency of about 100 ppm
%.
【0031】本発明の拡散スクラバ法による窒素酸化物
除去装置の構造は、簡便な構造であり、既存の空調施設
等に簡単に組み込むことができ、また、単なる水の循環
使用により有害ガス成分を効率的に除去処理できる。し
たがって、温度・湿度の調整のために行ってきたビル等
における空調装置に本発明の窒素酸化物除去装置を付設
して有害ガス成分を除去処理し、質の高い生活環境を提
供することができるThe structure of the apparatus for removing nitrogen oxides by the diffusion scrubber method of the present invention has a simple structure and can be easily incorporated into an existing air-conditioning facility or the like. The removal process can be performed efficiently. Therefore, it is possible to provide a high quality living environment by removing the harmful gas components by attaching the nitrogen oxide removing device of the present invention to an air conditioner in a building or the like that has been used for temperature and humidity adjustment.
【0032】また、本発明の窒素酸化物除去装置は、ビ
ルの空調設備に組み込むばかりでなく、自動車トンネ
ル、地下駐車場等の空気循環経路の空調設備や建設・工
事車両等の群小固定発生源の排気ガス処理装置に付設し
て効率的なNOX 除去処理が行える。更に、装置自身は
簡単に小型化できるので、一般家庭での可搬型空気清浄
装置としても使用できること等極めて応用範囲が多岐に
亘る。Further, the nitrogen oxide removing apparatus of the present invention is not only incorporated in the air conditioning equipment of a building, but also generates air-conditioning equipment in an air circulation path such as an automobile tunnel, an underground parking lot, and the like, and generates a small fixed group of construction / construction vehicles. and attached to an exhaust gas treatment apparatus of the source can be performed efficiently NO X removal process. Further, since the apparatus itself can be easily miniaturized, it can be used as a portable air purifying apparatus in ordinary households, and thus has a very wide range of applications.
【0033】[0033]
【作用】本発明の拡散スクラバ法を用いた大気中のNO
X の除去処理装置による大気中NOX の除去原理を図1
に示す。TiO2 /HAP(1)を表面に塗布した平行
板、例えば、ステンレス鋼板(2)を2枚向き合わせ、
2枚のステンレス鋼板(2)の隙間にはUVランプ
(5)等により紫外光を照射してTiO2 を活性化させ
る。The atmospheric NO using the diffusion scrubber method of the present invention
Figure removal principle in NO X atmosphere by X removal processing apparatus 1
Shown in Two parallel plates, for example, stainless steel plates (2) coated on the surface with TiO 2 / HAP (1),
Ultraviolet light is irradiated to the gap between the two stainless steel plates (2) by a UV lamp (5) or the like to activate TiO 2 .
【0034】一端側を汚染空気の入り口として、2枚の
ステンレス鋼板の隙間に汚染空気(3)を流すと、拡散
係数の大きいNOX ガス(4)は、TiO2 /HAP
(1)が塗布されたステンレス鋼板(2)の内壁面へ拡
散する。内壁表面へ到達したNOX ガス(4)は、Ti
O2 により生じたHO2 、OHラジカルによりNO2 、
HNO3 に酸化され、TiO2 /HAP(1)の表面に
吸着され、汚染空気中から除去され、清浄空気(7)が
出口側から排出される。TiO2 は、吸着したNO、N
O2 を保持する能力が低いために、NO2 がHNO3 に
なる前に脱着してしまう可能性が高い。この脱着したN
O2 を確実に除去するために、NO2 の吸着剤としてH
APをTiO2 に混合して使用する。[0034] The one end as an entrance contaminated air, the flow of contaminated air into the gap two stainless steel plates (3), a large NO X gas diffusion coefficient (4), TiO 2 / HAP
It diffuses to the inner wall surface of the stainless steel plate (2) coated with (1). NO X gas having reached the inner wall surface (4), Ti
NO 2 by HO 2, OH radicals generated by O 2,
It is oxidized to HNO 3 , adsorbed on the surface of TiO 2 / HAP (1), removed from the contaminated air, and the clean air (7) is discharged from the outlet side. TiO 2 is absorbed NO, N
Because of its low ability to retain O 2 , it is likely that NO 2 will desorb before it becomes HNO 3 . This detached N
To ensure that O 2 is removed, H 2 is used as an adsorbent for NO 2.
AP is mixed with TiO 2 and used.
【0035】一方、除去装置を使用する層流条件では拡
散係数の小さい粒子(6)は壁面へ拡散しない内に一対
のステンレス鋼板(2)の平行板をそのまま通過してし
まう。そして、一対のステンレス鋼板(2)の平行板の
出口側から排出される。したがって、原理的に空気中の
粒子はステンレス鋼板の平行板内に付着せず、空気を処
理する際の粒子による除去装置への汚れの影響は極めて
少ない。On the other hand, under the laminar flow condition using the removing device, the particles (6) having a small diffusion coefficient pass through a pair of stainless steel plates (2) as they are without diffusing to the wall surface. And it is discharged | emitted from the exit side of a parallel plate of a pair of stainless steel plates (2). Therefore, in principle, particles in the air do not adhere to the parallel plate of the stainless steel plate, and the influence of the particles on the removing device due to the particles when treating the air is extremely small.
【0036】TiO2 やHAPの表面に吸着したNO2
やHNO3 は、水で簡単に洗い流すことができるので、
定期的に塗布した表面を水で洗うことにより半永久的に
使用できる。吸着剤としては活性炭等も知られている
が、活性炭の場合は水洗して再使用することが困難であ
る。NO 2 adsorbed on the surface of TiO 2 or HAP
And HNO 3 can be easily washed off with water,
It can be used semi-permanently by washing regularly applied surfaces with water. Activated carbon is also known as an adsorbent, but in the case of activated carbon, it is difficult to wash and reuse it.
【0037】この様に、拡散スクラバ法を用いると、汚
染空気を濾過する化学フイルタの原理とは全く異なり、
一対の平行板の隙間に汚染空気を流すので通気抵抗によ
る圧力損失が非常に少なく、小さなエネルギで大容量の
汚染空気を清浄化処理できる。Thus, the use of the diffusion scrubber method is completely different from the principle of a chemical filter for filtering contaminated air.
Since the contaminated air is caused to flow through the gap between the pair of parallel plates, the pressure loss due to the ventilation resistance is extremely small, and a large amount of contaminated air can be purified with small energy.
【0038】[0038]
【発明の実施の形態】本発明は、「拡散スクラバ法」の
原理に基づき、平行に向き合わせた一対の平行板の狭い
隙間に汚染空気を流し、その平行板の内壁面に拡散して
きたガス成分を内壁表面で除去処理する方法であり、汚
染空気を流しながら連続的に有害ガスの除去処理が行え
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is based on the principle of the "diffusion scrubber method", in which contaminated air is caused to flow through a narrow gap between a pair of parallel plates facing in parallel, and the gas diffused on the inner wall surface of the parallel plates. This is a method of removing components on the inner wall surface, and can continuously remove harmful gases while flowing contaminated air.
【0039】具体的には、除去処理する平行板の内壁表
面に酸化チタン(TiO2 )超微粒子とヒドロキシアパ
タイト(HAP)微粒子を塗布し、平行板の隙間を空気
が流れる間に、窒素酸化物をNO2 ,HNO3 に酸化
し、除去する。そして、内壁表面に捕集・除去されたN
O2 ,HNO3 は、水により簡単に洗浄回収でき、要す
れば、再び空気中の窒素酸化物を繰り返し連続して除去
処理することができる。Specifically, ultrafine titanium oxide (TiO 2 ) particles and hydroxyapatite (HAP) fine particles are applied to the inner wall surfaces of the parallel plate to be removed, and nitrogen oxides are added while air flows through the gap between the parallel plates. Is oxidized to NO 2 and HNO 3 and removed. Then, the N collected and removed on the inner wall surface
O 2 and HNO 3 can be easily washed and recovered with water, and if necessary, nitrogen oxides in the air can be repeatedly and continuously removed.
【0040】平行板は、耐蝕性に優れたステンレス鋼板
が好ましいが、ステンレス鋼板に限定されるものではな
い。平行板に塗布するTiO2 超微粒子としては平均粒
径7nm程度が最も好ましい。また、HAP微粒子とし
ては、平均粒径3μm程度が最も好ましい。TiO2 超
微粒子とHAP微粒子は、重量比が2:1〜1:2にな
るようにアセトン等の有機溶媒中で混合し、これにポリ
テトラフロロエチレン等のバインダを適宜加えて公知の
塗布手段、例えば、スプレーガン等により乾燥後の厚み
が10mg/cm2 (厚さ数十μm)程度となるように
塗布する。The parallel plate is preferably a stainless steel plate having excellent corrosion resistance, but is not limited to the stainless steel plate. Most preferably, the TiO 2 ultrafine particles applied to the parallel plate have an average particle size of about 7 nm. The average particle size of the HAP fine particles is most preferably about 3 μm. The TiO 2 ultrafine particles and the HAP fine particles are mixed in an organic solvent such as acetone so that the weight ratio becomes 2: 1 to 1: 2, and a binder such as polytetrafluoroethylene is appropriately added thereto, and a known coating means is used. For example, application is performed by a spray gun or the like so that the thickness after drying is about 10 mg / cm 2 (thickness of several tens μm).
【0041】この平行板(2)を2枚を用いて塗布面を
向かい合わせて、図3に示すように、5mm程度の狭い
間隔で平行に並べて平行板の両端の保持部材8を固定部
材9で固定し、平行板(2)の一端側の隙間に極細のU
Vランプ(5)を設置して隙間内に紫外光を照射できる
構造とし、小型平行板型拡散スクラバ法による窒素酸化
物除去装置ユニットとする。By using two parallel plates (2) facing each other with the coating surfaces facing each other, as shown in FIG. 3, the holding members 8 at both ends of the parallel plates are fixed to the fixing members 9 at a narrow interval of about 5 mm. With a very small U in the gap at one end of the parallel plate (2).
A V lamp (5) is installed so that the gap can be irradiated with ultraviolet light, and a nitrogen oxide removing unit by a small parallel plate type diffusion scrubber method.
【0042】このユニットの大きさは、本体は440×
150×38mm、TiO2 /HAPを塗布してある通
気流路面は350×100mm(面積、350cm2 )
である。このユニットを単体または所定枚数を組み合わ
せて窒素酸化物除去装置とし、これを空調設備等に付設
し、汚染空気を平行板(2)の隙間に流し、UVランプ
(5)によって光触媒面に紫外線を照射すると、NOX
が内壁表面のTiO2/HAPによって酸化、吸着除去
される。The size of this unit is 440 ×
150 × 38 mm, the ventilation channel surface coated with TiO 2 / HAP is 350 × 100 mm (area, 350 cm 2 )
It is. This unit is used alone or in combination with a predetermined number to form a nitrogen oxide removing device, which is attached to an air conditioner or the like, and contaminated air is caused to flow through the gap between the parallel plates (2), and ultraviolet light is applied to the photocatalytic surface by a UV lamp (5). When irradiated, NO X
Is oxidized and adsorbed and removed by TiO 2 / HAP on the inner wall surface.
【0043】図1に原理を示した様に、紫外線の照射下
でTiO2 /HAP上で、窒素酸化物(NO、NO2 )
は、NO2 またはHNO3 に酸化され、吸着除去され
る。その後、水を注入して洗浄することによってTiO
2 /HAP上で酸化・吸着された窒素酸化物をNO2 -、
NO3 -イオンとして水で簡単に回収することができる。As shown in FIG. 1, nitrogen oxides (NO, NO 2 ) were formed on TiO 2 / HAP under ultraviolet irradiation.
Is oxidized to NO 2 or HNO 3 and adsorbed and removed. Then, TiO is washed by injecting water and washing.
The nitrogen oxides are oxidized and adsorbed on the 2 / HAP NO 2 -,
It can be easily recovered with water as NO 3 - ions.
【0044】水で回収されたNO2 -、NO3 -イオンは、
イオン交換樹脂により簡単に処理できる。そして、水に
よる洗浄後、空気を流しTiO2 /HAP表面が乾燥す
れば、繰り返して窒素酸化物(NO、NO2 )の除去処
理を行うことができる。この様にして、本発明の除去処
理装置は長期間に亘り水を循環処理しながら窒素酸化物
(NO、NO2 )を除去処理することが可能である。The NO 2 - and NO 3 - ions recovered with water are:
Easy treatment with ion exchange resin. Then, if the TiO 2 / HAP surface is dried by flowing air after washing with water, it is possible to repeatedly remove nitrogen oxides (NO, NO 2 ). In this way, the removal treatment apparatus of the present invention can remove nitrogen oxides (NO, NO 2 ) while circulating water for a long period of time.
【0045】[0045]
【実施例】実施例1 TiO2 粉末(和光純薬工業、平均粒径100nm)と
HAP粉末(信州セラミックス、平均粒径30μm)を
33.3重量%:33.3重量%の割合で33.3重量
%のテトラフロロエチレン樹脂バインダ(TiO2 :H
AP:PTFE=1:1:1)とアセトン等の有機溶媒
中で混合し、スプレーガンによりステンレス鋼板表面に
塗布し、乾燥した。このステンレス鋼板を用いて実施態
様に記載した図3に示すユニットを製作した。UVラン
プとしては、外径、4mmφのもの(東芝冷陰極蛍光ラ
ンプ)を用いた。EXAMPLE 1 TiO 2 powder (Wako Pure Chemical Industries, average particle size 100 nm) and HAP powder (Shinshu ceramics, average particle size 30 μm) were used in a ratio of 33.3% by weight: 33.3% by weight. 3% by weight of a tetrafluoroethylene resin binder (TiO 2 : H
AP: PTFE = 1: 1: 1) and an organic solvent such as acetone were mixed, applied to the surface of a stainless steel plate by a spray gun, and dried. The unit shown in FIG. 3 described in the embodiment was manufactured using this stainless steel plate. As the UV lamp, an outer diameter of 4 mmφ (Toshiba cold cathode fluorescent lamp) was used.
【0046】このユニットについて、下記により評価試
験を行った。NOの標準ガスボンベより供給されたNO
ガスを、清浄空気により数ppmの濃度レベルに適宜希
釈し、この希釈されたNOガスをUVランプ(5)を点
灯していない状態で、小型平行板型拡散スクラバ除去装
置へ導入し、装置通過後のガスのNO濃度を測定した。
除去装置の入口、出口のNO濃度が一致したのを確認し
た後にUVランプ(5)を点灯し、ランプ点灯後の除去
装置出口のNO濃度の変化から除去装置によるNOの除
去効率を算出した。除去効率は前述した式によって求め
た。This unit was subjected to an evaluation test as follows. NO supplied from a standard gas cylinder of NO
The gas is appropriately diluted with clean air to a concentration level of several ppm, and the diluted NO gas is introduced into a small parallel plate type diffusion scrubber removal device without turning on the UV lamp (5) and passed through the device. The NO concentration of the subsequent gas was measured.
After confirming that the NO concentrations at the inlet and the outlet of the removing device coincided with each other, the UV lamp (5) was turned on, and the removal efficiency of NO by the removing device was calculated from the change in the NO concentration at the removing device outlet after the lamp was turned on. The removal efficiency was determined by the above-described equation.
【0047】通気流量4L/min、NO濃度673p
pbの条件で空気を処理した場合の汚染空気処理のNO
濃度変化およびNOX 除去効率の経時変化を図4に示
す。図4より、UVランプ(5)を点灯すると673p
pbのNO濃度が急激に下がり75ppb以下となり、
時間とともに除去装置を通過後のNO濃度が僅かづつ上
昇してくることが判る。これは、TiO2 に付着したH
NO3 がTiO2 に光が当たるのを阻害しているためで
ある。しかしながら、約7時間経過しても除去効率の大
幅な低下は認められず、その後、UVランプを消灯する
とNO濃度がランプ点灯前の673ppbに戻った。図
4より、この実施例1においては、NOXを80%以上
の高い除去効率で除去できることが確認された。Ventilation flow rate 4 L / min, NO concentration 673 p
NO for contaminated air treatment when air is treated under pb conditions
FIG. 4 shows the change over time in the concentration change and the NO x removal efficiency. According to FIG. 4, when the UV lamp (5) is turned on, 673p
The NO concentration of pb drops rapidly to 75 ppb or less,
It can be seen that the NO concentration after passing through the removing device gradually increases with time. This is because H attached to TiO 2
This is because NO 3 prevents light from hitting TiO 2 . However, no significant decrease in the removal efficiency was observed even after about 7 hours, and when the UV lamp was turned off, the NO concentration returned to 673 ppb before the lamp was turned on. From FIG. 4, it was confirmed that in Example 1, NO X could be removed with a high removal efficiency of 80% or more.
【0048】実施例2 実施例1と同じ装置を用いて、通気流量4L/mi
n、NO濃度2705ppb、通気流量10L/mi
n、NO濃度2645ppbの各条件で空気を処理した
ところ、除去効率は、表1に示すとおり、が83.0
%、が46.0%であった。の条件で汚染空気を処
理した場合のNO濃度の経時変化を図5に示す。Example 2 Using the same apparatus as in Example 1, the ventilation flow rate was 4 L / mi.
n, NO concentration 2705ppb, ventilation flow rate 10L / mi
When air was treated under the respective conditions of n and NO concentration of 2645 ppb, the removal efficiency was 83.0 as shown in Table 1.
% Was 46.0%. FIG. 5 shows the change with time of the NO concentration when the contaminated air was treated under the conditions described above.
【表1】 [Table 1]
【0049】実施例3 TiO2 として、平均粒径7nm(石原産業ST−0
1)、HAPとして平均粒径3μm(富田製薬)とした
以外は実施例1と同じ装置で、通気流量4L/mi
n、NO濃度3205ppb、通気流量10L/mi
n、NO濃度3341ppb、通気流量15L/mi
n、NO濃度3222ppbの各条件で汚染空気を処理
したところ、除去効率は、表1に示すとおり、が10
0.0%、が95.7%、が89.0%と非常に高
い除去効率が得られた。の条件で汚染空気を処理した
場合のNO濃度と除去効率の経時変化を図6に示す。Example 3 As TiO 2 , the average particle size was 7 nm (Ishihara Sangyo ST-0)
1) The same apparatus as in Example 1 except that the average particle size was 3 μm (Tomita Pharmaceutical Co., Ltd.) as the HAP, and the ventilation flow rate was 4 L / mi.
n, NO concentration 3205 ppb, ventilation flow rate 10 L / mi
n, NO concentration 3341 ppb, ventilation flow rate 15 L / mi
When the contaminated air was treated under the respective conditions of n and NO concentration of 3222 ppb, the removal efficiency was 10 as shown in Table 1.
Very high removal efficiencies of 0.0%, 95.7% and 89.0% were obtained. FIG. 6 shows the change with time of the NO concentration and the removal efficiency when the contaminated air was treated under the conditions described in FIG.
【0050】実施例4 実施例1と同じ装置を用いて、TiO2 :HAPの比を
1:2に変えて実施例2のの条件で汚染空気を処理し
た場合のNO濃度の経時変化を実施例2のの条件の場
合と比較して図5に示す。図5より、初期のNO除去効
率は、実施例2のTiO2 :HAP=1:1の場合が若
干優れているが、NOの除去容量については実施例4の
TiO2 :HAP=1:2の方が優れていた。Example 4 Using the same apparatus as in Example 1, the change with time of the NO concentration when the contaminated air was treated under the conditions of Example 2 while changing the ratio of TiO 2 : HAP to 1: 2 was performed. FIG. 5 shows a comparison with the condition of Example 2. From FIG. 5, the initial NO removal efficiency is slightly better in the case of TiO 2 : HAP = 1: 1 in Example 2, but the NO removal capacity is TiO 2 : HAP = 1: 2 in Example 4. Was better.
【0051】実施例5 図3に示した小型平行板型拡散スクラバによる窒素酸化
物除去装置ユニットを50枚束ねた直方体の装置を製作
した。ステンレス鋼板に50×50cmのエリアで酸化
チタン超微粒子光触媒(石原産業ST−01、平均粒径
7nm)とヒドロキシアパタイト微粒子(富田製薬、平
均粒径3μm)をテトラフロロエチレン樹脂バインダを
用いて塗布した。この装置により小型平行板型拡散スク
ラバ式窒素酸化物除去装置ユニットの250倍の窒素酸
化物NOX の除去処理能力を有し、毎分2.5m3 (1
50m3/h)の空気を処理することができた。Example 5 A rectangular parallelepiped device was manufactured by bundling 50 units of the nitrogen oxide removing device using a small parallel plate type diffusion scrubber shown in FIG. A titanium oxide ultrafine particle photocatalyst (Ishihara Sangyo ST-01, average particle diameter 7 nm) and hydroxyapatite fine particles (Tomita Pharmaceutical, average particle diameter 3 μm) were applied to a stainless steel plate in an area of 50 × 50 cm using a tetrafluoroethylene resin binder. . Has a removal capacity of 250 times the nitrogen oxide NO X miniature parallel plate diffusion scrubber nitrogen oxide removal equipment unit by the device, every minute 2.5 m 3 (1
50 m 3 / h) of air could be treated.
【0052】[0052]
【発明の効果】本発明の窒素酸化物除去処理装置は、
酸化チタン超微粒子光触媒とヒドロキシアパタイト(H
AP)ガス吸着剤を塗布した平行板による単純な構造の
除去処理装置であること、空気中の粒子は平行板の除
去装置を原理的に通過し、平行板の内壁表面に付着しな
いので粒子による除去装置への汚れの影響は少ないこ
と、単なる水を洗浄液として用いて除去したNOX を
NO2 -およびNO3 -として簡単に回収でき、除去装置を
乾燥すれば繰り返し連続して使用できること、洗浄液
の再生処理も既存のイオン交換樹脂を使用でき、省エネ
ルギ・ランニングコストの面で優れていること、フイ
ルタによる濾過捕集とは異なり通気抵抗が小さく空気の
処理量が極めて大きいこと、除去装置の構造がシンプ
ルであり、移動でき、又、トンネル、屋内駐車場等の既
存の空調設備等にも簡単に組み込めること等実用的な価
値が高い。The nitrogen oxide removal treatment apparatus of the present invention
Ultrafine titanium oxide photocatalyst and hydroxyapatite (H
AP) It is a simple structure removal processing device using a parallel plate coated with a gas adsorbent. Particles in the air pass through the parallel plate removal device in principle and do not adhere to the inner wall surface of the parallel plate. it is the influence of dirt on the removal device small, the NO X was removed using a simple water as a wash NO 2 - and NO 3 - as easy recovery, repeated continuously can be used if dry removal device, washing liquid The existing ion-exchange resin can also be used for the regeneration process, which is excellent in terms of energy saving and running cost. Unlike filtration and collection by a filter, the ventilation resistance is small and the air throughput is extremely large. It has a high practical value because it has a simple structure, can be moved, and can be easily incorporated into existing air conditioners such as tunnels and indoor parking lots.
【図1】図1は、TiO2 超微粒子とヒドロキシアパタ
イト微粒子の混合物を用いた平行板型拡散スクラバによ
る窒素酸化物除去処理装置の原理を示す模式図である。FIG. 1 is a schematic diagram showing the principle of a nitrogen oxide removal treatment apparatus by a parallel plate type diffusion scrubber using a mixture of TiO 2 ultrafine particles and hydroxyapatite fine particles.
【図2】図2は、Gormley−Kennedy理論
式より算出した大気中窒素酸化物の理論効率と実験値と
の比較を示すグラフである。FIG. 2 is a graph showing a comparison between the theoretical efficiency of atmospheric nitrogen oxides calculated from the Gormley-Kennedy theoretical formula and experimental values.
【図3】図3は、本発明の平行板型拡散スクラバ法を用
いた窒素酸化物除去処理装置の斜視図である。FIG. 3 is a perspective view of a nitrogen oxide removal treatment apparatus using a parallel plate type diffusion scrubber method of the present invention.
【図4】図4は、実施例1における汚染空気処理のNO
濃度変化およびNOX 除去効率を示すグラフである。FIG. 4 is a diagram illustrating NO in the contaminated air treatment according to the first embodiment.
Is a graph showing the change in concentration and NO X removal efficiency.
【図5】図5は、実施例2および実施例4における汚染
空気処理のNO濃度変化を示すグラフである。FIG. 5 is a graph showing a change in NO concentration in the contaminated air treatment in Examples 2 and 4.
【図6】図6は、実施例4における汚染空気処理のNO
濃度変化およびNOX 除去効率を示すグラフである。FIG. 6 is a diagram illustrating NO in the processing of contaminated air according to the fourth embodiment.
Is a graph showing the change in concentration and NO X removal efficiency.
【図7】図7は、Gormley−Kennedy理論
式に基づく大気中ガス成分の除去効率の算出式のための
拡散スクラバ法の模式図である。FIG. 7 is a schematic diagram of a diffusion scrubber method for a calculation formula of the removal efficiency of atmospheric gas components based on the Gormley-Kennedy theoretical formula.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/94 B01D 53/36 J B01J 27/18 53/34 ZAB 35/02 129A F01N 3/08 53/36 ZAB 3/10 101A 3/24 (72)発明者 飯嶋 和明 東京都千代田区有楽町1−4−1 三機工 業株式会社内 Fターム(参考) 3G091 AA02 AA05 AA06 AB01 AB09 BA14 BA38 BA39 GB00Y GB01W GB01Z GB10W 4D002 AA12 BA04 BA05 BA09 CA07 CA20 DA70 EA02 GA01 GA02 GB02 GB12 4D048 AA06 AB03 BA07X BA41X BA44X BB03 CA10 CC40 EA01 EA04 4G069 AA03 AA08 BA04A BA04B BA48A BB14A BB14B BC09A BC09B BD07A BD07B CA03 CA10 CA13 DA06 EA11 EB18X EB18Y ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 53/94 B01D 53/36 J B01J 27/18 53/34 ZAB 35/02 129A F01N 3/08 53 / 36 ZAB 3/10 101A 3/24 (72) Inventor Kazuaki Iijima 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Sanki Kogyo Co., Ltd. F-term (reference) 3G091 AA02 AA05 AA06 AB01 AB09 BA14 BA38 BA39 GB00Y GB01W GB01Z GB10W 4D002 AA12 BA04 BA05 BA09 CA07 CA20 DA70 EA02 GA01 GA02 GB02 GB12 4D048 AA06 AB03 BA07X BA41X BA44X BB03 CA10 CC40 EA01 EA04 4G069 AA03 AA08 BA04A BA04B BA48A BB14A BB14B BC09ABC09BBD07
Claims (5)
平行板内を流れる間に空気中の窒素酸化物が平行板内壁
面に拡散し、酸化チタン超微粒子光触媒とヒドロキシア
パタイト微粒子吸着剤からなる塗布層を設けた内壁表面
で吸着除去されることを特徴とする大気中の窒素酸化物
の除去処理装置。Claims: 1. An air flow through a narrow gap between a pair of parallel plates,
Nitrogen oxide in the air diffuses to the inner wall surface of the parallel plate while flowing in the parallel plate, and is adsorbed and removed on the inner wall surface provided with a coating layer composed of titanium oxide ultrafine particle photocatalyst and hydroxyapatite fine particle adsorbent. Removal equipment for nitrogen oxides in the atmosphere.
面が窒素酸化物の理想的な完全吸着面であると仮定した
Gormley−Kennedyの理論式により設定さ
れることを特徴とする請求項1記載の大気中の窒素酸化
物の除去処理装置。2. The specification of the removal treatment apparatus is set by Gormley-Kennedy's theoretical formula assuming that the inner wall surface of the parallel plate is an ideal perfect adsorption surface for nitrogen oxides. 2. The apparatus for removing nitrogen oxides from the atmosphere according to claim 1.
超微粒子光触媒とヒドロキシアパタイト微粒子吸着剤か
らなる塗布層を設け、窒素酸化物の完全吸着面を実現し
たことを特徴とする請求項1または2記載の大気中の窒
素酸化物の除去処理装置。3. A coating layer comprising a titanium oxide ultrafine particle photocatalyst and a hydroxyapatite fine particle adsorbent is provided on the inner wall surfaces of the pair of parallel plates to realize a complete adsorption surface of nitrogen oxides. The apparatus for removing nitrogen oxides in the atmosphere according to claim 1 or 2.
10nm以下の超微粒子であり、ヒドロキシアパタイト
微粒子吸着剤は、平均粒径5μm以下の微粒子であり、
酸化チタン超微粒子光触媒対ヒドロキシアパタイト微粒
子の重量比が2:1〜1:2であることを特徴とする請
求項1ないし3のいずれかに記載の大気中の窒素酸化物
の除去処理装置。4. The titanium oxide ultrafine particle photocatalyst is ultrafine particles having an average particle size of 10 nm or less, and the hydroxyapatite fine particle adsorbent is a fine particle having an average particle size of 5 μm or less.
4. The apparatus for removing nitrogen oxides from the atmosphere according to claim 1, wherein the weight ratio of the titanium oxide ultrafine particle photocatalyst to the hydroxyapatite fine particle is 2: 1 to 1: 2.
装置のガス流路に付設されて用いられることを特徴とす
る請求項1ないし4のいずれかに記載の大気中の窒素酸
化物の除去処理装置。5. The removal of nitrogen oxides in the air according to claim 1, wherein the nitrogen oxide is attached to an air flow path of an air conditioner or a gas flow path of an exhaust gas treatment device. Processing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000318316A JP2002126451A (en) | 2000-10-18 | 2000-10-18 | Device for removing nitrogen oxides in air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000318316A JP2002126451A (en) | 2000-10-18 | 2000-10-18 | Device for removing nitrogen oxides in air |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003044989A Division JP3483208B2 (en) | 2003-02-21 | 2003-02-21 | Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002126451A true JP2002126451A (en) | 2002-05-08 |
Family
ID=18796962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000318316A Pending JP2002126451A (en) | 2000-10-18 | 2000-10-18 | Device for removing nitrogen oxides in air |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002126451A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005245550A (en) * | 2004-03-02 | 2005-09-15 | Hokuei:Kk | Air control method of air cleaner using photocatalyst |
JP2006280675A (en) * | 2005-03-31 | 2006-10-19 | Keio Gijuku | Usage of activated carbon fiber sheet for removing volatile organic compound in air |
US7300710B2 (en) | 2002-09-17 | 2007-11-27 | Fujitsu Limited | Film containing a photo-catalyst apatite, its formation method, coating liquid, and electronic device having portion coated with photo-catalyst apatite-containing film |
JP2014224527A (en) * | 2013-04-26 | 2014-12-04 | 臼井国際産業株式会社 | Exhaust emission control system for marine diesel engine using low quality fuel such as heavy fuel oil containing high concentration sulfur constituent |
JP2015200215A (en) * | 2014-04-07 | 2015-11-12 | 臼井国際産業株式会社 | Exhaust gas purifying device for marine diesel engine using low quality fuel containing high concentration sulfur constituent |
JPWO2015093172A1 (en) * | 2013-12-17 | 2017-03-16 | 臼井国際産業株式会社 | Exhaust gas purification device for marine diesel engines using low quality fuel such as heavy oil containing sulfur component at high concentration |
-
2000
- 2000-10-18 JP JP2000318316A patent/JP2002126451A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7300710B2 (en) | 2002-09-17 | 2007-11-27 | Fujitsu Limited | Film containing a photo-catalyst apatite, its formation method, coating liquid, and electronic device having portion coated with photo-catalyst apatite-containing film |
US7326289B2 (en) | 2002-09-17 | 2008-02-05 | Fujitsu Limited | Film containing a photo-catalyst apatite, its formation method, coating liquid, and electronic device having portion coated with photo-catalyst apatite-containing film |
JP2005245550A (en) * | 2004-03-02 | 2005-09-15 | Hokuei:Kk | Air control method of air cleaner using photocatalyst |
JP2006280675A (en) * | 2005-03-31 | 2006-10-19 | Keio Gijuku | Usage of activated carbon fiber sheet for removing volatile organic compound in air |
JP2014224527A (en) * | 2013-04-26 | 2014-12-04 | 臼井国際産業株式会社 | Exhaust emission control system for marine diesel engine using low quality fuel such as heavy fuel oil containing high concentration sulfur constituent |
JPWO2015093172A1 (en) * | 2013-12-17 | 2017-03-16 | 臼井国際産業株式会社 | Exhaust gas purification device for marine diesel engines using low quality fuel such as heavy oil containing sulfur component at high concentration |
JP2015200215A (en) * | 2014-04-07 | 2015-11-12 | 臼井国際産業株式会社 | Exhaust gas purifying device for marine diesel engine using low quality fuel containing high concentration sulfur constituent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102811794B (en) | System and method for air purification using enhanced multi-functional coating based on pn-situ photocatalytic oxidation and ozonation | |
US6007781A (en) | Pollutant removal from air in closed spaces | |
JPH08196903A (en) | Porous photocatalyst and manufacture thereof | |
JP2006255529A (en) | Photocatalyst filter, photocatalyst filter unit, clean room, air purifier, manufacturing apparatus and air purifying method | |
CN205199268U (en) | Industry VOCs waste gas decomposes purifier treatment equipment | |
JP4035441B2 (en) | Ozone removing material and method for producing the same | |
JP2002126451A (en) | Device for removing nitrogen oxides in air | |
JP5008193B2 (en) | Water-soluble gas collection structure | |
JP3483208B2 (en) | Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use | |
JPH01218622A (en) | Method for removing nitrogen oxides in low concentration from air | |
JP4524397B2 (en) | Air purification device | |
JP2009183919A (en) | Air cleaning apparatus | |
JP4452197B2 (en) | Nitrogen oxide removal catalyst, denitration method and denitration apparatus | |
JP2005131553A (en) | Air cleaning apparatus and air cleaning system | |
JP2001046906A (en) | Air cleaning device | |
KR20010097924A (en) | Air cleaner by using catalyst | |
CN211069617U (en) | Waste gas treatment equipment | |
CN207591616U (en) | A kind of integrated device suitable for automobile maintenance industry spraying exhaust-gas treatment | |
JP3521748B2 (en) | Air purification filter and air purifier | |
KR100570099B1 (en) | Photocatalytic air purifier comprising photocatalytic washer | |
Yu | Ambient air treatment by titanium dioxide (TiO2) based photocatalyst in Hong Kong | |
JP4295548B2 (en) | Nitrogen oxide removing catalyst, denitration method and apparatus using the same | |
Maggos et al. | Gas phase photocatalytic oxidation of VOC using TiO2-containing paint: influence of NO and relative humidity | |
JP2002126449A (en) | Air cleaning method and device | |
JP4201465B2 (en) | Nitrogen oxide processing equipment |