JP3482053B2 - Stainless steel for heat-resistant spring and method of manufacturing the same - Google Patents

Stainless steel for heat-resistant spring and method of manufacturing the same

Info

Publication number
JP3482053B2
JP3482053B2 JP30605695A JP30605695A JP3482053B2 JP 3482053 B2 JP3482053 B2 JP 3482053B2 JP 30605695 A JP30605695 A JP 30605695A JP 30605695 A JP30605695 A JP 30605695A JP 3482053 B2 JP3482053 B2 JP 3482053B2
Authority
JP
Japan
Prior art keywords
heat
less
stainless steel
steel
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30605695A
Other languages
Japanese (ja)
Other versions
JPH09143633A (en
Inventor
利之 八代
博 岡部
典生 木村
優 麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kinzoku Co Ltd
Original Assignee
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kinzoku Co Ltd filed Critical Nippon Kinzoku Co Ltd
Priority to JP30605695A priority Critical patent/JP3482053B2/en
Publication of JPH09143633A publication Critical patent/JPH09143633A/en
Application granted granted Critical
Publication of JP3482053B2 publication Critical patent/JP3482053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱ばね用ステン
レス鋼に係り、特に350℃から550℃の比較的高温
度に曝された部位、例えばエンジン出側のエキゾースト
・マニホールド・ガスケット部位に使用される耐熱ばね
用ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to stainless steel for heat-resistant springs, and is particularly used for a portion exposed to a relatively high temperature of 350 ° C. to 550 ° C., for example, an exhaust manifold gasket portion on the engine outlet side. Heat resistant stainless steel for springs.

【0002】[0002]

【従来の技術】近年、エンジンの高効率化にともないガ
スケット部位の温度は上昇傾向にある。このため、エン
ジン出側のエキゾースト・マニホールド・ガスケット部
位の基材は、通常、ばね特性を有するSUS301の冷
間圧延材(一号仕上)が使用されている。しかし、この
基材は、耐熱限界がせいぜい350℃程度であるため、
この用途にこのまま使用することはできない。このた
め、従来は熱遮蔽板を積層して基材が加熱されないよう
にしており、重量的及びコスト的に問題があった。
2. Description of the Related Art In recent years, the temperature of the gasket portion has been increasing with the increase in efficiency of the engine. Therefore, a cold rolled material (first finish) of SUS301 having spring characteristics is usually used as the base material of the exhaust manifold gasket portion on the engine output side. However, since this substrate has a heat resistance limit of about 350 ° C at most,
It cannot be used as is for this purpose. Therefore, conventionally, heat shielding plates are laminated to prevent the base material from being heated, which causes problems in terms of weight and cost.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記に鑑みて
なされたもので、耐熱限界が350〜550℃又はそれ
以上で、このような高温でも耐力が高く、その結果、熱
遮蔽板を積層する必要がなく、軽量化と低コスト化を実
現することができる耐熱ばね用ステンレス鋼を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has a heat resistance limit of 350 to 550 ° C. or higher and has a high yield strength even at such a high temperature. As a result, a heat shield plate is laminated. It is an object of the present invention to provide a stainless steel for heat-resistant springs that can realize weight reduction and cost reduction without needing to do so.

【0004】[0004]

【課題を解決するための手段】第1の発明は、重量%
で、Cr:11〜14%と、Ni:4.5〜7.0%
と、Mo:1.0〜3.0%と、Al:1.0〜3.0
%と、C:0.10〜0.20%と、Nb:10×C%
未満(0%を含む)とFe及び不可避的不純物からなる
マルテンサイト系耐熱ばね用ステンレス鋼である。
[Means for Solving the Problems] The first invention is weight%.
And Cr: 11-14% and Ni: 4.5-7.0%
And Mo: 1.0 to 3.0%, Al: 1.0 to 3.0
%, C: 0.10 to 0.20%, Nb: 10 × C%
It is a martensite-based heat-resistant spring stainless steel containing less than 0% (including 0%) and Fe and unavoidable impurities.

【0005】 第2の発明は、重量%で、Cr:11〜
14%と、Ni:4.5〜7.0%と、Mo:1.0〜
3.0%と、Al:1.0〜3.0%と、C:0.10
〜0.20%と、Nb:10×C%未満(0%を含む)
とFe及び不可避的不純物からなる化学組成の鋼であっ
て、残留オーステナイト量が50%以下であるマルテン
サイト系耐熱ばね用ステンレス鋼である。
A second invention is, in% by weight, Cr: 11 to 11.
14%, Ni: 4.5 to 7.0%, Mo: 1.0 to
3.0%, Al: 1.0 to 3.0%, C: 0.10.
~ 0.20%, Nb: less than 10 x C% (including 0%)
It is a steel having a chemical composition consisting of Fe and unavoidable impurities, and is a martensitic heat-resistant spring stainless steel having a residual austenite content of 50% or less.

【0006】 第3の発明は、重量%で、Cr:11〜
14%と、Ni:4.5〜7.0%と、Mo:1.0〜
3.0%と、Al:1.0〜3.0%と、C:0.10
〜0.20%と、Nb:10×C%未満(0%を含む)
とFe及び不可避的不純物からなる化学組成の鋼であっ
て、残留オーステナイト量が50%以下で、350℃〜
550℃における0.2%耐力が120kgf/mm
以上である耐熱ばね用ステンレス鋼帯である。
A third invention is, in% by weight, Cr: 11 to 11.
14%, Ni: 4.5 to 7.0%, Mo: 1.0 to
3.0%, Al: 1.0 to 3.0%, C: 0.10.
~ 0.20%, Nb: less than 10 x C% (including 0%)
Steel having a chemical composition consisting of Fe, Fe, and unavoidable impurities, the residual austenite amount is 50% or less,
0.2% proof stress at 550 ° C is 120 kgf / mm 2
The above is the stainless steel strip for heat-resistant springs.

【0007】第4の発明は、上記化学組成の鋼を、オー
ステナイト化温度900℃以上1100℃以下の温度範
囲で熱処理して、焼入れ状態の残留オーステナイト量を
制御することを特徴とする耐熱ばね用ステンレス鋼の製
造方法である。
A fourth invention is for a heat resistant spring, characterized in that the steel having the above chemical composition is heat-treated in the temperature range of 900 ° C. to 1100 ° C. to control the amount of retained austenite in the quenched state. It is a manufacturing method of stainless steel.

【0008】第5の発明は、上記化学組成を有する鋼
を、オーステナイト化温度900℃以上1100℃以下
の温度範囲で熱処理した後、圧延率が70%以下の冷間
圧延することを特徴とする耐熱ばね用ステンレス鋼帯の
製造方法である。第6の発明は、上記鋼帯から製造され
たガスケット基材である。
A fifth invention is characterized in that the steel having the above chemical composition is heat-treated in the temperature range of austenitizing temperature of 900 ° C. or more and 1100 ° C. or less, and then cold-rolled at a rolling ratio of 70% or less. It is a method of manufacturing a stainless steel strip for a heat resistant spring. A sixth invention is a gasket base material manufactured from the above steel strip.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
まず、本発明者らは、耐熱限界の高い耐熱鋼に関して鋭
意研究した結果、以下の知見を見出だした。すなわち、
図1は、底辺幅3.5mm、高さ0.3mmの台形リブ
がリブ中心径φ90mmで配置された単ボアガスケット
を試料とし、種々の温度で260ks間5000kgf
を負荷した時の残留リブ高さの測定結果を示す。ここ
で、試料一は準安定オーステナイト系ステンレス鋼の代
表格であるSUS301のΗ仕上材(Hv460)、試
料二は同鋼のEΗ仕上材(Hv530)、試料三は析出
硬化型ステンレス鋼SUS631のC仕上材(Hv48
0)、試料四は試料三をさらに470℃で3.6Ks時
効処理したものである。板厚はともに0.2mmであ
る。図1から、残留リブ高さの許容限界を0.1mmと
すると、これら試料の耐熱限界は300℃〜350℃と
なる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
First, the present inventors have found the following findings as a result of earnest research on heat resistant steel having a high heat resistance limit. That is,
FIG. 1 is a sample of a single-bore gasket in which trapezoidal ribs with a base width of 3.5 mm and a height of 0.3 mm are arranged with a rib center diameter of φ90 mm.
The results of measurement of the height of the residual rib when a load is applied are shown. Here, Sample 1 is the SUS finishing material (Hv460) of SUS301, which is a representative of metastable austenitic stainless steel, Sample 2 is the EE finishing material of the same steel (Hv530), and Sample 3 is C of precipitation hardening stainless steel SUS631. Finishing material (Hv48
0) and Sample 4 are those obtained by subjecting Sample 3 to aging treatment at 470 ° C. for 3.6 Ks. The plate thicknesses are both 0.2 mm. From FIG. 1, assuming that the allowable limit of the height of the residual rib is 0.1 mm, the heat resistance limit of these samples is 300 ° C to 350 ° C.

【0010】図2は、これら試料一〜試料四を0.2%
耐力で評価したものであるが、この図からもこれら試料
一〜試料四の耐熱限界は300℃〜350℃であること
がわかる。
FIG. 2 shows 0.2% of each of Sample 1 to Sample 4
Although evaluated by proof stress, it can be seen from this figure that the heat resistance limit of Samples 1 to 4 is 300 ° C to 350 ° C.

【0011】このように、従来の耐熱鋼は300℃〜3
50℃が耐熱限界であるが、本発明では、350〜55
0℃でも耐力を維持できる、すなわち0.2%耐力≧1
20kgf/mm2 の耐熱鋼を研究した。
As described above, the conventional heat-resistant steel has a temperature of 300 ° C to 3 ° C.
Although the heat resistance limit is 50 ° C., in the present invention, it is 350 to 55.
Proof strength can be maintained even at 0 ° C, ie 0.2% proof stress ≧ 1
Heat resistant steel of 20 kgf / mm 2 was studied.

【0012】ここで、30Ο℃〜35Ο℃までの緩やか
な強度低下はマルテンサイトの歪緩和に基づき、400
℃近傍の急激な強度低下はマルテンサイト相がオーステ
ナイト相に逆変態することに基づいていた。後者の変態
点をΑs点といい、マルテンサイト系ステンレス鋼では
Αcl点が対応する。準安定オーステナイト系ステンレ
ス鋼を対象としたとき、As点は(1) 式となる。 As(℃)=800 重量%C+2.2 重量%Cr+43重量%Ni+35.5重量%Mo+ 69重量%Α1…(1) また、12重量%Crマルテンサイト系ステンレス鋼の
Aclは(2) 式となる。 Acl(℃)=740 +25重量%Mo+25(重量%Si−0.25)+30重量%Al+ 50重量%Vー30重量%Ni−25重量%Mn−5Co…(2) (1) 、(2) 式からマルテンサイト相の逆変態温度を高温
側にシフトさせるにはいずれもMoとAlの添加が有効
であることがわかる。ただし、両元素ともに炭・窒化物
形成元素であり、(1) 式の準安定オーステナイト系では
オーステナイト相のフエライト相化が促進され、高温に
おける絶対強度を落とす。従って、本発明者は、(2) 式
に基づき、Cr11〜14%含有するマルテンサイト系
ステンレス鋼について、その耐熱限界を高めるようにし
た。
Here, the gradual decrease in strength from 30 ° C. to 35 ° C. is 400 due to strain relaxation of martensite.
The sharp decrease in strength near ℃ was based on the reverse transformation of the martensite phase to the austenite phase. The latter transformation point is called the As point, which corresponds to the Acl point in martensitic stainless steel. When targeting metastable austenitic stainless steel, the As point is given by equation (1). As (° C) = 800 wt% C + 2.2 wt% Cr + 43 wt% Ni + 35.5 wt% Mo + 69 wt% A1 ... (1) Also, the Acl of 12 wt% Cr martensitic stainless steel is expressed by the formula (2). . Acl (° C) = 740 + 25 wt% Mo + 25 (wt% Si-0.25) + 30 wt% Al + 50 wt% V-30 wt% Ni-25 wt% Mn-5Co ... (2) (1), (2) It can be seen that addition of Mo and Al is effective in shifting the reverse transformation temperature of the martensite phase to the high temperature side. However, both elements are charcoal / nitride forming elements, and in the metastable austenite system of Eq. (1), the austenite phase is promoted to the ferrite phase, which reduces the absolute strength at high temperature. Therefore, the present inventor increased the heat resistance limit of the martensitic stainless steel containing Cr 11 to 14% based on the formula (2).

【0013】そこで、1050℃溶体化後の空冷処理で
マルテンサイト変態が完了する12.5%Cr−5.5
%NiーO.9%Si−0.9%Mn−0.03%P−
0.003%S−0.02%N系(重量%)を基本組成
とし、1050℃の溶体化処理後に50%の冷間圧延処
理を施した試料の500℃における0.2%耐力におよ
ぼすΑ1、ΜoそれにCおよびNbの影響を調べた。そ
の結果を図3に示す。なお、常温強度は500℃×3.
6ksの時効処理後のO.2%耐力とした。
Therefore, 12.5% Cr-5.5 where martensitic transformation is completed by air cooling treatment after solution treatment at 1050 ° C.
% Ni-O. 9% Si-0.9% Mn-0.03% P-
It has a basic composition of 0.003% S-0.02% N system (wt%) and has a 0.2% proof stress at 500 ° C of a sample which has been subjected to a solution treatment at 1050 ° C and a cold rolling process of 50%. The effects of Α1, Μo and C and Nb were investigated. The result is shown in FIG. The room temperature strength is 500 ° C. × 3.
After the aging treatment for 6 ks, the O.V. The yield strength was 2%.

【0014】12.5%Cr−1〜2%Mo系の500
℃、0.2%耐力は、図3のΑ領域で約100kgf/
mm2 のレべルである。Mo添加量を2%に増やしても
105kgf/mm2 が限界となる。この系にA1をl
〜2%添加すると目標強度レベルであるB領域に移行す
る。B領域でもO.14%C未満の炭素量では強度不足
となり、強力な炭化物形成元素であるNbの添加は同様
な効果を生むので避けなければならない。Moも炭化物
形成元素であり、3.0%以上の添加は強度低下を招
き、Α領域に近いC領域に移行する。これらの挙動はδ
フエライトの形成量に依存したものである。以上のこと
から、1050℃溶体化処理後に50%の冷間圧延を施
すことを前提に、500℃におけるO.2%耐力が12
0kgf/mm2 以上となる化学組成範囲は以下のよう
になることを見出だし、本発明を完成した。
12.5% Cr-1 to 2% Mo-based 500
℃, 0.2% proof stress is about 100kgf /
The level is mm 2 . Even if the amount of Mo added is increased to 2%, the limit is 105 kgf / mm 2 . L add A1 to this system
When it is added up to 2%, it shifts to the B region which is the target strength level. Even in the B area, O. If the carbon content is less than 14% C, the strength becomes insufficient, and the addition of Nb, which is a strong carbide-forming element, produces the same effect and must be avoided. Mo is also a carbide-forming element, and addition of 3.0% or more causes a decrease in strength and shifts to the C region near the A region. These behaviors are δ
It depends on the amount of ferrite formed. From the above, on the premise of performing 50% cold rolling after the solution treatment at 1050 ° C., the O.V. 2% proof strength is 12
The inventors have found that the chemical composition range of 0 kgf / mm 2 or more is as follows, and completed the present invention.

【0015】すなわち、本発明鋼は、上述のように、重
量%で、Cr:11〜14%と、Ni:4.5〜7.0
%と、 Mo:1.0〜3.0%と、 Al:1.0〜
3.0%と、 C:0.10〜0.20%と、 Nb:
10×C%未満とFe及び不可避的不純物からなるマル
テンサイト系耐熱ばね用ステンレス鋼である。
That is, as described above, the steel of the present invention has Cr: 11 to 14% and Ni: 4.5 to 7.0 in weight%.
%, Mo: 1.0 to 3.0%, Al: 1.0 to
3.0%, C: 0.10 to 0.20%, Nb:
It is a stainless steel for martensitic heat-resistant springs containing less than 10 x C% and Fe and unavoidable impurities.

【0016】以下、添加元素の添加理由及び範囲の限定
理由を説明する。 (1) 11〜14%Cr この範囲内でCrを添加することにより、空冷処理で焼
入れ硬化可能で、基本の金属組織がマルテンサイトとな
る。この範囲から外れると基本の金属組織をマルテンサ
イトとすることができない。従って、Crは11〜14
%とする。
The reason for adding the additional element and the reason for limiting the range will be described below. (1) 11 to 14% Cr By adding Cr within this range, quench hardening can be performed by air cooling treatment, and the basic metal structure becomes martensite. If it is out of this range, the basic metallographic structure cannot be martensite. Therefore, Cr is 11-14
%.

【0017】(2) 4.5〜7.0%Ni Niは固溶体硬化と二次硬化に効果がある。4.5%未
満では、この効果を十分に発揮できない。また、7.0
%をこえると、Ms点の低下とΑcl点の低下が著し
い。従って、Niは4.5〜7.0%とする。
(2) 4.5-7.0% Ni Ni is effective for solid solution hardening and secondary hardening. If it is less than 4.5%, this effect cannot be sufficiently exhibited. Also, 7.0
If it exceeds%, the Ms point and the Acl point are significantly decreased. Therefore, Ni is set to 4.5 to 7.0%.

【0018】(3) 0.10〜0.20%C Cはマルテンサイトの強度向上および二次硬化に効果が
大きい。O.10%未満ではこの効果を発揮できない。
また、O.20%を越えるとΑcl点の低下と靭性の低
下が著しい。従って、Cは0.10〜0.20%とす
る。
(3) 0.10 to 0.20% C C has a great effect on improving the strength of martensite and secondary hardening. O. If it is less than 10%, this effect cannot be exhibited.
In addition, O. If it exceeds 20%, the ACl point and the toughness are significantly reduced. Therefore, C is 0.10 to 0.20%.

【0019】(4) 1.O〜3.0%Mo Moは焼戻し軟化抵抗を増加させ、析出硬化に効果があ
る。1.0%未満ではその効果を発揮せず、3.0%を
越えるとMs点の低下とδフエライト量の増加をもたら
す。従って、Moは1.O〜3.0%とする。
(4) 1. O-3.0% Mo Mo increases the temper softening resistance and is effective for precipitation hardening. If it is less than 1.0%, the effect is not exhibited, and if it exceeds 3.0%, the Ms point is lowered and the amount of δ-ferrite is increased. Therefore, Mo is 1. O to 3.0%.

【0020】(5) 1.0〜3.0%Al Alは析出硬化、固溶体強化、及びAc1点の上昇に有効
である。ただし、1.0%未満では所望の効果を発揮せ
ず、3.0%を越えるとδフェライト量の増加を伴う。
従って、Alは1.0〜3.0%とする。
(5) 1.0-3.0% Al Al is effective for precipitation hardening, strengthening the solid solution, and increasing the Ac1 point. However, if it is less than 1.0%, the desired effect is not exhibited, and if it exceeds 3.0%, the amount of δ ferrite is increased.
Therefore, Al is 1.0 to 3.0%.

【0021】(6) Nb<10×%C Nbは、焼戻し軟化抵抗を大きく改善する元素である。
10×%C以上では、炭素およぴ窒素の安定化し、Ms点
の低下とδフェライトの形成に顕著に影響する。従っ
て、Nb<10×%Cとする。
(6) Nb <10 ×% C Nb is an element that greatly improves the temper softening resistance.
When it is 10 ×% C or more, carbon and nitrogen are stabilized, and the decrease of Ms point and the formation of δ ferrite are significantly affected. Therefore, Nb <10 ×% C.

【0022】本発明では、この組成の鋼をオーステナイ
ト化温度(溶体化温度)900℃以上1100℃以下で
熱処理して焼入れ状態の残留オーステナイト量を制御す
る。900℃未満では、焼鈍不足となり、1100℃を
越えると、残留オーステナイト量が50%超となり、冷
間圧延による強度向上をおこなう次工程を含め、強度が
低下し、いずれも不適当である。この熱処理により鋼の
残留オーステナイト量を50%以下とすることができ
る。
In the present invention, the steel having this composition is heat-treated at an austenitizing temperature (solution heat temperature) of 900 ° C. or more and 1100 ° C. or less to control the amount of retained austenite in the quenched state. If the temperature is lower than 900 ° C, the annealing becomes insufficient, and if the temperature exceeds 1100 ° C, the amount of retained austenite exceeds 50%, and the strength is lowered including the next step of improving the strength by cold rolling, both of which are unsuitable. By this heat treatment, the residual austenite amount of steel can be reduced to 50% or less.

【0023】次に、この化学組成及び金属組織の鋼を圧
延して鋼帯を製造する。この場合、その冷間圧延率は7
0%以下として350℃〜550℃における0.2%耐
力が120kgf/mm2 以上とする。ここで、70%
を越えると、冷間圧延効果が飽和するので、不適当であ
る。
Next, steel having this chemical composition and metal structure is rolled to produce a steel strip. In this case, the cold rolling rate is 7
The 0.2% proof stress at 350 ° C. to 550 ° C. is set to 0% or less and 120 kgf / mm 2 or more. Where 70%
If it exceeds, the cold rolling effect will be saturated, which is not suitable.

【0024】そして、この鋼帯から、所望の製品、例え
ばガスケット基材を製造する。その例を図4に示す。こ
こで、図中1はシリンダーヘッド、2は本発明鋼帯から
製造されたシリンダガスケット、3は本発明鋼帯から製
造されたインテークマニホールドガスケット、4は本発
明鋼帯から製造されたエキゾーストマニホールドガスケ
ットを示す。5はシリンダーブロックである。
Then, a desired product such as a gasket base material is manufactured from this steel strip. An example thereof is shown in FIG. In the figure, 1 is a cylinder head, 2 is a cylinder gasket manufactured from the steel strip of the present invention, 3 is an intake manifold gasket manufactured from the steel strip of the present invention, and 4 is an exhaust manifold gasket manufactured from the steel strip of the present invention. Indicates. 5 is a cylinder block.

【0025】[0025]

【実施例】次に本発明の実施例を説明する。表1に本発
明の実施例の化学組成を従来例(SUS301,SUS
631)、比較例(No.1,2)とともに示し、表2
にその特性を示す。表2によれば、従来のステンレス鋼
は残留オーステナイト(γ)が100,93%,500
℃の0.2%耐力は54kgf/mm2 ,65kgf/
mm2 、比較例では残留オーステナイト(γ)が4,5
%,500℃の0.2%耐力は93.3kgf/mm
2 ,104,0kgf/mm2 であるが、本発明では残
留オーステナイト(γ)が0〜40%,500℃の0.
2%耐力は120.6〜128.5kgf/mm2 であ
ることが分かる。なお、いずれの試料もオーステナイト
化温度は1050℃、圧延率は50%とした。
EXAMPLES Examples of the present invention will be described below. Table 1 shows the chemical compositions of the examples of the present invention as the conventional examples (SUS301, SUS).
631) and comparative examples (Nos. 1 and 2), and Table 2
The characteristics are shown in. According to Table 2, the residual austenite (γ) of the conventional stainless steel is 100, 93%, 500.
0.2% proof stress at ℃ is 54kgf / mm 2 , 65kgf /
mm 2 , and in the comparative example, the residual austenite (γ) was 4, 5
%, 0.2% proof stress at 500 ° C is 93.3kgf / mm
2 , 104,0 kgf / mm 2 , but in the present invention, the retained austenite (γ) is 0 to 40%, and the residual austenite (γ) is 0.
It can be seen that the 2% proof stress is 120.6 to 128.5 kgf / mm 2 . All samples had an austenitizing temperature of 1050 ° C. and a rolling rate of 50%.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
少なくとも350〜550℃温度での耐力を向上するこ
とができるので、加熱状態でばね性を必要とするステン
レス鋼の用途、特にガスケットにそのまま適用でき、重
量的及びコスト的に有利となる。
As described above, according to the present invention,
Since it is possible to improve the proof stress at a temperature of at least 350 to 550 ° C., it can be applied as it is to the use of stainless steel, which requires spring property in a heated state, in particular, a gasket, which is advantageous in terms of weight and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来試料による温度による残留リブ高さを調べ
た図。
FIG. 1 is a diagram in which a residual rib height according to a temperature of a conventional sample is investigated.

【図2】従来試料を0.2%耐力で評価した高温強度を
示す図。
FIG. 2 is a diagram showing high temperature strength of a conventional sample evaluated by 0.2% proof stress.

【図3】各実施例の時効処理後の常温強度と高温強度を
示す図。
FIG. 3 is a diagram showing room temperature strength and high temperature strength after aging treatment of each example.

【図4】本発明の耐熱性ステンレス鋼帯で製造される各
種ガスケットの斜視図。
FIG. 4 is a perspective view of various gaskets manufactured from the heat resistant stainless steel strip of the present invention.

【符号の説明】[Explanation of symbols]

1…シリンダーヘッド、2…シリンダガスケット、3…
インテークマニホールドガスケット、4…エキゾースト
マニホールドガスケット、5…シリンダーブロック。
1 ... Cylinder head, 2 ... Cylinder gasket, 3 ...
Intake manifold gasket, 4 ... Exhaust manifold gasket, 5 ... Cylinder block.

フロントページの続き (72)発明者 麿 優 岐阜県可児市谷迫間姫ヶ丘2番地48 日 本金属株式会社岐阜工場内 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 Front page continued (72) Inventor Yuru Maro 2 Himegaoka, Tanisakoma, Kani City, Gifu Prefecture 48 Nikko Metal Co., Ltd. Gifu Factory (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00 -38/60

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、Cr:11〜14%と、Ni:
4.5〜7.0%と、Mo:1.0〜3.0%と、A
l:1.0〜3.0%と、C:0.10〜0.20%
と、Nb:10×C%未満(0%を含む)とFe及び不
可避的不純物からなるマルテンサイト系耐熱ばね用ステ
ンレス鋼。
1. Cr: 11 to 14% by weight, and Ni:
4.5-7.0%, Mo: 1.0-3.0%, A
1: 1.0 to 3.0%, C: 0.10 to 0.20%
And Nb: less than 10 × C% (including 0%) , Fe and unavoidable impurities, a martensitic heat-resistant spring stainless steel.
【請求項2】重量%で、Cr:11〜14%と、Ni:
4.5〜7.0%と、Mo:1.0〜3.0%と、A
l:1.0〜3.0%と、C:0.10〜0.20%
と、Nb:10×C%未満(0%を含む)とFe及び不
可避的不純物からなる化学組成の鋼であって、残留オー
ステナイト量が50%以下であるマルテンサイト系耐熱
ばね用ステンレス鋼。
2. Cr: 11 to 14% by weight, and Ni:
4.5-7.0%, Mo: 1.0-3.0%, A
1: 1.0 to 3.0%, C: 0.10 to 0.20%
And Nb: less than 10 × C% (including 0%) , Fe and inevitable impurities in the chemical composition, and the retained austenite amount is 50% or less martensitic stainless steel for heat-resistant springs.
【請求項3】重量%で、Cr:11〜14%と、Ni:
4.5〜7.0%と、Mo:1.0〜3.0%と、A
l:1.0〜3.0%と、C:0.10〜0.20%
と、Nb:10×C%未満(0%を含む)とFe及び不
可避的不純物からなる化学組成の鋼であって、残留オー
ステナイト量が50%以下で、350℃〜550℃にお
ける0.2%耐力が120kgf/mm以上である耐
熱ばね用ステンレス鋼帯。
3. By weight%, Cr: 11-14% and Ni:
4.5-7.0%, Mo: 1.0-3.0%, A
1: 1.0 to 3.0%, C: 0.10 to 0.20%
And Nb: less than 10 × C% (including 0%) , Fe and a chemical composition consisting of unavoidable impurities, the amount of retained austenite is 50% or less, and 0.2% at 350 ° C. to 550 ° C. Stainless steel strip for heat-resistant springs with a yield strength of 120 kgf / mm 2 or more.
【請求項4】請求項1の化学組成の鋼を、オーステナイ
ト化温度900℃以上1100℃以下の温度範囲で熱処
理して、焼入れ状態の残留オーステナイト量を制御する
ことを特徴とする耐熱ばね用ステンレス鋼の製造方法。
4. A heat-resistant spring stainless steel characterized by controlling the amount of retained austenite in a quenched state by heat-treating a steel having the chemical composition of claim 1 in a temperature range of austenitizing temperature of 900 ° C. or more and 1100 ° C. or less. Steel manufacturing method.
【請求項5】請求項1の化学組成を有する鋼を、オース
テナイト化温度900℃以上1100℃以下の温度範囲
で熱処理した後、圧延率が70%以下の冷間圧延するこ
とを特徴とする耐熱ばね用ステンレス鋼帯の製造方法。
5. A heat-resisting method, comprising: heat-treating a steel having the chemical composition of claim 1 in an austenitizing temperature range of 900 ° C. or more and 1100 ° C. or less, and then cold rolling the rolling ratio at 70% or less. Manufacturing method of stainless steel strip for spring.
【請求項6】請求項3の鋼帯から製造されたガスケット
基材。
6. A gasket base material produced from the steel strip of claim 3.
JP30605695A 1995-11-24 1995-11-24 Stainless steel for heat-resistant spring and method of manufacturing the same Expired - Fee Related JP3482053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30605695A JP3482053B2 (en) 1995-11-24 1995-11-24 Stainless steel for heat-resistant spring and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30605695A JP3482053B2 (en) 1995-11-24 1995-11-24 Stainless steel for heat-resistant spring and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09143633A JPH09143633A (en) 1997-06-03
JP3482053B2 true JP3482053B2 (en) 2003-12-22

Family

ID=17952524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30605695A Expired - Fee Related JP3482053B2 (en) 1995-11-24 1995-11-24 Stainless steel for heat-resistant spring and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3482053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146876A1 (en) 2012-03-29 2013-10-03 新日鐵住金ステンレス株式会社 High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036853B1 (en) 1998-09-04 2015-07-15 Nippon Steel & Sumitomo Metal Corporation Stainless steel for engine gasket and production method therefor
DE102010053385A1 (en) * 2010-12-03 2012-06-21 Bayerische Motoren Werke Aktiengesellschaft Austenitic steel for hydrogen technology
CN112126868A (en) * 2020-09-14 2020-12-25 高燕仪 Production method for manufacturing and processing clockwork spring capable of reducing waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146876A1 (en) 2012-03-29 2013-10-03 新日鐵住金ステンレス株式会社 High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same

Also Published As

Publication number Publication date
JPH09143633A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
WO2007029515A1 (en) High-toughness wear-resistant steel exhibiting little hardness change in service and process for production thereof
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
EP2017363A2 (en) High strength cold-rolled steel sheet and method for manufacturing the same
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
JP3482053B2 (en) Stainless steel for heat-resistant spring and method of manufacturing the same
JP2000256802A (en) Stainless steel material for metal gasket excellent in setting resistance and its manufacture
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
KR20200065150A (en) Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same
JP2756556B2 (en) Non-heat treated steel for hot forging
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP2000226614A (en) Production of high toughness martensitic stainless steel excellent in stress corrosion cracking resistance
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP3267653B2 (en) Manufacturing method of high strength steel sheet
JPH0717944B2 (en) Manufacturing method of bainite steel sheet with excellent spring characteristics
JP3255937B2 (en) Manufacturing method of quenched steel for hot forging
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JP7260838B2 (en) Steel wire for spring, spring and method for producing them
JP2824058B2 (en) Low alloy steel for soft nitriding
JP3659041B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with extremely small strength fluctuation
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
Pradhan et al. Characteristics of high-strength cold-rolled sheet steels produced by continuous annealing
EP0713924A2 (en) Corrosion-resistant spring steel
KR920008136B1 (en) Making process for ferrite stainless steel
JPH0941040A (en) Production of high strength cold rolled steel sheet excellent in strength-flanging property

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees