JP3471444B2 - Method for forming electrodes of ceramic capacitors - Google Patents

Method for forming electrodes of ceramic capacitors

Info

Publication number
JP3471444B2
JP3471444B2 JP26865894A JP26865894A JP3471444B2 JP 3471444 B2 JP3471444 B2 JP 3471444B2 JP 26865894 A JP26865894 A JP 26865894A JP 26865894 A JP26865894 A JP 26865894A JP 3471444 B2 JP3471444 B2 JP 3471444B2
Authority
JP
Japan
Prior art keywords
electrode
ceramic capacitor
nickel
dielectric
electrode paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26865894A
Other languages
Japanese (ja)
Other versions
JPH08130157A (en
Inventor
伸明 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP26865894A priority Critical patent/JP3471444B2/en
Publication of JPH08130157A publication Critical patent/JPH08130157A/en
Application granted granted Critical
Publication of JP3471444B2 publication Critical patent/JP3471444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品として広く使
用されているセラミックコンデンサの電極形成方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode forming method for a ceramic capacitor which is widely used as an electronic component.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、高速高性能化
に伴い、セラミックコンデンサは小型で大容量かつ高周
波特性に優れているため、ノイズフィルタ等の用途に数
多く用いられている。
2. Description of the Related Art In recent years, with the miniaturization of electronic equipment and the high speed and high performance of ceramics, ceramic capacitors have been used in many applications such as noise filters because of their small size, large capacity and excellent high frequency characteristics.

【0003】以下に従来のセラミックコンデンサの電極
形成方法について説明する。特開平3−280411号
公報には、半導体磁器への再酸化熱処理を大気中の酸素
分圧よりも高い酸素分圧で行うことを特徴とする表面再
酸化型半導体磁器コンデンサの製造方法が開示されてい
る。ここで、誘電体素子にAgを含有する電極ペースト
を塗布して800℃の温度で熱処理する電極形成方法が
記述されている。一般的にセラミックコンデンサの電極
を形成する場合、電極ペーストを塗布した誘電体素子を
セラミック製の容器に挿入して熱処理する方法が行われ
ている。
A conventional method for forming electrodes of a ceramic capacitor will be described below. Japanese Patent Application Laid-Open No. 3-280411 discloses a method for manufacturing a surface reoxidation type semiconductor ceramic capacitor, which is characterized in that the reoxidation heat treatment on the semiconductor ceramic is performed at an oxygen partial pressure higher than the oxygen partial pressure in the atmosphere. ing. Here, an electrode forming method in which an electrode paste containing Ag is applied to a dielectric element and heat treatment is performed at a temperature of 800 ° C. is described. Generally, when forming an electrode of a ceramic capacitor, a method is used in which a dielectric element coated with an electrode paste is inserted into a ceramic container and heat-treated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、セラミック製の容器を使用して熱処理す
るため、容器から放出される酸化性ガスにより電極ペー
ストの表面が酸化され、セラミックコンデンサの静電容
量,誘電体損失等の変動係数が大きくなり電気特性が劣
化する。また、多数の電極ペーストを塗布した誘電体素
子を一括して容器の中で熱処理するため、電極ペースト
を塗布した誘電体素子どうしおよび誘電体素子がセラミ
ック製の容器に融着して、工程の歩留りが低下するとい
う問題点を有していた。
However, in the above-mentioned conventional structure, since the ceramic container is used for the heat treatment, the surface of the electrode paste is oxidized by the oxidizing gas discharged from the container, and the static electricity of the ceramic capacitor is reduced. Coefficients of variation such as capacitance and dielectric loss increase and electrical characteristics deteriorate. Further, since the dielectric elements coated with a large number of electrode pastes are collectively heat-treated in the container, the dielectric elements coated with the electrode paste and the dielectric elements are fused to a ceramic container, There is a problem that the yield is reduced.

【0005】本発明は上記従来の問題点を解決するもの
で、静電容量と誘電体損失の変動係数が小さく、信頼性
が高くかつ工程の歩留まりが高いセラミックコンデンサ
の電極形成方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a method for forming an electrode for a ceramic capacitor, which has a small coefficient of variation of capacitance and dielectric loss, high reliability, and high process yield. With the goal.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明の請求項1に記載のセラミックコンデンサの電
極形成方法は、誘電体素子の両面に電極ペーストを塗布
する電極ペースト塗布工程と、前記電極ペースト塗布工
程において前記電極ペーストを塗布した前記誘電体素子
をニッケル系合金からなる容器に挿入して熱処理する熱
処理工程と、を有するセラミックコンデンサの電極形成
方法であって、前記熱処理工程において、前記ニッケル
系合金からなる容器に絶縁性の敷き粉を敷設して、前記
敷き粉を、前記電極ペーストを塗布した誘電体素子間、
および、前記誘電体素子とニッケル系合金からなる容器
との間に介在させ、前記各誘電体素子の電極どうし、お
よび、前記誘電体素子とニッケル系合金からなる容器と
が融着することを防止する構成をしている。
In order to achieve this object, an electrode forming method for a ceramic capacitor according to claim 1 of the present invention comprises an electrode paste applying step of applying an electrode paste on both surfaces of a dielectric element, Forming an electrode of a ceramic capacitor , including a heat treatment step of heat-treating the dielectric element coated with the electrode paste in the electrode paste coating step into a container made of a nickel-based alloy.
A method, wherein in the heat treatment step, the nickel
Laying an insulating spreader on a container made of a system alloy,
Spreading powder, between the dielectric elements coated with the electrode paste,
And a container composed of the dielectric element and a nickel alloy
By interposing between the electrodes of the dielectric elements,
And a container made of the dielectric element and a nickel alloy
Has a structure for preventing fusion .

【0007】請求項2に記載のセラミックコンデンサの
電極形成方法は、請求項1において、前記敷き粉がAl
2 3 或いはSiO 2 をその成分とする構成をしている。
According to a second aspect of the present invention, there is provided an electrode forming method for a ceramic capacitor, wherein the spreading powder is Al.
2 O 3 or SiO 2 is used as the component .

【0008】請求項3に記載のセラミックコンデンサの
電極形成方法は、請求項1,2において、前記敷き粉の
平均粒子径が50μm以上である構成をしている。
According to a third aspect of the present invention, there is provided a ceramic capacitor electrode forming method according to the first and second aspects, wherein the spread powder has an average particle diameter of 50 μm or more.

【0009】請求項4に記載のセラミックコンデンサの
電極形成方法は、請求項1〜3において、前記電極ペー
ストがAg,Zn,CuまたはNiを少なくとも1以上
含有する構成をしている。
[0009] electrode forming method of a ceramic capacitor according to claim 4, in claim 1, wherein the electrode paste is Ag, Zn, a structure containing at least one or more of Cu or Ni.

【0010】ここで、前記ニッケル系合金からなる容器
は、箱型の形状を有しニッケル−鉄系,ニッケル−銅
系,ニッケル−アルミニウム系,ニッケル−マンガン
系,ニッケル−クロム系,ニッケル−クロム−鉄−銅系
またはニッケル−モリブデン系等の成分からなる。前記
絶縁性の敷き粉は、Al23,SiO2等を成分とす
る。また、前記誘電体素子は、BaTiO3,BaZr
3,CaTiO3またはPbTiO3等を成分とする。
Here, the container made of the nickel-based alloy has a box shape, and is made of nickel-iron, nickel-copper, nickel-aluminum, nickel-manganese, nickel-chromium, nickel-. It is composed of components such as chromium-iron-copper or nickel-molybdenum. The insulating spreading powder contains Al 2 O 3 , SiO 2 and the like as components. The dielectric element is made of BaTiO 3 , BaZr.
It contains O 3 , CaTiO 3 or PbTiO 3 as a component.

【0011】[0011]

【作用】この構成によって、セラミックコンデンサの電
極形成における熱処理工程においてニッケル系合金から
なる容器を用いるため酸化性ガスの発生がなく、電極が
酸化されないため、静電容量、誘電体損失の変動係数を
小さくすることができる。また、ニッケル系合金からな
る容器に絶縁性の敷き粉を敷設し、前記敷き粉の平均粒
子径を50μm以上にすることにより、前記敷き粉が各
電極ペーストを塗布した誘電体素子間に介在し、電極ど
うしが融着するのを防止できる。さらに、前記電極ペー
ストにAg,Zn,CuまたはNiを少なくとも1以上
含有させることにより、前記ニッケル系合金からなる容
器および絶縁性敷き粉との反応および融着を防止でき、
良好な電極を形成できる。さらに、前記容器はニッケル
系合金からなるため、熱処理中の雰囲気に汚されること
がなく、熱処理における急激な加熱、冷却にも強く、半
永久的に使用できる。
With this structure, since the container made of nickel alloy is used in the heat treatment step in the electrode formation of the ceramic capacitor, the oxidizing gas is not generated and the electrode is not oxidized, so that the coefficient of variation of capacitance and dielectric loss is reduced. Can be made smaller. In addition, by laying insulating spread powder in a container made of a nickel-based alloy and setting the average particle diameter of the spread powder to 50 μm or more, the spread powder is interposed between the dielectric elements coated with the respective electrode pastes. It is possible to prevent the electrodes from fusing together. Further, by containing at least one of Ag, Zn, Cu, or Ni in the electrode paste, it is possible to prevent reaction and fusion with the container made of the nickel alloy and the insulating spreader,
A good electrode can be formed. Further, since the container is made of a nickel-based alloy, it is not contaminated by the atmosphere during heat treatment, is resistant to rapid heating and cooling during heat treatment, and can be used semipermanently.

【0012】[0012]

【実施例】以下、本発明の参考例及び実施例について、
図面を参照しながら説明する。
EXAMPLES Hereinafter, reference examples and examples of the present invention will be described.
A description will be given with reference to the drawings.

【0013】(参考例) 図1は、本発明の参考例におけるセラミックコンデンサ
の断面図を示す。図1において、1はセラミックコンデ
ンサ、2は誘電体素子、3は電極ペーストにより形成さ
れる電極である。4は接合材であり、半田や導電性接着
剤が用いられる。5は絶縁性材料からなり、絶縁性に加
えて内部の誘電体素子,電極の腐食や変質を防止するた
めの耐候性をもったエポキシ樹脂等の熱硬化樹脂からな
る外装材である。6はリード線である。
Reference Example FIG. 1 is a sectional view of a ceramic capacitor according to a reference example of the present invention. In FIG. 1, 1 is a ceramic capacitor, 2 is a dielectric element, and 3 is an electrode formed of an electrode paste. 4 is a bonding material, and solder or a conductive adhesive is used. Reference numeral 5 denotes an exterior material which is made of an insulating material and is made of a thermosetting resin such as an epoxy resin having a weather resistance in order to prevent corrosion and deterioration of the internal dielectric element and electrodes in addition to the insulating property. 6 is a lead wire.

【0014】ここで、本発明のセラミックコンデンサの
電極形成方法に用いるニッケル系合金からなる容器は、
箱型の形状をし、ニッケル−クロム−鉄−銅を成分とし
て構成される。
Here, the container made of a nickel-based alloy used in the electrode forming method of the ceramic capacitor of the present invention is
It has a box shape and is composed of nickel-chromium-iron-copper.

【0015】次にセラミックコンデンサの製造方法につ
いて説明する。BaTiO3,BaZrO3,CaTiO
3,PbTiO3を主成分とするセラミックコンデンサ用
粉末,結合剤,離型剤,分散剤と水を(表1)に示した
配合比率になるように秤量し、撹拌器付きタンク内で4
〜40時間混合してスラリーを作成した。
Next, a method of manufacturing the ceramic capacitor will be described. BaTiO 3 , BaZrO 3 , CaTiO
3 , PbTiO 3 -based powder for ceramic capacitors, binder, mold release agent, dispersant and water were weighed in the mixing ratio shown in (Table 1) and placed in a tank with a stirrer.
Mix for ~ 40 hours to form a slurry.

【0016】[0016]

【表1】 [Table 1]

【0017】結合剤としては、水溶性高分子系,分散性
高分子系のものが使用されるが、ここでは特にポリビニ
ルアルコール系,酢酸ビニル系,アクリル系を使用し
た。離型剤としては、主として非水性高分子系のものを
使用した。
As the binder, water-soluble polymer-based or dispersible polymer-based binders are used, but polyvinyl alcohol-based, vinyl acetate-based, and acrylic-based binders are used here. As the release agent, a non-aqueous polymer type was mainly used.

【0018】次に、得られたスラリーをスプレードライ
ヤーを用いて噴霧乾燥し造粒粒子を得た。この造粒粒子
を2.5トン/cm2の圧力で直径16.0mmφ,厚
み2.4mmtの形状の成形体を得た。ここで得られた
成形体を1390℃の温度で焼成することにより誘電体
素子を得た。
Next, the obtained slurry was spray-dried using a spray dryer to obtain granulated particles. A molding having a diameter of 16.0 mmφ and a thickness of 2.4 mmt was obtained from the granulated particles under a pressure of 2.5 ton / cm 2 . The molded body obtained here was fired at a temperature of 1390 ° C. to obtain a dielectric element.

【0019】次の工程として本発明のセラミックコンデ
ンサの電極形成方法について説明する。
As the next step, the method for forming the electrodes of the ceramic capacitor of the present invention will be described.

【0020】上記で得られた誘電体素子の両面に電極と
なる電極ペーストを直径12.5φにスクリーン印刷法
で塗布し60〜100℃の温度で乾燥した。ここで、前
記電極ペーストにAgを含有させる他にZn,Cuまた
はNiを少なくとも1以上含有させても良い。この電極
ペーストを塗布した誘電体素子をニッケル系合金からな
る容器に投入し、800℃の温度で熱処理して電極を形
成した。この結果、従来の方法に比べ、電極表面の酸化
を抑えることができた。さらに、ニッケル系合金からな
る容器と電極の反応および融着を防止でき、均一で良好
な電極が形成できた。
Electrode pastes to be electrodes were applied to both surfaces of the dielectric element obtained above by a screen printing method with a diameter of 12.5φ and dried at a temperature of 60 to 100 ° C. Here, in addition to Ag contained in the electrode paste, at least one Zn, Cu or Ni may be contained. The dielectric element coated with this electrode paste was placed in a container made of a nickel alloy and heat-treated at a temperature of 800 ° C. to form an electrode. As a result, the oxidation of the electrode surface could be suppressed as compared with the conventional method. Further, reaction and fusion between the container made of nickel alloy and the electrode can be prevented, and a uniform and good electrode can be formed.

【0021】次に、この電極に対してリード線を接合材
となる半田をもちいて接合し、エポキシ樹脂を用いて外
装材を形成し、セラミックコンデンサを得た。
Next, a lead wire was bonded to this electrode by using solder as a bonding material, and an exterior material was formed using an epoxy resin to obtain a ceramic capacitor.

【0022】本参考例で得られたセラミックコンデンサ
の静電容量と誘電体損失を電圧1V,周波数1KHzの
条件のもとで35個のサンプル抽出を行い測定した結果
と従来の製造技術により得られたセラミックコンデンサ
の結果を(表2)に比較して示した。
The capacitance and the dielectric loss of the ceramic capacitor obtained in this reference example were measured by extracting 35 samples under the conditions of a voltage of 1 V and a frequency of 1 KHz and obtained by the conventional manufacturing technique. The results of the ceramic capacitors are shown in comparison with (Table 2).

【0023】[0023]

【表2】 [Table 2]

【0024】(表2)から明らかなように、本参考例
セラミックコンデンサの電極形成方法により、従来の製
造技術に比べて静電容量と誘電体損失の変動係数が小さ
いセラミックコンデンサが得られた。
As is clear from (Table 2), the ceramic capacitor electrode forming method of this reference example provided a ceramic capacitor having a smaller coefficient of variation in capacitance and dielectric loss than in the conventional manufacturing technique. .

【0025】(実施例) 本発明の実施例におけるセラミックコンデンサの製造方
法を以下に説明する。
( Example ) A method of manufacturing a ceramic capacitor according to an example of the present invention will be described below.

【0026】BaTiO3,BaZrO3,CaTiO3
を主成分とするセラミックコンデンサ用粉末、ポリビニ
ルアルコール、水を(表3)に示した配合比率になるよ
うに秤量し、機械的混合法により造粒粒子を得た。
BaTiO 3 , BaZrO 3 , CaTiO 3
Powder for ceramic capacitor containing as a main component, polyvinyl alcohol, and water were weighed so as to have the compounding ratio shown in (Table 3), and granulated particles were obtained by a mechanical mixing method.

【0027】[0027]

【表3】 [Table 3]

【0028】この造粒粒子を参考例と同様の方法で直径
16mmφ,厚み2.4mmtの形状に成形したのち、
1390℃の温度で焼成して誘電体素子を得た。
The granulated particles were molded into a shape having a diameter of 16 mmφ and a thickness of 2.4 mmt by the same method as in Reference Example ,
The dielectric element was obtained by firing at a temperature of 1390 ° C.

【0029】次の工程として本発明のセラミックコンデ
ンサの電極形成方法の実施例について説明する。
As the next step, an embodiment of the method for forming the electrode of the ceramic capacitor of the present invention will be described.

【0030】得られた前記誘電体素子の両面に参考例
同様に電極となるAgを含有した電極ペーストをスクリ
ーン印刷法で塗布し熱処理した。ここで、本実施例であ
るニッケル系合金からなる容器に前記誘電体素子を投入
し、800℃の温度で熱処理して電極を形成した。本実
施例で参考例と異なるのは、ニッケル系合金からなる容
器に敷き粉を敷設することを追加した点である。ここで
絶縁性を有する敷き粉として、Al23からなる粉体を
用いた。敷き粉の平均粒子径は試作を重ねた結果、50
μm以上、好ましくは80μm以上が望ましいことがわ
かった。80μm未満になるにつれ熱処理中に電極ペー
ストと敷き粉が反応したり、電極ペーストに敷き粉が付
着したりする傾向があり好ましくないことがわかった。
この結果、敷き粉が各電極ペーストを塗布した誘電体素
子間および誘電体素子とニッケル系合金からなる容器に
介在し、各誘電体素子の電極どうしまたは誘電体素子と
ニッケル系合金からなる容器とが融着することがなく工
程の歩留まりが向上した。
On both sides of the obtained dielectric element, an electrode paste containing Ag serving as an electrode was applied on both sides by a screen printing method and heat treated as in the reference example . Here, the dielectric element was placed in a container made of the nickel-based alloy of this example and heat-treated at a temperature of 800 ° C. to form an electrode. The present example differs from the reference example in that the spreading powder is added in a container made of a nickel alloy. Here, a powder made of Al 2 O 3 was used as the spread powder having an insulating property. The average particle size of the spread powder was 50 as a result of repeated trial production.
It has been found that a thickness of at least μm, preferably at least 80 μm is desirable. It was found that when the thickness is less than 80 μm, the electrode paste and the spread powder tend to react with each other during the heat treatment or the spread powder tends to adhere to the electrode paste, which is not preferable.
As a result, the spread powder intervenes between the dielectric elements coated with the electrode paste and between the dielectric elements and the container made of the nickel-based alloy, and the electrodes of each dielectric element or the container made of the dielectric element and the nickel-based alloy become No fusion occurred and the process yield was improved.

【0031】本実施例で得られたセラミックコンデンサ
の静電容量と誘電体損失を参考例と同様に、電圧1V,
周波数1KHzの条件のもとで測定した結果、従来の製
造技術に比べて静電容量と誘電体損失の変動係数が小さ
いセラミックコンデンサが得られた。
The capacitance and the dielectric loss of the ceramic capacitor obtained in this example were measured at a voltage of 1 V, as in the reference example .
As a result of measurement under the condition of a frequency of 1 KHz, a ceramic capacitor having a smaller coefficient of variation in capacitance and dielectric loss than the conventional manufacturing technique was obtained.

【0032】本実施例では、単板型の高誘電率セラミッ
クコンデンサを用いたが、温度補償用セラミックコンデ
ンサ、半導体コンデンサ、中高電圧コンデンサの電極形
成にも適用できる。また、単板型に限らず、円筒型にも
適用できる。
In this embodiment, the single plate type high dielectric constant ceramic capacitor is used, but it can also be applied to the electrode formation of the temperature compensating ceramic capacitor, the semiconductor capacitor, and the medium and high voltage capacitors. Further, not only the single plate type but also the cylindrical type can be applied.

【0033】以上のように本実施例によれば、ニッケル
系合金からなる容器を用いて電極の熱処理を行うので、
安定した電気特性を有し、信頼性が高くかつ工程の歩留
りが高いセラミックコンデンサを得ることができる。
As described above, according to this embodiment, since the heat treatment of the electrode is performed using the container made of nickel alloy,
It is possible to obtain a ceramic capacitor having stable electric characteristics, high reliability, and high process yield.

【0034】[0034]

【発明の効果】以上のように本発明によれば、電極ペー
ストを塗布した誘電体素子をニッケル系合金からなる容
器に挿入し熱処理する工程と、前記電極ペーストにA
g,Zn,CuまたはNiを少なくとも1以上含有する
こと、さらに前記ニッケル系容器に絶縁性の敷き粉を敷
設する工程により、静電容量および誘電体損失の変動係
数の小さい安定した電気特性を有し、電極ペーストを塗
布した各誘電体素子どうしまたは誘電体素子とニッケル
系合金からなる容器との融着防止により工程の歩留りを
向上できる優れたセラミックコンデンサの電極形成方法
を実現できるものである。
As described above, according to the present invention, a step of inserting a dielectric element coated with an electrode paste into a container made of a nickel-based alloy and heat-treating it, and applying A to the electrode paste
By containing at least one of g, Zn, Cu or Ni, and by laying an insulating spreader on the nickel-based container, stable electrical characteristics with a small coefficient of variation of capacitance and dielectric loss can be obtained. However, it is possible to realize an excellent method for forming electrodes of a ceramic capacitor, which can improve the process yield by preventing fusion between the dielectric elements coated with the electrode paste or between the dielectric elements and the container made of a nickel alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるセラミックコン
デンサの断面図
FIG. 1 is a sectional view of a ceramic capacitor according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックコンデンサ 2 誘電体素子 3 電極 4 接合材 5 外装材 6 リード線 1 Ceramic capacitor 2 Dielectric element 3 electrodes 4 Bonding material 5 Exterior materials 6 lead wire

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体素子の両面に電極ペーストを塗布
する電極ペースト塗布工程と、前記電極ペースト塗布工
程において前記電極ペーストを塗布した前記誘電体素子
をニッケル系合金からなる容器に挿入して熱処理する熱
処理工程と、を有するセラミックコンデンサの電極形成
方法であって、前記熱処理工程において、 前記ニッケル系合金からなる
容器に絶縁性の敷き粉を敷設して、前記敷き粉を、前記
電極ペーストを塗布した誘電体素子間、および、前記誘
電体素子とニッケル系合金からなる容器との間に介在さ
せ、前記各誘電体素子の電極どうし、および、前記誘電
体素子とニッケル系合金からなる容器とが融着すること
を防止することを特徴とするセラミックコンデンサの電
極形成方法。
1. An electrode paste applying step of applying an electrode paste to both surfaces of a dielectric element, and heat treatment by inserting the dielectric element coated with the electrode paste in the electrode paste applying step into a container made of a nickel-based alloy. A heat treatment step of: and a method of forming an electrode of a ceramic capacitor, comprising: in the heat treatment step, an insulating spread powder is laid in a container made of the nickel-based alloy ,
Between dielectric elements coated with electrode paste, and
It is interposed between the electric element and the container made of nickel alloy.
The electrodes of each of the dielectric elements, and the dielectric
Fusion between body element and container made of nickel alloy
A method for forming an electrode of a ceramic capacitor, which is characterized by preventing
【請求項2】 前記敷き粉がAl23或いはSiO2
その成分とすることを特徴とする請求項1に記載のセラ
ミックコンデンサの電極形成方法。
2. The method for forming an electrode of a ceramic capacitor according to claim 1, wherein the spread powder contains Al 2 O 3 or SiO 2 as its component.
【請求項3】 前記敷き粉の平均粒子径が50μm以上
であることを特徴とする請求項1,2の内いずれか1に
記載のセラミックコンデンサの電極形成方法。
3. The method for forming an electrode of a ceramic capacitor according to claim 1, wherein the average particle diameter of the spread powder is 50 μm or more.
【請求項4】 前記電極ペーストがAg,Zn,Cuま
たはNiを少なくとも1以上含有することを特徴とする
請求項1〜3の内いずれか1に記載のセラミックコンデ
ンサの電極形成方法。
4. The method for forming an electrode of a ceramic capacitor according to claim 1, wherein the electrode paste contains at least one of Ag, Zn, Cu and Ni.
JP26865894A 1994-11-01 1994-11-01 Method for forming electrodes of ceramic capacitors Expired - Fee Related JP3471444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26865894A JP3471444B2 (en) 1994-11-01 1994-11-01 Method for forming electrodes of ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26865894A JP3471444B2 (en) 1994-11-01 1994-11-01 Method for forming electrodes of ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH08130157A JPH08130157A (en) 1996-05-21
JP3471444B2 true JP3471444B2 (en) 2003-12-02

Family

ID=17461616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26865894A Expired - Fee Related JP3471444B2 (en) 1994-11-01 1994-11-01 Method for forming electrodes of ceramic capacitors

Country Status (1)

Country Link
JP (1) JP3471444B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW556237B (en) * 2001-09-14 2003-10-01 Matsushita Electric Ind Co Ltd Ceramic capacitor

Also Published As

Publication number Publication date
JPH08130157A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
CA1259677A (en) Process of manufacturing capacitive devices and capacitive devices manufactured by the process
CN1700373B (en) Stratified electronic apparatus
EP0125730A1 (en) Copper metallization for dielectric materials
JP3346023B2 (en) Electroconductive paint for electrode and method for producing the same
US6335301B1 (en) Dielectric ceramic composition, electric device and production method thereof
JP3471444B2 (en) Method for forming electrodes of ceramic capacitors
CN1190799C (en) Electronic assembly and mfg. method thereof
JPH06112085A (en) Layered ceramic capacitor and manufacture thereof
JPH09190950A (en) Outer electrode of electronic part
JP3698951B2 (en) Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
CN115547689A (en) Multilayer ceramic capacitor and preparation method thereof
JPH10116706A (en) Chip type thermistor and its manufacturing method
JPH02137759A (en) Dielectric ceramic having high dielectric constant, low dissipation factor, and flat temperature coefficient
JP3210042B2 (en) Electronic components for surface mounting
JP2618019B2 (en) Conductive paint for plating base and plating method using the same
JP3666908B2 (en) Manufacturing method of ceramic substrate for ceramic capacitor
JPH05299288A (en) Manufacture of laminated ceramic capacitor
JPH09266129A (en) External electrode of chip type electronic parts
CN101151680A (en) Conductor paste and electronic component
JP2004055557A (en) Copper paste, wiring board using the same and manufacturing method of wiring board
JP3733205B2 (en) Multilayer ceramic capacitor test method
JP3081605B1 (en) Dielectric porcelain composition, porcelain capacitor using the same, and method of manufacturing the same
JPH09186044A (en) Inner electrode material paste for stacked electronic component, and stacked electronic part, and its manufacture
JPH1187167A (en) Paste for terminal electrode and ceramic electronic component using the same and its manufacture
JP3599645B2 (en) Dielectric porcelain composition, porcelain capacitor using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees