JP3470053B2 - Connection structure for high frequency components - Google Patents

Connection structure for high frequency components

Info

Publication number
JP3470053B2
JP3470053B2 JP35505498A JP35505498A JP3470053B2 JP 3470053 B2 JP3470053 B2 JP 3470053B2 JP 35505498 A JP35505498 A JP 35505498A JP 35505498 A JP35505498 A JP 35505498A JP 3470053 B2 JP3470053 B2 JP 3470053B2
Authority
JP
Japan
Prior art keywords
frequency
conductor
frequency component
connection structure
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35505498A
Other languages
Japanese (ja)
Other versions
JP2000183106A (en
Inventor
武宏 奥道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP35505498A priority Critical patent/JP3470053B2/en
Publication of JP2000183106A publication Critical patent/JP2000183106A/en
Application granted granted Critical
Publication of JP3470053B2 publication Critical patent/JP3470053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は情報通信分野や半導
体分野等における半導体素子等の電子部品や半導体装置
あるいは半導体パッケージ・配線基板等の高周波用部品
同士の高周波信号の伝搬における相互接続に使用される
高周波用部品の接続構造に関し、特に高周波用部品同士
をいわゆるフリップチップ実装法により接続する際の接
続部分における高周波電気特性を改善した高周波用部品
の接続構造に関する。 【0002】 【従来の技術】従来、高周波用部品である半導体素子を
フリップチップ実装法にて同じく高周波用部品である高
周波用配線基板に接続した構造として、図4に断面図で
示したような接続構造がある。図4において、1は高周
波用半導体素子、6は高周波用配線基板である。高周波
用半導体素子1は基体2の上面に接地導体3が、また下
面に高周波信号を伝送する線路導体4が形成されてお
り、線路導体4の両方の先端には高周波用入出力部であ
る接続パッド5a・5bが設けられている。一方、高周
波用配線基板6は複数の誘電体層7a・7b・7cを積
層して成る基体7の内部および下面に複数の接地導体8
a・8b・8cが、上面に2つの線路導体9a・9bが
形成されており、線路導体9a・9bのそれぞれの一方
の先端には、高周波用半導体素子1の線路導体4の両端
の接続パッド5a・5bに対応した高周波用入出力部で
ある接続パッド10a・10bが設けられている。 【0003】そして、高周波用配線基板6の上面に高周
波用半導体素子1をこれら互いの線路導体4・9a・9
bの高周波用入出力部である接続パッド5a・5bおよ
び10a・10b同士を向かい合わせにして載置し、それぞ
れの接続パッド5a・5bと接続パッド10a・10bとの
間を導電性接続部材、例えば金属バンプ11a・11bによ
り接続している。 【0004】 【発明が解決しようとする課題】しかしながら、この従
来の高周波用部品の接続構造では、高周波用半導体素子
1の線路導体4が高周波用配線基板6の複数の接地導体
8a〜8cに対向することとなるため、高周波用半導体
素子1の線路導体4を伝搬する高周波信号がこの接地導
体8a〜8cに対する電界分布を有することとなる。そ
の結果、特性インピーダンスが設計値から大きく異なる
値を有することとなり、接続部において電気的な不連続
性による高周波信号の反射や放射損失が生じてしまい、
電気的特性の劣化を及ぼすという問題点があった。 【0005】このような電気的特性の劣化を軽減するた
めの構成として、例えば特開平9−260426号公報「実装
基板、実装方法及び半導体装置」には、図5に図4と同
様の断面図で示すような高周波用部品の接続構造が開示
されている。 【0006】図5において図4と同様の箇所には同じ符
号を付してある。この構成においては、高周波用配線基
板6の基体7について、高周波用半導体素子1の線路導
体4と対向する部位の誘電体層7cを形成しないものと
して、その部位に誘電体を形成しない凹部12を設けてい
る。 【0007】そして、このような構成によれば、高周波
用半導体素子1の線路導体4から高周波用配線基板6の
接地導体8cへの電界分布を低減することとなるため
に、この線路導体4を伝搬する高周波信号の特性インピ
ーダンスが設計した値から大きく異なることがなくな
り、特性インピーダンスを設計値のまま維持して整合さ
せることが可能となるというものである。 【0008】しかしながら、特開平9−260426号公報に
提案された高周波用部品の接続構造においては、線路導
体の特性インピーダンスを維持することは可能となるも
のの、凹部12の形成は高精度になされる必要があるため
に、製造上の困難が生じるとともに製造工程の増加をも
たらすこととなるという問題点があった。 【0009】本発明は上記従来技術における問題点に鑑
みてなされたものであり、その目的は、フリップチップ
実装による高周波用部品の接続構造における高周波信号
の電気的特性を改善することができるとともに、製造上
の困難性がなく、良好な電気的特性の接続部を安定して
得ることができる高周波用部品の接続構造を提供するこ
とにある。 【0010】 【課題を解決するための手段】本発明の高周波用部品の
接続構造は、基体の上面側に接地導体が、下面側に高周
波信号の接続部を先端に有する高周波信号伝送用の線路
導体が形成された第1の高周波用部品を、基体の下面側
に複数の接地導体が、上面側に前記接続部に対応した接
続部を先端に有する高周波信号伝送用の線路導体が形成
された第2の高周波用部品に、前記接続部同士を対向さ
せて導電性接続部材により電気的に接続するとともに、
前記第2の高周波用部品に形成された複数の接地導体の
うち少なくとも最上面側の接地導体の前記第1の高周波
用部品の線路導体と対向する部位に導体非形成領域を設
けたことを特徴とするものである。 【0011】 【発明の実施の形態】本発明の高周波用部品の接続構造
によれば、第2の高周波用部品に第1の高周波用部品を
フリップチップ実装した接続構造において、複数の接地
導体を有する第2の高周波用部品の少なくとも最上面側
の接地導体について、上面に載置されて高周波信号の接
続部同士が接続された第1の高周波用部品の線路導体と
対向する部位に導体非形成領域を設けていることから、
第2の高周波用部品について第1の高周波用部品の線路
導体に対向する部位にも接地導体が形成された従来の接
続構造では接続部近傍を始めとして最小作用の法則に従
って第1の高周波用部品の線路導体から第2の高周波用
部品の接地導体へ向かっていた電界成分が導体非形成領
域へは電界が生じない電界分布となる。この場合、さら
にその下に接地導体があればその接地導体へ向かう分布
となるが、その分布は第1の高周波用部品の接地導体に
向かう成分に比べて弱い成分しか向かわないこととなる
ため、従来の接続構造に比べて第1の高周波用部品の線
路導体からの電界分布が設計された電界分布に近付くこ
ととなる。これにより、従来の接続構造のように第1の
高周波用部品の線路導体を伝搬する高周波信号が第2の
高周波用部品の接地導体への電界分布を強く有する場合
と比較して、電気的な不連続性による高周波信号の反射
や放射損失を軽減することができ、その結果、電気的特
性を向上させることができるので、良好な電気的特性を
有する高周波信号の接続を行なうことができる高周波用
部品の接続構造となる。 【0012】また、本発明の高周波用部品の接続構造に
よれば、特開平9−260426号公報に開示された高周波用
部品の接続構造と比較しても同等以上の良好な電気的特
性を得ることができるうえ、第2の高周波用部品の複数
の接地導体の一部に特に高精度を要求しない導体非形成
領域を設けるだけでよいことから、従来周知の製造方法
により第2の高周波用部品を容易に製造することがで
き、良好な電気的特性を有する接続構造を安定して得る
ことができる高周波用部品の接続構造となる。 【0013】本発明の高周波用部品の接続構造によれ
ば、第2の高周波用部品の接地導体に設ける導体非形成
領域を最上面側の接地導体に加えてその下に位置する複
数の接地導体にも同様に設けることにより、第1の高周
波用部品の線路導体から第2の高周波用部品の接地導体
へ向かう電界成分はさらに弱くなることから、第1の高
周波用部品の線路導体の電界分布が設計された電界分布
により近付くこととなり、電気的な不連続性による高周
波信号の反射や放射損失をさらに効果的に軽減すること
ができる。 【0014】なお、このように第2の高周波用部品の接
地導体に設ける導体非形成領域は、これに対向する第1
の高周波用部品の線路導体に対応する部位に設けられて
いれば十分なものであるが、その部位を包含していれ
ば、例えば第1の高周波用部品の略全面に対向する部位
にわたるものとして設けてもよい。そのように第1の高
周波用部品の線路導体に対向する部位を含んでより広い
領域にわたる導体非形成領域を設けた場合には、第1の
高周波用部品の線路導体からこの線路導体が対向してい
た第2の高周波用部品の接地導体へ向かう電界成分がほ
とんど生じないこととなり、そのため、第1の高周波用
部品の線路導体の電界分布が設計された電界分布により
効果的に近付くこととなり、電気的な不連続性による高
周波信号の反射や放射損失をより軽減することができ
る。 【0015】以下、図面に基づいて本発明の高周波用部
品の接続構造を詳細に説明する。 【0016】図1は本発明の高周波用部品の接続構造の
例を示す断面図である。 【0017】図1において、21は第1の高周波用部品と
しての高周波用半導体素子、26は第2の高周波用部品と
しての高周波用配線基板である。高周波用半導体素子21
は基体22の上面側、この例では上面に接地導体23が、ま
た下面側、この例では下面に高周波信号を伝送する線路
導体24が形成されており、線路導体24の両方の先端には
高周波信号の接続部(高周波用入出力部)である接続パ
ッド25a・25bが設けられている。 【0018】なお、この接地導体23および線路導体24
は、これら接地導体23と線路導体24とにより高周波信号
を伝送するための接地導体および線路導体として機能す
るものであれば、いずれもその一部が基体22の内部に形
成されたいわゆる内層化されたものであってもよい。ま
た、線路導体24は複数形成されていてもよく、両側に同
一面接地導体を設けたコプレーナ線路構造であってもよ
い。 【0019】また、接地導体23は通常は基体22の裏面側
の略全面に形成されるが、線路導体24により高周波信号
を伝送するための接地導体として機能するものであれ
ば、線路導体24に対応した必要な部分のみに形成してお
けばよい。 【0020】一方、高周波用配線基板26は、例えば複数
の誘電体層27a・27b・27cを積層して成る基体27の下
面側、すなわち内部および下面に複数の接地導体28a・
28b・28cが、上面側、この例では上面に2つの線路導
体29a・29bが形成されており、線路導体29a・29bの
それぞれの一方の先端には、高周波用半導体素子21の線
路導体24の両端の接続パッド25a・25bに対応した高周
波信号の接続部(高周波用入出力部)である接続パッド
30a・30bが設けられている。 【0021】なお、この線路導体29a・29bは、高周波
用半導体素子21の線路導体24と対向する位置には配設さ
れておらず、線路導体24が高周波用配線基板26の接地導
体28a〜28cに対向するように形成去れている。また、
この線路導体29a・29bもその一部が基体27の内部に形
成されていわゆる内層化されていてもよく、線路導体24
に対応してさらに複数形成されていてもよく、両側に同
一面接地導体を設けたコプレーナ線路構造であってもよ
い。 【0022】また、接地導体28a〜28cも通常は基体27
の裏面側の略全面に形成されるが、線路導体29a・29b
により高周波信号を伝送するための接地導体として機能
するものであれば、線路導体29a・29bに対応した必要
な部分のみに形成しておけばよい。 【0023】高周波用半導体素子21は、高周波用配線基
板26の上面にこれら互いの線路導体24・29a・29bの接
続パッド25a・25bおよび30a・30b同士を向かい合わ
せにして載置し、それぞれの接続パッド25a・25bと接
続パッド30a・30bとの間を導電性接続部材、例えば金
属バンプ31a・31bにより接続している。 【0024】なお、接続部における良好な接続状態を得
るために、それぞれの線路導体24・29a・29bの先端の
接続パッド25a・25b・30a・30bの両側の基体22・27
の表面に接地用パッドを設けて、これらを金属バンプ31
a・31bと同様の金属バンプにより電気的に接続するよ
うにしてもよい。 【0025】そして、32は高周波用配線基板26の複数の
接地導体28a〜28cのうち少なくとも最上面側の接地導
体、この例では接地導体28cの高周波用半導体素子21の
線路導体24と対向する部位に設けた導体非形成領域であ
る。 【0026】本発明の高周波用部品の接続構造によれ
ば、このように第2の高周波用部品である高周波用配線
基板26のの複数の接地導体28a〜28cのうち少なくとも
最上面側の接地導体28cに導体非形成領域32を設けたこ
とにより、従来の接続構造では接続パッド25a・25b・
30a・30b近傍を始めとして最小作用の法則に従って高
周波用半導体素子21の線路導体24から高周波用配線基板
26の最上面側の接地導体28cへ向かっていた電界成分が
導体非形成領域32へは電界が生じないこととなり、高周
波用半導体素子21の接地導体23に向かう成分に比べて弱
い成分しか向かわないこととなるため、高周波用半導体
素子21の線路導体24からの電界分布が設計された電界分
布に近付くこととなる。これにより、電気的な不連続性
による高周波信号の反射や放射損失を軽減することがで
きて電気的特性を向上させることができ、良好な電気的
特性を有する高周波信号の接続を行なうことができる。 【0027】次に、図2に本発明の高周波用部品の接続
構造の実施の形態の他の例を図1と同様の断面図で示
す。 【0028】図2において図1と同様の箇所には同じ符
号を付してあり、21は高周波用半導体素子、22は基体、
23は接地導体、24は線路導体、25a・25bは接続パッド
である。また、26は高周波用配線基板、27は基体(27a
〜27bは誘電体層)、28a〜28cは複数の接地導体、29
a・29bは線路導体、30a・30bは接続パッドであり、
31a・31bは金属バンプである。 【0029】そして、この例では図1の例と同じく高周
波用配線基板26の複数の接地導体28a〜28cのうち最上
面側の接地導体28cの高周波用半導体素子21の線路導体
24と対向する部位に導体非形成領域32aを設けるととも
に、さらにその下面側に位置する接地導体28bの線路導
体24と対向する部位にも導体非形成領域32bを設けてい
る。 【0030】このような本発明の高周波用部品の接続構
造によれば、高周波用半導体素子21の線路導体24から高
周波用配線基板26の接地導体28a〜28cへ向かう電界成
分はさらに弱くなることから、高周波用半導体素子21の
線路導体24の電界分布が設計された電界分布により近付
くこととなり、電気的な不連続性による高周波信号の反
射や放射損失をさらに効果的に軽減することができる。 【0031】 【実施例】次に、本発明の高周波用部品の接続構造につ
いて具体例を説明する。 【0032】まず、比誘電率が9.6 で厚みが100 μmの
誘電体基板からなる基体に対して上面のほぼ全面にわた
る金属導体膜を接地導体として被着形成した。また、基
体の下面にマイクロストリップ線路の線路導体を線路幅
95μmで形成し、その先端に接続パッドを接続した。こ
れにより、第1の高周波用部品を作製した。 【0033】一方、比誘電率が8.8 で1層あたりの厚み
が200 μmの誘電体層を積層して成る基体に対して下面
および内層に金属導体膜を複数の接地導体として形成し
た。 【0034】また、基体の上面にマイクロストリップ線
路の線路導体を形成し、第1の高周波用部品の接続パッ
ドと対応する位置に形成した接続パッドと接続した。こ
こで、内層の接地導体のうち最上面側の接地導体には、
第1の高周波用部品の線路導体と対向する部位にその線
路導体と対応した形状の導体非形成領域を設けた。これ
により、第2の高周波用部品を作製した。 【0035】そして、これら第1の高周波用部品と第2
の高周波用部品とを接続パッド同士が向かい合うように
して高さh(h=10,30,50μm)の金属バンプにより
フリップチップ実装法により接続することにより、図1
に示す本発明の高周波用部品の接続構造である試料Aを
作製した。 【0036】次に、第2の高周波用部品として上記のよ
うに内層の導体非形成領域を設けた接地導体の下面側に
位置する接地導体にも同じ形状・寸法の導体非形成領域
を設け、その他は試料Aと同様にして作製することによ
り、図2に示す本発明の高周波用部品の接続構造である
試料Bを作製した。 【0037】また、比較例として、上記試料Aおよび試
料Bと同様にして、ただし第2の高周波用部品の接地導
体には導体非形成領域を設けることなく作製して、図4
に示す従来の高周波用部品の接続構造である試料Cを作
製した。 【0038】そして、これら試料A・試料B・試料Cに
ついて、電磁界解析により第1の高周波用部品と第2の
高周波用部品とが重なった積層部において高周波信号の
伝搬方向に垂直な面内の断面における特性インピーダン
スを抽出した。これらの特性インピーダンスの抽出結果
を図3に示す。 【0039】図3は高周波用部品の接続構造の試料A・
試料B・試料Cの特性インピーダンスを示す線図であ
り、横軸は第2の高周波用部品においてその上面から導
体非形成領域が設けられている接地導体での誘電体層の
層数を示している。すなわち、層数0が試料Cに相当し
層数1が試料A、層数2が試料Bに相当する。また、縦
軸は特性インピーダンス(単位:Ω)を表わしている。
また、実線(h10)・破線(h30)・点線(h50)で示
した特性曲線は、試料A・試料B・試料Cの各試料にお
いてバンプ高さhをそれぞれ10μm・30μm・50μmと
したときの各バンプ高さによる特性インピーダンスの変
化を示している。 【0040】この結果より分かるように、本発明の高周
波用部品の接続構造である試料Aおよび試料Bは、従来
の高周波用部品の接続構造である試料Cと比べて、特性
インピーダンスが設計値である50Ωに近い値を有してい
るためにインピーダンス整合がなされ、良好な高周波電
気的特性を有している。 【0041】これにより、本発明の高周波用部品の接続
構造によれば、従来の高周波用部品の接続構造と比較し
て電気的な不連続性による高周波信号の反射や放射損失
を軽減することができて電気的特性が向上でき、良好な
電気的特性を有する高周波信号の接続を行なうことがで
きることが確認できた。 【0042】なお、以上はあくまで本発明の実施の形態
の例示であって、本発明はこれらに限定されるものでは
なく、本発明の要旨を逸脱しない範囲で種々の変更や改
良を加えることは何ら差し支えない。例えば、上記の例
では導電性接続部材として金属バンプを用いた例を示し
たが、導電性接続部材は導体を介して高周波用入出力部
同士を電気的に接続していれば、パッドの他にもボール
やピラーであってもよい。 【0043】 【発明の効果】本発明の高周波用部品の接続構造によれ
ば、第2の高周波用部品に第1の高周波用部品をフリッ
プチップ実装した接続構造において、複数の接地導体を
有する第2の高周波用部品の少なくとも最上面側の接地
導体について第1の高周波用部品の線路導体と対向する
部位に導体非形成領域を設けていることから、第1の高
周波用部品の線路導体から第2の高周波用部品の接地導
体へ向かっていた電界成分が導体非形成領域へは電界が
生じない電界分布となり、あるいはその分布は第1の高
周波用部品の接地導体に向かう成分に比べて弱い成分し
か向かわないこととなるため、第1の高周波用部品の線
路導体からの電界分布が設計された電界分布に近付くこ
ととなる。これにより、電気的な不連続性による高周波
信号の反射や放射損失を軽減することができて電気的特
性を向上させることができるので、良好な電気的特性を
有する高周波信号の接続を行なうことができる。 【0044】また、本発明の高周波用部品の接続構造に
よれば、第2の高周波用部品の複数の接地導体の一部に
特に高精度を要求しない導体非形成領域を設けるだけで
よいことから、従来周知の製造方法により第2の高周波
用部品を容易に製造することができ、良好な電気的特性
を有する接続構造を安定して得ることができる。 【0045】以上により、本発明によれば、フリップチ
ップ実装による高周波用部品の接続構造における高周波
信号の電気的特性を改善することができるとともに、製
造上の困難性がなく、良好な電気的特性の接続部を安定
して得ることができる高周波用部品の接続構造を提供す
ることができた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic component such as a semiconductor element in the information communication field and the semiconductor field, and a high-frequency component such as a semiconductor device or a semiconductor package or a wiring board. Regarding the connection structure of high-frequency components used for interconnection in the propagation of high-frequency signals, particularly the connection structure of high-frequency components with improved high-frequency electrical characteristics at the connection portion when connecting the high-frequency components by a so-called flip-chip mounting method About. 2. Description of the Related Art Conventionally, as a structure in which a semiconductor element as a high-frequency component is connected to a high-frequency wiring board, which is also a high-frequency component, by a flip-chip mounting method, as shown in a sectional view in FIG. There is a connection structure. In FIG. 4, 1 is a high-frequency semiconductor element, and 6 is a high-frequency wiring board. The high-frequency semiconductor element 1 has a ground conductor 3 formed on an upper surface of a base 2 and a line conductor 4 for transmitting a high-frequency signal formed on the lower surface. Pads 5a and 5b are provided. On the other hand, the high-frequency wiring board 6 has a plurality of ground conductors 8 on the inside and underside of a base 7 formed by laminating a plurality of dielectric layers 7a, 7b and 7c.
a, 8b, and 8c are formed on the upper surface with two line conductors 9a and 9b, and connection pads at both ends of the line conductor 4 of the high-frequency semiconductor element 1 are provided at one end of each of the line conductors 9a and 9b. Connection pads 10a and 10b, which are high frequency input / output sections corresponding to 5a and 5b, are provided. The high-frequency semiconductor element 1 is placed on the upper surface of the high-frequency wiring board 6 with these line conductors 4.9a, 9a.
b, the connection pads 5a and 5b and 10a and 10b, which are input / output sections for high frequency, are placed facing each other, and a conductive connecting member is provided between each of the connection pads 5a and 5b and the connection pad 10a and 10b. For example, they are connected by metal bumps 11a and 11b. However, in this conventional connection structure for high-frequency components, the line conductor 4 of the high-frequency semiconductor element 1 faces a plurality of ground conductors 8 a to 8 c of the high-frequency wiring board 6. Therefore, a high-frequency signal propagating through the line conductor 4 of the high-frequency semiconductor element 1 has an electric field distribution with respect to the ground conductors 8a to 8c. As a result, the characteristic impedance has a value greatly different from the design value, and reflection or radiation loss of a high-frequency signal due to electrical discontinuity occurs at the connection portion,
There is a problem that the electrical characteristics are deteriorated. As a configuration for reducing such deterioration of the electric characteristics, for example, Japanese Patent Application Laid-Open No. 9-260426, entitled "Mounting board, mounting method and semiconductor device" shows a sectional view similar to FIG. A connection structure for high-frequency components as shown in FIG. In FIG. 5, the same parts as those in FIG. 4 are denoted by the same reference numerals. In this configuration, with respect to the base 7 of the high-frequency wiring board 6, it is assumed that the dielectric layer 7 c is not formed in a portion facing the line conductor 4 of the high-frequency semiconductor element 1, and the concave portion 12 in which no dielectric is formed is formed in that portion. Provided. According to such a configuration, the electric field distribution from the line conductor 4 of the high-frequency semiconductor element 1 to the ground conductor 8c of the high-frequency wiring board 6 is reduced. The characteristic impedance of the propagated high-frequency signal does not greatly differ from the designed value, and matching can be performed while maintaining the characteristic impedance at the designed value. However, in the connection structure for high-frequency components proposed in Japanese Patent Application Laid-Open No. 9-260426, although it is possible to maintain the characteristic impedance of the line conductor, the recess 12 is formed with high precision. Because of the necessity, there is a problem in that the production becomes difficult and the number of production steps is increased. The present invention has been made in view of the above-mentioned problems in the prior art, and has as its object to improve the electrical characteristics of a high-frequency signal in a connection structure of high-frequency components by flip-chip mounting, An object of the present invention is to provide a connection structure for a high-frequency component that can stably obtain a connection portion having good electric characteristics without difficulty in manufacturing. According to the present invention, there is provided a connection structure for a high frequency component, comprising: a ground conductor on an upper surface of a base; A first high-frequency component on which a conductor is formed, a plurality of ground conductors are formed on the lower surface side of the base, and a line conductor for high-frequency signal transmission having a connection portion corresponding to the connection portion at the top is formed on the upper surface side. A second high-frequency component, with the connection portions facing each other and electrically connected by a conductive connection member;
A conductor non-forming region is provided at least in a portion of the plurality of ground conductors formed on the second high-frequency component, which is opposed to a line conductor of the first high-frequency component, of a ground conductor on the uppermost surface side. It is assumed that. According to the connection structure of a high-frequency component of the present invention, in a connection structure in which a first high-frequency component is flip-chip mounted on a second high-frequency component, a plurality of ground conductors are connected. At least a ground conductor on the uppermost surface side of the second high-frequency component having no conductor is formed at a portion opposed to the line conductor of the first high-frequency component mounted on the upper surface and connected to the connection portions of the high-frequency signals. Because there is an area,
In the conventional connection structure in which the ground conductor is also formed at the portion of the second high-frequency component opposite to the line conductor of the first high-frequency component, the first high-frequency component is used in accordance with the law of least action starting from the vicinity of the connection portion. The electric field component from the line conductor toward the ground conductor of the second high-frequency component has an electric field distribution in which no electric field is generated in the non-conductor-formed region. In this case, if there is a ground conductor further below the distribution, the distribution is directed toward the ground conductor. However, since the distribution is directed only to a weaker component than the component directed toward the ground conductor of the first high-frequency component, The electric field distribution from the line conductor of the first high-frequency component approaches the designed electric field distribution as compared to the conventional connection structure. Thereby, compared to a case where a high-frequency signal propagating through the line conductor of the first high-frequency component has a strong electric field distribution to the ground conductor of the second high-frequency component as in the conventional connection structure, the electric connection is higher. High frequency signal reflection and radiation loss due to discontinuity can be reduced, and as a result, electrical characteristics can be improved, so that high frequency signals with good electrical characteristics can be connected. It becomes a connection structure of parts. Further, according to the connection structure for high-frequency components of the present invention, good electrical characteristics equivalent to or better than the connection structure for high-frequency components disclosed in Japanese Patent Application Laid-Open No. 9-260426 are obtained. In addition, since it is only necessary to provide a conductor-free region that does not require particularly high precision in a part of the plurality of ground conductors of the second high-frequency component, the second high-frequency component can be formed by a conventionally known manufacturing method. Can be easily manufactured, and a connection structure for high frequency components can be stably obtained with a connection structure having good electrical characteristics. According to the connection structure of the high-frequency component of the present invention, in addition to the conductor-free area provided in the ground conductor of the second high-frequency component, the ground conductor on the uppermost surface side and a plurality of ground conductors located thereunder In the same manner, the electric field component from the line conductor of the first high-frequency component to the ground conductor of the second high-frequency component is further reduced, so that the electric field distribution of the line conductor of the first high-frequency component Becomes closer to the designed electric field distribution, and the reflection and radiation loss of the high-frequency signal due to the electrical discontinuity can be more effectively reduced. The conductor-free area provided on the ground conductor of the second high-frequency component as described above is formed by the first opposing area.
It is sufficient if it is provided at a portion corresponding to the line conductor of the high-frequency component, but if the portion is included, for example, it is assumed that it covers a portion facing almost the entire surface of the first high-frequency component. It may be provided. In the case where the conductor-free region is provided over a wider area including the portion facing the line conductor of the first high-frequency component, the line conductor faces the line conductor of the first high-frequency component. The electric field component directed to the ground conductor of the second high-frequency component, which has been generated, hardly occurs. Therefore, the electric field distribution of the line conductor of the first high-frequency component more effectively approaches the designed electric field distribution. The reflection and radiation loss of the high-frequency signal due to the electrical discontinuity can be further reduced. Hereinafter, the connection structure of the high frequency component of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an example of a connection structure of a high-frequency component according to the present invention. In FIG. 1, reference numeral 21 denotes a high-frequency semiconductor element as a first high-frequency component, and reference numeral 26 denotes a high-frequency wiring board as a second high-frequency component. High frequency semiconductor element 21
A ground conductor 23 is formed on the upper surface side of the base 22, in this example, a ground conductor 23 is formed on the upper surface, and a line conductor 24 for transmitting a high-frequency signal is formed on the lower surface side, in this example, on the lower surface. Connection pads 25a and 25b, which are signal connection portions (high-frequency input / output portions), are provided. The ground conductor 23 and the line conductor 24
As long as the ground conductor 23 and the line conductor 24 function as a ground conductor and a line conductor for transmitting a high-frequency signal by the ground conductor 23 and the line conductor 24, a part of each of them is a so-called inner layer formed inside the base 22. May be used. Further, a plurality of line conductors 24 may be formed, and a coplanar line structure in which the same surface ground conductor is provided on both sides may be used. The ground conductor 23 is usually formed on substantially the entire back surface of the base 22. However, if the ground conductor 23 functions as a ground conductor for transmitting high-frequency signals by the line conductor 24, the ground conductor 23 may be formed on the line conductor 24. What is necessary is just to form only in the required part corresponding. On the other hand, the high-frequency wiring board 26 has a plurality of grounding conductors 28a, 28b on the lower surface side of the base 27 formed by laminating a plurality of dielectric layers 27a, 27b, 27c, for example.
Two line conductors 29a and 29b are formed on the upper surface side, in this example, on the upper surface side, and one end of each of the line conductors 29a and 29b is provided with the line conductor 24 of the high-frequency semiconductor element 21 on the upper surface side. Connection pads that are high-frequency signal connection parts (high-frequency input / output parts) corresponding to the connection pads 25a and 25b at both ends
30a and 30b are provided. The line conductors 29a and 29b are not disposed at positions facing the line conductor 24 of the high-frequency semiconductor element 21, and the line conductors 24 are connected to the ground conductors 28a to 28c of the high-frequency wiring board 26. It is formed so as to face. Also,
The line conductors 29a and 29b may also be partially formed inside the base body 27 to form a so-called inner layer.
And a coplanar line structure in which the same plane ground conductor is provided on both sides. The ground conductors 28a to 28c are usually
Formed on substantially the entire back side of the line conductors 29a and 29b.
As long as the conductor functions as a ground conductor for transmitting a high-frequency signal, it may be formed only in a necessary portion corresponding to the line conductors 29a and 29b. The high-frequency semiconductor element 21 is mounted on the upper surface of the high-frequency wiring board 26 with the connection pads 25a, 25b and 30a, 30b of the line conductors 24, 29a, 29b facing each other. The connection pads 25a and 25b and the connection pads 30a and 30b are connected by a conductive connection member, for example, metal bumps 31a and 31b. In order to obtain a good connection state at the connection portion, the bases 22 and 27 on both sides of the connection pads 25a, 25b, 30a and 30b at the tips of the respective line conductors 24, 29a and 29b.
Ground pads are provided on the surface of the
The electrical connection may be made by the same metal bump as that of a.31b. Reference numeral 32 denotes a ground conductor on at least the uppermost side of the plurality of ground conductors 28a to 28c of the high-frequency wiring board 26, in this example, a portion of the ground conductor 28c facing the line conductor 24 of the high-frequency semiconductor element 21. Is a conductor non-formation area provided in the above. According to the connection structure for high-frequency components of the present invention, at least the uppermost ground conductor of the plurality of ground conductors 28a to 28c of the high-frequency wiring board 26, which is the second high-frequency component, is used. By providing the conductor non-forming region 32 in the connection structure 28c, the connection pads 25a, 25b,
From the line conductor 24 of the high-frequency semiconductor element 21 to the high-frequency wiring board in accordance with the law of least action, including the vicinity of 30a and 30b.
The electric field component directed toward the ground conductor 28c on the uppermost surface side of 26 does not generate an electric field in the conductor non-formed region 32, and only a component that is weaker than the component directed toward the ground conductor 23 of the high frequency semiconductor element 21 is directed. As a result, the electric field distribution from the line conductor 24 of the high-frequency semiconductor element 21 approaches the designed electric field distribution. Thereby, reflection and radiation loss of a high-frequency signal due to electrical discontinuity can be reduced, electrical characteristics can be improved, and connection of a high-frequency signal having good electrical characteristics can be performed. . FIG. 2 is a sectional view similar to FIG. 1 showing another embodiment of the connection structure for high frequency components of the present invention. In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, 21 is a high-frequency semiconductor element, 22 is a base,
23 is a ground conductor, 24 is a line conductor, and 25a and 25b are connection pads. 26 is a high frequency wiring board, 27 is a base (27a
To 27b are dielectric layers), 28a to 28c are a plurality of ground conductors, 29
a and 29b are line conductors, 30a and 30b are connection pads,
31a and 31b are metal bumps. In this example, as in the example of FIG. 1, the line conductor of the high-frequency semiconductor element 21 of the uppermost ground conductor 28c of the plurality of ground conductors 28a to 28c of the high-frequency wiring board 26 is used.
A conductor non-formation region 32a is provided at a portion facing the conductor 24, and a conductor non-formation region 32b is further provided at a portion of the ground conductor 28b located on the lower surface side thereof facing the line conductor 24. According to the connection structure for high-frequency components of the present invention, the electric field component from the line conductor 24 of the high-frequency semiconductor element 21 to the ground conductors 28a to 28c of the high-frequency wiring board 26 is further reduced. In addition, the electric field distribution of the line conductor 24 of the high-frequency semiconductor element 21 becomes closer to the designed electric field distribution, and the reflection and radiation loss of the high-frequency signal due to the electrical discontinuity can be more effectively reduced. Next, a specific example of the connection structure of the high frequency component of the present invention will be described. First, a metal conductor film covering almost the entire upper surface was formed as a ground conductor on a substrate made of a dielectric substrate having a relative dielectric constant of 9.6 and a thickness of 100 μm. In addition, the line conductor of the microstrip line is placed on the lower surface of the base with the line width.
It was formed to a thickness of 95 μm, and a connection pad was connected to the tip. Thus, a first high-frequency component was manufactured. On the other hand, a metal conductor film was formed as a plurality of ground conductors on the lower surface and the inner layer of a substrate formed by laminating dielectric layers each having a relative dielectric constant of 8.8 and a thickness of 200 μm per layer. Further, a line conductor of a microstrip line was formed on the upper surface of the base, and connected to a connection pad formed at a position corresponding to the connection pad of the first high-frequency component. Here, among the ground conductors in the inner layer, the ground conductor on the top surface side includes:
A conductor non-forming region having a shape corresponding to the line conductor was provided in a portion of the first high-frequency component facing the line conductor. Thus, a second high-frequency component was manufactured. The first high-frequency component and the second
1 is connected by a flip-chip mounting method using metal bumps having a height h (h = 10, 30, 50 μm) with the connection pads facing each other.
The sample A which is the connection structure of the high frequency component of the present invention shown in FIG. Next, as a second high-frequency component, a conductor-free region having the same shape and dimensions is provided also on the ground conductor located on the lower surface side of the ground conductor provided with the inner-layer conductor-free region as described above, The other components were manufactured in the same manner as the sample A, whereby the sample B having the connection structure of the high-frequency component of the present invention shown in FIG. 2 was manufactured. As a comparative example, the same procedure as in the above-mentioned samples A and B was carried out except that no conductor-free region was formed in the ground conductor of the second high-frequency component.
The sample C having the connection structure of the conventional high frequency component shown in FIG. Then, the samples A, B, and C were subjected to electromagnetic field analysis to determine in a plane perpendicular to the propagation direction of the high-frequency signal in the laminated portion where the first high-frequency component and the second high-frequency component overlapped. The characteristic impedance in the cross section of was extracted. FIG. 3 shows the results of extracting these characteristic impedances. FIG. 3 shows a sample A.
It is a diagram which shows the characteristic impedance of sample B and sample C, and a horizontal axis | shaft shows the number of dielectric layers in the ground conductor in which the conductor non-forming area | region is provided from the upper surface in the 2nd high frequency component. I have. That is, the number of layers 0 corresponds to sample C, the number of layers 1 corresponds to sample A, and the number of layers 2 corresponds to sample B. The vertical axis represents characteristic impedance (unit: Ω).
The characteristic curves indicated by the solid line (h10), the broken line (h30), and the dotted line (h50) are obtained when the bump height h is 10 μm, 30 μm, and 50 μm in each of the samples A, B, and C. The change of the characteristic impedance according to each bump height is shown. As can be seen from the results, the sample A and the sample B having the connection structure of the high-frequency component according to the present invention have characteristic impedances at design values, as compared with the sample C having the connection structure of the conventional high-frequency component. Since it has a value close to a certain 50Ω, impedance matching is performed, and excellent high-frequency electrical characteristics are obtained. Thus, according to the connection structure for high-frequency components of the present invention, reflection and radiation loss of high-frequency signals due to electrical discontinuity can be reduced as compared with the conventional connection structure for high-frequency components. As a result, it was confirmed that electrical characteristics could be improved and high-frequency signals having good electrical characteristics could be connected. It should be noted that the above is only an example of the embodiment of the present invention, and the present invention is not limited to the embodiment. Various changes and improvements may be made without departing from the gist of the present invention. No problem. For example, in the above example, an example was shown in which metal bumps were used as the conductive connection members. However, if the conductive connection members electrically connect the high-frequency input / output units to each other via the conductors, the conductive connection members may include pads and the like. Also, it may be a ball or a pillar. According to the connection structure of the high-frequency component of the present invention, in the connection structure in which the first high-frequency component is flip-chip mounted on the second high-frequency component, a connection structure having a plurality of ground conductors is provided. Since at least the uppermost ground conductor of the second high-frequency component has a conductor non-forming region at a position facing the line conductor of the first high-frequency component, the second conductor has a region from the line conductor of the first high-frequency component. The electric field component directed toward the ground conductor of the second high-frequency component becomes an electric field distribution in which no electric field is generated in the conductor-free area, or the distribution is a component that is weaker than the component directed toward the ground conductor of the first high-frequency component. Therefore, the electric field distribution from the line conductor of the first high-frequency component approaches the designed electric field distribution. Thereby, reflection and radiation loss of the high-frequency signal due to the electrical discontinuity can be reduced, and the electrical characteristics can be improved. Therefore, the connection of the high-frequency signal having good electrical characteristics can be performed. it can. Further, according to the connection structure of the high-frequency component of the present invention, it is only necessary to provide a conductor-free region which does not particularly require high precision in a part of the plurality of ground conductors of the second high-frequency component. The second high-frequency component can be easily manufactured by a conventionally known manufacturing method, and a connection structure having good electric characteristics can be stably obtained. As described above, according to the present invention, it is possible to improve the electrical characteristics of the high-frequency signal in the connection structure of the high-frequency components by flip-chip mounting, and to achieve good electrical characteristics without difficulty in manufacturing. The connection structure of the high-frequency component, which can stably obtain the connection part of the above, can be provided.

【図面の簡単な説明】 【図1】本発明の高周波用部品の接続構造の実施の形態
の例を示す断面図である。 【図2】本発明の高周波用部品の接続構造の実施の形態
の他の例を示す断面図である。 【図3】高周波用部品の接続構造における特性インピー
ダンスの変化を示す線図である。 【図4】従来の高周波用部品の接続構造の例を示す断面
図である。 【図5】従来の高周波用部品の接続構造の他の例を示す
断面図である。 【符号の説明】 21・・・・・・・高周波用半導体素子(第1の高周波用
部品) 22・・・・・・・基体 23・・・・・・・接地導体 24・・・・・・・線路導体 25a、25b・・・接続パッド(接続部) 26・・・・・・・高周波用配線基板(第2の高周波用部
品) 27・・・・・・・基体 28a〜28c・・・接地導体 29a、29b・・・線路導体 30a、30b・・・接続パッド(接続部) 31・・・・・・・金属バンプ(導電性接続部材) 32、32a、32b・・・導体非形成領域
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of an embodiment of a connection structure for high frequency components of the present invention. FIG. 2 is a cross-sectional view showing another example of the embodiment of the connection structure for high-frequency components of the present invention. FIG. 3 is a diagram showing a change in characteristic impedance in a connection structure of a high-frequency component. FIG. 4 is a cross-sectional view showing an example of a conventional connection structure for high frequency components. FIG. 5 is a cross-sectional view showing another example of a conventional connection structure for high frequency components. [Description of Signs] 21 ···················································································· ..Line conductors 25a, 25b connection pad (connection part) 26 wiring board for high frequency (second high frequency component) 27 bases 28a to 28c -Ground conductors 29a, 29b-Line conductors 30a, 30b-Connection pads (connection parts) 31-Metal bumps (conductive connection members) 32, 32a, 32b-Conductors not formed region

Claims (1)

(57)【特許請求の範囲】 【請求項1】 基体の上面側に接地導体が、下面側に高
周波信号の接続部を先端に有する高周波信号伝送用の線
路導体が形成された第1の高周波用部品を、基体の下面
側に複数の接地導体が、上面側に前記接続部に対応した
接続部を先端に有する高周波信号伝送用の線路導体が形
成された第2の高周波用部品に、前記接続部同士を対向
させて導電性接続部材により電気的に接続するととも
に、前記第2の高周波用部品に形成された複数の接地導
体のうち少なくとも最上面側の接地導体の前記第1の高
周波用部品の線路導体と対向する部位に導体非形成領域
を設けたことを特徴とする高周波用部品の接続構造。
(1) A first high-frequency device in which a ground conductor is formed on an upper surface of a base, and a line conductor for transmitting a high-frequency signal having a connection portion for a high-frequency signal at a front end is formed on a lower surface of the base. A plurality of grounding conductors on the lower surface side of the base, and a second high-frequency component on which a line conductor for high-frequency signal transmission having a connection portion corresponding to the connection portion at the tip on the upper surface side is formed. The connection portions are opposed to each other to be electrically connected by a conductive connection member, and at least the topmost ground conductor of the first high-frequency ground conductor among the plurality of ground conductors formed on the second high-frequency component A connection structure for a high-frequency component, wherein a conductor-free area is provided in a part of the component facing a line conductor.
JP35505498A 1998-12-14 1998-12-14 Connection structure for high frequency components Expired - Fee Related JP3470053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35505498A JP3470053B2 (en) 1998-12-14 1998-12-14 Connection structure for high frequency components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35505498A JP3470053B2 (en) 1998-12-14 1998-12-14 Connection structure for high frequency components

Publications (2)

Publication Number Publication Date
JP2000183106A JP2000183106A (en) 2000-06-30
JP3470053B2 true JP3470053B2 (en) 2003-11-25

Family

ID=18441671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35505498A Expired - Fee Related JP3470053B2 (en) 1998-12-14 1998-12-14 Connection structure for high frequency components

Country Status (1)

Country Link
JP (1) JP3470053B2 (en)

Also Published As

Publication number Publication date
JP2000183106A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
KR100430299B1 (en) Radio frequency circuit module on multi-layer substrate
JP3241019B2 (en) Coplanar railway track
US6674347B1 (en) Multi-layer substrate suppressing an unwanted transmission mode
US7436056B2 (en) Electronic component package
JP3502405B2 (en) Microwave device compensated by airborne path
US11424196B2 (en) Matching circuit for integrated circuit die
JP4656212B2 (en) Connection method
US20060082422A1 (en) Connection structure of high frequency lines and optical transmission module using the connection structure
EP1585184B1 (en) Direct current cut structure
JP3303226B2 (en) Flip chip mounting structure
JP3470053B2 (en) Connection structure for high frequency components
JP2002185201A (en) Wiring board for high frequency
JP3470052B2 (en) Connection structure for high frequency components
JP3410673B2 (en) Semiconductor device and semiconductor chip mounting method
JP2001185918A (en) Wiring board for high frequency
JP4467115B2 (en) Connection structure for high frequency components
JP3833426B2 (en) High frequency wiring board
JP3913937B2 (en) Semiconductor device
JP3987659B2 (en) High frequency semiconductor device
JPH0936617A (en) High frequency module
US8975737B2 (en) Transmission line for electronic circuits
JP2001298306A (en) High frequency transmission line substrate and high frequency package
JP3395290B2 (en) High frequency circuit board
JP2002359443A (en) Connection structure of high-frequency package and wiring board
JP3600729B2 (en) High frequency circuit package

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees