JP3467593B2 - Surface emitting semiconductor laser - Google Patents

Surface emitting semiconductor laser

Info

Publication number
JP3467593B2
JP3467593B2 JP23340891A JP23340891A JP3467593B2 JP 3467593 B2 JP3467593 B2 JP 3467593B2 JP 23340891 A JP23340891 A JP 23340891A JP 23340891 A JP23340891 A JP 23340891A JP 3467593 B2 JP3467593 B2 JP 3467593B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
emitting
active layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23340891A
Other languages
Japanese (ja)
Other versions
JPH04363082A (en
Inventor
克己 森
達也 浅賀
英明 岩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP23340891A priority Critical patent/JP3467593B2/en
Publication of JPH04363082A publication Critical patent/JPH04363082A/en
Application granted granted Critical
Publication of JP3467593B2 publication Critical patent/JP3467593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2211Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on II-VI materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板の垂直方向にレー
ザ光を発振する面発光型半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser which oscillates laser light in a direction perpendicular to a substrate.

【0002】[0002]

【従来の技術】基板の垂直方向に共振器を持つ面発光レ
ーザは、第50回応用物理学会学術講演会の講演予稿集
第3分冊p.909 29a−ZG−7(1989年9月
27日発行)に開示されている。この従来技術によれ
ば、図12に示すように、先ず、(602)n型GaA
s基板に(603)n型AlGaAs/AlAs多層
膜、(604)n型AlGaAsクラッド層、(60
5)p型GaAs活性層、(606)p型AlGaAs
クラッド層を順次成長させて形成している。その後、円
柱状の領域を残してエッチングし、(607)p型、
(608)n型、(609)p型、(610)p型の順
にAlGaAsを液相成長させて形成し、円柱状領域の
周囲を埋め込む。しかる後、(610)p型AlGaA
sキャップ層の上部に(611)誘電体多層膜を蒸着
し、(612)p型オーミック電極、(601)n型オ
ーミック電極を形成することで、面発光型半導体レーザ
を構成している。
2. Description of the Related Art A surface emitting laser having a resonator in a direction perpendicular to a substrate is described in Proceedings of the 50th Academic Meeting of the Society of Applied Physics, 3rd volume, p. 9029a-ZG-7 (issued September 27, 1989). According to this conventional technique, as shown in FIG. 12, first, (602) n-type GaA
(603) n-type AlGaAs / AlAs multilayer film, (604) n-type AlGaAs cladding layer, (60)
5) p-type GaAs active layer, (606) p-type AlGaAs
The clad layer is formed by sequentially growing it. After that, etching is performed leaving the columnar region, and (607) p-type,
(608) n-type, (609) p-type, (610) p-type are formed in this order by liquid phase growth of AlGaAs, and the periphery of the cylindrical region is buried. After that, (610) p-type AlGaA
A surface emitting semiconductor laser is formed by vapor-depositing a (611) dielectric multilayer film on the s cap layer to form a (612) p-type ohmic electrode and a (601) n-type ohmic electrode.

【0003】このように、従来技術では活性層以外の部
分に電流が流れるのを防ぐ手段として、埋込み層に(6
07−608)から成るp−n接合を設けている。
As described above, in the prior art, as a means for preventing the current from flowing to the portion other than the active layer, the buried layer (6
07-608).

【0004】[0004]

【発明が解決しようとする課題】しかし、このp−n接
合では十分な電流狭窄を得ることは難しく、完全には無
効電流を抑制できない。このため、従来技術では素子の
発熱に起因して、室温での連続発振駆動することが困難
であり、実用性に欠けている。。従って、無効電流の抑
制は、面発光型半導体レーザにおいて重要な課題であ
る。
However, it is difficult to obtain sufficient current confinement in this pn junction, and the reactive current cannot be completely suppressed. Therefore, in the conventional technique, it is difficult to drive the continuous oscillation at room temperature due to the heat generation of the element, which is not practical. . Therefore, suppression of the reactive current is an important issue in the surface emitting semiconductor laser.

【0005】また埋込み層を、従来のようにp−n接合
を形成するための多層構造にした場合、埋込み層のp−
n界面の位置は、円柱状に残した各成長層の界面位置を
考慮する必要がある。従って、多層構造の各埋込み成長
層の膜厚制御が難しく、再現性良く面発光型半導体レー
ザを製造することは極めて困難である。
Further, when the buried layer has a multi-layer structure for forming a pn junction as in the conventional case, the buried layer has a p-type structure.
Regarding the position of the n-interface, it is necessary to consider the interface position of each growth layer left in a cylindrical shape. Therefore, it is difficult to control the film thickness of each embedded growth layer having a multilayer structure, and it is extremely difficult to manufacture a surface-emitting type semiconductor laser with good reproducibility.

【0006】また、従来技術のように液相成長により円
柱の周囲に埋込み層を形成すると円柱部分が折れてしま
う危険性が高く、歩留まりが悪く、特性の改善が構造上
の原因から制約されてしまう。
Further, when a buried layer is formed around a cylinder by liquid phase growth as in the prior art, there is a high risk that the cylinder part will break, the yield is poor, and the improvement of the characteristics is restricted by structural reasons. I will end up.

【0007】さらに従来技術では、レーザプリンタなど
のディバイスに応用する場合にも種々の課題を有する。
Further, the prior art has various problems when applied to devices such as laser printers.

【0008】レーザプリンタなどでは、光源に使用する
発光源(半導体レーザなど)の発光スポットサイズが数
10μmと大きく、かつ発光強度が強い発光素子を使用
すると、光学系の簡素化や光路長を短くできることなど
設計に自由度が増える。
In a laser printer or the like, if a light emitting element (semiconductor laser or the like) used as a light source has a large light emission spot size of several tens of μm and a light emitting element having a high light emission intensity is used, the optical system is simplified and the optical path length is shortened. More freedom in designing things you can do.

【0009】従来技術を用いた面発光型半導体レーザ1
素子の場合には、光共振器全体を共振器よりも低屈折率
の材料で回りを埋め込んでいるため、光はおもに垂直方
向に導波され、基本発振モードでの発光スポットは水平
方向の共振器形状を変化させても直径2μm程度の点発
光となってしまう。
Surface-emitting type semiconductor laser 1 using conventional technology
In the case of an element, since the entire optical resonator is embedded with a material having a lower refractive index than the resonator, light is mainly guided in the vertical direction, and the light emission spot in the fundamental oscillation mode resonates in the horizontal direction. Even if the shape of the container is changed, point emission with a diameter of about 2 μm will occur.

【0010】そこで、これらの各発光点を2μm程度ま
で接近させ、光源スポットサイズを大きくしようと試み
るが、従来技術では数μm間隔の共振器をLPE成長で
埋めこむことは、再現性、歩留まりなどの点から非常に
難しく、作成は困難である。また、数μm程度まで接近
させ共振器を埋め込んだとしても光の横方向の漏れが少
ないため、スポットを1つにすることはできない。
Therefore, it is attempted to bring these light emitting points close to each other by about 2 μm to increase the size of the light source spot, but in the conventional technique, it is reproducible, the yield, etc., to embed the resonators with an interval of several μm by LPE growth. It is very difficult from the point of, and it is difficult to create. Moreover, even if the resonator is embedded by approaching it to a distance of several μm, there is little light leakage in the lateral direction, so that one spot cannot be formed.

【0011】また、複数の発光スポットにより1つの光
束をもったビームにし、発光強度を強くするには複数ス
ポットの各々のレーザ光の位相を同期させなければなら
ない。従来技術では複数のレーザ光の位相を同期させる
ためにレーザ光を互いに影響させる距離まで接近させて
作成するのは困難である。
Further, in order to form a beam having one luminous flux by a plurality of light emission spots and increase the light emission intensity, it is necessary to synchronize the phase of each laser beam of the plurality of spots. In the prior art, in order to synchronize the phases of a plurality of laser lights, it is difficult to create the laser lights close to each other so as to affect each other.

【0012】本発明はこのような課題を解決するもの
で、その目的とするところは、埋込み層の材質及び活性
層の構造を改善することで、完全な電流狭窄が可能な構
造を有し、極めて簡単に製造できる高効率の面発光半導
体レーザを提供するところにある。
The present invention solves such a problem, and an object thereof is to improve the material of the buried layer and the structure of the active layer to have a structure capable of complete current confinement. An object of the present invention is to provide a highly efficient surface emitting semiconductor laser that can be manufactured extremely easily.

【0013】本発明の他の目的は、複数の発光部を近接
させることができ、各発光部からのレーザ光の位相を同
期させることができ、しかも室温連続駆動が可能な面発
光型半導体レーザを提供することにある。
Another object of the present invention is to allow a plurality of light emitting parts to be close to each other, to synchronize the phase of laser light from each light emitting part, and to continuously drive at room temperature. To provide.

【0014】本発明の更に他の目的は、複数の発光部か
らの位相同期したレーザ光を一つの光束を持った光と
し、その発光スポットが大きく、レーザ光の放射角が狭
い面発導体レーザを提供するところにある。
Still another object of the present invention is to make a phase-synchronized laser beam from a plurality of light emitting sections into a beam having one light flux, a large emission spot, and a narrow emission angle of the laser beam. Is in the place of providing.

【0015】[0015]

【課題を解決するための手段】本発明の面発光型半導体
レーザは、半導体基板上に対して実質的に垂直な方向に
光を複数の出射部から出射する面発光型半導体レーザで
あって、反射率の互いに異なる反射鏡と、該反射鏡の間
に配置された、クラッド層及び多重量子井戸構造を有す
る活性層を含む多層の半導体層と、を有する光共振器
と、を含み、少なくとも前記クラッド層の一部を含む、
分離溝により分離された複数の柱状部を有し、前記活性
層に分離溝が到達しないように形成されてなり、前記活
性層は、前記複数の柱状部に対して共通となること、を
特徴とする。また、本発明の面発光型半導体レーザは、
前記複数の出射部から出射される光の位相が実質的に同
期すること、を特徴とする。また、本発明の面発光型半
導体レーザは、前記複数の柱状部の、前記半導体基板と
平行な断面の形状が、円形または正多角形のいずれかで
あること、を特徴とする。また、本発明の面発光型半導
体レーザは、前記活性層の下方にウェーブガイド層を、
さらに備えたこと、を特徴とする。また、本発明の面発
光型半導体レーザは、前記ウェーブガイド層の屈折率
は、前記活性層の等価屈折率よりもであること、を特
徴とする。本発明の面発光型半導体レーザは、半導体基
板に対して実質的に垂直な方向に光を複数の出射部から
出射する面発光型半導体レーザであって、対向する2つ
の電極と、反射率の互いに異なる反射鏡と、該反射鏡の
間に配置された、クラッド層及び多重量子井戸構造を有
する活性層を含む半導層と、を有する光共振器と、を含
み、前記活性層は、前記複数の出射部に対して共通とし
ており、前記半導体層のうち少なくとも前記活性層を介
して、各発光部の光の位相が同期すること、を特徴とす
る。
A surface emitting semiconductor laser of the present invention is a surface emitting semiconductor laser which emits light from a plurality of emitting portions in a direction substantially perpendicular to a semiconductor substrate, An optical resonator comprising: reflectors having different reflectances; and a multi-layered semiconductor layer, which is disposed between the reflectors and includes a cladding layer and an active layer having a multiple quantum well structure, and at least the optical resonator. Including part of the cladding layer,
A plurality of columnar portions separated by the separation grooves, the separation grooves in said active layer is formed so as not to reach the active
The characteristic layer is common to the plurality of columnar portions . Further, the surface-emitting type semiconductor laser of the present invention,
It is characterized in that the phases of the lights emitted from the plurality of emitting units are substantially synchronized. Further, the surface-emitting type semiconductor laser of the present invention is characterized in that each of the plurality of columnar portions has a cross-sectional shape parallel to the semiconductor substrate, which is either a circle or a regular polygon. Further, the surface-emitting type semiconductor laser of the present invention, a waveguide layer below the active layer,
It is characterized by being further equipped. Further, the surface-emitting type semiconductor laser of the present invention is characterized in that a refractive index of the waveguide layer is smaller than an equivalent refractive index of the active layer. The surface emitting semiconductor laser of the present invention is a surface emitting semiconductor laser that emits light from a plurality of emitting portions in a direction substantially perpendicular to a semiconductor substrate, and includes two electrodes facing each other and a reflectance An optical resonator having reflecting mirrors different from each other and a semiconductor layer disposed between the reflecting mirrors, the semiconductor layer including an active layer having a clad layer and a multiple quantum well structure, and the active layer, Common to multiple output parts
And which, via at least the active layer of the semiconductor layer, the light phase of the light-emitting portions is synchronized, characterized by.

【0016】II−VI族化合物半導体エピタキシャル層
は、II族元素であるZn,Cd,Hgと、VI族元素であ
るO,S,Se,Teとを、2元素,3元素又は4元素
組み合わせた半導体エピタキシャル層を用いることがで
きる。また、II−VI族化合物半導体エピタキシャル層の
格子定数が、柱状の半導体層の格子定数と一致している
ことが望ましい。なお、共振器を構成する半導体層とし
てはIII −V 族化合物半導体エピタキシャル層が好まし
く、GaAs系、GaAlAs系、GaAsP系、In
GaP系、InGaAsP系、InGaAs系、AlG
aAsSb系等を好適に採用できる。
The II-VI group compound semiconductor epitaxial layer is a combination of the group II elements Zn, Cd, and Hg and the group VI elements O, S, Se, and Te, 2 elements, 3 elements, or 4 elements. A semiconductor epitaxial layer can be used. Further, it is desirable that the lattice constant of the II-VI group compound semiconductor epitaxial layer matches the lattice constant of the columnar semiconductor layer. A III-V group compound semiconductor epitaxial layer is preferable as the semiconductor layer forming the resonator, and GaAs-based, GaAlAs-based, GaAsP-based, In
GaP system, InGaAsP system, InGaAs system, AlG
An aAsSb system or the like can be preferably adopted.

【0017】II−VI族化合物半導体エピタキシャル層は
高抵抗であるため、この高抵抗層で形成された埋込み層
への注入電流のもれは生じず、極めて有効な電流狭窄が
達成される。そして、無効電流を低減できるので、発振
しきい値電流を下げることが可能となる。さらに加え
て、活性層を多重量子井戸構造(以下、MQW構造とも
言う)とすることでも発振しきい値電流を低下できる。
このような埋込み層の材質の改善及び活性層の構造の変
更による効果として、発熱の少ない面発光型半導体レー
ザを実現でき、常温にて連続発振が可能となる実用性の
高い面発光型半導体レーザを提供できる。また、この埋
込み層は多層構造でないので容易に形成でき、再現性も
良好となる。また、活性層をMQW構造とすると、活性
層の利得が増大し、光出力を増加させることができる。
活性層の材質を変更すれば発振波長を変えられることは
もちろんであるが、本発明では同一材料を使用してMQ
W構造を変えることで発振波長を変えることが可能とな
る。さらに、II−VI族化合物半導体エピタキシャル層は
液相成長以外の方法例えば気相成長にて形成でき、柱状
半導体層を歩留まり良く形成できる。しかも、気相成長
等を用いれば、埋込み幅が狭くても確実に埋込み層を形
成できるため、複数本の柱状半導体層を近接配置できる
効果がある。
Since the II-VI group compound semiconductor epitaxial layer has a high resistance, leakage of the injection current into the buried layer formed of this high resistance layer does not occur, and an extremely effective current confinement is achieved. Since the reactive current can be reduced, the oscillation threshold current can be reduced. In addition, the oscillation threshold current can be reduced also by forming the active layer into a multiple quantum well structure (hereinafter, also referred to as MQW structure).
As a result of the improvement of the material of the buried layer and the change of the structure of the active layer, a surface-emitting type semiconductor laser which can realize a surface-emitting type semiconductor laser with less heat generation and can continuously oscillate at room temperature is highly practical. Can be provided. Further, since this buried layer does not have a multi-layer structure, it can be easily formed and the reproducibility is also good. Further, when the active layer has the MQW structure, the gain of the active layer is increased and the light output can be increased.
It goes without saying that the oscillation wavelength can be changed by changing the material of the active layer. However, in the present invention, the same material is used for MQ.
It is possible to change the oscillation wavelength by changing the W structure. Furthermore, the II-VI group compound semiconductor epitaxial layer can be formed by a method other than liquid phase growth, for example, vapor phase growth, and columnar semiconductor layers can be formed with good yield. Moreover, by using vapor phase growth or the like, the buried layer can be reliably formed even if the buried width is narrow, so that there is an effect that a plurality of columnar semiconductor layers can be arranged close to each other.

【0018】本発明を実施する場合には下記の態様で行
うものが好ましい。
When the present invention is carried out, the following modes are preferable.

【0019】光共振器の光出射側の半導体コンタクト層
の膜厚が、3.0μm以下であると、コンタクト層での
光吸収を低減できる。
When the thickness of the semiconductor contact layer on the light emitting side of the optical resonator is 3.0 μm or less, light absorption in the contact layer can be reduced.

【0020】この柱状の半導体層の半導体基板と平行な
断面を、円、正多角形のいずれかとすると、きれいな円
形のスポットビームが得られる。また、柱状の半導体層
の半導体基板と平行な断面の直径、対角線の長さのいず
れかが10μm以下であると、NFPのモードは0次基
本モードとなる。
If the cross section of the columnar semiconductor layer parallel to the semiconductor substrate is either a circle or a regular polygon, a beautiful circular spot beam can be obtained. If either the diameter of the cross section of the columnar semiconductor layer parallel to the semiconductor substrate or the length of the diagonal line is 10 μm or less, the NFP mode becomes the 0th order fundamental mode.

【0021】MQW構造の活性層は、活性層領域が非常
に薄くなるので、活性層と平行な方向に光を伝搬させる
ウェーブガイド層を設けると良い。
Since the active layer region of the MQW structure becomes very thin, it is preferable to provide a waveguide layer for propagating light in a direction parallel to the active layer.

【0022】光共振器が1本の柱状の半導体層を有する
場合には、光出射側の反射鏡は、柱状の端面と対向して
前記端面の範囲内に形成される。この場合、MQW構造
の活性層により、リブ導波路型の屈折率導波路構造が実
現される。柱状半導体層が多重量子井戸構造の活性層を
含むと、埋込み型の屈折率導波路構造が実現される。
In the case where the optical resonator has one columnar semiconductor layer, the reflection mirror on the light emitting side is formed in the range of the columnar end face so as to face the columnar end face. In this case, the active layer having the MQW structure realizes a rib waveguide type refractive index waveguide structure. When the columnar semiconductor layer includes an active layer having a multiple quantum well structure, a buried type refractive index waveguide structure is realized.

【0023】位相同期した面発光型半導体レーザは、光
共振器が、複数本の柱状の半導体層に分離するための分
離溝を有する。この分離溝にII−VI族化合物半導体エピ
タキシャル層が埋め込まれ、各柱状の半導体層にそれぞ
れ発光部が形成される。MQW構造の活性層に分離溝が
到達しないようにすると、MQW構造の活性層を介して
各発光部が影響し合い、各発光部での光の位相は同期す
る。特に、微小領域に2次元アレイ化された複数の柱状
半導体層を形成した場合にも、本発明の構造によれば無
効電流を低減できるので室温連続駆動が可能となる実用
性の高い面発光型半導体レーザを実現できる。位相同期
の効果を高くするために、MQW構造の活性層の下層に
ウェーブガイド層を設けると良い。ウェーブガイド層を
設けると、発光部同士の影響力が強くなり、位相同期が
とれやすくなる。例えば、発光部間の距離が長くても位
相同期が取れる。
In the phase-locked surface-emitting type semiconductor laser, the optical resonator has a separation groove for separating into a plurality of columnar semiconductor layers. A II-VI group compound semiconductor epitaxial layer is embedded in the isolation groove, and a light emitting portion is formed in each columnar semiconductor layer. If the separation groove is prevented from reaching the active layer of the MQW structure, the respective light emitting units influence each other through the active layer of the MQW structure, and the phases of light in the respective light emitting units are synchronized. In particular, even when a plurality of columnar semiconductor layers that are two-dimensionally arrayed are formed in a minute region, the structure of the present invention can reduce the reactive current, and thus can be continuously driven at room temperature, which is a highly practical surface emitting type. A semiconductor laser can be realized. In order to enhance the effect of phase synchronization, it is preferable to provide a waveguide layer below the active layer of the MQW structure. When the waveguide layer is provided, the influence of the light emitting parts on each other becomes strong, and the phase synchronization is easily achieved. For example, phase synchronization can be achieved even if the distance between the light emitting units is long.

【0024】発光スポットを大きくする場合には、分離
溝に、出射するレーザ光の波長に対して透明なII−VI族
化合物半導体エピタキシャル層を埋め込む。さらに、光
出射側の反射鏡を、複数本の前記柱状の各端面及び前記
分離溝に埋め込まれたII−VI族化合物半導体エピタキシ
ャル層と対向する領域に亘って形成する。こうすると、
柱状の発光部に挾まれた領域も垂直共振器構造となり、
その領域にもれた光も有効にレーザ発振に寄与して発光
スポットが広がる。さらに、位相同期したレーザ光が重
ね合わされるため、光出力が増加し、放射角も小さくな
る。共振器の半導体層として一般に用いられているGa
Asレーザの場合、そのレーザ光の波長に対して透明な
II−VI族化合物半導体エピタキシャル層としては、Zn
Se、ZnS、ZnSSe、ZnCdS、CdSSeの
いずれかで構成できる。分離溝を、半導体基板に対して
垂直な溝とすると、屈折率段差を利用して、分離溝に斜
めに入射する光を全反射でき、光の閉じ込め効果が大き
くなる。また、分離溝の半導体基板と平行な断面の幅
を、0.5μm以上で10μm未満とすると、NFPか
ら測定される発振横モードの次数は、0次基本モードと
なる。
To increase the emission spot, the separation groove is filled with a II-VI group compound semiconductor epitaxial layer transparent to the wavelength of the emitted laser light. Further, the light emitting side reflecting mirror is formed over a region facing the II-VI group compound semiconductor epitaxial layer embedded in each of the plurality of columnar end faces and the separation groove. This way
The region sandwiched by the columnar light emitting parts also has a vertical resonator structure,
The light leaked into the area also effectively contributes to the laser oscillation and the light emission spot spreads. Further, since the phase-synchronized laser lights are superposed, the light output increases and the emission angle also decreases. Ga which is generally used as a semiconductor layer of a resonator
In the case of As laser, it is transparent to the wavelength of the laser light.
As the II-VI group compound semiconductor epitaxial layer, Zn
It can be composed of any one of Se, ZnS, ZnSSe, ZnCdS, and CdSSe. When the separation groove is a groove that is perpendicular to the semiconductor substrate, the light that obliquely enters the separation groove can be totally reflected by utilizing the refractive index step, and the light confinement effect becomes large. If the width of the cross section of the separation groove parallel to the semiconductor substrate is 0.5 μm or more and less than 10 μm, the order of the oscillation transverse mode measured from the NFP is the 0th fundamental mode.

【0025】[0025]

【実施例】図1は本発明の実施例における半導体レーザ
(100)の発光部の断面を示す斜視図で、図2はMQ
W構造の活性層の断面図で、図3は実施例における半導
体レーザの製造工程を示す断面図である。
1 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser (100) according to an embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional view of an active layer having a W structure, and FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor laser in the example.

【0026】(102)n型GaAs基板に、(10
3)n型GaAsバッファ層を形成し、n型Al0.7
0.3 As層とn型Al0.1 Ga0.9 As層からなり波
長870nm付近の光に対し98%以上の反射率を持つ
30ペアの(104)分布反射型多層膜ミラーを形成す
る。さらに、(105)n型Al0.4 Ga0.6 Asクラ
ッド層、(106)多重量子井戸構造の活性層、(10
7)p型Al0.4 Ga0. 6 Asクラッド層、(108)
p型Al0.1 Ga0.9 Asコンタクト層を順次MOCV
D法でエピタキシャル成長する(図3(a))。ここ
で、(106)多重量子井戸構造の活性層は、図2に示
すように、例えば3層の(106a)ウェル層を有し、
各(106a)ウェル層は、上下の(106b)バリア
層に挾まれるように形成される。(106a)ウェル層
は、例えば厚さ120オングストロームのi型GaAs
で形成され、(106b)バリア層は、例えば150オ
ングストロームのi型Ga0.65Al0.35Asで形成され
る。前記MOCVD法は、例えば、成長温度は700
℃、成長圧力は150Torrで、III 族原料にTMG
a(トリメチルガリウム)、TMAl(トリメチルアル
ミニウム)の有機金属を用い、V族原料にAsH3 、n
型ドーパントにH2 Se、p型ドーパントにDEZn
(ジエチルジンク)を用いた。
(102) n-type GaAs substrate, (10
3) An n-type GaAs buffer layer is formed, and n-type Al 0.7 G
30 pairs of (104) distributed reflection type multilayer film mirrors each having a reflectance of 98% or more with respect to light having a wavelength of about 870 nm are formed from an a 0.3 As layer and an n-type Al 0.1 Ga 0.9 As layer. Further, (105) n-type Al 0.4 Ga 0.6 As cladding layer, (106) active layer having a multiple quantum well structure, (10
7) p-type Al 0.4 Ga 0. 6 As cladding layer, (108)
p-type Al 0.1 Ga 0.9 As contact layers are sequentially MOCV
Epitaxial growth is performed by the D method (FIG. 3A). Here, the active layer of the (106) multiple quantum well structure has, for example, three (106a) well layers as shown in FIG.
Each (106a) well layer is formed so as to be sandwiched between upper and lower (106b) barrier layers. The (106a) well layer is, for example, i-type GaAs having a thickness of 120 Å.
The (106b) barrier layer is formed of, for example, 150 angstrom i-type Ga 0.65 Al 0.35 As. In the MOCVD method, for example, the growth temperature is 700
℃, growth pressure is 150 Torr, TMG is used as III group raw material
Organic metal such as a (trimethylgallium) and TMAl (trimethylaluminum) is used, and AsH 3 and n are used as group V raw materials.
H 2 Se as a type dopant and DEZn as a p-type dopant
(Diethyl zinc) was used.

【0027】成長後、表面に熱CVD法により(11
2)SiO2 層を形成した後、反応性イオンビームエッ
チング法(以下、RIBE法と記す)により、(11
3)ハードベイクレジストで覆われた円柱状の発光部を
残して、(107)p型Al0.4 Ga0.6 Asクラッド
層の途中までエッチングする(図3(b))。この際、
エッチングガスには塩素とアルゴンの混合ガスを用い、
ガス圧1×10-3Torr、引出し電圧400Vで行っ
た。ここで、(107)p型Al0.4 Ga0.6 Asクラ
ッド層の途中までしかエッチングしないのは、活性層の
水平方向の注入キャリアと光の閉じ込めを、リブ導波路
型の屈折率導波構造にするためである。
After the growth, the surface (11
2) After forming the SiO 2 layer, a reactive ion beam etching method (hereinafter referred to as RIBE method) is used to perform (11
3) The (107) p-type Al 0.4 Ga 0.6 As cladding layer is etched halfway, leaving the columnar light emitting portion covered with the hard bake resist (FIG. 3B). On this occasion,
Using a mixed gas of chlorine and argon as the etching gas,
The gas pressure was 1 × 10 −3 Torr, and the extraction voltage was 400V. Here, the reason why the (107) p-type Al 0.4 Ga 0.6 As clad layer is etched only halfway is that the horizontal injection carrier and light confinement in the active layer are made into a rib waveguide type refractive index waveguide structure. This is because.

【0028】次に(113)レジストを取り除いた後、
MBE法あるいはMOCVD法などで、GaAsと格子
整合する(109)ZnS0.06Se0.94層を埋込み成長
する(図3(c))。
(113) After removing the resist,
A (109) ZnS 0.06 Se 0.94 layer lattice-matched with GaAs is buried and grown by the MBE method or MOCVD method (FIG. 3C).

【0029】さらに、表面に4ペアの(111)SiO
2 /α−Si誘電体多層膜を電子ビーム蒸着により形成
し、ウエットエッチングで、発光部の径よりやや小さい
領域を残して取り去る(図3(d))。波長870nm
での誘電体多層膜の反射率は94%である。
Further, 4 pairs of (111) SiO 2 are formed on the surface.
A 2 / α-Si dielectric multilayer film is formed by electron beam evaporation, and is removed by wet etching, leaving a region slightly smaller than the diameter of the light emitting portion (FIG. 3D). Wavelength 870nm
The reflectance of the dielectric multilayer film is 94%.

【0030】その後(111)誘電体多層膜以外の表面
に(110)p型オーミック電極を蒸着し、基板側に
(101)n型オーミック電極を蒸着し、N2雰囲気中
で420℃でアロイングし、(100)面発光半導体レ
ーザを完成する(図3(e))。このように作成した本
実施例の面発光半導体レーザは、埋込みに用いたZnS
0.06Se0.94層が1GΩ以上の抵抗を有し、埋込み層へ
の注入電流のもれが起こらないため、極めて有効な電流
狭窄が達成される。この結果、発振しきい値電流を下げ
ることができる。さらに、本実施例では(106)活性
層をMQW構造とすることでさらに発振しきい値電流を
下げることが可能となる。また埋込み層は多層構造にす
る必要がないため容易に成長でき、バッチ間の再現性も
高い。さらにGaAsに比べ屈折率が十分小さいZnS
0.06Se0.94層を用いたリブ導波路構造により、より効
果的な光の閉じ込めが実現される。
After that, a (110) p-type ohmic electrode is vapor-deposited on the surface other than the (111) dielectric multilayer film, a (101) n-type ohmic electrode is vapor-deposited on the substrate side, and alloying is performed at 420 ° C. in an N 2 atmosphere. , (100) surface emitting semiconductor laser is completed (FIG. 3E). The surface emitting semiconductor laser of the present example produced in this way is the ZnS used for embedding.
Since the 0.06 Se 0.94 layer has a resistance of 1 GΩ or more and leakage of the injection current into the buried layer does not occur, extremely effective current confinement is achieved. As a result, the oscillation threshold current can be reduced. Furthermore, in this embodiment, the oscillation threshold current can be further reduced by forming the (106) active layer into the MQW structure. Further, since the embedded layer does not need to have a multi-layer structure, it can be easily grown and the reproducibility between batches is high. Furthermore, ZnS, which has a sufficiently smaller refractive index than GaAs
The rib waveguide structure using the 0.06 Se 0.94 layer realizes more effective light confinement.

【0031】図4は本発明の実施例の面発光半導体レー
ザの駆動電流と発振光出力の関係を示す図である。本実
施例では、(109)埋込み層にII−VI族化合物半導体
層を用い、かつ、(106)活性層にMQW構造を採用
することで、室温において連続発振が達成され、しきい
値10μAと極めて低い値を得た。なお、活性層にMQ
W構造を採用しない場合には、室温連続発振はするが、
しきい値電流が1mAと大きい。さらに、活性層にMQ
W構造を採用しない場合と比べれば、その光出力は、そ
の5倍以上、例えば25mW以上確保できた。また外部
微分量子効率も高く、無効電流の抑制がレーザの特性向
上に貢献している。
FIG. 4 is a diagram showing the relationship between the drive current and the oscillation light output of the surface emitting semiconductor laser of the embodiment of the present invention. In this example, by using the II-VI group compound semiconductor layer as the (109) buried layer and adopting the MQW structure as the (106) active layer, continuous oscillation was achieved at room temperature and the threshold value was 10 μA. An extremely low value was obtained. In addition, MQ in the active layer
If the W structure is not adopted, continuous oscillation at room temperature will occur,
The threshold current is as large as 1 mA. In addition, MQ in the active layer
As compared with the case where the W structure is not adopted, the light output can be secured 5 times or more, for example, 25 mW or more. The external differential quantum efficiency is also high, and the suppression of reactive current contributes to the improvement of laser characteristics.

【0032】また本発明の実施例の面発光半導体レーザ
の柱状部分の断面形状において、その形状が円、または
正四角形、正八角形などの正多角形ではきれいな円のス
ポットビームになるが、それ以外の長方形、台形などで
は楕円もしくは多モードのビーム形状となってしまいデ
ィバイスへの応用上好ましくない。
In the cross-sectional shape of the columnar portion of the surface emitting semiconductor laser according to the embodiment of the present invention, if the shape is a circle or a regular polygon such as a regular quadrangle or a regular octagon, the spot beam becomes a clean circle, but otherwise. The rectangular shape, the trapezoidal shape, or the like has an elliptical shape or a multimode beam shape, which is not preferable for application to a device.

【0033】[0033]

【表1】 表1に本発明の実施例の面発光半導体レーザの円柱部分
の断面の直径の長さに対する近視野像の関係を示す。1
0μm以下で基本モードで発振するが、それ以上では、
1次以上のモードで発振した。
[Table 1] Table 1 shows the relationship between the near-field image and the diameter length of the cross section of the cylindrical portion of the surface emitting semiconductor laser of the example of the present invention. 1
It oscillates in the fundamental mode below 0 μm, but above that,
It oscillated in the first and higher modes.

【0034】本発明の実施例の面発光半導体レーザのコ
ンタクト層の膜厚に関しては、3.0μm以下とするも
のが良い。コンタクト層での光吸収を低減できるからで
ある。より好ましくは0.3μm以下が最適で、素子抵
抗が低く、外部微分量子効率も高い。
The thickness of the contact layer of the surface emitting semiconductor laser of the embodiment of the present invention is preferably 3.0 μm or less. This is because light absorption in the contact layer can be reduced. More preferably, 0.3 μm or less is optimal, the device resistance is low, and the external differential quantum efficiency is high.

【0035】上記実施例は、リブ導波路型の屈折率導波
路構造であったが、図5に示すような埋込み型の屈折率
導波路構造に本発明を適用することもできる。この場
合、下部の(105)クラッド層まで柱状半導体層に形
成され、従って多重量子井戸構造の(106)活性層も
柱状に形成され、その周囲が(109)埋込み層とな
る。図6,7は本発明の他の実施例を示し、図6は発光
スポットを拡大できる位相同期型半導体レーザ(30
0)の発光部の断面を示す概略図であり、図7はその製
造工程を示す断面図である。
Although the above-mentioned embodiment has the rib waveguide type refractive index waveguide structure, the present invention can be applied to the buried type refractive index waveguide structure as shown in FIG. In this case, the columnar semiconductor layer is formed up to the lower (105) clad layer, so that the (106) active layer having the multiple quantum well structure is also columnar, and the periphery thereof becomes the (109) buried layer. 6 and 7 show another embodiment of the present invention. FIG. 6 shows a phase-locked semiconductor laser (30
0) is a schematic view showing a cross section of the light emitting portion of FIG. 0), and FIG. 7 is a cross sectional view showing the manufacturing process thereof.

【0036】(302)n型GaAs基板に、(30
3)n型GaAsバッファ層を形成し、n型Al0.9
0.1 As層とn型Al0.2 Ga0.8 As層からなり波
長780nmを中心に±30nmの光に対して98%以
上の反射率を持つ25ペアの(304)半導体多層膜ミ
ラーを形成する。さらに、(305)n型Al0.5 Ga
0.5 Asクラッド層、(315)ウェーブガイド層、
(306)多重量子井戸構造の活性層、(307)p型
Al0.5 Ga0.5 Asクラッド層、(308)p型Al
0.15Ga0.85Asコンタクト層を順次MOCVD法でエ
ピタキシャル成長する(図7(a))。ここで、(30
6)多重量子井戸構造の活性層は、図2と同様に、例え
ば3層の(306a)ウェル層を有し、各(306a)
ウェル層は、上下の(306b)バリア層に挾まれるよ
うに形成される。(306a)ウェル層は、例えば厚さ
80オングストロームのi型Ga0.65Al0.35Asで形
成され、(306b)バリア層は、例えば60オングス
トロームのi型Ga0.95Al0. 05Asで形成される。
(315)ウェーブガイド層は、Alの組成が、(30
6a)ウェル層,(306b)バリア層のそれぞれの組
成の間の値とされ、例えばn型Ga0.75Al0.25Asエ
ピタキシャル層で形成される。このような、(315)
ウェーブガイド層は、その屈折率が、(306)MQW
構造の活性層の等価屈折率より小さく、下層の(30
5)クラッド層の屈折率より大きく設定される。前記M
OCVD法は、例えば、こ成長温度は720℃、成長圧
力は150Torrで行い、III 族原料にTMGa(ト
リメチルガリウム)、TMAl(トリメチルアルミニウ
ム)の有機金属を用い、V族原料にはAsH3 、n型ド
ーパントにH2 Se、p型ドーパントにDEZn(ジエ
チルジンク)を用いた。
On the (302) n-type GaAs substrate, (30
3) An n-type GaAs buffer layer is formed, and n-type Al 0.9 G
A 25-pair (304) semiconductor multilayer mirror having a reflectance of 98% or more with respect to light of ± 30 nm centered at a wavelength of 780 nm is formed of an a 0.1 As layer and an n-type Al 0.2 Ga 0.8 As layer. Furthermore, (305) n-type Al 0.5 Ga
0.5 As clad layer, (315) waveguide layer,
(306) Active layer of multiple quantum well structure, (307) p-type Al 0.5 Ga 0.5 As clad layer, (308) p-type Al
A 0.15 Ga 0.85 As contact layer is sequentially epitaxially grown by MOCVD (FIG. 7A). Where (30
6) The active layer of the multiple quantum well structure has, for example, three (306a) well layers as in FIG. 2, and each (306a)
The well layer is formed so as to be sandwiched between the upper and lower (306b) barrier layers. (306a) well layer may be formed in a thickness of 80 Å i-type Ga 0.65 Al 0.35 As, (306b ) barrier layer is formed, for example, 60 Å i-type Ga 0.95 Al 0. 05 As.
The (315) waveguide layer has an Al composition of (30
6a) the well layer and (306b) the barrier layer have respective compositions, and are formed of, for example, an n-type Ga 0.75 Al 0.25 As epitaxial layer. Like this, (315)
The refractive index of the waveguide layer is (306) MQW
Smaller than the equivalent refractive index of the active layer of the structure,
5) It is set higher than the refractive index of the cladding layer. The M
The OCVD method is carried out, for example, at a growth temperature of 720 ° C. and a growth pressure of 150 Torr, using TMGa (trimethylgallium) and TMAl (trimethylaluminum) organometals as group III raw materials, and AsH 3 and n as group V raw materials. H 2 Se was used as the type dopant, and DEZn (diethyl zinc) was used as the p-type dopant.

【0037】成長後、表面に常圧熱CVD法により(3
12)SiO2 層を形成し、さらにその上にフォトレジ
ストを塗布し、高温で焼きしめて(313)ハードベー
クレジストを形成する。さらにこのハードベークレジス
ト上にEB蒸着法によりSiO2 層を形成する。
After the growth, the surface (3
12) A SiO 2 layer is formed, a photoresist is further applied thereon, and baked at a high temperature (313) to form a hard bake resist. Further, a SiO 2 layer is formed on this hard bake resist by the EB vapor deposition method.

【0038】次に反応性イオンエッチング法(以下、R
IE法と記す)を用いて、基板上に形成した各層をエッ
チングする。初めに(313)ハードベークレジスト上
に形成したSiO2層上に通常用いられるフォトリソグ
ラフィー工程を施し、必要なレジストパターンを形成
し、このパターンをマスクとしてRIE法によりSiO
2層をエッチングする。例えば、CF4ガスを用いて、ガ
ス圧4.5Pa、入力RFパワー150W、サンプルホ
ルダーを20℃にコントロールしてRIEを実施する。
次にこのSiO2層をマスクにして、RIE法により
(313)ハードベークレジストをエッチングする。例
えば、O2ガスを用いて、ガス圧4.5Pa、入力パワ
ー150W、サンプルホルダーを20℃にコントロール
してRIEを実施する。この時SiO 2 層上に初めに形
成したレジストパターンも同時にエッチングされる。次
にパターン状に残っているSiO2層とエピタキシャル
層上に形成した(312)SiO2層を同時にエッチン
グするために再びCF4ガスを用いてエッチングを行
う。以上のように薄いSiO2層をマスクにして、ドラ
イエッチングの1方法であるRIE法を(313)ハー
ドベークレジストに用いることにより、必要なパターン
形状を持ちながら、さらに基板に対して垂直な側面を持
った(313)ハードベークレジストが作成できる(図
7(b))。
Next, the reactive ion etching method (hereinafter referred to as R
Each layer formed on the substrate is etched by using the IE method). First, (313) the SiO 2 layer formed on the hard bake resist is subjected to a photolithography process which is usually used to form a necessary resist pattern, and this pattern is used as a mask to form a SiO film by RIE.
Etch two layers. For example, RIE is performed by using CF 4 gas, controlling the gas pressure to 4.5 Pa, the input RF power to 150 W, and the sample holder to 20 ° C.
Then, using this SiO 2 layer as a mask, the (313) hard bake resist is etched by the RIE method. For example, RIE is performed by using O 2 gas and controlling the gas pressure at 4.5 Pa, the input power at 150 W, and the sample holder at 20 ° C. At this time, the resist pattern initially formed on the SiO 2 layer is simultaneously etched. Next, in order to simultaneously etch the pattern-remaining SiO 2 layer and the (312) SiO 2 layer formed on the epitaxial layer, etching is performed again using CF 4 gas. By using the RIE method, which is one method of dry etching, as the hard bake resist using the thin SiO 2 layer as a mask as described above, the side surface perpendicular to the substrate while having the required pattern shape is obtained. A hard bake resist having (313) can be created (FIG. 7B).

【0039】この垂直な側面を持った(313)ハード
ベークレジストをマスクにして、反応性イオンビームエ
ッチング法(以下、RIBE法と記す)を用いて、柱状
の発光部を残して(307)p型Al0.5 Ga0.5 As
クラッド層の途中までエッチングを行う(図7
(c))。この際、エッチングガスには例えば塩素とア
ルゴンの混合ガスを用い、ガス圧力5×10-4Tor
r、プラズマ引出し電圧400V、エッチング試料上で
のイオン電流密度400μA/cm2 、サンプルホルダ
ーを20℃に保って行った。ここで、(307)p型A
0.5 Ga0.5 Asクラッド層の途中までしかエッチン
グしないのは、(306)多重量子井戸構造の活性層の
水平方向の注入キャリアと光の閉じ込めを、屈折率導波
型のリブ導波路構造にして、(306)活性層内の光の
一部を活性層の水平方向に伝達できるようにするためで
ある。なお、本実施例では、水平方向の光伝搬は、(3
15)ウェーブガイド層によっても確保される。
Using the (313) hard bake resist having the vertical side faces as a mask, a reactive ion beam etching method (hereinafter referred to as RIBE method) is used to leave a columnar light emitting portion (307) p. Type Al 0.5 Ga 0.5 As
Etching is performed up to the middle of the clad layer (Fig. 7).
(C)). At this time, a mixed gas of chlorine and argon is used as an etching gas, and the gas pressure is 5 × 10 −4 Tor.
r, the plasma extraction voltage was 400 V, the ion current density was 400 μA / cm 2 on the etched sample, and the sample holder was kept at 20 ° C. Where (307) p-type A
The reason that only the middle of the l 0.5 Ga 0.5 As clad layer is etched is that (306) the horizontal injection carriers and light confinement in the active layer of the multiple quantum well structure are made into a refractive index waveguide type rib waveguide structure. , (306) so that a part of the light in the active layer can be transmitted in the horizontal direction of the active layer. In this embodiment, the light propagation in the horizontal direction is (3
15) Also secured by the waveguide layer.

【0040】また、垂直な側面を持った(313)ハー
ドベークレジストとエッチング試料に対して垂直にイオ
ンをビーム状に照射してエッチングを行うRIBE法を
用いることにより、近接した(320)発光部を基板に
垂直な(314)分離溝で分離できると共に、面発光型
半導体レーザの特性向上に必要な垂直光共振器の作成が
可能となっている。
Further, by using a hard bake resist having a vertical side surface (313) and an RIBE method in which etching is performed by vertically irradiating an etching sample with ions in a beam shape, a (320) light emitting portion located close to the hard baking resist is etched. Can be separated by a (314) separation groove perpendicular to the substrate, and a vertical optical resonator necessary for improving the characteristics of the surface-emitting type semiconductor laser can be manufactured.

【0041】次に(313)ハードベークレジストを取
り除いた後、MBE法あるいはMOCVD法などで、A
0.5 Ga0.5 Asに格子整合するII−VI族化合物半導
体エピタキシャル層としての(309)ZnS0.06Se
0.94層を埋込み成長する(図6(d))。この(30
9)層は、(300)面発光型半導体レーザの発振波長
に対して透明である。
Next, (313) after removing the hard bake resist, A is formed by the MBE method or the MOCVD method.
(309) ZnS 0.06 Se as a II-VI group compound semiconductor epitaxial layer lattice-matched to l 0.5 Ga 0.5 As
A 0.94 layer is embedded and grown (FIG. 6D). This (30
The layer 9) is transparent to the oscillation wavelength of the (300) surface-emitting type semiconductor laser.

【0042】さらに、(312)SiO2 層とその上に
できた多結晶状のZnSSeを取り除いた後、表面に4
ペアの(311)SiO2 /a−Si誘電体多層膜反射
鏡を電子ビーム蒸着により形成し、ドライエッチングを
用いて分離した(320)発光部の一部と、(320)
発光部で挟まれた埋込み層を残して取り去る(図7
(e))。波長780nmでの誘電体多層膜反射鏡の反
射率は、95%以上である。ZnSSeで埋め込んだ
(314)分離溝上にも(311)誘電体多層膜反射鏡
を作成することにより発光部に挟まれた領域も垂直共振
器構造が形成され、(314)分離溝にもれた光も有効
にレーザ発振に寄与し、また漏れた光を利用するため、
(320)発光部の位相に同期した発光となる。
Further, after removing the (312) SiO 2 layer and the polycrystalline ZnSSe formed thereon, 4
A pair of (311) SiO 2 / a-Si dielectric multilayer mirrors were formed by electron beam evaporation and separated by dry etching (320) and a part of the light emitting part, and (320)
The buried layer sandwiched between the light emitting parts is removed leaving (FIG. 7).
(E)). The reflectance of the dielectric multilayer film reflecting mirror at a wavelength of 780 nm is 95% or more. By forming a (311) dielectric multilayer reflector on the (314) isolation groove filled with ZnSSe, a vertical cavity structure is formed in the region sandwiched by the light emitting portions, and the (314) isolation groove is left. Light also contributes effectively to laser oscillation, and since leaked light is used,
(320) Light emission is synchronized with the phase of the light emitting unit.

【0043】しかる後に(311)誘電体多層膜反射鏡
以外の表面に(310)p型オーミック電極を蒸着し、
さらに基板側に(301)n型オーミック電極を蒸着
し、N2 雰囲気中で420℃でアロイングを行い、(3
00)面発光半導体レーザを完成する(図7(f))。
ここで、出射側の(310)n型オーミック電極は、各
(320)発光部の各(308)コンタクト層に導通す
るように形成される。
Then, (311) a (310) p-type ohmic electrode is vapor-deposited on the surface other than the dielectric multilayer film reflecting mirror,
Further, a (301) n-type ohmic electrode is vapor-deposited on the substrate side, and alloying is performed at 420 ° C. in an N 2 atmosphere.
(00) surface emitting semiconductor laser is completed (FIG. 7F).
Here, the (310) n-type ohmic electrode on the emission side is formed so as to be electrically connected to each (308) contact layer of each (320) light emitting portion.

【0044】このように作製した本実施例の面発光型半
導体レーザは、(309)埋込み層にZnSSeエピタ
キシャル層を用いることにより、従来使用していたAl
GaAs層のp−nジャンクションの逆バイアスを使用
する電流ブロック構造よりも高抵抗である1GΩ以上の
抵抗を有し、最適な電流ブロック構造を持つ。従って、
発振しきい値電流は低減する。さらに加えて、(30
6)活性層がMQW構造であることからも発振しきい値
電流は低減し、上記実施例と同様に、10μA程度とな
る。また、(314)分離溝で分離された各(320)
発光部は、(306)活性層及び(315)ウェーブガ
イド層により互いに影響し合い、各(320)発光部か
ら位相同期された光が発振され、結果として一つの光束
を持つ口径の大きな強度の強い光が発振されることにな
る。さらに、(309)埋込み層が発振波長780nm
に対して吸収を持たない透過材料であることから、(3
20)発光部からの漏れ光を有効に利用できるものとな
っている。
In the surface-emitting type semiconductor laser of this example manufactured in this manner, the ZnSSe epitaxial layer was used as the (309) buried layer, so that the conventional Al was used.
It has a resistance of 1 GΩ or more, which is higher than that of the current block structure using the reverse bias of the pn junction of the GaAs layer, and has an optimum current block structure. Therefore,
The oscillation threshold current is reduced. In addition, (30
6) Since the active layer has the MQW structure, the oscillation threshold current is reduced to about 10 μA as in the above embodiment. Also, each (320) separated by the (314) separation groove
The light emitting portion influences each other by the (306) active layer and the (315) waveguide layer, and the phase-locked light is oscillated from each (320) light emitting portion, and as a result, one light flux having a large aperture and a large intensity is emitted. Strong light will be emitted. Furthermore, the (309) buried layer has an oscillation wavelength of 780 nm.
Since it is a transparent material that has no absorption for (3
20) The leaked light from the light emitting portion can be effectively used.

【0045】図8は、従来の面発光型半導体レーザと本
実施例の面発光型半導体レーザの光が出射される側の形
状とレーザ発振時のNFPの強度分布を示したものであ
る。図8(a)は、図12に示す従来の面発光型半導体
レーザ(600)の共振器(620)をn−p接合の
(607−608)GaAlAsエピタキシャル層で埋
めこむことが可能な距離である5μm程度まで接近させ
た場合を示している。レーザの射出面には、誘電体多層
反射鏡とp型オーミック電極があるが、共振器の形状を
比較するために図では削除している。図8(b)は図8
(a)a−b間のNFP強度分布を示している。従来の
面発光型レーザの発光部(620)を複数個、埋め込み
可能な距離まで接近させても発光スポットが複数個現れ
るだけで、横方向の光の漏れが無いため、多峰性NFP
となり、1つの発光スポットにならない。
FIG. 8 shows the shapes of the conventional surface-emitting type semiconductor laser and the surface-emitting type semiconductor laser of this embodiment on the side from which light is emitted and the NFP intensity distribution during laser oscillation. FIG. 8A shows a distance that allows the cavity (620) of the conventional surface-emitting type semiconductor laser (600) shown in FIG. 12 to be buried with an (p-607) 608 GaAlAs epitaxial layer having an np junction. It shows a case where the distance is close to about 5 μm. There are a dielectric multilayer mirror and a p-type ohmic electrode on the laser emission surface, but they are omitted in the figure for comparison of the shapes of the resonators. FIG. 8B is the same as FIG.
(A) The NFP intensity distribution between a and b is shown. Even if a plurality of light emitting portions (620) of a conventional surface emitting laser are brought close to each other so that they can be embedded, only a plurality of light emitting spots appear, and there is no light leakage in the lateral direction.
Therefore, it does not become one emission spot.

【0046】図8(c)は本実施例の面発光型半導体レ
ーザの形状であり、分離溝を(309)ZnS0.06Se
0.94層で埋め込んでおり、気相成長で埋めこむので分離
溝の最少幅は1μmである。図8(d)は図8(c)c
−d間のNFPである。(314)分離溝の上からも光
が出射されるので、発光点が広がることがNFPからわ
かる。さらに近接したレーザ光の位相が同期するので、
光出力が増加し、放射角も1°以下の円形ビームが得ら
れる。
FIG. 8C shows the shape of the surface-emitting type semiconductor laser of this embodiment, in which the separation groove is formed of (309) ZnS 0.06 Se.
The minimum width of the separation groove is 1 μm because it is embedded with 0.94 layer and is embedded by vapor phase growth. 8 (d) is shown in FIG. 8 (c) c.
It is NFP between -d. (314) Since light is emitted also from above the separation groove, it can be seen from the NFP that the light emitting point spreads. Since the phases of the laser beams that are closer together are synchronized,
A circular beam with an increased light output and an emission angle of 1 ° or less is obtained.

【0047】表2に実施例の(300)面発光型半導体
レーザの(314)分離溝の幅とNFPから測定される
発振横モード次数の関係を示す。
Table 2 shows the relationship between the width of the (314) separation groove of the (300) surface emitting semiconductor laser of the example and the oscillation transverse mode order measured from NFP.

【0048】[0048]

【表2】 10μmより幅が狭いと位相同期したレーザの発振横モ
ードは基本モードで発振するが、それ以上では1次以上
の高次モードでレーザ発振し、放射角が広がったり、ビ
ーム形状が楕円形になるので、応用上好ましくない。ま
た、0.5μmより狭い分離溝では円形ビームが得られ
にくい傾向がある。
[Table 2] When the width is narrower than 10 μm, the phase-locked laser oscillation transverse mode oscillates in the fundamental mode, but above that, laser oscillation occurs in the higher-order modes higher than the first order, and the radiation angle widens or the beam shape becomes elliptical. Therefore, it is not preferable in application. In addition, a circular beam tends to be difficult to obtain with a separation groove narrower than 0.5 μm.

【0049】上述の実施例では、複数の発光部を分離し
て設けた一つの光共振器を有する半導体レーザについて
説明したが、このような光共振器を同一半導体基板上に
複数形成することもできる。そして、各光共振器毎に光
出射側のp型オーミック電極をそれぞれ独立して設けれ
ば、各光共振器からのレーザビームを、それぞれ独立し
てON,OFF,変調可能となる。
In the above-mentioned embodiments, the semiconductor laser having one optical resonator in which a plurality of light emitting portions are separately provided has been described, but a plurality of such optical resonators may be formed on the same semiconductor substrate. it can. When the p-type ohmic electrode on the light emitting side is independently provided for each optical resonator, the laser beam from each optical resonator can be independently turned on, off, and modulated.

【0050】なお、上記実施例では、GaAlAs系面
発光型半導体レーザについて説明したが、上述したよう
に、その他のIII −V 族系の面発光型半導体レーザにも
好適に適用できる。
Although the GaAlAs-based surface-emitting type semiconductor laser has been described in the above embodiment, it can be suitably applied to other III-V group surface-emitting type semiconductor lasers as described above.

【0051】また、本実施例は図6に示した構造、なら
びに図8(c)に示した発光部の構造をもとに説明を行
ったが、本発明はこれにとらわれない。図9から図11
は、本発明の別の実施例を示したものであり、それぞれ
光出射側からみた光共振器及びその内部に作製した分離
溝の基板に水平な面の形状を表した発光部の概略図であ
る。図9(a)〜(j)及び(m)は、柱状半導体層の
基板に水平な断面を円又は正多角形としたものを複数個
形成し、これらを線対称配置としたものである。いずれ
も、発光部が一つのものより発光スポットを拡大でき
る。各発光部及び分離溝から一つの光束を持った比較的
大きなビーム径のレーザビームを得る場合には、図9
(k),(l)に示すように、各発光部の横断面形状を
円又は正多角形以外の形状としても、円形ビームを得る
ことができる。線対称配置された非円形でかつ非正多角
形の各発光部の外縁を連ねた輪郭形状が、円又は正多角
形に近い形状であれば良い。また、図10(a)〜
(d)、図11(a)〜(c)にそれぞれ示した実施例
は発光部をn個形成するものであり、この実施例におい
ても、図6に示した実施例と同様な効果が得られると共
に、発光スポットを任意の大きさ,形状にすることがで
きる効果が得られている。図10,図11に示すものは
いずれも、基板と平行な2次元面上で横列及び/又は縦
列で等間隔に複数の発光部を配列することで、ラインビ
ームを得ることができる。
Although the present embodiment has been described based on the structure shown in FIG. 6 and the structure of the light emitting portion shown in FIG. 8C, the present invention is not limited to this. 9 to 11
FIG. 4 shows another embodiment of the present invention, and is a schematic view of a light emitting portion showing the shape of a plane horizontal to the substrate of an optical resonator and a separation groove formed inside the resonator when viewed from the light emitting side. is there. In FIGS. 9A to 9J and 9M, a plurality of substrates each having a columnar semiconductor layer having a horizontal cross section of a circle or a regular polygon are formed and arranged in line symmetry. In each case, the light emission spot can be enlarged more than that having one light emitting unit. In order to obtain a laser beam having a relatively large beam diameter with one light beam from each light emitting portion and separation groove, FIG.
As shown in (k) and (l), a circular beam can be obtained even if the cross-sectional shape of each light emitting portion is a shape other than a circle or a regular polygon. The outline shape in which the outer edges of the non-circular and non-regular polygonal light emitting portions arranged in line symmetry are connected may be a circle or a shape close to a regular polygon. In addition, FIG.
(D) and the examples shown in FIGS. 11 (a) to (c) respectively form n light emitting portions, and in this example, the same effect as that of the example shown in FIG. 6 can be obtained. In addition, the effect that the light emission spot can be formed in an arbitrary size and shape is obtained. 10 and 11, a line beam can be obtained by arranging a plurality of light emitting units at equal intervals in rows and / or columns on a two-dimensional surface parallel to the substrate.

【0052】なお、図6に示す実施例において、(31
0)p型オーミック電極を各(320)発光部の数だけ
分離して設け、それぞれが(308)コンタクト層に接
続された半導体レーザを製造することもできる。この場
合、それぞれが円形ビームを独立してON,OFF,変
調制御可能な複数の発光部を同一基板上に複数形成した
ものとなり、しかも各ビームの波長は同期している。
In the embodiment shown in FIG. 6, (31
It is also possible to manufacture a semiconductor laser in which 0) p-type ohmic electrodes are provided separately for each (320) light emitting portion and each is connected to the (308) contact layer. In this case, a plurality of light emitting portions each capable of independently controlling ON / OFF and modulation of a circular beam are formed on the same substrate, and the wavelengths of the respective beams are synchronized.

【0053】なお、本発明の面発光型半導体レーザは、
プリンタ、複写機等の印刷装置のみならず、ファクシミ
リ、ディスプレイ等に応用することが可能である。
The surface-emitting type semiconductor laser of the present invention is
The present invention can be applied not only to printing devices such as printers and copying machines, but also to facsimiles, displays and the like.

【0054】[0054]

【発明の効果】以上説明したように本発明によれば、柱
状半導体層周囲の埋込み層を高抵抗のII−VI族化合物半
導体エピタキシャル層とすることで、この埋込み層への
注入電流のもれは生じず、極めて有効な電流狭窄が達成
される。そして、無効電流を低減できるので、発振しき
い値電流を下げることが可能となる。さらに加えて、活
性層を多重量子井戸構造とすることでも発振しきい値電
流を低下できる。従って、発熱が少なく、常温にて連続
発振が可能となる実用性の高い面発光型半導体レーザを
提供できる。
As described above, according to the present invention, the buried layer around the columnar semiconductor layer is made to be a high resistance II-VI group compound semiconductor epitaxial layer, so that the leakage of the injection current to the buried layer is prevented. Does not occur and a very effective current confinement is achieved. Since the reactive current can be reduced, the oscillation threshold current can be reduced. In addition, the oscillation threshold current can be reduced also by forming the active layer into a multiple quantum well structure. Therefore, it is possible to provide a highly practical surface emitting semiconductor laser which generates little heat and is capable of continuous oscillation at room temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体レーザの発光
部の断面を示す斜視図である。
FIG. 1 is a perspective view showing a cross section of a light emitting portion of a semiconductor laser according to an embodiment of the present invention.

【図2】図1の半導体レーザにおけるMQW構造の活性
層の拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of an active layer having an MQW structure in the semiconductor laser of FIG.

【図3】(a)〜(e)は図1の半導体レーザの製造工
程を示す断面図である。
3A to 3E are cross-sectional views showing a manufacturing process of the semiconductor laser of FIG.

【図4】図1の半導体レーザの駆動電流と発振光出力の
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the drive current and the oscillation light output of the semiconductor laser of FIG.

【図5】本発明の他の実施例である面発光型半導体レー
ザの発光部の断面を示す斜視図である。
FIG. 5 is a perspective view showing a cross section of a light emitting portion of a surface emitting semiconductor laser which is another embodiment of the present invention.

【図6】本発明の実施例における位相同期型の面発光型
半導体レーザの発光部の断面を示す概略図である。
FIG. 6 is a schematic view showing a cross section of a light emitting portion of a phase-locking surface-emitting type semiconductor laser in an example of the present invention.

【図7】(a)〜(f)は図6の半導体レーザの製造工
程を示す断面図である。
7A to 7F are cross-sectional views showing a manufacturing process of the semiconductor laser of FIG.

【図8】従来の面発光型半導体レーザと図5の半導体レ
ーザの形状の違いと発光近視野像の違いを示した図であ
り、同図(a)は従来の面発光型半導体レーザの光が出
射される側の形状を示しており、同図(b)は同図
(a)に示した半導体レーザの発光遠視野像の強度分布
を示す。同図(c)は本実施例に於ける半導体レーザの
光が出射される側の形状の一例を示しており、同図
(d)は同図(c)に示した半導体レーザの発光遠視野
像の強度分布を示すである。
FIG. 8 is a diagram showing a difference in shape and a difference in emission near-field image between the conventional surface-emitting type semiconductor laser and the semiconductor laser shown in FIG. 5, in which FIG. Shows the shape on the side from which light is emitted, and FIG. 6B shows the intensity distribution of the emission far-field image of the semiconductor laser shown in FIG. FIG. 7C shows an example of the shape of the side of the semiconductor laser from which light is emitted in this embodiment, and FIG. 7D shows the emission far field of the semiconductor laser shown in FIG. 3 is a diagram showing the intensity distribution of an image.

【図9】(a)〜(m)は、本発明の別の実施例におけ
る位相同期型の面発光型半導体半導体レーザの光が出射
される側の形状を示す概略図である。
9 (a) to 9 (m) are schematic views showing the shape on the light emitting side of a phase-locking surface-emitting type semiconductor semiconductor laser according to another embodiment of the present invention.

【図10】(a)〜(d)は、本発明の別の実施例に於
ける位相同期型の面発光型半導体レーザの光が出射され
る側の形状を示す概略図である。
10 (a) to 10 (d) are schematic views showing the shape on the light emitting side of a phase-locking surface-emitting type semiconductor laser according to another embodiment of the present invention.

【図11】(a)〜(c)は、本発明の別の実施例に於
ける位相同期型の面発光型半導体レーザの光が出射され
る側の形状を示す概略図である。
11 (a) to (c) are schematic views showing the shape of a phase-locking surface-emitting type semiconductor laser on the side from which light is emitted in another embodiment of the present invention.

【図12】従来の面発光型半導体レーザの発光部を示す
斜視図である。
FIG. 12 is a perspective view showing a light emitting portion of a conventional surface emitting semiconductor laser.

【符号の説明】[Explanation of symbols]

102,202,302 半導体基板 106,206,306 多重量子井戸構造の活性層 107,207,307 クラッド層 109,209,309 II−VI族化合物半導体エピタ
キシャル層 315 ウェーブガイド層
102, 202, 302 Semiconductor substrate 106, 206, 306 Active layer 107, 207, 307 of multiple quantum well structure Cladding layer 109, 209, 309 II-VI group compound semiconductor epitaxial layer 315 Waveguide layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩野 英明 長野県諏訪市大和3丁目3番5号セイコ ーエプソン株式会社内 (56)参考文献 特開 平2−128481(JP,A) 特開 平2−54981(JP,A) 特開 平2−68975(JP,A) 特開 平1−264285(JP,A) 特開 平1−289291(JP,A) 特開 昭64−66988(JP,A) Electron.Lett.Vo l.26 No.1(1990) P.18−19 IEEE Photonics Te chnology Letters V ol.2 No.7(1990)P.456− 458   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideaki Iwano               Seiko, 3-3-5 Yamato, Suwa City, Nagano Prefecture               -In Epson Corporation                (56) Reference JP-A-2-128481 (JP, A)                 JP-A-2-54981 (JP, A)                 JP-A-2-68975 (JP, A)                 JP-A-1-264285 (JP, A)                 JP-A-1-289291 (JP, A)                 JP-A-64-66988 (JP, A)                 Electron. Lett. Vo               l. 26 No. 1 (1990) P. 18-19                 IEEE Photonics Te               chnology Letters V               ol. 2 No. 7 (1990) P. 456−               458

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に対して実質的に垂直な方
向に光を複数の出射部から出射する面発光型半導体レー
ザであって、 反射率の互いに異なる反射鏡と、該反射鏡の間に配置さ
れた、クラッド層及び多重量子井戸構造を有する活性層
を含む多層の半導体層と、を有する光共振器と、を含
み、 少なくとも前記クラッド層の一部を含む、分離溝により
分離された複数の柱状部を有し、前記活性層に分離溝が
到達しないように形成されてなり、 前記活性層は、前記複数の柱状部に対して共通となる
と、 を特徴とする面発光型半導体レーザ。
1. A surface-emitting type semiconductor laser that emits light from a plurality of emitting portions in a direction substantially perpendicular to a semiconductor substrate, wherein a reflecting mirror having different reflectances is provided between the reflecting mirrors. An optical resonator having a multi-layered semiconductor layer including a clad layer and an active layer having a multiple quantum well structure, and an optical resonator having at least a part of the clad layer, the optical cavity being separated by a separation groove. a plurality of columnar portions, the active layer in the separation groove is formed so as not to reach the active layer, and wherein, and this <br/> made common to said plurality of columnar portions Surface emitting semiconductor laser.
【請求項2】 請求項1に記載の面発光型半導体レーザ
において、 前記複数の出射部から出射される光の位相が実質的に同
期すること、 を特徴とする面発光型半導体レーザ。
2. The surface-emitting type semiconductor laser according to claim 1, wherein the phases of light emitted from the plurality of emitting sections are substantially synchronized with each other.
【請求項3】 請求項1または2に記載の面発光型半導
体レーザにおいて、 前記複数の柱状部の、前記半導体基板と平行な断面の形
状が、円形または正多角形のいずれかであること、 を特徴とする面発光型半導体レーザ。
3. The surface emitting semiconductor laser according to claim 1, wherein a cross-section of the plurality of columnar portions parallel to the semiconductor substrate has a shape of a circle or a regular polygon. A surface-emitting type semiconductor laser characterized by:
【請求項4】 請求項1乃至3のいずれかに記載の面発
光型半導体レーザにおいて、 前記活性層の下方にウェーブガイド層を、さらに備えた
こと、 を特徴とする面発光型半導体レーザ。
4. The surface emitting semiconductor laser according to claim 1, further comprising a waveguide layer below the active layer.
【請求項5】 請求項4に記載の面発光型半導体レーザ
において、 前記ウェーブガイド層の屈折率は、前記活性層の等価屈
折率よりもであること、 を特徴とする面発光型半導体レーザ。
5. The surface-emitting type semiconductor laser according to claim 4, wherein the waveguide layer has a refractive index smaller than an equivalent refractive index of the active layer. .
【請求項6】 半導体基板に対して実質的に垂直な方向
に光を複数の出射部から出 射する面発光型半導体レーザであって、対向 する2つの電極と、 反射率の互いに異なる反射鏡と、該反射鏡の間に配置さ
れた、クラッド層及び多重量子井戸構造を有する活性層
を含む半導層と、を有する光共振器と、を含み、前記活性層は、前記複数の出射部に対して共通してお
り、 前記半導体層のうち少なくとも前記活性層を介して、各
発光部の光の位相が同期すること、 を特徴とする面発光型半導体レーザ。
6. A surface-emitting type semiconductor laser that emits light from a plurality of emitting portions in a direction substantially perpendicular to a semiconductor substrate, and includes two electrodes facing each other and a reflecting mirror having different reflectances. , disposed between the reflector comprises an optical resonator, a having a Hanshirubeso including an active layer having a clad layer and multiple quantum well structure, the active layer, the plurality of exit portions Common to
And a phase of light of each light emitting section is synchronized through at least the active layer of the semiconductor layer.
JP23340891A 1990-09-12 1991-09-12 Surface emitting semiconductor laser Expired - Lifetime JP3467593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23340891A JP3467593B2 (en) 1990-09-12 1991-09-12 Surface emitting semiconductor laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-242000 1990-09-12
JP24200090 1990-09-12
JP23340891A JP3467593B2 (en) 1990-09-12 1991-09-12 Surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04363082A JPH04363082A (en) 1992-12-15
JP3467593B2 true JP3467593B2 (en) 2003-11-17

Family

ID=26531028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23340891A Expired - Lifetime JP3467593B2 (en) 1990-09-12 1991-09-12 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP3467593B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236868A (en) * 1995-02-28 1996-09-13 Gijutsu Kenkyu Kumiai Shinjoho Shiyori Kaihatsu Kiko Planar type semiconductor light amplifier element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electron.Lett.Vol.26 No.1(1990) P.18−19
IEEE Photonics Technology Letters Vol.2 No.7(1990)P.456−458

Also Published As

Publication number Publication date
JPH04363082A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
US5181219A (en) Surface emission type semiconductor laser
JP3395194B2 (en) Surface emitting semiconductor laser
US5587335A (en) Method of making surface emission type semiconductor laser
US5295148A (en) Surface emission type semiconductor laser
JP3206097B2 (en) Surface emitting semiconductor laser
US5317584A (en) Surface emission type semiconductor laser
JP3448939B2 (en) Surface emitting semiconductor laser
JP3206080B2 (en) Semiconductor laser
US5356832A (en) Method of making surface emission type semiconductor laser
JP3467593B2 (en) Surface emitting semiconductor laser
JP3240636B2 (en) Surface emitting semiconductor laser
JP3666444B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP3293221B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH05243678A (en) Semiconductor laser and manufacturing method of the same
JP2751699B2 (en) Semiconductor laser
JP3358197B2 (en) Semiconductor laser
JP3245960B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP2699671B2 (en) Semiconductor laser
JP3468236B2 (en) Semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JPH0513879A (en) Semiconductor laser
JP2002223035A (en) Semiconductor light emitting element and method for manufacturing it
JPH0677594A (en) Semiconductor laser
JP2002344068A (en) Optical semiconductor device and manufacturing method therefor
JPS62158383A (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9