JP3462013B2 - Method and apparatus for measuring residual gas volume - Google Patents

Method and apparatus for measuring residual gas volume

Info

Publication number
JP3462013B2
JP3462013B2 JP21862596A JP21862596A JP3462013B2 JP 3462013 B2 JP3462013 B2 JP 3462013B2 JP 21862596 A JP21862596 A JP 21862596A JP 21862596 A JP21862596 A JP 21862596A JP 3462013 B2 JP3462013 B2 JP 3462013B2
Authority
JP
Japan
Prior art keywords
gas
airtight container
carbon dioxide
absorbent
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21862596A
Other languages
Japanese (ja)
Other versions
JPH1062406A (en
Inventor
賢治 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP21862596A priority Critical patent/JP3462013B2/en
Publication of JPH1062406A publication Critical patent/JPH1062406A/en
Application granted granted Critical
Publication of JP3462013B2 publication Critical patent/JP3462013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸飲料水、ビー
ル、発泡酒などに炭酸ガスとともに、溶解した炭酸ガス
以外の気体の容量測定に適用される気体容量測定方法及
びその装置に関し、特に短時間内に正確に炭酸ガス以外
の気体容量を測定できる気体容量測定方法及びその装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas volume measuring method and apparatus for measuring the volume of gas other than dissolved carbon dioxide together with carbon dioxide in carbonated drinking water, beer, sparkling liquor, etc. The present invention relates to a gas volume measuring method and apparatus capable of accurately measuring a gas volume other than carbon dioxide in a time period.

【0002】[0002]

【従来の技術】炭酸ガス(CO2 )や窒素(N2 )で加
圧されて容器に充填されている清涼飲料水(炭酸飲料
水)、ビール、発泡酒などに含まれている空気をはじめ
とする炭酸ガス以外の気体容量を測定する装置として
は、例えば図11に示すように、気密容器110と、こ
の気密容器110に例えば水酸化ナトリウム(NaO
H)、水酸化カルシウム(Ca(OH)2 )、あるいは
水酸化カリウム(KOH)などからなる炭酸ガス吸収剤
120を供給する吸収剤供給手段130と、上記気密容
器110に炭酸飲料水、ビール、発泡酒などの被検液か
ら発泡させた気体を導入する気体導入手段140とを備
えるものがある。
BACKGROUND ART carbon dioxide (CO 2) and nitrogen (N 2) with pressurized by soft drink filled in a container (carbonated water), beer, the air included in such happoshu Introduction As an apparatus for measuring a gas volume other than carbon dioxide gas, for example, as shown in FIG. 11, an airtight container 110 and, for example, sodium hydroxide (NaO) are provided in the airtight container 110.
H), calcium hydroxide (Ca (OH) 2 ), potassium hydroxide (KOH), or the like, and an absorbent supply means 130 for supplying a carbon dioxide absorbent 120, and carbonated drinking water, beer, Some include a gas introducing means 140 for introducing a gas foamed from a test liquid such as sparkling liquor.

【0003】上記気密容器110は上部に目盛り111
を備えると共に、大気中に連通するエア抜き管112
と、このエア抜き管112を開閉するエア抜き弁113
とを備えている。
The airtight container 110 has a scale 111 on the top.
And an air vent pipe 112 that is in communication with the atmosphere.
And an air vent valve 113 for opening and closing the air vent tube 112
It has and.

【0004】上記吸収剤供給手段130は、炭酸ガス吸
収剤120を貯留する吸収剤容器131と、この吸収剤
容器131の頭部と気密容器110との底部とを連通す
る吸収剤供給路132とを有し、上記気密容器110の
エア抜き弁113を開いてこのタンク131を持ち上
げ、気密容器110内の液面をエア抜き弁113の上ま
で上昇させてからエア抜き弁113を閉じることにより
気密容器110内の空気を排出するとともに気密容器1
10内に炭酸ガス吸収剤120を充満させる。
The absorbent supply means 130 has an absorbent container 131 for storing the carbon dioxide absorbent 120, and an absorbent supply path 132 for communicating the head of the absorbent container 131 with the bottom of the airtight container 110. The air tight valve 110 of the airtight container 110 is opened, the tank 131 is lifted, the liquid level in the airtight container 110 is raised above the air vent valve 113, and then the air vent valve 113 is closed. The air in the container 110 is discharged and the airtight container 1
The inside of 10 is filled with carbon dioxide absorbent 120.

【0005】上記気体導入手段140は、被検液を収容
した被検液容器141と、この被検液容器141から導
出され、気密容器110内の下部に連通する気体導入路
142と、気体導入路142を開閉する気体導入弁(コ
ック)143とを備える。
The gas introducing means 140 is provided with a test liquid container 141 containing a test liquid, a gas introducing passage 142 which is led from the test liquid container 141 and communicates with a lower portion of the airtight container 110, and a gas introducing member. A gas introduction valve (cock) 143 for opening and closing the passage 142 is provided.

【0006】そして、上記のように気密容器110内に
炭酸ガス吸収剤120を充填した後、上記気体導入弁1
43を閉じ、被検液容器141を振動させることによ
り、気体を発泡させ、その後気体導入弁143を開くこ
とにより、上記のように被検液容器141内で発泡した
気体が被検液容器141内の圧力で気体導入路142を
介して気密容器110内に注入され、その気泡が気密容
器110内の上部に浮上する。
After filling the airtight container 110 with the carbon dioxide absorbent 120 as described above, the gas introduction valve 1
43 is closed and the test liquid container 141 is vibrated to foam the gas, and then the gas introduction valve 143 is opened, whereby the gas foamed in the test liquid container 141 as described above is discharged. The gas is injected into the airtight container 110 through the gas introduction passage 142 with the internal pressure, and the bubbles thereof float above the airtight container 110.

【0007】上記気密容器110内に注入された気泡に
含まれている炭酸ガスは、炭酸ガス吸収剤に溶け込み、
その他の気体成分が残留気体として気密容器110内の
上部に溜まる。
The carbon dioxide gas contained in the bubbles injected into the airtight container 110 dissolves in the carbon dioxide gas absorbent,
Other gas components are accumulated in the upper portion of the airtight container 110 as residual gas.

【0008】このように上部に溜まった残留気体の量
は、上記目盛りを読むことによって確認することが出来
るが、この目盛りを読むときは吸収剤容器131を持ち
上げて、吸収剤容器131内の液面と気密容器110内
の液面とを一致させることによって気密容器110内の
圧力を大気圧に保つ必要があった。
The amount of residual gas accumulated in the upper portion can be confirmed by reading the scale, and when reading the scale, the absorbent container 131 is lifted and the liquid in the absorbent container 131 is lifted. It was necessary to keep the pressure in the airtight container 110 at atmospheric pressure by matching the surface with the liquid surface in the airtight container 110.

【0009】上記気密容器110内への気体の導入が終
了すると、気体導入弁143が閉じられるが、この後も
その他の気体成分が気密容器110内の上部に移動し、
気密容器110内の液面が泡立つ。従って、残留気体の
体積(気体体積)の測定を正確にするためには、この泡
立ちが収まってから気密容器110の目盛111を読ま
なければならない。
When the introduction of the gas into the airtight container 110 is completed, the gas introduction valve 143 is closed. After that, other gas components move to the upper part in the airtight container 110,
The liquid surface in the airtight container 110 foams. Therefore, in order to accurately measure the volume of residual gas (gas volume), it is necessary to read the scale 111 of the airtight container 110 after the bubbling has stopped.

【0010】[0010]

【発明が解決しようとする課題】この従来の気体容量測
定方法及びその装置によれば、予め気密容器110内の
空気をこの気密容器110、気体導入路142の部分、
エア抜き管112の部分の内面に付着した気泡も含め
て、全部排出しなければ正確な測定ができないという問
題がある。
According to this conventional gas capacity measuring method and apparatus, the air in the airtight container 110 is previously supplied to the airtight container 110 and the gas introduction path 142,
There is a problem that accurate measurement cannot be performed unless all the air bubbles including the air bubbles attached to the inner surface of the air bleed tube 112 are discharged.

【0011】又、気体導入後の残留気体の体積を測定す
る場合には、測定誤差を減少させるために、気密容器1
10内に導入された気泡による液面の泡立ちが収まるま
で気体の容量を測定することができず、測定時間が長く
なるという問題がある。
Further, when measuring the volume of the residual gas after introducing the gas, in order to reduce the measurement error, the airtight container 1
There is a problem that the volume of gas cannot be measured until the bubbling of the liquid surface due to the bubbles introduced into 10 is stopped, and the measurement time becomes long.

【0012】この泡立ちを待つ時間が長いときには、消
泡剤を使用しているが、この場合でも泡立ちが解消する
までには、なおかなりの時間が必要である上、消泡剤の
コストがかかり、しかも、消泡剤を添加する手間と時間
とが必要になるという問題がある。
When the time to wait for this foaming is long, an antifoaming agent is used. Even in this case, however, it takes a considerable time for the foaming to be eliminated, and the cost of the antifoaming agent is high. In addition, there is a problem that it takes time and effort to add the defoaming agent.

【0013】更に、気体導入後に気密容器110の内面
に気泡が付着し、測定誤差が生じるという問題がある。
本発明は、上記の事情を鑑みて、短時間で高精度に気体
容量を測定できる気体容量測定方法と装置を提供するこ
とを目的とする。
Further, there is a problem that air bubbles adhere to the inner surface of the airtight container 110 after introducing the gas, which causes a measurement error.
In view of the above circumstances, it is an object of the present invention to provide a gas volume measuring method and device capable of highly accurately measuring a gas volume in a short time.

【0014】[0014]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の手段を講じている。本発明は、炭
酸ガス吸収剤を充填した気密容器と、被検液を収容した
被検液容器とを連通し、該被検液に溶解した炭酸ガスを
含む気体を炭酸ガス吸収剤を介して上記気密容器に導入
して炭酸ガスを除去した後に該気密容器に残留する残留
気体の体積を測定する気体容量測定方法を前提としてい
る。
The present invention takes the following means in order to achieve the above object. The present invention connects an airtight container filled with a carbon dioxide absorbent and a test solution container containing a test solution, and a gas containing carbon dioxide dissolved in the test solution is passed through the carbon dioxide absorbent. It is premised on a gas capacity measuring method of measuring the volume of residual gas remaining in the airtight container after the carbon dioxide gas is removed by introducing the gas into the airtight container.

【0015】本発明は上記前提のもとに、まず上記炭酸
ガス吸収剤2を充填した気密容器1に、被検液を収容し
た被検液容器41より、該被検液に溶解した炭酸ガスを
含む気体を導入する。これによって、気密容器1内に炭
酸ガスを吸収させて炭酸ガスを除去した後、上記気密容
器1に炭酸ガス吸収剤2を所定量υ2 を注入する。
On the basis of the above-mentioned premise, the present invention starts from a test liquid container 41 containing a test liquid in an airtight container 1 filled with the carbon dioxide absorbent 2 and a carbon dioxide gas dissolved in the test liquid. A gas containing is introduced. As a result, carbon dioxide gas is absorbed in the airtight container 1 to remove the carbon dioxide gas, and then a predetermined amount υ 2 of the carbon dioxide gas absorbent 2 is injected into the airtight container 1.

【0016】この時の注入量υ2 と炭酸ガス吸収剤2の
供給の前及び後の上記気密容器1内の圧力P02, 2
に基づいて上記気密容器1の残留気体体積(総ボリュー
ム)χ2 を次の数式1に従って演算する。
At this time, based on the injection amount υ 2 and the pressures P 02, P 2 in the airtight container 1 before and after the supply of the carbon dioxide absorbent 2, the residual gas volume (total volume) of the airtight container 1 is calculated. ) Χ 2 is calculated according to the following formula 1.

【0017】[0017]

【数1】 [Equation 1]

【0018】このように、炭酸ガス吸収剤2の注入量υ
2 及び注入の前後の気密容器1内の圧力PO2,P2 によ
り残留気体体積χ2 を求めるので、気体が気密容器1の
内部及びこれに連通された空間内のどの部分に分散して
いても正確に残留気体体積χ 2 を測定することができ
る。換言すれば、気密容器1内の炭酸ガス吸収剤2が泡
立っていても正確に残留気体体積χ2 を測定することが
でき、又、気密容器1などの内面に付着している気泡も
含めた残留気体体積χ2 が演算される。
In this way, the injection amount of carbon dioxide absorbent 2
2And the pressure P in the airtight container 1 before and after the injectionO2, P2By
Residual gas volume χ2The gas of the airtight container 1
In any part of the interior and the space communicating with it
Accurately the residual gas volume χ 2Can be measured
It In other words, the carbon dioxide absorbent 2 in the airtight container 1 is foamed.
Accurate residual gas volume χ even when standing2Can be measured
Also, air bubbles attached to the inner surface of the airtight container 1 etc.
Included residual gas volume χ2Is calculated.

【0019】従って、上記気密容器1内の泡立ちが収ま
る前に残留気体体積χ2 を演算することができ、短時間
で正確に残留気体体積χ2 を測定することができる。本
発明においては、この残留気体体積χ2 を測定する前
に、気密容器1内に封入されている初期気体体積χ1
測定し、上記残留気体体積χ2 から初期気体体積(デッ
ドボリューム)χ1 を減算することにより、気密容器に
導入された炭酸ガスを含む気体の体積、即ち気体体積χ
を演算することができる。
[0019] Therefore, the can be calculated residual gas volume chi 2 before foaming of the airtight container 1 fits, it can be measured accurately residual gas volume chi 2 in a short time. In the present invention, before measuring the residual gas volume χ 2 , the initial gas volume χ 1 enclosed in the airtight container 1 is measured, and the initial gas volume (dead volume) χ is calculated from the residual gas volume χ 2. By subtracting 1 , the volume of the gas containing carbon dioxide gas introduced into the airtight container, that is, the gas volume χ
Can be calculated.

【0020】即ち、炭酸ガス吸収剤2を充填した上記気
密容器1(図5参照)に更に所定量の炭酸ガス吸収剤2
を注入する。このときの炭酸ガス吸収剤2の注入量υ1
及び注入の前及び後の気密容器1内の圧力PO1,P1
基づいて次の数式2に従って初期気体体積χ1 を演算す
る。
That is, the airtight container 1 (see FIG. 5) filled with the carbon dioxide absorbent 2 is further charged with a predetermined amount of carbon dioxide absorbent 2.
Inject. Injection amount of carbon dioxide absorbent 2 at this time υ 1
Based on the pressures P O1 and P 1 in the airtight container 1 before and after the injection, the initial gas volume χ 1 is calculated according to the following formula 2.

【0021】[0021]

【数2】 [Equation 2]

【0022】このように炭酸ガス吸収剤2の注入量υ1
及び注入の前後の気密容器1内の圧力PO1,P1 により
初期気体体積χ1 を求める場合、気密容器1の内部及び
これに連通した空間内のどの部分にどのように気体が分
散されていても正確に初期気体体積χ1 を測定すること
ができる。
Thus, the injection amount of carbon dioxide absorbent 2 υ 1
And the pressure P O1 of the front and rear of the airtight container 1 infusion, when obtaining the initial gas volume chi 1 by P 1, how gas is distributed to any part of the space through inside and communicated to the airtight container 1 However, the initial gas volume χ 1 can be measured accurately.

【0023】更に上記残留気体体積χ2 から上記初期気
体体積χ1 を数式3に従って減算して、気体体積χを演
算することができることになる。
Further, the gas volume χ can be calculated by subtracting the initial gas volume χ 1 from the residual gas volume χ 2 according to the equation (3).

【0024】[0024]

【数3】 [Equation 3]

【0025】上記の方法を実現するために、本発明は炭
酸ガス吸収剤が充填される気密容器1を備えることは勿
論である。更に、該気密容器1に被検液が収容された被
検液容器より炭酸ガスを含む気体を導入する気体導入手
段4が設けられた構成となっている。
In order to realize the above method, it is needless to say that the present invention comprises an airtight container 1 filled with a carbon dioxide absorbent. Further, the airtight container 1 is provided with a gas introducing means 4 for introducing a gas containing carbon dioxide gas from the test liquid container containing the test liquid.

【0026】更に、吸収剤導入手段3が設けられ、、吸
収剤導入手段3によって、測定の初期に気密容器1に炭
酸ガス吸収剤を充填することはもちろん、上記測定前の
初期気体体積χ1 を求めるために所定量υ1 の炭酸ガス
吸収剤を供給すること、および上記残留気体体積χ2
求めるために所定量υ2 の炭酸ガス吸収剤を供給するこ
とができる。
Further, an absorbing agent introducing means 3 is provided, and the absorbing agent introducing means 3 fills the airtight container 1 with the carbon dioxide gas absorbent at the initial stage of the measurement, and of course, the initial gas volume χ 1 before the measurement. It is possible to supply a predetermined amount υ 1 of the carbon dioxide absorbent, and to find the residual gas volume χ 2 a predetermined amount of the υ 2 carbon dioxide absorbent.

【0027】更に、圧力検出手段5が設けられ、これに
よって、上記吸収剤供給手段3による炭酸ガス吸収剤の
注入の前後の上記気密容器1の初期気体による内圧
01,P 1 及び、残留気体による内圧P02,P2 を測定
することができる。
Further, a pressure detecting means 5 is provided, which is provided with
Therefore, the carbon dioxide absorbent of the absorbent supply means 3
Internal pressure of the airtight container 1 before and after injection due to the initial gas
P01, P 1And internal pressure P due to residual gas02, P2Measure
can do.

【0028】上記初期気体体積χ1 及び、残留気体体積
χ2 を算出するための計算は演算手段6によってなされ
る。
The calculation for calculating the initial gas volume χ 1 and the residual gas volume χ 2 is performed by the calculating means 6.

【0029】[0029]

【実施の形態】本発明の一実施例に係る気体容量測定方
法及びその装置を図面に基づいて具体的に説明すれば、
以下の通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A gas volume measuring method and apparatus according to an embodiment of the present invention will be specifically described with reference to the drawings.
It is as follows.

【0030】図1は本発明装置の一実施例に係る気体容
量測定装置の構成図であり、図2はこの装置を制御する
制御手段の機能ブロック図であり、図3はこの装置を用
いる本発明方法の一実施例に係る気体容量測定方法のフ
ロー図である。
FIG. 1 is a block diagram of a gas capacity measuring device according to an embodiment of the device of the present invention, FIG. 2 is a functional block diagram of control means for controlling this device, and FIG. 3 is a book using this device. It is a flowchart of the gas volume measuring method which concerns on one Example of the method of invention.

【0031】図1、図2に示すように、この装置は気密
容器1と、この気密容器1に例えば水酸化ナトリウムか
らなる炭酸ガス吸収剤2を供給する吸収剤供給手段3
と、上記気密容器1に被検液から発泡させた気体を導入
する気体導入手段4と、上記気密容器1内の圧力を測定
する圧力検出手段5と、被検液から発生した気泡のう
ち、炭酸ガスを除く気体成分の体積を演算する演算手段
6とを備える。なお、図1、図2に示す制御手段100
は以下に説明する吸収剤供給手段3、気体導入手段4、
圧力検出手段5、演算手段6及び各作業ステップで弁V
1 〜V4 の開閉を指示するバルブ制御手段7を含む制御
手段であり、一般にCPUとプログラムで構成される。
As shown in FIGS. 1 and 2, this apparatus comprises an airtight container 1 and an absorbent supply means 3 for supplying a carbon dioxide absorbent 2 made of, for example, sodium hydroxide to the airtight container 1.
A gas introducing means 4 for introducing a gas foamed from the test liquid into the airtight container 1, a pressure detecting means 5 for measuring the pressure in the airtight container 1, and bubbles generated from the test liquid, And a calculation means 6 for calculating the volume of the gas component excluding carbon dioxide. The control means 100 shown in FIGS.
Is an absorbent supply means 3, a gas introduction means 4, which will be described below.
The pressure detecting means 5, the calculating means 6 and the valve V at each work step
It is a control means including a valve control means 7 for instructing opening and closing of 1 to V 4 , and is generally composed of a CPU and a program.

【0032】上記図1、図2において、吸収剤供給手段
3は、炭酸ガス吸収剤2を貯留する吸収剤容器31より
ポンプ33を用いて上記気密容器1に炭酸ガス吸収剤2
を供給する構成となっている。ここで、上記ポンプ33
としては定量ポンプが用いられる。
In FIG. 1 and FIG. 2, the absorbent supply means 3 uses the pump 33 from the absorbent container 31 for storing the carbon dioxide absorbent 2 in the airtight container 1 by using the pump 33.
Is configured to supply. Here, the pump 33
For this, a metering pump is used.

【0033】図1に示すように、上記気密容器1は、そ
の上端部から導出され、圧力計51に連通する連通管1
1と、その下端部から導出され、上記吸収剤容器31に
連通するパージ管13と、上記連通管11から分岐させ
たパージ管14とを備え、各パージ管13,14にはそ
れぞれを開閉するパージ弁V3 ,V4 を介在させてあ
る。
As shown in FIG. 1, the airtight container 1 is a communication pipe 1 which is led out from the upper end thereof and communicates with the pressure gauge 51.
1 and a purge pipe 13 led out from the lower end thereof and communicating with the absorbent container 31 and a purge pipe 14 branched from the communication pipe 11, and the purge pipes 13 and 14 are opened and closed respectively. Purge valves V 3 and V 4 are interposed.

【0034】又、上記気体導入手段4は上記被検液容器
41を上記気密容器1内の底部に連通させる気体導入路
42と、この気体導入路42を開閉する気体導入弁V1
を備え、この気体導入弁V1 よりも上記気密容器1側の
気体導入路42の部分から上記吸収剤容器31に連通す
るパージ管12が分岐されると共に、このパージ管12
を開閉するパージ弁V2 が設けられる。そして、図2に
示すバルブ制御手段7により上記気体導入弁V1 及び各
パージ弁V2 〜V4 の開閉を制御するようにしている。
Further, the gas introducing means 4 has a gas introducing passage 42 for communicating the test liquid container 41 with the bottom of the airtight container 1, and a gas introducing valve V 1 for opening and closing the gas introducing passage 42.
The purge pipe 12 communicating with the absorbent container 31 is branched from a portion of the gas introduction path 42 on the airtight container 1 side of the gas introduction valve V 1 and the purge pipe 12 is provided.
A purge valve V 2 for opening and closing is provided. The valve control means 7 shown in FIG. 2 controls the opening and closing of the gas introduction valve V 1 and each of the purge valves V 2 to V 4 .

【0035】更に、振動手段8は、被検液を収容する被
検液容器41を振動制御する振動制御手段83及び振動
制御手段83で振動されるアクチュエータ84を備え、
図4に示すように、上記気密容器1は最初は空であり、
制御プログラムが開始されると、まず初期設定が行われ
る(S1)。この初期設定においてバルブ制御手段7
は、気体導入弁V1 及び各パージ弁V2 〜V4 を閉じ
(S2)、このバルブ初期制御が完了した後に、パージ
弁V4 が開かれるとともに、吸収剤供給手段3を構成す
る注入制御手段34が作動してポンプ33が駆動され、
これによって炭酸ガス吸収剤(例えばNaOH)2が気
密容器1に充填される(S3)。
Further, the vibrating means 8 comprises a vibration control means 83 for vibrating and controlling the test liquid container 41 containing the test liquid and an actuator 84 vibrated by the vibration control means 83.
As shown in FIG. 4, the airtight container 1 is initially empty,
When the control program is started, initialization is first performed (S1). In this initial setting, the valve control means 7
Closes the gas introduction valve V 1 and each purge valve V 2 to V 4 (S 2), and after the initial valve control is completed, the purge valve V 4 is opened and the injection control that constitutes the absorbent supply means 3 is performed. The means 34 is activated to drive the pump 33,
As a result, the carbon dioxide absorbent (for example, NaOH) 2 is filled in the airtight container 1 (S3).

【0036】上記の充填工程(S3)を更に詳しく説明
すると、ポンプ33を駆動した状態でパージ弁V4 が開
かれた状態で、炭酸ガス吸収剤(例えばNaOH)2が
気密容器1に充填されると、ついで、パージ弁V2 が開
かれパージ弁V4 が閉じられる。更に、パージ弁V3
開かれパージ弁V2 が閉じられ、最後にポンプ33が停
止され、その直後にパージ弁V3 が閉じられる。従って
図5に示すように、気密容器1に炭酸ガス吸収剤が充填
された状態では全ての弁V1 〜V4 が閉じられた状態と
なる(S31〜S38)。
The above-mentioned filling step (S3) will be described in more detail. With the pump 33 being driven and the purge valve V 4 being opened, the carbon dioxide absorbent (for example, NaOH) 2 is filled in the airtight container 1. Then, the purge valve V 2 is then opened and the purge valve V 4 is closed. Further, the purge valve V 3 is opened, the purge valve V 2 is closed, the pump 33 is finally stopped, and immediately after that, the purge valve V 3 is closed. Therefore, as shown in FIG. 5, when the carbon dioxide absorbent is filled in the airtight container 1, all the valves V 1 to V 4 are closed (S31 to S38).

【0037】このように、各弁を開閉しながら炭酸ガス
吸収剤を気密容器に導入することにより、各パージ弁
や、気体導入弁の近辺に残留する気体、即ち初期気体体
積χ 1 を小さくできる。上記の充填工程が完了すると、
圧力測定手段52は気密容器1に備えられた、圧力計5
1より、この時の気密容器1内の圧力Po1を読む。この
結果がメモリ53に記憶される(S4)。
Thus, while opening and closing each valve, carbon dioxide gas
By introducing the absorbent into the airtight container, each purge valve
Or gas remaining near the gas inlet valve, that is, the initial gas body
Product χ 1Can be made smaller. When the above filling process is completed,
The pressure measuring means 52 is provided in the airtight container 1, and is a pressure gauge 5.
1, the pressure P in the airtight container 1 at this timeo1I Read. this
The result is stored in the memory 53 (S4).

【0038】上記のように気密容器1内の圧力の測定が
完了すると、注入制御手段34が再びポンプ33を作動
させ、図6に示すように、所定量υ1 の炭酸ガス吸収剤
2を気密容器1に該気密容器1内の圧力が所定しきい値
以上になるように注入し、このときの注入量υ1 をメモ
リ35に記憶しておく(S5)。
When the measurement of the pressure in the airtight container 1 is completed as described above, the injection control means 34 actuates the pump 33 again, and as shown in FIG. 6, the carbon dioxide absorbent 2 in a predetermined amount ν 1 is airtight. It is injected into the container 1 so that the pressure in the airtight container 1 is equal to or higher than a predetermined threshold value, and the injection amount υ 1 at this time is stored in the memory 35 (S5).

【0039】この注入量υ1 の導入後に更に上記気密容
器1内の圧力P1 が圧力計51により測定される(S
6)。この容器内の圧力P1 の測定が終わると、演算手
段6の体積演算手段61ではメモリ53に記憶された上
記Po1及びP1 及び注入制御手段34のメモリ35が記
憶された注入量υ1 とに基づき上記数式1に従って気密
容器1及びこれに連通する空間内の気体体積、即ち、初
期気体体積χ1 が演算され、メモリ62に記憶される
(S7)。
After the introduction of the injection amount υ 1 , the pressure P 1 in the airtight container 1 is further measured by the pressure gauge 51 (S
6). When the measurement of the pressure P 1 in the container is finished, the volume calculation means 61 of the calculation means 6 stores the injection amounts υ 1 stored in the memory 53 of the above-mentioned Po 1 and P 1 and the injection control means 34. Based on the above, the gas volume in the airtight container 1 and the space communicating with the airtight container 1, that is, the initial gas volume χ 1 is calculated based on Equation 1 and stored in the memory 62 (S7).

【0040】このように、炭酸ガス吸収剤2の注入量υ
1 と注入の前後の気密容器1内の圧力Po1,P1 とに基
づいて気体体積χ1 を演算する場合には、気体が密閉管
1内にのみ集合しているか否かは問題ではなくなり、気
密容器1内の泡立ちが残っていても、気体導入弁V1
び各パージ弁V2 〜V4 の近辺に気体が残っていても、
気密容器1内の気体および各弁V1 〜V4 に残留してい
る空気の総体積が気体体積χ1 として演算されることに
なる。
Thus, the injection amount ν of the carbon dioxide absorbent 2
When calculating the gas volume χ 1 based on 1 and the pressures P o1 and P 1 in the airtight container 1 before and after the injection, it does not matter whether the gas is collected only in the closed tube 1. , Even if foaming remains in the airtight container 1, or even if gas remains near the gas introduction valve V 1 and each of the purge valves V 2 to V 4 ,
The total volume of the gas in the airtight container 1 and the air remaining in each of the valves V 1 to V 4 is calculated as the gas volume χ 1 .

【0041】この演算が終わると、バルブ制御手段7が
パージ弁V3 を開弁させ(S8)、これによってパージ
弁V3 が開弁されると、上記のように注入された注入量
υ1の炭酸ガス吸収剤2が気密容器1からパージ管13
を介して吸収剤容器31に排出される(S9)。尚、こ
こで図6に示すように、上記パージ弁V3 は開弁後再び
閉弁してもよいし、開弁したまま次の工程にすすんでも
よい。
When this calculation is completed, the valve control means 7 opens the purge valve V 3 (S8), and when the purge valve V 3 is opened by this, the injection amount υ 1 injected as described above. Carbon dioxide absorbent 2 from the airtight container 1 to the purge pipe 13
It is discharged to the absorbent container 31 via (S9). Here, as shown in FIG. 6, the purge valve V 3 may be opened and then closed again, or may be left open and proceed to the next step.

【0042】上記のように、炭酸ガス吸収剤2が吸収剤
容器31に排出されると同時に振動制御手段83が作動
し、アクチュエータ84を作動させて被検液容器41を
所定時間振動させる。被検液容器41の振動が終了する
と、バルブ制御手段7が気体導入弁V1 を開弁させ、被
検液容器41に含まれる気体を気密容器1に導入する
(S10→S11→S12→S13)。
As described above, when the carbon dioxide absorbent 2 is discharged into the absorbent container 31, the vibration control means 83 is operated at the same time and the actuator 84 is operated to vibrate the test liquid container 41 for a predetermined time. When the vibration of the test liquid container 41 ends, the valve control means 7 opens the gas introduction valve V 1 to introduce the gas contained in the test liquid container 41 into the airtight container 1 (S10 → S11 → S12 → S13). ).

【0043】上記の工程は、更に以下のように繰り返さ
れる。即ち、まず上記のように、被検液容器41を振動
し、このときの被検液容器41内の圧力を圧力計45で
測定する。これによって該圧力が所定値以上になってい
るときは未だ、被検液容器41内に炭酸ガスが残留して
いるとみなし、導入弁V1 を開けて、被検液容器41に
含まれる気体を気密容器1に導入し、所定時間経過後再
び導入弁V1 を閉じて、再び振動手段8によって被検液
容器41を振動させる。
The above steps are further repeated as follows. That is, first, as described above, the test liquid container 41 is vibrated, and the pressure in the test liquid container 41 at this time is measured by the pressure gauge 45. As a result, when the pressure is equal to or higher than the predetermined value, it is considered that carbon dioxide gas still remains in the test liquid container 41, the introduction valve V 1 is opened, and the gas contained in the test liquid container 41 is opened. Is introduced into the airtight container 1, the introduction valve V 1 is closed again after a lapse of a predetermined time, and the test liquid container 41 is vibrated again by the vibrating means 8.

【0044】上記振動後の被検液容器41内の圧力が所
定値以下になっているときは、比較手段86で既に被検
液容器41内の炭酸ガス残留量が無視できる程度である
と判断され、これによって、図8に示すように、バルブ
制御手段7が気体導入弁V1及びパージ弁V3 を閉弁す
る(S14)。
When the pressure in the test liquid container 41 after the vibration is below a predetermined value, it is judged by the comparing means 86 that the residual amount of carbon dioxide gas in the test liquid container 41 is already negligible. Accordingly, as shown in FIG. 8, the valve control means 7 closes the gas introduction valve V 1 and the purge valve V 3 (S14).

【0045】尚、飲料の種類によっては上記振動→気体
導入の工程を相当回数繰り返しても所定のしきい値以下
にならないことがあり、そのような場合には、振動→気
体導入を繰り返した回数が所定値以上になっときに、次
の工程に進行するようになっている。
It should be noted that, depending on the type of beverage, even if the process of vibration → gas introduction is repeated a considerable number of times, it may not fall below a predetermined threshold value. In such a case, the number of times vibration → gas introduction is repeated. When is above a predetermined value, the process proceeds to the next step.

【0046】尚、上記の気体導入工程においてはパージ
弁V3 を開いた状態を保持しているが、被検液容器41
を振動する前に一旦パージ弁V3 を閉じ、導入弁V1
開けると同時に該パージ弁V3 も開けるようにしてもよ
い。これによって、振動手段4の駆動による気密容器1
からの液漏れを防止することができる。
In the above gas introducing step, the purge valve V 3 is kept open, but the sample liquid container 41
It is also possible to close the purge valve V 3 once before oscillating, and open the introduction valve V 1 and at the same time open the purge valve V 3 . As a result, the airtight container 1 is driven by the vibrating means 4.
It is possible to prevent the liquid from leaking.

【0047】上記のように気体導入弁V1 及びパージ弁
3 が閉弁すると、圧力測定手段52は、その時の気密
容器1内の圧力Po2を測定し(S15)、メモリ53に
記憶させるとともに、注入制御手段34がポンプ33を
作動させて、炭酸ガス吸収剤2を気密容器1内の圧力P
o2が所定のしきい値を越える迄気密容器1内に注入し、
このときの注入量υ2 をメモリ35に記憶させておく
(S16)。
When the gas introduction valve V 1 and the purge valve V 3 are closed as described above, the pressure measuring means 52 measures the pressure P o2 in the airtight container 1 at that time (S15) and stores it in the memory 53. At the same time, the injection control means 34 operates the pump 33 to cause the carbon dioxide absorbent 2 to have a pressure P in the airtight container 1.
Inject into the airtight container 1 until o2 exceeds a predetermined threshold,
The injection amount υ 2 at this time is stored in the memory 35 (S16).

【0048】上記の注入工程が終了すると、再び、圧力
測定手段52が圧力計51よりこのときの気密容器1内
の圧力P2 を測定する(S17)。このようにして得ら
れた内圧P2 は、メモリ53に記憶されるとともに、体
積演算手段61が上記内圧P o2、P2 及びメモリ35に
記憶された注入量υ2 を読み込んで、該注入量υ2 とこ
れら内圧Po2及びP2 とに基づいて上記数式2に従って
気体導入後の気密容器内1の炭酸ガスを除いた気体成分
の体積、即ち、残留気体体積χ2 を演算し(S18)、
メモリ62に記憶させる。
When the above-mentioned injection process is completed, the pressure is again set.
In the airtight container 1 at this time when the measuring means 52 is the pressure gauge 51
Pressure P2Is measured (S17). Obtained this way
Internal pressure P2Is stored in the memory 53 and
The product calculating means 61 uses the internal pressure P o2, P2And in the memory 35
Remembered infusion volume υ2Read the injection volume υ2Toko
These internal pressure Po2And P2Based on and according to Equation 2 above
Gas component excluding carbon dioxide in the airtight container 1 after introducing gas
Volume of residual gas volume χ2Is calculated (S18),
It is stored in the memory 62.

【0049】ここで、炭酸ガス吸収剤2の注入量υ2
注入の前後の気密容器1内の圧力P o2,P2 とに基づい
て初期気体体積χ2 を演算しているので、気体が1つに
集合しているか否かは問題ではなくなり、従って、気密
容器1内の泡立ちが残っていても、あるいは、気体導入
路42、連通管11、パージ管13,14の一部に気体
が残っていたとしても、気体導入後に残留している空気
の総体積が残留気体体積χ2 として演算される。
Here, the injection amount of carbon dioxide absorbent 22When
Pressure P in airtight container 1 before and after injection o2, P2Based on
Initial gas volume χ2Is calculated, so there is only one gas
It doesn't matter if they're together or not, so it's airtight
Even if bubbles remain in the container 1, or gas is introduced
Gas in the passage 42, the communication pipe 11, and a part of the purge pipes 13 and 14
Air remaining after the gas is introduced, even if
Is the residual gas volume χ2Is calculated as

【0050】この残留気体体積χ2 の演算が終了する
と、メモリ62からχ1 ,χ2 が減算手段63に読み出
され、減算手段63でこれらχ1 ,χ2 に基づき上記数
式3に従って気体導入の間に気密容器内に注入された気
体の中、炭酸ガスを除いた気体成分の体積、即ち、気体
体積χが演算される(S19)。
When the calculation of the residual gas volume χ 2 is completed, χ 1 and χ 2 are read out from the memory 62 by the subtraction means 63, and the subtraction means 63 introduces the gas according to the above equation 3 based on these χ 1 and χ 2. In the gas injected into the airtight container during the period, the volume of the gas component excluding the carbon dioxide gas, that is, the gas volume χ is calculated (S19).

【0051】上記χ1 ,χ2 は炭酸ガス吸収剤2の注入
量υ1 ,υ2 とその注入の前後の気密容器1内の圧力P
o1,P1 ,Po2,P2 とに基づいて演算しているので、
気密容器1などの内面に付着した気泡や炭酸ガス吸収剤
2の気泡を含めて正確に算出されるので、これらに基づ
いて演算し、測定した上記気体体積χもきわめて正確に
演算されることになり、例えば図10のグラフに示すよ
うに、測定値と気体量との関係は誤差が−0.03〜
0.05mlの範囲内のきわめて正確な測定が行えるこ
とが分かる。
The above χ 1 and χ 2 are the injection amounts υ 1 and υ 2 of the carbon dioxide absorbent 2 and the pressure P in the airtight container 1 before and after the injection.
o1, since P 1, P o2, are calculated based on the P 2,
Since the bubbles including the bubbles attached to the inner surface of the airtight container 1 and the bubbles of the carbon dioxide absorbent 2 are accurately calculated, the calculated gas volume χ based on these is also accurately calculated. For example, as shown in the graph of FIG. 10, the error between the measured value and the gas amount is −0.03 to
It can be seen that extremely accurate measurement within the range of 0.05 ml can be performed.

【0052】なお、上記の一実施例では、炭酸ガス吸収
剤として水酸化ナトリウムを用いているが、もちろん、
これに代えて、例えば水酸化カルシウム、水酸化カリウ
ムなどを用いてもよい。
In the above embodiment, sodium hydroxide is used as the carbon dioxide absorbent, but of course,
Instead of this, for example, calcium hydroxide, potassium hydroxide or the like may be used.

【0053】[0053]

【発明の効果】以上に説明したように、本発明方法によ
れば、気体導入後に所定量の炭酸ガス吸収剤を上記気密
容器に供給し、この所定量と供給の前後の上記気密容器
内の圧力とに基づいて残留気体体積が演算されるので、
上記気密容器内の泡立ちが収まる前に残留気体体積を測
定することができ、短時間で残留気体体積を測定するこ
とができる。
As described above, according to the method of the present invention, a predetermined amount of carbon dioxide absorbent is supplied to the airtight container after introducing gas, and the predetermined amount and the amount of carbon dioxide in the airtight container before and after the supply are supplied. Since the residual gas volume is calculated based on the pressure and
The residual gas volume can be measured before the foaming in the airtight container is subsided, and the residual gas volume can be measured in a short time.

【0054】又、上記気密容器及びこれに連通する空間
に気泡が分散したり、その内面に気泡が付着したりして
いても、この分散した気泡を含めて上記気密容器及びこ
れに連通する空間内の全ての残留気体体積を測定するこ
とができるので、高精度の測定ができる。
Further, even if air bubbles are dispersed in the airtight container and the space communicating with the airtight container or bubbles are attached to the inner surface of the airtight container, the airtight container including the dispersed air bubbles and the space communicating with the airtight container. Since it is possible to measure all of the residual gas volume inside, highly accurate measurement can be performed.

【0055】しかも、消泡剤を用いずに済むので、安価
に、かつ、短時間で測定することができる。本発明方法
において、特に、気体導入前に所定量の炭酸ガス吸収剤
を上記気密容器に供給し、この所定量と供給の前後の上
記気密容器内の圧力とに基づいて初期気体体積を演算
し、上記残留気体体積からこの初期気体体積を演算して
気体体積を演算する場合には、気体導入前に上記気密容
器内の気体を排出する作業(エアパージ作業)が不要に
なり、操作性が高められると共に、測定時間を一層短縮
できる。
Moreover, since it is not necessary to use an antifoaming agent, the measurement can be carried out inexpensively and in a short time. In the method of the present invention, in particular, a predetermined amount of carbon dioxide absorbent is supplied to the airtight container before introducing gas, and the initial gas volume is calculated based on this predetermined amount and the pressure in the airtight container before and after the supply. When the initial gas volume is calculated from the residual gas volume to calculate the gas volume, the work of discharging the gas in the airtight container (air purging work) before introducing the gas becomes unnecessary, and the operability is improved. In addition, the measurement time can be further shortened.

【0056】又、この場合、初期気体体積の測定時に上
記気密容器及びこれに連通する空間に気泡が分散した
り、その内面に気泡が付着したりしていても、この分散
した気泡を含めて上記気密容器及びこれに連通する空間
内の全ての初期気体体積を測定することができるので、
消泡剤を用いずに、安価に高精度の測定ができる。
Further, in this case, even if air bubbles are dispersed in the airtight container and the space communicating with the airtight container at the time of measuring the initial gas volume, or bubbles are adhered to the inner surface of the airtight container, the dispersed air bubbles are included. Since it is possible to measure all initial gas volumes in the airtight container and the space communicating with it,
High-precision measurement can be performed inexpensively without using an antifoaming agent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の構成図である。FIG. 1 is a block diagram of an apparatus of the present invention.

【図2】本発明装置の制御手段の機能ブロック図であ
る。
FIG. 2 is a functional block diagram of control means of the device of the present invention.

【図3】本発明方法のフロー図である。FIG. 3 is a flow chart of the method of the present invention.

【図4】本発明装置の炭酸ガス吸収剤注入時の構成図で
ある。
FIG. 4 is a configuration diagram of the device of the present invention when a carbon dioxide absorbent is injected.

【図5】本発明装置の炭酸ガス吸収剤注入終了時の構成
図である。
FIG. 5 is a configuration diagram of the device of the present invention at the end of injection of carbon dioxide absorbent.

【図6】本発明装置の炭酸ガス吸収剤注入時の構成図で
ある。
FIG. 6 is a configuration diagram of the device of the present invention when a carbon dioxide absorbent is injected.

【図7】本発明装置の気体導入時の構成図である。FIG. 7 is a configuration diagram of the device of the present invention when gas is introduced.

【図8】本発明装置の気体導入終了時の構成図である。FIG. 8 is a configuration diagram of the device of the present invention when gas introduction is completed.

【図9】本発明装置の炭酸ガス吸収剤注入時の構成図で
ある。
FIG. 9 is a configuration diagram of the device of the present invention when a carbon dioxide absorbent is injected.

【図10】本発明方法及び装置による測定結果を示すグ
ラフである。
FIG. 10 is a graph showing measurement results by the method and apparatus of the present invention.

【図11】従来例の構成図である。FIG. 11 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 気密容器 2 炭酸ガス吸収剤 3 吸収剤供給手段 4 気体導入装置 5 圧力検出手段 6 演算手段 11 連通管 12,13,14 パージ管 31 吸収剤容器 33 ポンプ 41 被検液容器 42 気体導入路 V1 気体導入弁 V2,V3,V4 パージ弁 P1 ,Po1,P2 ,Po2 内圧 χ 気体容積 χ1 ,χ2 気体体積 υ1 ,υ2 注入量DESCRIPTION OF SYMBOLS 1 Airtight container 2 Carbon dioxide absorbent 3 Absorbent supply means 4 Gas introduction device 5 Pressure detection means 6 Calculation means 11 Communication pipes 12, 13, 14 Purge pipe 31 Absorbent container 33 Pump 41 Test liquid container 42 Gas introduction path V1 Gas introduction valve V2, V3, V4 Purge valve P 1 , P o1 , P 2 , P o2 Internal pressure χ Gas volume χ 1 , χ 2 Gas volume υ 1 , υ 2 Injection amount

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭酸ガス吸収剤を充填した気密容器と、
被検液を収容した被検液容器とを連通し、該被検液に溶
解した炭酸ガスを含む気体を炭酸ガス吸収剤を介して上
記気密容器に導入して炭酸ガスを除去した後に該気密容
器に残留する残留気体の体積を測定する気体容量測定方
法において、 上記気密容器に炭酸ガスを含む気体を導入した後、上記
気密容器に炭酸ガス吸収剤を所定量供給し、該所定量の
炭酸ガス吸収剤を供給する前及び後の気密容器内の圧力
と上記所定量とに基づいて上記気密容器内の残留気体体
積を演算することを特徴とする残留気体容量測定方法。
1. An airtight container filled with a carbon dioxide absorbent,
A gas containing carbon dioxide gas dissolved in the test liquid is introduced into the above airtight container through a carbon dioxide absorbent into the airtight container to remove the carbon dioxide gas, and then the airtight In a gas volume measuring method for measuring the volume of residual gas remaining in a container, a gas containing carbon dioxide gas is introduced into the airtight container, a predetermined amount of carbon dioxide absorbent is supplied to the airtight container, and the predetermined amount of carbon dioxide is supplied. A residual gas volume measuring method, characterized in that the residual gas volume in the airtight container is calculated based on the pressure in the airtight container before and after supplying the gas absorbent and the predetermined amount.
【請求項2】 上記炭酸ガスを含む気体を上記気密容器
に導入する前に、上記気密容器内に炭酸ガス吸収剤を所
定量供給し、該所定量の炭酸ガス吸収剤の供給の前及び
後の上記気密容器内の圧力と上記所定量とに基づいて気
体導入前の上記気密容器内の初期気体体積を演算し、更
に上記残留気体体積から上記初期気体体積を減算して、
気体体積を演算する請求項1に記載の残留気体容量測定
方法。
2. Before introducing the gas containing carbon dioxide into the airtight container, a predetermined amount of carbon dioxide absorbent is supplied into the airtight container, and before and after the supply of the predetermined amount of carbon dioxide absorbent. Calculate the initial gas volume in the airtight container before gas introduction based on the pressure in the airtight container and the predetermined amount, further subtract the initial gas volume from the residual gas volume,
The residual gas volume measuring method according to claim 1, wherein the gas volume is calculated.
【請求項3】 炭酸ガス吸収剤を充填した気密容器と、
被検液を収容した被検液容器とを連通し、該被検液に溶
解した炭酸ガスを含む気体を炭酸ガス吸収剤を介して気
密容器に導入して炭酸ガスを除去した後の気体容器に残
留する残留気体の体積を測定する気体容量測定装置にお
いて、 上記気密容器に被検液が収容された被検液容器より炭酸
ガスを含む気体を導入する気体導入手段と、 上記気体導入手段による気体導入後に、上記気密容器に
炭酸ガス吸収剤を所定量供給する吸収剤供給手段と、 上記吸収剤供給手段による炭酸ガス吸収剤の供給の前及
び後の上記気密容器内の圧力を検出する圧力検出手段
と、 上記気密容器内の圧力と上記所定量とに基づいて上記気
密容器内の残留気体体積を演算する演算手段を備えたこ
とを特徴とする残留気体容量測定装置。
3. An airtight container filled with a carbon dioxide absorbent,
A gas container after communicating with a test liquid container containing the test liquid and introducing a gas containing carbon dioxide gas dissolved in the test liquid into an airtight container via a carbon dioxide absorbent to remove the carbon dioxide gas In the gas volume measuring device for measuring the volume of residual gas remaining in the, the gas introducing means for introducing a gas containing carbon dioxide gas from the test liquid container containing the test liquid in the airtight container, and the gas introducing means After introducing the gas, an absorbent supply means for supplying a predetermined amount of carbon dioxide absorbent to the airtight container, and a pressure for detecting the pressure in the airtight container before and after the supply of the carbon dioxide absorbent by the absorbent supply means. A residual gas capacity measuring device comprising: a detection means; and a calculation means for calculating the residual gas volume in the airtight container based on the pressure in the airtight container and the predetermined amount.
【請求項4】 上記吸収剤供給手段が上記気体導入手段
による気体導入前に、上記気密容器に炭酸ガス吸収剤を
所定量供給し、上記圧力検出手段がこの所定量の炭酸ガ
ス吸収剤の供給の前及び後の上記気密容器内の圧力を検
出し、上記演算手段が上記所定量と上記気密容器内の圧
力とに基づいて初期気体体積を演算すると共に、上記残
留気体体積から上記初期気体体積を減算して、気体体積
を演算する請求項3に記載の気体容量測定装置。
4. The absorbent supply means supplies a predetermined amount of carbon dioxide absorbent to the airtight container before the gas is introduced by the gas introducing means, and the pressure detecting means supplies the predetermined amount of carbon dioxide absorbent. Before and after detecting the pressure in the airtight container, the calculating means calculates the initial gas volume based on the predetermined amount and the pressure in the airtight container, from the residual gas volume to the initial gas volume The gas volume measuring device according to claim 3, wherein the gas volume is calculated by subtracting.
JP21862596A 1996-08-20 1996-08-20 Method and apparatus for measuring residual gas volume Expired - Fee Related JP3462013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21862596A JP3462013B2 (en) 1996-08-20 1996-08-20 Method and apparatus for measuring residual gas volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21862596A JP3462013B2 (en) 1996-08-20 1996-08-20 Method and apparatus for measuring residual gas volume

Publications (2)

Publication Number Publication Date
JPH1062406A JPH1062406A (en) 1998-03-06
JP3462013B2 true JP3462013B2 (en) 2003-11-05

Family

ID=16722894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21862596A Expired - Fee Related JP3462013B2 (en) 1996-08-20 1996-08-20 Method and apparatus for measuring residual gas volume

Country Status (1)

Country Link
JP (1) JP3462013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067764A (en) * 2015-07-24 2015-11-18 惠州凯美特气体有限公司 Improved measure apparatus for carbon dioxide purity of high purity gas and measure method thereof
CN109000751B (en) * 2018-04-28 2020-03-06 广州海洋地质调查局 Volume measuring equipment and method for natural gas hydrate
US11598661B2 (en) * 2018-07-30 2023-03-07 Kyoto Electronics Manufacturing Co., Ltd. Residual gas volume measuring device, residual gas volume measuring method, and puncture member
EP4215883A1 (en) * 2020-09-17 2023-07-26 Kyoto Electronics Manufacturing Co., Ltd. Residual gas volume measuring device and residual gas volume measuring method

Also Published As

Publication number Publication date
JPH1062406A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP5186583B2 (en) Method and system for liquid dispensing with headspace degassing
CN108726463A (en) Method and apparatus for filling container by filling product
JP2002506782A (en) Device for dispensing liquid under pressure
US20070151350A1 (en) Measuring fluid volumes in a container using pressure
EA007691B1 (en) Assembly for drink dispenser and container provided with a pressure medium reservoir
JP3462013B2 (en) Method and apparatus for measuring residual gas volume
US11561154B2 (en) Method and device for measuring an oxygen content of a headspace gas in a beverage can
JP2011501148A (en) Method and apparatus for measuring the amount of gas in a liquid sealed container
US20220195354A1 (en) System, closure, and interconnect for managing a beverage in a bulk liquid container
US20130129888A1 (en) Method and apparatus for treating fermented liquids
US11726009B2 (en) Method and device for measuring the oxygen content of the headspace gas in a container
EP0163730B1 (en) Device and method of measuring the viscosity and/or visco-elasticity of a fluid
US5668330A (en) Aqueous sample testing apparatus
JP3181293U (en) Density measuring device
WO2022059444A1 (en) Residual gas volume measuring device and residual gas volume measuring method
JP4656475B2 (en) Air volume measuring device, unit water volume measuring device, and fresh concrete measuring container
JPS59220630A (en) Method and device for measuring gas load of liquefied plastic component
WO2020026764A1 (en) Residual gas volume measuring device, residual gas volume measuring method, and puncture member
CN210269758U (en) Foam scrubbing agent performance evaluation test device
KR20230111001A (en) Apparatus for supply of small portion of home-brewed beer
JPH0686975B2 (en) Adsorption amount measuring device
GB2252823A (en) Measuring dissolved gas concentration in liquids
JPH08201244A (en) Method for diluting sample water
Roberts et al. Air in Beer-II. Determination of Air Dissolved in Wort and Storage Beer
JP2000226098A (en) Filling control method for low-viscosity liquid and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees