JPH0686975B2 - Adsorption amount measuring device - Google Patents
Adsorption amount measuring deviceInfo
- Publication number
- JPH0686975B2 JPH0686975B2 JP17024885A JP17024885A JPH0686975B2 JP H0686975 B2 JPH0686975 B2 JP H0686975B2 JP 17024885 A JP17024885 A JP 17024885A JP 17024885 A JP17024885 A JP 17024885A JP H0686975 B2 JPH0686975 B2 JP H0686975B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- supply
- dewar bottle
- dewar
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は容量法による試料の物理吸着量を測定する装置
に関し、吸着法による比表面積測定装置および細孔分布
測定装置にも利用できる装置に関する。TECHNICAL FIELD The present invention relates to an apparatus for measuring the physical adsorption amount of a sample by the volumetric method, and also to an apparatus that can be used for a specific surface area measuring apparatus and a pore distribution measuring apparatus by the adsorption method. .
〈従来の技術〉 容量法による吸着量の測定においては、一般に、試料を
試料セル内に投入し、そのセル内に気相吸着質を充填し
て、セル内空間の容積や温度,および圧力変化量から、
試料の吸着量を測定する。この測定に当っては、通常、
物理吸着を支配的にする為に、試料セルを液体窒素等の
冷媒中に浸漬することが行われる。そして、この場合、
試料セルの冷媒中への浸漬深さ、すなわち、冷媒中に浸
漬されるセルの内容積を一定に保つことが、測定の精度
を高める上で極めて重要である。<Prior art> In the measurement of the adsorption amount by the volume method, in general, a sample is put into a sample cell, a gas phase adsorbate is filled in the cell, and the volume, temperature, and pressure change of the space in the cell are changed. From quantity,
Measure the amount of sample adsorbed. When making this measurement,
In order to make physical adsorption dominant, the sample cell is immersed in a coolant such as liquid nitrogen. And in this case,
It is extremely important to keep the immersion depth of the sample cell in the refrigerant, that is, the inner volume of the cell immersed in the refrigerant constant, in order to improve the measurement accuracy.
そこで従来から、冷媒を収容するデュワー瓶内の冷媒液
面を一定に保つべく、冷媒を貯蔵するタンクを別設し
て、デュワー瓶内の液面検知信号により、この貯蔵タン
ク内の冷媒を自動的にデュワー瓶内に流入させることが
行なわれている。Therefore, conventionally, in order to keep the liquid surface of the refrigerant in the Dewar containing the refrigerant constant, a tank for storing the refrigerant is separately provided, and the liquid in the storage tank is automatically detected by the liquid level detection signal in the Dewar. In general, it is made to flow into the Dewar bottle.
デュワー瓶内への冷媒の供給方法は、従来、いくつかの
タイプがあるが、例えば第4図にその構成の一例を示
す。この例は自然加圧型と称され、貯蔵タンク41内の冷
媒の気化によるタンク内圧をリリーフ弁42で所定圧に保
持し、デュワー瓶43とこの貯蔵タンク41との間の輸送管
44の途中に、電磁開閉弁45を設け、デュワー瓶43内に設
けられた液面センサ46による冷媒液面位の低下の検知時
に、コントローラ47からの指令によって電磁開閉弁45を
開くことにより、冷媒をデュワー瓶43内に導く。Conventionally, there are several types of methods for supplying the refrigerant into the Dewar bottle, and for example, FIG. 4 shows an example of the configuration. This example is called a natural pressurization type, in which the tank internal pressure due to the vaporization of the refrigerant in the storage tank 41 is maintained at a predetermined pressure by a relief valve 42, and a transport pipe between the Dewar bottle 43 and the storage tank 41.
In the middle of 44, an electromagnetic on-off valve 45 is provided, and when the liquid level sensor 46 provided in the Dewar bottle 43 detects a decrease in the refrigerant liquid level, by opening the electromagnetic on-off valve 45 by a command from the controller 47, The refrigerant is introduced into the Dewar bottle 43.
また、第5図には、クライオトール型と称される従来装
置の要部を示す。この方式においては、貯蔵タンク51の
内圧を大気圧とするとともに、内部に内管52a,外管52b
から成るサイフォン管52を挿入し、内管52a,外管52bの
下端にはそれぞれ弁52c,52dを装着して、液面センサの
出力に基づいてコントローラ57からモータ58の駆動信号
を発生し、ベロー59を伸縮させることによって、冷媒を
輸送管54を介してデュワー瓶内に導く。Further, FIG. 5 shows a main part of a conventional device called a cryo-type. In this method, the internal pressure of the storage tank 51 is set to atmospheric pressure, and the inner pipe 52a and the outer pipe 52b are internally provided.
The siphon tube 52 consisting of is inserted, the valves 52c and 52d are attached to the lower ends of the inner tube 52a and the outer tube 52b, respectively, and the drive signal of the motor 58 is generated from the controller 57 based on the output of the liquid level sensor, By expanding and contracting the bellows 59, the refrigerant is guided into the Dewar via the transport pipe 54.
〈発明が解決しようとする問題点〉 ところで、デュワー瓶内の液体窒素(以下、LN2と称す
る)等の冷媒が気化することによる減量の速度は、試料
セル内への非吸着ガスの導入時における試料からの熱量
流入や、吸着ガス導入時における吸着熱の発生、あるい
は、測定が長時間に亘る為、室温の変化,大気圧の変化
により、一定とはならない。その為、LN2の供給間隔は
一定とはならず、長時間に亘ってLN2を供給する必要が
なかったときに対して、供給を何度も繰り返していると
きや、1度供給したもののその量が不足していたために
再度供給したときとでは、輸送管等の温度は著しく相違
する。<Problems to be solved by the invention> By the way, the rate of weight reduction due to vaporization of a refrigerant such as liquid nitrogen (hereinafter referred to as LN 2 ) in a Dewar bottle is The amount of heat from the sample inflows, the heat of adsorption is generated when the adsorbed gas is introduced, or the measurement takes a long time, so it is not constant due to changes in room temperature and atmospheric pressure. Therefore, the supply interval of LN 2 is not constant, and when the supply of LN 2 is not necessary for a long time, the supply is repeated many times or once. Since the amount was insufficient, the temperature of the transport pipe and the like is remarkably different from that when the gas is supplied again.
長時間に亘ってLN2を供給していないときには、輸送管
等のLN2輸送路の温度が高く、輸送途中においてLN2が激
しく沸騰し、デュワー瓶内に噴流となって流入すること
があり、その結果、デュワー瓶内の液面位を乱したり、
あるいはデュワー瓶内のLN2を攪拌して温度の変化をき
たすことになり、吸着量の測定精度を低下させるという
問題があった。When LN 2 is not supplied for a long period of time, the temperature of the LN 2 transport path such as the transport pipe is high and LN 2 may boil violently during transportation and may flow into the Dewar bottle as a jet. , As a result, it disturbs the liquid level in the Dewar bottle,
Alternatively, there is a problem that the LN 2 in the Dewar bottle is agitated to cause a temperature change, which deteriorates the measurement accuracy of the adsorption amount.
特に、自然加圧型等においてはクライオトール型に比し
て安価ではあるものの、電磁開閉弁45の熱容量が大きい
ので、上述の現象が著しい。また、いずれのタイプにお
いても、輸送管に高価な真空二重管を採用せずに、簡易
型の輸送管である,テフロン(商品名)チューブの外側
を発泡断熱材で被ったものを採用した場合にも、デュワ
ー瓶内への噴出が激しくなる。更に、輸送管を長くした
場合も同様である。In particular, although the natural pressurizing type and the like are cheaper than the cryotor type, the above-mentioned phenomenon is remarkable because the electromagnetic on-off valve 45 has a large heat capacity. In addition, in each type, a simple type of Teflon (trade name) tube covered with foam insulation was used instead of an expensive vacuum double tube. Even in this case, the ejection into the Dewar bottle becomes severe. The same applies when the transport pipe is made longer.
本発明の目的は、LN2等の液相冷媒を貯蔵タンクからデ
ュワー瓶内に供給するに当り、長時間に亘って供給して
いない状態であっても、デュワー瓶内に噴流となって流
入することがなく、もって、デュワー瓶内の冷媒液面位
精度の向上およびデュワー瓶内冷媒温度の安定化を計
り、高精度の吸着量測定を可能とした吸着量測定装置の
提供を目的としている。The object of the present invention is to supply a liquid-phase refrigerant such as LN 2 from the storage tank into the Dewar bottle as a jet flow into the Dewar bottle even if it has not been supplied for a long time. Therefore, it is an object of the present invention to provide an adsorption amount measuring device capable of highly accurate adsorption amount measurement by improving the refrigerant liquid level accuracy in the Dewar bottle and stabilizing the refrigerant temperature in the Dewar bottle. .
〈問題点を解決する為の手段〉 本発明の構成を、第1図に示す基本概念図に基づいて説
明すると、本発明の吸着量測定装置は、被測定試料Wを
封入した試料セル1を、デュワー瓶2内の液相冷媒中に
浸漬するとともに、そのデュワー瓶2内の冷媒液面位を
一定に保つべく、当該瓶2内のセンサ3からの出力に基
づいて動作する冷媒供給装置aを備え、この冷媒供給装
置aにより冷媒貯蔵タンク4内の冷媒を輸送管5を介し
てデュワー瓶2内に供給することにより、試料セル1の
一定範囲を冷却し、その状態で上記試料セル1内に気相
吸着質を充填して、被測定試料Wの物理吸着量を測定す
る装置において、輸送管5の途中に気液分離器bを配設
するとともに、冷媒供給装置aに対し冷媒の仮供給を指
令する手段cを備え、冷媒供給装置aによる冷媒の供給
動作に先立ち、冷媒貯蔵タンク4内の冷媒を微量だけ仮
供給することを特徴づけられる。<Means for Solving Problems> The configuration of the present invention will be described based on the basic conceptual diagram shown in FIG. 1. The adsorption amount measuring apparatus of the present invention comprises a sample cell 1 containing a sample W to be measured. , A refrigerant supply device a which is immersed in the liquid phase refrigerant in the Dewar bottle 2 and operates based on the output from the sensor 3 in the Dewar bottle 2 in order to keep the liquid level of the refrigerant in the Dewar bottle 2 constant. By supplying the refrigerant in the refrigerant storage tank 4 into the Dewar bottle 2 via the transport pipe 5 by this refrigerant supply device a, a certain range of the sample cell 1 is cooled, and in that state, the sample cell 1 In a device for measuring the physical adsorption amount of a sample W to be measured by filling the inside thereof with a gas phase adsorbate, a gas-liquid separator b is arranged in the middle of the transport pipe 5, and a refrigerant supply device a The means c for instructing the temporary supply is provided, and It is characterized in that a small amount of the refrigerant in the refrigerant storage tank 4 is temporarily supplied prior to the operation of supplying the refrigerant.
〈作用〉 冷媒をデュワー瓶2内に実際に供給する前に、所定の微
量の冷媒を仮供給すると、前回の冷媒供給時から長時間
が経過していても、輸送管5,気液分離器b等の冷媒通路
が冷却され、その状態で実際に冷媒の供給を行うことよ
り、気液分離器bの作用と相俟って、冷媒が噴流となっ
てデュワー瓶2内に流入することがない。また、仮供給
時においては、冷媒供給量を微量とすることにより、更
に、気液分離器bを設けることにより、この仮供給され
た冷媒がデュワー瓶2内の液面位を乱すことはない。<Operation> If a predetermined small amount of refrigerant is temporarily supplied before actually supplying the refrigerant into the Dewar bottle 2, even if a long time has elapsed since the previous supply of the refrigerant, the transport pipe 5, the gas-liquid separator When the refrigerant passage such as b is cooled and the refrigerant is actually supplied in that state, the refrigerant may flow into the Dewar bottle 2 as a jet in combination with the action of the gas-liquid separator b. Absent. Further, at the time of provisional supply, the provisional supply of the refrigerant does not disturb the liquid level in the Dewar bottle 2 by providing a small amount of the supply of the refrigerant and further providing the gas-liquid separator b. .
〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> An example of the present invention will be described below with reference to the drawings.
第2図は本発明実施例の構成図である。FIG. 2 is a block diagram of an embodiment of the present invention.
被測定試料Wを封入する試料セル1は、セル接続部1aを
介して図示しないガス溜部に気密に接続される。ガス溜
部には、系内の圧力を計測する圧力計や真空計,真空ポ
ンプ,非吸着質たるヘリウム源,吸着ガスとしての窒素
源等が接続され、公知の容量法によって試料の吸着量が
測定される。The sample cell 1 in which the sample W to be measured is enclosed is hermetically connected to a gas reservoir (not shown) via the cell connecting portion 1a. A pressure gauge for measuring the pressure in the system, a vacuum gauge, a vacuum pump, a helium source as a non-adsorbate, a nitrogen source as an adsorbed gas, and the like are connected to the gas reservoir, and the adsorption amount of the sample is measured by a known capacitance method. To be measured.
試料セル1は、デュワー瓶2内に収容された冷媒として
のLN2内に浸漬されている。デュワー瓶2内には液面セ
ンサ3が配設されており、LN2の液面位が規定位置より
も下がると、その検知信号を出力するよう構成されてい
る。The sample cell 1 is immersed in LN 2 as a refrigerant contained in the Dewar bottle 2. A liquid level sensor 3 is provided in the Dewar bottle 2 and is configured to output a detection signal when the liquid level of LN 2 drops below a specified position.
貯蔵タンク4は、デュワー瓶2内のLN2量が減少したと
きに、その補充を行う為のLN2を貯蔵するタンクであっ
て、密閉し得るLN2注入口4aと、内部のLN2の気化による
内圧の過分な上昇分を解放して内圧を所定値に保つ為の
リリーフ弁4bを備えている。この貯蔵タンク4内には、
吸出管6の一端が挿入されており、その吸出管6の他端
は電磁開閉弁7を介して第1の輸送管5aの一端に連通し
ている。電磁開閉弁7を開くと、貯蔵タンク4内のLN2
はタンク内圧によって吸出管6を介して第1の輸送管5a
へと導かれることになる。Storage tank 4, when the LN 2 amount in the dewar 2 is reduced, a tank for storing LN 2 for performing the replenishment, and LN 2 inlet 4a which may be sealed, the interior of the LN 2 A relief valve 4b for releasing an excessive increase in internal pressure due to vaporization and maintaining the internal pressure at a predetermined value is provided. In this storage tank 4,
One end of the suction pipe 6 is inserted, and the other end of the suction pipe 6 communicates with one end of the first transport pipe 5a via an electromagnetic opening / closing valve 7. When the solenoid valve 7 is opened, LN 2 in the storage tank 4
Is the first transport pipe 5a via the suction pipe 6 due to the tank internal pressure.
Will be led to.
第1の輸送管5aの他端は、LN2トラップ8の内部に開放
されている。LN2トラップ8は、流入したLN2とその気化
ガス(以下、GN2と称する)を分離する為のもので、頂
部にガス出口8a,底部に液出口8bを備えている。このLN2
トラップ8の液出口8bは、テフロン(商品名)チューブ
の外壁を断熱材で被ってなる第2の輸送管5bを介して、
デュワー瓶2内に連通している。The other end of the first transport pipe 5a is open inside the LN 2 trap 8. The LN 2 trap 8 is for separating the inflowing LN 2 and its vaporized gas (hereinafter referred to as GN 2 ), and has a gas outlet 8a at the top and a liquid outlet 8b at the bottom. This LN 2
The liquid outlet 8b of the trap 8 is passed through a second transport pipe 5b formed by covering the outer wall of the Teflon (trade name) tube with a heat insulating material,
It communicates with the Dewar bottle 2.
上述の電磁開閉弁7は、コントローラ9からの動作信号
によって開閉される。コントローラ9は、液面センサか
らの検知信号を入力して、以下に示す如き論理に基づい
て、電磁開閉弁7の開閉を制御する。The electromagnetic opening / closing valve 7 is opened / closed by an operation signal from the controller 9. The controller 9 inputs the detection signal from the liquid level sensor and controls the opening / closing of the electromagnetic opening / closing valve 7 based on the logic as described below.
第3図は、このコントローラ9の論理を示すフローチャ
ートである。液面センサ3の出力信号に基づいて、デュ
ワー瓶2内のLN2が不足しているか充足しているかを判
別し、充足しているときには10秒間待機した後、この判
別を繰り返す。不足しているときには、まず、前回の供
給時点からの経過時間を計測するタイマ(経験タイマと
称する)が、所定の一定時間、例えば60秒以上になって
いるか否かを判別することにより、直ちにLN2の実際の
供給(以下、本供給と称する)を行うか、あるいは、こ
の本供給の前に、所定の微量のLN2の供給(以下、仮供
給と称する)を行うかを決定する。FIG. 3 is a flowchart showing the logic of the controller 9. Based on the output signal of the liquid level sensor 3, after waiting for 10 seconds when the LN 2 in Dewar 2 to determine whether they meet or are missing, they meet and repeats the determination. If there is a shortage, first, a timer (referred to as an experience timer) that measures the elapsed time from the previous supply time is immediately determined by determining whether or not it is a predetermined fixed time, for example, 60 seconds or more. It is determined whether to actually supply LN 2 (hereinafter, referred to as main supply) or to supply a predetermined trace amount of LN 2 (hereinafter, referred to as temporary supply) before the main supply.
経験タイマが60秒以上になっているときには、前回のLN
2供給時点から長時間経過し、第1および第2の輸送管5
aおよび5b,LN2トラップ8,電磁開閉弁7等のLN2供給路が
温まっているので、直ちに本供給を実行するとLN2トラ
ップ8の存在によってもなお、デュワー瓶2内にLN2,G
N2が噴流となって流入する虞れがあり、従ってこの場
合、本供給の前の仮供給を行う。仮供給は、電磁開閉弁
7を所定の微小時間、例えば1秒間だけ開くことによっ
て行われる。当初においては、第2の輸送管5bにLN2が
達するまでにGN2となってLN2トラップ8のガス出口8aか
ら放出されることになる。このような仮供給を、例えば
10回繰り返すことにより、第2の輸送管5bに至るまでの
全供給路が冷却される。そして、この動作の後、本供給
を実行する。本供給は、電磁開閉弁7を例えば6秒間だ
け開くことによって行われる。これにより、本供給時に
LN2が噴流となってデュワー瓶2内に流入することがな
い。When the experience timer is over 60 seconds, the previous LN
2 Long time has passed from the time of supply, and the first and second transportation pipes 5
a and 5b, the LN 2 supply path such as the LN 2 trap 8 and the solenoid on-off valve 7 is warm, so if this supply is executed immediately, the presence of the LN 2 trap 8 will still cause LN 2 , G
There is a risk that N 2 will flow in as a jet flow, so in this case, provisional supply before the main supply is performed. The temporary supply is performed by opening the electromagnetic opening / closing valve 7 for a predetermined minute time, for example, 1 second. Initially, by the time LN 2 reaches the second transport pipe 5b, it becomes GN 2 and is discharged from the gas outlet 8a of the LN 2 trap 8. Such provisional supply, for example,
By repeating 10 times, all the supply paths up to the second transport pipe 5b are cooled. Then, after this operation, the main supply is executed. The main supply is performed by opening the electromagnetic opening / closing valve 7 for only 6 seconds, for example. As a result, at the time of main supply
LN 2 does not flow into the Dewar 2 as a jet.
経験タイマが60秒未満であれば、LN2供給路はさほど温
まっていないので、この場合、直ちに本供給を実行する
ことになる。If the experience timer is less than 60 seconds, the LN 2 supply path is not so warm, and in this case, the main supply is executed immediately.
なお、以上の実施例では、デュワー瓶2内のLN2が不足
しているときに、経験タイマによる計時結果により仮供
給の実行の有無を判別したが、この判別を行わずに、本
供給の前に必ず仮供給を実行するよう構成してもよい。In the above embodiment, when the LN 2 in Dewar 2 is insufficient, although it is determined whether to execute the temporary supply by time measurement result by experience timer, without this determination, of the supply The provisional supply may be performed before the execution.
また、以上は自然加圧型のLN2供給装置に本発明を適用
した例を示したが、第5図に示す如きクライオトール型
にも本発明を適用し得ることは勿論である。Further, although the example in which the present invention is applied to the naturally pressurized LN 2 supply device has been described above, it goes without saying that the present invention can also be applied to a cryotor type as shown in FIG.
〈効果〉 以上説明したように、本発明によれば、デュワー瓶と貯
蔵タンクとの間の冷媒供給路に気液分離器を設けて、デ
ュワー瓶の手前で冷媒の気化部分を廃棄するよう構成す
るとともに、冷媒の実際の供給に先立って、微量の冷媒
を流して供給路を冷却するよう構成したので、冷媒の実
際の供給時には常に供給路が所定温度以下の状態となっ
て、従来のように冷媒がデュワー瓶内に噴流となって流
入して液面位を乱したり、あるいは攪拌によって温度を
変化させることがなく、高精度の吸着量測定が可能とな
った。また、従来、安価ではあるものの電磁開閉弁の存
在によって冷媒の噴出現象が著しくなる自然加圧型の供
給装置でも、本発明によって噴出現象が抑止される為、
充分使用できるようになった。更に、同様な理由によ
り、輸送管に高価な真空二重管を用いずとも、断熱材で
被ったチューブ等の使用も可能となった。なお、本発明
は、クライオトール型の供給装置と、真空二重管の輸送
管を用いれば、より一層液面精度向上および温度安定化
を計れることは云うまでもない。<Effect> As described above, according to the present invention, the gas-liquid separator is provided in the refrigerant supply path between the Dewar bottle and the storage tank, and the vaporized portion of the refrigerant is disposed in front of the Dewar bottle. In addition, since the supply passage is cooled by flowing a small amount of the refrigerant prior to the actual supply of the refrigerant, the supply passage is always kept at a predetermined temperature or less at the time of the actual supply of the refrigerant. The refrigerant can flow into the Dewar as a jet and disturb the liquid level, or the temperature is not changed by stirring, and highly accurate adsorption amount measurement is possible. Further, conventionally, even in the case of a naturally pressurized type supply device in which the ejection phenomenon of the refrigerant is remarkable due to the presence of the electromagnetic on-off valve, which is inexpensive, the ejection phenomenon is suppressed by the present invention,
It has become fully usable. Further, for the same reason, it becomes possible to use a tube covered with a heat insulating material without using an expensive vacuum double tube for the transportation tube. It is needless to say that the present invention can further improve the liquid level accuracy and stabilize the temperature by using a cryostat-type supply device and a vacuum double pipe transport pipe.
第1図は本発明の構成を示す基本概念図、第2図は本発
明実施例の構成図、第3図はそのコントローラ9による
電磁開閉弁7の開閉動作信号の供給論理を示すフローチ
ャート、第4図および第5図は従来の装置構成を示す図
である。 1……試料セル、2……デュワー瓶 3……液面センサ、4……貯蔵タンク 4b……リリーフ弁、5a……第1の供給管 5b……第2の輸送管、6……吸出管 7……電磁開閉弁、8……LN2トラップ 9……コントローラFIG. 1 is a basic conceptual diagram showing the configuration of the present invention, FIG. 2 is a configuration diagram of an embodiment of the present invention, FIG. 3 is a flow chart showing the supply logic of the opening / closing operation signal of the electromagnetic on-off valve 7 by the controller 9, FIG. 4 and FIG. 5 are diagrams showing a conventional device configuration. 1 ... Sample cell, 2 ... Dewar bottle 3 ... Liquid level sensor, 4 ... Storage tank 4b ... Relief valve, 5a ... First supply pipe 5b ... Second transport pipe, 6 ... Suction Tube 7: electromagnetic on-off valve, 8: LN 2 trap 9: controller
Claims (1)
ー瓶内の液相冷媒中に浸漬するとともに、そのデュワー
瓶内の冷媒液面位を一定に保つべく、当該瓶内のセンサ
からの出力に基づいて動作する冷媒供給装置を備え、こ
の冷媒供給装置により冷媒貯蔵タンク内の冷媒を輸送管
を介して上記デュワー瓶内に供給することにより、上記
試料セルの一定範囲を冷却し、その状態で上記試料セル
内に気相吸着質を充填して、被測定試料の物理吸着量を
測定する装置において、上記輸送管の途中に気液分離器
を配設するとともに、上記冷媒供給装置に対し冷媒の仮
供給を指令する手段を備え、上記冷媒供給装置による冷
媒の供給動作に先立ち、上記冷媒貯蔵タンク内の冷媒を
微量だけ仮供給することを特徴とする吸着量測定装置。1. A sample cell in which a sample to be measured is enclosed is immersed in a liquid phase refrigerant in a Dewar bottle, and in order to keep the liquid level of the refrigerant in the Dewar bottle constant, Provided with a refrigerant supply device that operates based on the output, by supplying the refrigerant in the refrigerant storage tank by the refrigerant supply device into the Dewar via the transport pipe, to cool a certain range of the sample cell, In the state of filling the gas phase adsorbate in the sample cell, in the device for measuring the physical adsorption amount of the sample to be measured, with the gas-liquid separator in the middle of the transport pipe, in the refrigerant supply device On the other hand, an adsorption amount measuring device comprising means for instructing the temporary supply of the refrigerant, and temporarily supplying a small amount of the refrigerant in the refrigerant storage tank prior to the operation of supplying the refrigerant by the refrigerant supply device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17024885A JPH0686975B2 (en) | 1985-07-31 | 1985-07-31 | Adsorption amount measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17024885A JPH0686975B2 (en) | 1985-07-31 | 1985-07-31 | Adsorption amount measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6230937A JPS6230937A (en) | 1987-02-09 |
JPH0686975B2 true JPH0686975B2 (en) | 1994-11-02 |
Family
ID=15901417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17024885A Expired - Lifetime JPH0686975B2 (en) | 1985-07-31 | 1985-07-31 | Adsorption amount measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0686975B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04139367A (en) * | 1990-09-29 | 1992-05-13 | Shimadzu Corp | Device for supplying refrigerant such as liquid nitrogen |
KR101259060B1 (en) | 2011-03-17 | 2013-04-29 | 삼성중공업 주식회사 | Apparatus for reducing VOC and Ship including the same |
JP5916580B2 (en) * | 2012-10-09 | 2016-05-11 | マイクロトラック・ベル株式会社 | Adsorption characteristic measuring device |
-
1985
- 1985-07-31 JP JP17024885A patent/JPH0686975B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6230937A (en) | 1987-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040134258A1 (en) | Method and apparatus to measure gas amounts adsorbed on a powder sample | |
US20160068293A1 (en) | Facility and method for producing a container loaded with a biopharmaceutical fluid | |
CN114096822B (en) | Test system and test method for verifying the integrity of flexible bags | |
US5616838A (en) | Metering apparatus for cryogenic liquids | |
US6595036B1 (en) | Method and apparatus for measuring amount of gas adsorption | |
US20220090980A1 (en) | System and method for detecting a possible loss of integrity of a flexible bag for biopharmaceutical product | |
CN206411071U (en) | The enriching apparatus of micro light hydrocarbon component test suitable for natural gas | |
EP0689044B1 (en) | Apparatus for and method of measuring gas absorbing characteristics | |
CN113092310A (en) | Transformer oil gas content testing device and method for measuring density by U-shaped oscillation tube | |
JPH0686975B2 (en) | Adsorption amount measuring device | |
US3653414A (en) | Method of charging a thermostatic system with a condensible and a noncondensible medium | |
JP3383949B2 (en) | Measurement method of dissolved gas amount of fluid | |
CN105823301B (en) | A kind of time control cooling device and time control cooling means | |
JP2006207925A (en) | Carbon dioxide gas filling device | |
WO1999066255A3 (en) | Resilient containers for hyperpolarized gases | |
JPH01260293A (en) | Operating liquid pouring device for heat pipe | |
JPH06109519A (en) | Method and apparatus for determining phase of fluid | |
RU2810490C1 (en) | Method for extracting gases from insulating liquid, implementing device and machine-readable medium | |
JP2000292246A (en) | Automatic measuring apparatus for adsorption amount by gravimetric method | |
JPH0814982A (en) | Method for measuring quantity of liquid | |
CN109799163A (en) | A kind of refrigerating plant for physical adsorption appearance and the physical adsorption appearance without using refrigerant | |
JPH0450533Y2 (en) | ||
JPS5937399A (en) | Fixed quantity feed device of extremely low-temperature liquid | |
JP2849489B2 (en) | Gas filling device for temperature-sensitive cylinder of expansion valve | |
Taconis | Chapter V 3He Cryostats |