JP3461386B2 - Crushed oil-impregnated bearing - Google Patents
Crushed oil-impregnated bearingInfo
- Publication number
- JP3461386B2 JP3461386B2 JP18411694A JP18411694A JP3461386B2 JP 3461386 B2 JP3461386 B2 JP 3461386B2 JP 18411694 A JP18411694 A JP 18411694A JP 18411694 A JP18411694 A JP 18411694A JP 3461386 B2 JP3461386 B2 JP 3461386B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- bearing
- sliding surface
- inner member
- impregnated bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/103—Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
- F16C33/104—Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- Sliding-Contact Bearings (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は含油軸受に係り、特に摩
擦特性に優れ高荷重を受けることのできる含油軸受に関
する。
【0002】
【従来の技術】焼結含油軸受は、潤滑油を含浸させて使
用されるもので、無給油で長時間使用できることから、
各種機器の回転軸の軸受として広く用いられている。こ
の種の焼結含油軸受は、多孔質状の焼結金属からなる軸
受本体に形成された軸受孔に、回転軸を挿通し、回転軸
の回転に伴うポンプ作用によって軸受本体の多数の細か
い含油孔(即ち空孔)から吸出された潤滑油と、摩擦熱
にもとづく膨張のために滲み出た潤滑油とが、軸受孔の
摺動面に油膜を形成し、この油膜により回転軸を回転自
在に支持するようになっている。
【0003】通常、含油軸受は、軸を支持する摺動面の
含油軸受側に空孔があり、この空孔から油圧が洩れるた
め、その構造上、軸と軸受の接触している摺動面側にお
いては、潤滑油の油圧を高く保つことができない。一般
に油膜の存在が可能な状況判断としては、摺動速度(m
/分)と、荷重を接触面積で除算した荷重圧力(kg/
cm2)と、を積算した、所謂PV値を判断の要素に使
用している。このPV値が、通常の含油軸受では、材料
でも多少の増減はあるが、凡そ2,000を目安に使用
限界が決められている。従って2,000以上の使用の
用途には、高価になるがボールベアリングが採用されて
いる。
【0004】このような不都合を解消するために、各種
の焼結含油軸受が提案されている(例えば、特開平6−
129431号公報,特開平6−123312号公報,
特開平6−123313号公報,特開平6−12331
4号公報,特開平3−209019号公報)。これらの
提案技術は、回転軸が摺動する内周面のうち、所定角度
幅で、空孔を目潰し、摺動面を形成したものである。
【0005】
【発明が解決しようとする課題】上記提案技術では、P
V値が凡そ5,000〜6,000までは使用可能とな
るが、例えばスタータのような高荷重を受ける軸受とし
ては、PV値が約7,000〜8,000程度必要であ
り、前記提案技術では不十分であり、到底使用すること
ができない。
【0006】本発明者は、一般に軸受が荷重により永久
歪みを発生する際に、軸受の肉厚と変形量との関係に一
定の関係があることに着目した。即ち軸受は肉厚によっ
てその変形の影響を受ける。換言すれば肉厚が大きい軸
受は、軸径の拡大が大きくなり、軸とのクリアランスが
拡大してしまうということである。
【0007】本発明の目的は、含油軸受の耐圧を高くで
きて含油軸受の使用範囲を拡大することができ、現状使
用されているボールベアリングの対応用途にも代替使用
可能な目潰し含油軸受を提供することにある。
【0008】本願請求項1に係る目潰し含油軸受は、回
転軸が挿通される軸受孔が形成された含油軸受におい
て、該含油軸受は多孔質状の焼結金属により形成された
内側部材と、該内側部材の外周に形成された溶製材から
なる外側部材と、からなる二重構造としたものであっ
て、内側部材の径方向肉厚を含油軸受全体の径方向肉厚
の半分以下にすると共に前記内側部材の摺動面位置を切
欠して切欠部とし、該切欠部に前記溶製材からなる外側
部材を配置して軸受孔の摺動面を形成し、該摺動面の外
周側に油の保持部を形成してなることを特徴とする。
【0009】また本願請求項1に係る目潰し含油軸受
は、多孔質状の焼結金属により形成された内側部材と、
この内側部材の外周に形成された溶製材からなる外側部
材と、からなる二重構造としたものであって、内側部材
の径方向肉厚を含油軸受全体の径方向肉厚の半分以下に
すると共に前記内側部材の摺動面位置を切欠して切欠部
とし、この切欠部に前記溶製材からなる外側部材を配置
して軸受孔の摺動面を形成し、この摺動面の外周側に油
の保持部を形成している。このように摺動面が溶製材か
らなる外側部材であるため、焼結金属に比して変形に強
く、より含油軸受の耐圧を高くできて含油軸受の使用範
囲を拡大することができ、現状使用されているボールベ
アリングの対応用途にも代替使用可能となる。
【0010】
【実施例】以下、本発明の一実施例を図面に基づいて説
明する。なお、以下に説明する部材,配置等は本発明を
限定するものでなく、本発明の趣旨の範囲内で種々改変
することができるものである。
【0011】図1乃至図3は本発明の一実施例を示すも
のであり、図1は含油軸受を原動機のスタータに活用し
た例を示す要部説明断面図、図2は図3のA−A断面
図、図3は図2のB−B矢視図である。なお図4は荷重
と永久歪み量との関係を示すグラフ図である。
【0012】本例のスタータSは、アーマチャ軸Jに連
動してピニオンギアGが回転する構成であり、この構成
は既に周知となっているので、詳細は省略する。このア
ーマチャ軸Jの一端は後述する本発明に係る含油軸受1
0により保持され、エンジン装着時のエンジン側ギアに
対向する位置に、後述する目潰し位置がくるように構成
されている。
【0013】本例の含油軸受10は、図2及び図3で示
すように、内側部材11と外側部材12とから構成され
た二重構造をした中空円筒状をしており、アーマチャ軸
(回転軸)Jが挿通される軸受孔13が形成されてい
る。本例の内側部材11は、多孔質状の焼結金属から形
成され、油の保持部である油溜り部14を備えている。
本例の内側部材11の径方向肉厚は油溜り部14の径方
向肉厚よりも薄い構成としており、含油軸受10全体の
径方向肉厚の半分以下で形成されている。
【0014】また軸受孔13内周面の空孔は、内側部材
11の圧粉成形時に潰して摺動面15を形成し、この潰
した摺動面15の外周側に前記した油溜り部14が形成
され、この油溜り部14は、含油軸受10の側面にU字
型の溝から形成されている。
【0015】本例の外側部材12は金属の溶製材から形
成されている。金属の溶製材としては、銅、鉄、その他
の各種の材料を用いることができる。本例の外側部材1
2は円筒状の金属パイプを所定長さで切断して形成して
いる。
【0016】本例の含油軸受10の製法について説明す
ると、まず内側部材11を成形する。即ち、粉末成形の
際に使用するダイ内の所定位置に円筒状の下部パンチを
位置させ、円柱状のコアロッドをダイの上面と一致さ
せ、上部パンチをダイの上方に配置させておく。そして
ダイ内に粉末を充填した後、上部パンチをダイ内に加工
させることにより粉末を円筒状に圧縮成形する。
【0017】このとき含油軸受10つまり内側部材11
の摺動面15は、通常の粉末の圧粉成形の際に使用する
コアロッドの表面の所定位置に、表面粗度の大きな荒ら
し部を形成しておき、圧粉成形後において圧粉成形体を
離型する際に、上記コアロッドによって軸受の所定位置
を塑性変形させて、その内面に摺動面15が形成され
る。
【0018】このように、圧粉成形時において摺動面1
5を形成するのは、圧粉成形時に潰しを行うと、摺動面
15の塑性変形が円滑に行われて、その空孔の潰しが確
実に行われるだけでなく、摺動面15の空孔を潰す工程
を新たに設ける必要がなく、従来と全く同様の工程で含
油軸受を製造することができるからである。
【0019】そして、コアロッドの各荒し部の周方向の
幅および間隔は、製造されるべき含油軸受10の軸受孔
13の摺動面15の所定範囲内の幅に対応する大きさに
設定される。具体的には成形されるべき圧粉体(内側部
材11となる)の焼結による収縮を見込んだ幅に設定さ
れている。
【0020】このようにして成形された圧粉体をダイか
ら取り出して、予め溶製材で形成した外側部材12(本
例では円筒状の金属パイプを所定長で切断したもの)を
別のダイに配置して、さらにこの外側部材12の内側に
上述の圧粉体を配置する。そして内側部材11と外側部
材12を所定温度で加熱して、内側部材11と外側部材
12とを一体に成形する。
【0021】次に内側部材11と外側部材12とが一体
となったものを、圧縮してサイジング加工して、矯正し
て含油軸受10を製造する。このサイジング加工の際
に、摺動面15がダイセットのコアロッドに押圧され
て、軸受孔13の内周面と面一になり、かつ、摺動面1
5が平滑化される。
【0022】なお、上記焼結金属からなる内側部材11
は、圧粉体のときに摺動面15に対応する面の空孔が潰
されているので、焼結金属における摺動面15の空孔は
潰され、摺動面15以外の軸受孔13の空孔は残されて
いる。
【0023】一般に軸受は荷重により永久歪みを発生
し、図4に示すように、軸受を構成する肉厚によって、
その変形量は影響を受ける。即ち肉厚が大きい軸受は、
軸径の拡大が大きくなり、軸とのクリアランスが拡大
し、軸の振れが大きくなる領域が生じる。このためこの
ような軸の振れが大きくなる領域にならない範囲のもの
を使用する必要がある。図4で判明するように、肉厚を
小さくすることで、変形しにくい軸受が構成できるが、
焼結金属の肉厚を薄くすると、機械的強度が下がり、軸
受そのものの強度不足となり、また肉厚が薄いと油の保
持量が少なくなり、長時間の使用に耐えられなくなって
しまう。
【0024】しかしながら前述したように構成された目
潰し含油軸受10によれば、荷重による永久歪みによっ
て軸径の拡大が大きくなり、軸とのクリアランスが拡大
してしまうといった変形の影響を、内側部材の径方向肉
厚が全体の径方向肉厚の半分以下として受けにくくする
ことができる。そして、内側部材11の径方向肉厚が薄
くなることによって生じる機械的強度の低下は、外側部
材12である溶製材を配設することによって補強でき
る。また目潰しによって摺動面15が潰されているの
で、潤滑油が漏れることがなく、大きな荷重に対しても
潤滑油が空孔に逃げる事がない。
【0025】従って、油膜は常に確保され、油膜上で潤
滑摺動が可能となる。この結果、含油軸受でありなが
ら、摩擦係数が極めて低い軸受とすることができ、且つ
荷重の大きい条件下でも、使用が可能となる。さらに、
内側部材11の潰した摺動面15の外周側に油の保持部
である油溜り部14を形成しているので、潤滑油の供給
に関して、十分な補給をすることができ、長時間の使用
が可能となる。
【0026】図5及び図6は本発明の他の実施例を示す
もので、図5は図6のC−C断面図、図6は図5のD−
D矢視図である。本例において前記実施例と同一部材等
には同一符号を付してその説明を省略する。
【0027】本例では、外側部材12が軸受孔13の中
心から偏心するように形成し、荷重のかかる摺動面側の
肉厚を薄くして形成した例を示すものである。このよう
に、外側部材12の径方向肉厚を厚くし(換言すれば内
側部材11の径方向肉厚が偏心して薄くなり)、前記実
施例と同様に、荷重による変形の影響を、受けにくくな
ると共に摺動面15に対向する側が肉厚になり油保持を
確保できる。
【0028】また溶製材からなる外側部材12が肉厚に
なるために、内側部材11の径方向肉厚が薄くなること
によって生じる機械的強度の低下を補強できる。さらに
目潰しによって摺動面15が潰されているので、潤滑油
が漏れることがなく、大きな荷重に対しても潤滑油が空
孔に逃げる事がない。従って、油膜は常に確保され、油
膜上で潤滑摺動が可能となる。なお本例でも内側部材1
1の潰した摺動面15の外周側に油の保持部である油溜
り部14を形成しているので、潤滑油の供給に関して、
十分な補給をすることができ、長時間の使用が可能とな
る。
【0029】図7は本発明の他の実施例を示す平面図で
あり、焼結金属からなる内側部材11の中心O1を、溶
製材からなる外側部材12の中心O2より、距離Xだけ
ずらした構成にして、外側部材12の肉厚は均一とし、
内側部材11の摺動部15の肉厚を薄くし、この摺動面
15に対向する位置の内側部材11の径方向肉厚を大き
くした構成としたものである。本例のように構成するこ
とによっても、前記実施例と同様に、摺動面15を薄く
構成することができる。なお本例では外側部材12が均
一の肉厚であるので、外側部材12の製造が容易である
という効果がある。
【0030】図8は本願請求項1に係る目潰し含油軸受
の実施例を示す平面図であり、前記実施例と同様部材等
には同一符号を付してその説明を省略する。本例では内
側部材11の径方向肉厚を含油軸受全体の径方向肉厚の
半分以下にしているが、軸受孔13の内側部材11の摺
動面15の位置を切欠して切欠部16としており、この
切欠部16に前記溶製材からなる外側部材12の突起部
12aを配置して直接摺動面15を形成している。本例
のように構成すると、前記実施例と同様な作用効果を奏
すると共に、摺動面15の目潰しを不要とすることが可
能となり、製造工程における目潰し作業が不要となる。
【0031】
【発明の効果】以上のように、本発明に係る目潰し含油
軸受は、多孔質状の焼結金属により形成された内側部材
と、この内側部材の外周に形成された溶製材からなる外
側部材とからなる二重構造として、内側部材の径方向肉
厚を含油軸受全体の径方向肉厚の半分以下にすると共に
前記内側部材の摺動面位置を切欠して切欠部とし、この
切欠部に前記溶製材からなる外側部材を配置して軸受孔
の摺動面を形成し、この摺動面の外周側に油の保持部を
形成している。このように摺動面が溶製材からなる外側
部材であるため、焼結金属に比して変形に強く、より含
油軸受の耐圧を高くできて含油軸受の使用範囲を拡大す
ることができ、転がり軸受と同程度の摩擦係数を実現し
コストの低い含油軸受を使用でき、現状使用されている
ボールベアリングの対応用途にも代替使用可能な目潰し
含油軸受を提供することができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil-impregnated bearing and, more particularly, to an oil-impregnated bearing having excellent friction characteristics and capable of receiving a high load. [0002] Sintered oil-impregnated bearings are used by impregnating with lubricating oil and can be used for a long time without lubrication.
Widely used as bearings for rotating shafts of various devices. In this type of sintered oil-impregnated bearing, a rotating shaft is inserted into a bearing hole formed in a bearing body made of porous sintered metal, and a large number of fine oil-impregnated parts of the bearing body are pumped by the rotation of the rotating shaft. The lubricating oil sucked out from the holes (ie, holes) and the lubricating oil oozing out due to expansion based on frictional heat form an oil film on the sliding surface of the bearing hole, and the oil film allows the rotating shaft to rotate freely. It has become to support. [0003] Normally, an oil-impregnated bearing has a hole on the oil-impregnated bearing side of a sliding surface that supports a shaft, and hydraulic pressure leaks from this hole. On the side, the oil pressure of the lubricating oil cannot be kept high. Generally, a situation judgment in which the presence of an oil film is possible is based on the sliding speed (m
/ Min) and the load pressure (kg /
cm 2 ) and the so-called PV value, which is obtained by integrating In the case of ordinary oil-impregnated bearings, the PV value slightly varies depending on the material, but the service limit is determined with about 2,000 as a guide. Accordingly, ball bearings are used for applications of 2,000 or more, though expensive. In order to solve such inconveniences, various types of sintered oil-impregnated bearings have been proposed (for example, see Japanese Unexamined Patent Publication No.
129431, JP-A-6-12312,
JP-A-6-123313, JP-A-6-12331
No. 4, JP-A-3-20919). In these proposed technologies, holes are crushed at a predetermined angular width in the inner peripheral surface on which the rotating shaft slides, and a sliding surface is formed. [0005] In the above proposed technique, P
It can be used up to a V value of about 5,000 to 6,000, but for a bearing that receives a high load such as a starter, a PV value of about 7,000 to 8,000 is required. Technology is inadequate and cannot be used at all. The present inventor has paid attention to the fact that there is a certain relationship between the thickness of the bearing and the amount of deformation when the bearing undergoes permanent deformation due to a load. That is, the bearing is affected by its deformation due to the wall thickness. In other words, a bearing having a large wall thickness has a large shaft diameter and a large clearance with the shaft. An object of the present invention is to provide a crushed oil-impregnated bearing that can increase the pressure resistance of the oil-impregnated bearing and expand the range of use of the oil-impregnated bearing, and can be used as a substitute for the ball bearing currently used. Is to do. A crushed oil-impregnated bearing according to claim 1 of the present application is an oil-impregnated bearing having a bearing hole through which a rotary shaft is inserted, wherein the oil-impregnated bearing includes an inner member formed of a porous sintered metal; And an outer member made of ingot material formed on the outer periphery of the inner member , wherein the radial thickness of the inner member is the radial thickness of the entire oil-impregnated bearing.
Of the said notch to notch the sliding surface position of the inner member as well as below half, to form a sliding surface of the bearing hole by placing an outer member made from the ingot material to notch portions, sliding An oil holding portion is formed on the outer peripheral side of the moving surface. [0009] The crushed oil-impregnated bearing according to claim 1 of the present application comprises an inner member formed of a porous sintered metal;
And an outer member made of ingot formed on the outer periphery of the inner member.
Radial thickness of the as the notch to notch the sliding surface position of the inner member as well as the following half of the radial thickness of the whole oil bearing, arranged an outer member made of the ingot material to the notch Thus, a sliding surface of the bearing hole is formed, and an oil holding portion is formed on the outer peripheral side of the sliding surface. As described above, since the sliding surface is an outer member made of an ingot material, the sliding surface is more resistant to deformation than sintered metal, the pressure resistance of the oil-impregnated bearing can be increased, and the range of use of the oil-impregnated bearing can be expanded. It can also be used as a substitute for the ball bearing used. An embodiment of the present invention will be described below with reference to the drawings. The members, arrangements, and the like described below do not limit the present invention, and can be variously modified within the scope of the present invention. FIGS. 1 to 3 show an embodiment of the present invention. FIG. 1 is an explanatory sectional view of a main part showing an example in which an oil-impregnated bearing is used as a starter of a motor, and FIG. FIG. 3 is a sectional view taken along line A-B of FIG. 2. FIG. 4 is a graph showing the relationship between the load and the amount of permanent distortion. The starter S of this embodiment has a configuration in which a pinion gear G rotates in conjunction with an armature shaft J. This configuration has already been known, and thus the details are omitted. One end of the armature shaft J is connected to an oil-impregnated bearing 1 according to the present invention described later.
0, and a crushing position, which will be described later, comes to a position facing the engine-side gear when the engine is mounted. As shown in FIGS. 2 and 3, the oil-impregnated bearing 10 of the present embodiment has a hollow cylindrical shape having a double structure composed of an inner member 11 and an outer member 12, and has an armature shaft (rotating). A bearing hole 13 through which the shaft (J) is inserted is formed. The inner member 11 of the present example is formed of a porous sintered metal, and includes an oil reservoir 14 which is an oil retaining portion.
The radial thickness of the inner member 11 in this example is the diameter of the oil reservoir 14 .
It has a thinner construction than the direction thickness, and is formed below half of the radial thickness of the whole oil bearing 10. The hole in the inner peripheral surface of the bearing hole 13 is crushed when the inner member 11 is compacted to form a sliding surface 15, and the oil sump 14 is formed on the outer peripheral side of the crushed sliding surface 15. The oil reservoir 14 is formed from a U-shaped groove on the side surface of the oil-impregnated bearing 10. The outer member 12 of this embodiment is formed from a smelted metal material. Copper, iron, and other various materials can be used as a metal ingot. Outer member 1 of this example
2 is formed by cutting a cylindrical metal pipe at a predetermined length. The method for manufacturing the oil-impregnated bearing 10 of this embodiment will be described. First, the inner member 11 is formed. That is, a cylindrical lower punch is positioned at a predetermined position in a die used for powder molding, a cylindrical core rod is aligned with the upper surface of the die, and an upper punch is disposed above the die. Then, after filling the powder into the die, the powder is compression-molded into a cylindrical shape by processing the upper punch into the die. At this time, the oil-impregnated bearing 10, that is, the inner member 11
The sliding surface 15 is formed with a roughened portion having a large surface roughness at a predetermined position on the surface of the core rod used in the normal powder compacting, and the compact is formed after the compacting. When the mold is released, a predetermined position of the bearing is plastically deformed by the core rod, and a sliding surface 15 is formed on the inner surface thereof. As described above, the sliding surface 1 during powder compaction is formed.
The reason for forming 5 is that when crushing is performed at the time of compacting, plastic deformation of the sliding surface 15 is performed smoothly, and not only the holes are reliably crushed, but also the vacant space of the sliding surface 15 is formed. This is because it is not necessary to newly provide a step of crushing the hole, and the oil-impregnated bearing can be manufactured in the same step as the conventional one. The circumferential width and interval of each roughened portion of the core rod are set to a size corresponding to a predetermined range of the sliding surface 15 of the bearing hole 13 of the oil-impregnated bearing 10 to be manufactured. . Specifically, the width is set in consideration of shrinkage due to sintering of the green compact to be formed (to become the inner member 11). The green compact thus formed is taken out of the die, and the outer member 12 (in this example, a cylindrical metal pipe cut to a predetermined length in this example) formed of a molten material is placed in another die. Then, the above-described green compact is disposed inside the outer member 12. Then, the inner member 11 and the outer member 12 are heated at a predetermined temperature, and the inner member 11 and the outer member 12 are integrally formed. Next, the one in which the inner member 11 and the outer member 12 are integrated is compressed, sized, and corrected to produce the oil-impregnated bearing 10. During this sizing process, the sliding surface 15 is pressed by the core rod of the die set, and is flush with the inner peripheral surface of the bearing hole 13.
5 is smoothed. The inner member 11 made of the above sintered metal
In the case of the green compact, the pores of the surface corresponding to the sliding surface 15 are crushed, so that the pores of the sliding surface 15 in the sintered metal are crushed and the bearing holes 13 other than the sliding surface 15 are formed. Are left. Generally, a bearing causes permanent deformation due to a load, and as shown in FIG.
The amount of deformation is affected. That is, a bearing with a large wall thickness
An increase in the shaft diameter increases, a clearance between the shaft and the shaft increases, and a region where the shaft runout increases is generated. For this reason, it is necessary to use a shaft that does not fall into a region where the shaft deflection becomes large. As can be seen from FIG. 4, by reducing the wall thickness, a bearing that is hardly deformed can be configured.
If the thickness of the sintered metal is reduced, the mechanical strength is reduced, and the strength of the bearing itself is insufficient. If the thickness is small, the amount of retained oil is reduced, and the bearing cannot be used for a long time. However, according to the crushed oil-impregnated bearing 10 constructed as described above, the influence of the deformation of the inner member, such as the increase in the shaft diameter due to the permanent deformation due to the load and the increase in the clearance with the shaft, is reduced. The thickness in the radial direction can be reduced to less than half of the total thickness in the radial direction to make it hard to receive. Then, a decrease in mechanical strength caused by a reduction in the radial thickness of the inner member 11 can be reinforced by disposing the molten material as the outer member 12. Further, since the sliding surface 15 is crushed by crushing, the lubricating oil does not leak, and the lubricating oil does not escape to the holes even under a large load. Therefore, the oil film is always secured, and lubricating sliding can be performed on the oil film. As a result, a bearing having an extremely low friction coefficient can be obtained even though it is an oil-impregnated bearing, and can be used even under a condition with a large load. further,
Since the oil reservoir 14 is formed on the outer peripheral side of the slidable sliding surface 15 of the inner member 11, the lubricating oil can be sufficiently replenished with respect to the supply of the lubricating oil. Becomes possible. 5 and 6 show another embodiment of the present invention. FIG. 5 is a sectional view taken along the line CC of FIG. 6, and FIG.
It is an arrow D view. In this embodiment, the same members and the like as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. This embodiment shows an example in which the outer member 12 is formed so as to be eccentric from the center of the bearing hole 13 and the thickness on the sliding surface side on which a load is applied is reduced. In this manner, the radial thickness of the outer member 12 is increased (in other words, the radial thickness of the inner member 11 is reduced due to the eccentricity), and as in the above-described embodiment, the outer member 12 is less susceptible to the deformation due to the load. At the same time, the side facing the sliding surface 15 becomes thicker, and oil retention can be ensured. Further, since the outer member 12 made of the ingot is made thicker, it is possible to reinforce the decrease in mechanical strength caused by the reduced thickness of the inner member 11 in the radial direction . Further, since the sliding surface 15 is crushed by the crushing, the lubricating oil does not leak, and the lubricating oil does not escape to the holes even under a large load. Therefore, an oil film is always secured, and lubricating sliding can be performed on the oil film. In this example, the inner member 1 is also used.
Since the oil reservoir 14 which is an oil holding part is formed on the outer peripheral side of the slidable sliding surface 15 of FIG.
Sufficient replenishment is possible, and long-term use is possible. FIG. 7 is a plan view showing another embodiment of the present invention, in which the center O1 of the inner member 11 made of sintered metal is shifted by a distance X from the center O2 of the outer member 12 made of ingot. With the configuration, the thickness of the outer member 12 is made uniform,
The thickness of the sliding portion 15 of the inner member 11 is reduced, and the radial thickness of the inner member 11 at a position facing the sliding surface 15 is increased. With the configuration as in the present embodiment, the sliding surface 15 can be made thinner as in the above embodiment. In this example, since the outer member 12 has a uniform thickness, there is an effect that the manufacturing of the outer member 12 is easy. FIG. 8 is a plan view showing an embodiment of a crushed oil-impregnated bearing according to the first aspect of the present invention. In this example, the radial thickness of the inner member 11 is determined by the radial thickness of the entire oil-impregnated bearing .
Is a half or less, but has a notch 16 and the notch position of the sliding surface 15 of the inner member 11 of the bearing hole 13, the protrusion 12a of the outer member 12 made of the ingot material to the cutout portion 16 The sliding surface 15 is directly formed by disposing. According to this embodiment, the same operation and effect as those of the above-described embodiment can be obtained, and it is not necessary to crush the sliding surface 15, and the crushing operation in the manufacturing process becomes unnecessary. As described above, the crushed oil-impregnated bearing according to the present invention comprises an inner member formed of a porous sintered metal and an ingot formed on the outer periphery of the inner member. As a double structure consisting of the outer member, the radial thickness of the inner member
Reduce the thickness to less than half of the radial thickness of the entire oil-impregnated bearing.
The sliding surface position of the inner member is cut out to form a notch,
An outer member made of the ingot is placed in the notch to provide a bearing hole.
Is formed, and an oil holding portion is provided on the outer peripheral side of this sliding surface.
Has formed. In this way, the sliding surface is made of ingot material
Since a member resistant to deformation than the sintered metal, and more able increase the withstand voltage of containing <br/> oil bearing can enlarge the range of use of the oil-impregnated bearings, roller bearings and comparable friction The number of oil-impregnated bearings that can be reduced and that can be used at a low cost can be used, and a crushed oil-impregnated bearing that can be used as a substitute for the ball bearings currently used can be provided.
【図面の簡単な説明】
【図1】本発明に係る含油軸受を原動機のスタータに活
用した例を示す概略説明断面図である。
【図2】本発明の一実施例である含油軸受を示すもの
で、図3のA−A断面図である。
【図3】図2のB−B矢視図である。
【図4】荷重と永久歪み量との関係を示すグラフ図であ
る。
【図5】本発明の他の実施例を示すもので、図6のC−
C断面図である。
【図6】図5のD−D矢視図である。
【図7】本発明の他の実施例を示す平面図である。
【図8】本発明の更に他の実施例を示す平面図である。
【符号の説明】
10 含油軸受
11 内側部材
12 外側部材
12a 突起部
13 軸受孔
14 油の保持部(油溜り部)
15 摺動面
16 切欠部
G ピニオンギア
J アーマチャ軸
S スタータBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory sectional view showing an example in which an oil-impregnated bearing according to the present invention is used for a starter of a motor. FIG. 2 shows an oil-impregnated bearing according to one embodiment of the present invention, and is a cross-sectional view taken along line AA of FIG. FIG. 3 is a view taken in the direction of arrows BB in FIG. 2; FIG. 4 is a graph showing a relationship between a load and an amount of permanent strain. FIG. 5 shows another embodiment of the present invention, and FIG.
It is C sectional drawing. FIG. 6 is a view as viewed in the direction of the arrow DD in FIG. 5; FIG. 7 is a plan view showing another embodiment of the present invention. FIG. 8 is a plan view showing still another embodiment of the present invention. [Description of Signs] 10 Oil-impregnated bearing 11 Inner member 12 Outer member 12a Projection portion 13 Bearing hole 14 Oil holding portion (oil pool portion) 15 Sliding surface 16 Notch portion G Pinion gear J Armature shaft S Starter
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−109020(JP,A) 特開 平4−219522(JP,A) 特開 平6−129431(JP,A) 実開 昭60−133226(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16C 17/00 - 17/26 F16C 33/00 - 33/28 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-6-109020 (JP, A) JP-A-4-219522 (JP, A) JP-A-6-129431 (JP, A) 133226 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F16C 17/00-17/26 F16C 33/00-33/28
Claims (1)
含油軸受において、該含油軸受は多孔質状の焼結金属に
より形成された内側部材と、該内側部材の外周に形成さ
れた溶製材からなる外側部材と、からなる二重構造とし
たものであって、内側部材の径方向肉厚を含油軸受全体
の径方向肉厚の半分以下にすると共に前記内側部材の摺
動面位置を切欠して切欠部とし、該切欠部に前記溶製材
からなる外側部材を配置して軸受孔の摺動面を形成し、
該摺動面の外周側に油の保持部を形成してなることを特
徴とする目潰し含油軸受。(57) [Claim 1] In an oil-impregnated bearing having a bearing hole through which a rotating shaft is inserted, the oil-impregnated bearing includes an inner member formed of a porous sintered metal; It is one obtained by an outer member made from the outer periphery to form a melted material of the inner member, a double structure composed of, the radial thickness of the inner member in the following half of the radial thickness of the whole oil bearing A notch is formed by notching the sliding surface position of the inner member, and an outer member made of the molten material is arranged in the notch to form a sliding surface of a bearing hole.
A crushed oil-impregnated bearing, wherein an oil retaining portion is formed on an outer peripheral side of the sliding surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18411694A JP3461386B2 (en) | 1994-07-14 | 1994-07-14 | Crushed oil-impregnated bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18411694A JP3461386B2 (en) | 1994-07-14 | 1994-07-14 | Crushed oil-impregnated bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0828567A JPH0828567A (en) | 1996-02-02 |
JP3461386B2 true JP3461386B2 (en) | 2003-10-27 |
Family
ID=16147667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18411694A Expired - Fee Related JP3461386B2 (en) | 1994-07-14 | 1994-07-14 | Crushed oil-impregnated bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3461386B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4522619B2 (en) | 2000-08-09 | 2010-08-11 | 株式会社ダイヤメット | Sintered oil-impregnated bearing, manufacturing method thereof and motor |
-
1994
- 1994-07-14 JP JP18411694A patent/JP3461386B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0828567A (en) | 1996-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101364901B1 (en) | Sintered oil retaining bearing and process for producing the same | |
US5282688A (en) | Sintered oil impregnated bearing and its manufacturing method | |
JP4522619B2 (en) | Sintered oil-impregnated bearing, manufacturing method thereof and motor | |
US7251891B2 (en) | Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor | |
JP3461386B2 (en) | Crushed oil-impregnated bearing | |
JP3607478B2 (en) | Dynamic pressure type porous oil-impregnated bearing | |
JP3818626B2 (en) | Method for producing sintered oil-impregnated bearing | |
JP7076266B2 (en) | Manufacturing method of sintered oil-impregnated bearing | |
JP2002206534A (en) | Dynamic pressure type multiporous oil retaining bearing and manufacturing method therefor | |
JP3585693B2 (en) | Sintered oil-impregnated bearing | |
JP2017166575A (en) | Dynamic pressure bearing and process of manufacture thereof | |
WO2018117183A1 (en) | Oil-impregnated sintered bearing and method for manufacturing same | |
JPH06123313A (en) | Oil-impregnated sintered bearing | |
JP2740743B2 (en) | Manufacturing method of sintered oil-impregnated bearing | |
JP2005180707A (en) | Dynamic pressure type sintered oil-impregnated bearing unit | |
JPH06123314A (en) | Oil-impregnated sintered bearing | |
JP2628540B2 (en) | Sintered oil-impregnated bearing | |
JPH06221324A (en) | Oil-retaining bearing | |
JPH06129431A (en) | Sintered oil retaining bearing | |
JP2576821B2 (en) | Sintered oil-impregnated bearing | |
JP2841190B2 (en) | Sintered bearing material and its manufacturing method | |
JP2004308917A (en) | Manufacturing method for hydrodynamic porous oil impregnated bearing | |
JPH10252757A (en) | Sintered oil-impregnated bearing and manufacture thereof | |
JP4049351B2 (en) | Manufacturing method of bearing | |
JP2006153056A (en) | Oil impregnated sintered bearing and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |