JP3459676B2 - Single crystal growth method - Google Patents

Single crystal growth method

Info

Publication number
JP3459676B2
JP3459676B2 JP05967094A JP5967094A JP3459676B2 JP 3459676 B2 JP3459676 B2 JP 3459676B2 JP 05967094 A JP05967094 A JP 05967094A JP 5967094 A JP5967094 A JP 5967094A JP 3459676 B2 JP3459676 B2 JP 3459676B2
Authority
JP
Japan
Prior art keywords
crucible
melt
crystal
convection
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05967094A
Other languages
Japanese (ja)
Other versions
JPH07267773A (en
Inventor
靖 倉田
和央 蔵重
浩之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP05967094A priority Critical patent/JP3459676B2/en
Priority to US08/413,288 priority patent/US5690731A/en
Publication of JPH07267773A publication Critical patent/JPH07267773A/en
Application granted granted Critical
Publication of JP3459676B2 publication Critical patent/JP3459676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電子機器等に用いられ
る単結晶の育成方法に関する。 【0002】 【従来の技術】るつぼを高周波加熱することによりるつ
ぼ内の原料を融液にし、融液に種結晶を接触させ、種結
晶を徐々に引き上げながら単結晶を育成する方法では、
るつぼの加熱を効率良くするために、るつぼを高周波コ
イルの上下方向の中心付近に、及びコイル径方向の中心
に設置して加熱している。 【0003】 【発明が解決しようとする課題】しかし、この方法で
は、融液の対流の流れ込み(即ち、るつぼ内融液の対流
による融液が表面からるつぼ内部に流れ込む位置)が融
液表面のるつぼ中心付近になるため、融液中に混入した
るつぼ材金属や多結晶核等が、るつぼ中心付近で種結晶
や種結晶から成長させた育成結晶に付着していまい、多
結晶が発生する問題がある。本発明は、融液の対流の流
れ込む条件を調整して単結晶を育成することによって、
多結晶の発生を防止する方法を提供するものである。 【0004】 【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、るつぼ内の原料を高周波加熱して融
液とし、その融液に種結晶の下端を接触させ、種結晶を
引き上げながら単結晶を育成する単結晶の育成におい
て、融液の対流と多結晶の発生について検討した。その
結果、融液の対流がるつぼ壁の一方向に流れ込む条件で
単結晶を育成する等るつぼ内融液の対流による融液が表
面からるつぼ内部に流れ込む位置が結晶成長の領域外に
なるようにすることによって、上記目的を達成できるこ
とを見い出した。 【0005】また、本発明者らは、るつぼ内の原料を高
周波加熱して融液とし、その融液に種結晶の下端を接触
させ、種結晶を引き上げながら単結晶を育成する単結晶
の育成において、るつぼ周り耐火物構造と多結晶発生の
関係について検討した。その結果、るつぼ周り耐火物と
して、縦に切り込みを入れた円筒状のものや半円筒状の
ものを対で使用し、一方の隙間を他方よりも大きくして
設置することによって、るつぼ変形も小さく、かつ多結
晶の発生を防止できることを見い出した。 【0006】 【作用】るつぼ内の原料を高周波加熱して融液とし、そ
の融液に種結晶の下端を接触させ、種結晶を引き上げな
がら単結晶を育成する単結晶の育成において、融液の対
流がるつぼ壁の一方向に流れ込む条件で単結晶を育成す
ることによって、多結晶の発生を防止できる原因は次の
ように考えられる。対流がるつぼの中心付近ではなく、
ある一方向のるつぼ壁に流れ込むような条件で育成を行
うことにより、融液中に混入したるつぼ材金属や多結晶
核は対流によってるつぼ壁に流され、るつぼ壁に付着し
てしまう。従って、るつぼ材金属等の結晶成長の規則性
を乱すものが、シード付け時や育成中に種結晶や育成結
晶に付着することがなく、多結晶の発生を防止すること
ができる。 【0007】また、るつぼ内の原料を高周波加熱して融
液とし、その融液に種結晶の下端を接触させ、種結晶を
引き上げながら単結晶を育成する単結晶の育成におい
て、るつぼ周り耐火物として縦に切り込みを入れた円筒
状のものを使用することや半円筒状のものを対で使用
し、一方の隙間を他方よりも大きくして設置することに
よって、多結晶化を防止できる原因は次のように考えら
れる。 【0008】るつぼ周りに円筒状の耐火物を中心対称に
使用した場合は、中心対称に加熱することになり、温度
分布も中心対称になり、るつぼ内原料融液の対流はるつ
ぼ中心に流れ込むと考えられる。これに対し、円筒状の
耐火物で縦に切り込みを入れたものを使用したり、2つ
の半円筒のものの一方の隙間を他方より大きくして設置
した場合は、非中心対称に加熱することになり、その隙
間によって微妙に温度差ができ、温度分布が非中心対称
となり、対流の流れ込み位置を変化させることができ
る。すなわち、対流が耐火物の隙間のある方向のるつぼ
壁に流れ込むようになる。それにより融液中に混入した
るつぼ金属や多結晶核は対流によってるつぼ壁に流さ
れ、るつぼ壁に付着してしまうことにより、種結晶や成
長結晶に付着することがなくなる。このことにより、多
結晶の発生を防止することができると考えられる。ま
た、この場合、るつぼ位置を高周波コイルの上端付近に
設置する必要はなく、るつぼの変形の問題も発生しない
と考えられる。 【0009】本発明においては、次の手段を使用するの
が好ましい。 るつぼ周りに保温用耐火物を使用し、その耐火物をる
つぼに対して非中心対称に設置する。 るつぼ周りに保温用耐火物を使用し、その耐火物とし
て切り込みを入れたものを使用する。 るつぼ周りに保温用耐火物を使用し、その耐火物とし
て半円筒状のものを対で使用し、一方の隙間を他方より
も大きくして設置する。 るつぼを高周波誘導加熱用コイルに対して非中心対称
に設置する。 非中心対称の形状のるつぼを使用する。 【0010】 【実施例】 比較例1 セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2
iO5)の場合の例を説明する。原料として、Gd23
約3240g、SiO2 約560g、CeO2約10g
をφ100のIrるつぼ中に採り、φ50×180mm
の結晶をチョクラルスキー法で育成した。るつぼは、高
周波コイルの上端から50mmの位置にるつぼの上端が
合うようにるつぼ軸高さを調整し、径方向はコイルの中
心になるように置いた。るつぼ周りの耐火物として、φ
155×φ125×120hmmの円筒状ジルコニア耐
火物を、るつぼが中心になるように設置した。高周波誘
導加熱によりるつぼを加熱し原料を融液とし、融液の温
度をシード付けに適当な温度に調整した。対流は図2に
示すように、るつぼ中心付近に流れ込み、対流の流れ込
み位置に、融液中に混入したIrが集まり浮遊した。こ
のIrを取り除いた後に、20〜50rpmで回転させ
た種結晶の下端を融液に接触させシード付けを行った。
そして、1〜5mm/時間で引き上げながら結晶を成長
させたが、結晶径をφ50まで広げる肩部形成過程で新
たに融液中に発生したIrが、対流に沿って移動し育成
結晶に付着してしまった。その後、平行部を約180m
m引き上げた後に、結晶を切り離し、約50時間かけて
結晶を冷却し育成を終了した。この方法により10本の
単結晶を育成した。尚図2において、1は融液(対
流)、2はIrるつぼ、3はるつぼ周り耐火物、4は耐
火物、5:高周波コイルを示す。 【0011】実施例1 次の点を除いて、比較例1と同様にGSO単結晶をチョ
クラルスキー法で育成した。即ち、るつぼは高周波コイ
ルの上端から50mmの位置にるつぼの上端が合うよう
にるつぼ軸高さを調整し、径方向はコイルの中心になる
ように置いた。るつぼ周りの耐火物として、φ155×
φ125×120hmmの円筒状ジルコニア耐火物を、
予め縦に2分割にし、一方の隙間が他方よりやや大きく
なるように合わせて設置した。高周波誘導加熱によりる
つぼを加熱し原料を融液とし、融液の温度をシード付け
に適当な温度に調整すると、対流は図1に示すように、
るつぼ周り耐火物の隙間を大きくあけた位置のるつぼ壁
に流れ込むようになった。それに伴い、対流の流れ込み
位置に浮遊していたIrもるつぼの壁に移動し、るつぼ
壁に付着した。このような状態になった後、20〜50
rpmで回転させた種結晶の下端を融液に接触させ、1
〜5mm/時間で引き上げながら結晶を成長させ、結晶
径をφ50まで広げた、シード付け後も、融液に混入し
浮遊したIrや融液中で発生した多結晶核は、対流に沿
ってるつぼ壁に付着し、育成結晶に付着しなかった。そ
の後、平行部を約180mm引き上げた後に、結晶を切
り離し、約50時間かけて結晶を冷却し育成を終了し
た。この方法により6本結晶を育成した。尚図1におい
て、1は融液(対流)、2はIrるつぼ、3はるつぼ周
り耐火物、4は耐火物、5:高周波コイルを示す。本発
明の実施例1で育成を行うことによる多結晶及び割れの
発生率を、比較例1の育成結果と比較した。その結果を
表1に示す。 【0012】 【表1】 GSOの多結晶及び割れの発生率 ───────────────────────────────── 比較例1 実施例1 ───────────────────────────────── 多結晶発生率(本/本中) 10/10 0/6 ───────────────────────────────── 割れ発生率 (本/本中) 10/10 1/6 ───────────────────────────────── 【0013】比較例2 セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2
iO5)の場合の例を説明する。原料として、Gd23
約3260g、SiO2約540g、CeO2約10gを
φ100のIrるつぼ中に採り、約φ50×180mm
の結晶をチョクラルスキー法で育成した。Irるつぼ
は、高周波コイルの上端から50mmの位置にるつぼの
上端が合うようにるつぼ軸高さを調整し、径方向はコイ
ルの中心になるように置いた。るつぼ周りの耐火物とし
て、φ155×φ125×120hmmの円筒状ジルコ
ニア耐火物を使用し、るつぼが中心になるように設置し
た。高周波誘導加熱によりるつぼを加熱し原料を融液と
し、融液の温度をシード付けに適当な温度に調整した。
対流はるつぼ中心付近に流れ込み、対流の流れ込み位置
に融液中に混入したIrが集まり浮遊した。このIrを
取り除いた後に、20〜50rpmで回転させた種結晶
の下端を融液に接触させシード付けを行った。そして、
1〜5mm/時間で引き上げながら結晶を成長させた
が、結晶径をφ50まで広げる肩部形成過程で、新たに
融液中に発生したIrが結晶に付着したためと思われる
多結晶が発生してしまった。その後、平行部を約180
mm引き上げた後に、結晶を切り離し、約50時間かけ
て結晶を冷却し育成を終了した。この方法により10本
の結晶を育成した。 【0014】実施例2 次の点を除いて、比較例2と同様にGSO単結晶をチョ
クラルスキー法で育成した。即ち、Irるつぼは、高周
波コイルの上端から50mmの位置にるつぼの上端が合
うようにるつぼ軸高さを調整し、径方向はコイルの中心
になるように設置した。るつぼ周りの耐火物として、従
来法で使用したφ155×φ125×120hmmの円
筒状ジルコニア耐火物を、予め縦に2分割して半円筒に
しておき、一方の隙間がやや大きくなるように合わせて
設置した。高周波誘導加熱によりるつぼを加熱し原料を
融液とし、融液の温度をシード付けに適当な温度に調整
すると、対流はるつぼ周り耐火物の隙間をあけた位置の
るつぼ壁に流れ込むようになった。それに伴い、対流の
流れ込み位置に浮遊していたIrはるつぼの壁に移動
し、るつぼ壁に付着した。このような状態になった後、
20〜50rpmで回転させた種結晶の下端を融液に接
触させ、1〜5mm/時間で引き上げながら結晶を成長
させ、結晶径をφ50まで広げた、シード付け後も、融
液に混入し浮遊したIrや融液中で発生した多結晶核
は、対流に沿ってるつぼ壁に付着し、育成結晶に付着す
ることがなかった。その後、平行部を約180mm引き
上げた後に、結晶を切り離し、約50時間かけて結晶を
冷却し育成を終了した。この方法により6本の結晶を育
成した。実施例2で育成を行うことによる多結晶の発生
率、また、るつぼの変形状況を比較例2の育成結果と比
較した。その結果を表2に示す。 【0015】 【表2】 GSOの多結晶及び割れの発生率 ─────────────────────────────────── 比較例2 実施例2 ─────────────────────────────────── 多結晶発生率(本/本中) 10/10 0/6 ─────────────────────────────────── るつぼの変形 小 小 ─────────────────────────────────── 【0016】表1、2からわかるように、比較例の対流
がるつぼの中心付近に流れ込む条件では、100%多結
晶が発生し、多結晶が発生すると100%割れが発生し
た。実施例の、るつぼ周り耐火物の構造によって、対流
がるつぼ壁の一方向に流れ込むような条件で育成を行う
ことによって、多結晶の発生を完全に防止することがで
き、割れの発生率も大幅に低減できたことがわかる。本
発明の実施例では、対流がるつぼ壁の一方向に流れ込む
ような条件で育成を行う場合について述べたが、対流が
非中心対称な場合、即ち、るつぼ内融液の対流による融
液が表面からるつぼ内部に流れ込む位置が結晶成長の領
域外になるようにした場合についても同様な効果があ
る。また、るつぼ周り耐火物を分割することによって、
るつぼの変形も小さく、かつ多結晶の発生を防止するこ
とができた。本発明の実施例では、るつぼ内融液を非中
心対称に加熱する手段として、耐火物として半円筒のも
のを使用する場合について述べたが、縦の切り込みを1
本だけ入れた耐火物を使用したり、るつぼを高周波加熱
コイルに対して非中心対称に設置したり、非中心対称の
形状のるつぼを使用することによって、目的が達成され
る。 【0017】 【発明の効果】本発明の育成方法により、るつぼ材金属
の融液中への混入や多結晶核の発生により、結晶肩部で
多結晶が発生し易い結晶について、多結晶の発生を防止
することができる。また、特に熱膨張に異方性がある、
へき開性がある等の特徴を有する脆弱な結晶について
は、多結晶の発生を防止することにより、それによる結
晶の割れも大幅に低減することができる。さらに、育成
を繰り返す場合に、半円筒の耐火物を対で使用し、その
隙間位置をるつぼの周囲位置に対して毎回移動させるこ
とにより、るつぼの偏った方向への変形も抑えることが
できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal used in electronic equipment and the like. 2. Description of the Related Art In a method in which a crucible is heated at a high frequency to convert a raw material in the crucible into a melt, a seed crystal is brought into contact with the melt, and a single crystal is grown while gradually pulling up the seed crystal.
In order to heat the crucible efficiently, the crucible is placed near the center of the high frequency coil in the vertical direction and at the center in the coil radial direction for heating. However, in this method, the convection of the melt flows into the crucible (ie, the position where the melt flows due to the convection of the melt in the crucible from the surface into the crucible). Since it is near the center of the crucible, the crucible material metal and polycrystalline nuclei mixed in the melt may adhere to the seed crystal and the grown crystal grown from the seed crystal near the center of the crucible, causing polycrystals. There is. The present invention grows a single crystal by adjusting the conditions under which the convection of the melt flows,
An object of the present invention is to provide a method for preventing generation of polycrystal. [0004] In order to achieve the above object, the present inventors heat the raw material in a crucible by high frequency heating to form a melt, and bring the lower end of a seed crystal into contact with the melt. The convection of the melt and the generation of polycrystals were studied in growing a single crystal in which a single crystal was grown while pulling a seed crystal. As a result, the position where the melt flows due to the convection of the melt in the crucible from the surface to the inside of the crucible is outside the crystal growth region, such as growing a single crystal under the condition that the convection of the melt flows in one direction of the crucible wall. By doing so, it has been found that the above object can be achieved. The inventors of the present invention have also developed a method of heating a raw material in a crucible to a high frequency to form a melt, bringing the lower end of the seed crystal into contact with the melt, and growing the single crystal while pulling up the seed crystal. In this study, the relationship between the refractory structure around the crucible and the generation of polycrystals was examined. As a result, as a refractory around the crucible, by using a pair of cylindrical or semi-cylindrical ones with cuts in the vertical direction, and setting one gap larger than the other, crucible deformation is reduced. And that the generation of polycrystals can be prevented. The raw material in the crucible is heated at a high frequency to form a melt, and the lower end of the seed crystal is brought into contact with the melt to grow the single crystal while pulling up the seed crystal. The reason why the generation of polycrystals can be prevented by growing a single crystal under the condition that convection flows in one direction of the crucible wall is considered as follows. Convection is not near the center of the crucible,
By growing under the condition of flowing into a crucible wall in a certain direction, the crucible material metal and the polycrystalline nuclei mixed in the melt are flowed to the crucible wall by convection and adhere to the crucible wall. Therefore, a material such as a crucible metal that disturbs the regularity of crystal growth does not adhere to the seed crystal or the grown crystal during seeding or growing, and the generation of polycrystals can be prevented. [0007] In addition, the raw material in the crucible is heated at a high frequency to form a melt, the lower end of the seed crystal is brought into contact with the melt, and the single crystal is grown while pulling up the seed crystal. The cause of preventing polycrystallization by using a cylindrical one with a notch vertically and using a pair of semi-cylindrical ones and setting one gap larger than the other It is considered as follows. When a cylindrical refractory is used around the crucible in a symmetrical manner, heating is performed symmetrically in the center, the temperature distribution also becomes symmetrical in the center, and the convection of the raw material melt in the crucible flows into the center of the crucible. Conceivable. On the other hand, if a cylindrical refractory with a vertical cut is used, or if one of the two half-cylinders is set with a larger gap than the other, it will be heated non-centrosymmetrically. In this case, a slight temperature difference is caused by the gap, the temperature distribution becomes non-centrosymmetric, and the convection inflow position can be changed. That is, convection flows into the crucible wall in the direction in which there is a gap between the refractories. As a result, the crucible metal and the polycrystalline nuclei mixed in the melt are flowed to the crucible wall by convection and adhere to the crucible wall, so that they do not adhere to the seed crystal or the grown crystal. Thus, it is considered that generation of polycrystal can be prevented. Further, in this case, it is not necessary to set the crucible position near the upper end of the high-frequency coil, and it is considered that the problem of crucible deformation does not occur. In the present invention, it is preferable to use the following means. A refractory for keeping heat is used around the crucible, and the refractory is installed non-centrosymmetrically with respect to the crucible. Use a refractory for keeping heat around the crucible and use a cut with a refractory. A refractory for keeping heat is used around the crucible, and a pair of semi-cylindrical refractories is used, with one gap being larger than the other. The crucible is installed non-centrosymmetric with respect to the high frequency induction heating coil. Use a non-centrosymmetric crucible. EXAMPLES Comparative Example 1 Cerium-activated gadolinium silicate single crystal (Ce: Gd 2 S)
An example in the case of iO 5 ) will be described. Gd 2 O 3
About 3240g, SiO 2 about 560g, CeO 2 about 10g
Into an Ir crucible of φ100, φ50 × 180mm
Was grown by the Czochralski method. The crucible was placed so that the crucible axis height was adjusted so that the upper end of the crucible was positioned at a position 50 mm from the upper end of the high-frequency coil, and the radial direction was at the center of the coil. As a refractory around the crucible, φ
A cylindrical zirconia refractory of 155 × φ125 × 120 hmm was placed so that the crucible was the center. The crucible was heated by high frequency induction heating to make the raw material a melt, and the temperature of the melt was adjusted to a temperature suitable for seeding. As shown in FIG. 2, the convection flowed near the center of the crucible, and the Ir mixed in the melt gathered and floated at the convection inflow position. After removing the Ir, the lower end of the seed crystal rotated at 20 to 50 rpm was brought into contact with the melt to perform seeding.
Then, the crystal was grown while being pulled up at 1 to 5 mm / hour, but Ir newly generated in the melt during the shoulder forming process of expanding the crystal diameter to φ50 moves along convection and adheres to the grown crystal. I have. After that, the parallel part is about 180m
After raising the crystal by m, the crystal was separated, and the crystal was cooled over about 50 hours to complete the growth. By this method, ten single crystals were grown. In FIG. 2, 1 denotes a melt (convection), 2 denotes an Ir crucible, 3 denotes a refractory around the crucible, 4 denotes a refractory, and 5 denotes a high-frequency coil. Example 1 A GSO single crystal was grown by the Czochralski method in the same manner as in Comparative Example 1 except for the following points. That is, the crucible was adjusted so that the upper end of the crucible was positioned at a position 50 mm from the upper end of the high-frequency coil so that the upper end of the crucible was aligned with the center of the coil in the radial direction. Φ155 × as refractory around crucible
φ125 × 120hmm cylindrical zirconia refractory,
It was previously divided vertically into two parts, and they were installed so that one gap was slightly larger than the other. When the crucible is heated by high-frequency induction heating to make the raw material a melt, and the temperature of the melt is adjusted to a temperature suitable for seeding, the convection becomes as shown in FIG.
Around the crucible, the refractory flowed into the crucible wall at a position with a large gap. Accordingly, Ir floating at the convection inflow position also moved to the crucible wall and adhered to the crucible wall. After such a state, 20-50
The lower end of the seed crystal rotated at rpm is brought into contact with the melt, and
The crystal was grown while being pulled up to mm5 mm / hour, and the crystal diameter was expanded to φ50. After seeding, the Ir mixed in the melt and suspended in the melt and the polycrystalline nuclei generated in the melt were crucible along the convection. It adhered to the wall and did not adhere to the grown crystal. Thereafter, after the parallel portion was pulled up by about 180 mm, the crystal was cut off, and the crystal was cooled over about 50 hours to terminate the growth. Six crystals were grown by this method. In FIG. 1, 1 denotes a melt (convection), 2 denotes an Ir crucible, 3 denotes a refractory around the crucible, 4 denotes a refractory, and 5 denotes a high-frequency coil. The growth rate of polycrystals and cracks caused by growing in Example 1 of the present invention was compared with the growth result of Comparative Example 1. Table 1 shows the results. [Table 1] Polycrystalline and cracking rates of GSOSO Comparison Example 1 Example 1 ───────────────────────────────── Polycrystal generation rate (book / per book) 10 / 100/6 率 Crack generation rate (books / middle) Comparative Example 2 Cerium-activated gadolinium silicate single crystal ( Ce) : Gd 2 S
An example in the case of iO 5 ) will be described. Gd 2 O 3
About 3260 g, about 540 g of SiO 2 , and about 10 g of CeO 2 are placed in a φ100 Ir crucible, and about φ50 × 180 mm
Was grown by the Czochralski method. The Ir crucible was placed so that the crucible shaft height was adjusted so that the upper end of the crucible was located at a position 50 mm from the upper end of the high frequency coil, and the radial direction was at the center of the coil. As the refractory around the crucible, a cylindrical zirconia refractory of φ155 × φ125 × 120 hmm was used, and was set so that the crucible was at the center. The crucible was heated by high frequency induction heating to make the raw material a melt, and the temperature of the melt was adjusted to a temperature suitable for seeding.
The convection flowed near the center of the crucible, and Ir mixed in the melt gathered and floated at the convection inflow position. After removing the Ir, the lower end of the seed crystal rotated at 20 to 50 rpm was brought into contact with the melt to perform seeding. And
The crystal was grown while being pulled up at a rate of 1 to 5 mm / hour. However, in the process of forming the shoulder portion for expanding the crystal diameter to φ50, a polycrystal was generated, which was probably due to the newly generated Ir in the melt adhering to the crystal. Oops. After that, the parallel part
After pulling up by mm, the crystal was cut off, and the crystal was cooled over about 50 hours to complete the growth. By this method, ten crystals were grown. Example 2 A GSO single crystal was grown by the Czochralski method in the same manner as in Comparative Example 2, except for the following points. That is, the Ir crucible was installed such that the crucible shaft height was adjusted so that the upper end of the crucible was located at a position 50 mm from the upper end of the high-frequency coil, and the radial direction was the center of the coil. As a refractory around the crucible, a cylindrical zirconia refractory of φ155 × φ125 × 120hmm used in the conventional method is divided in advance vertically into two semi-cylinders, and is installed so that one of the gaps is slightly larger. did. When the crucible was heated by high frequency induction heating to make the raw material a melt, and the temperature of the melt was adjusted to a temperature suitable for seeding, convection began to flow into the crucible wall at a position where a gap between the refractory around the crucible was opened. . Accordingly, Ir floating at the convection inflow position moved to the crucible wall and adhered to the crucible wall. After this situation,
The lower end of the seed crystal rotated at 20 to 50 rpm is brought into contact with the melt, the crystal is grown while being pulled up at 1 to 5 mm / hour, and the crystal diameter is increased to φ50. The polycrystal nuclei generated in the Ir and the melt adhered to the crucible wall along the convection, and did not adhere to the grown crystal. Thereafter, after the parallel portion was pulled up by about 180 mm, the crystal was cut off, and the crystal was cooled over about 50 hours to terminate the growth. Six crystals were grown by this method. The growth rate of polycrystals and the deformation of the crucible by growing in Example 2 were compared with the growth results of Comparative Example 2. Table 2 shows the results. Table 2 Rate of occurrence of polycrystals and cracks in GSO比較 Comparative Example 2 Example 2 ─────────────────────────────────── Polycrystal generation rate (book / book Medium) 10/10 0/6 変 形 Crucible deformation small small ぼわ か る As can be seen from Tables 1 and 2, the convection of the comparative example is Under the condition of flowing near the center of the crucible, 100% polycrystal was generated, and when the polycrystal was generated, 100% crack was generated. With the structure of the refractory around the crucible of the embodiment, by growing under the condition that convection flows in one direction of the crucible wall, it is possible to completely prevent the generation of polycrystals and greatly reduce the incidence of cracks. It can be seen that the reduction was achieved. In the embodiment of the present invention, the case where the growth is performed under the condition that the convection flows in one direction of the crucible wall has been described.However, the case where the convection is non-centrosymmetric, that is, the melt due to the convection of the melt in the crucible has a surface. The same effect can be obtained when the position of flowing into the crucible is set outside the crystal growth region. Also, by dividing the refractory around the crucible,
The deformation of the crucible was small, and generation of polycrystal was prevented. In the embodiment of the present invention, a case where a semi-cylindrical refractory is used as a means for heating the melt in the crucible in a non-centrosymmetric manner has been described.
The object is achieved by using a refractory containing only books, by placing the crucible non-centrosymmetrically with respect to the high-frequency heating coil, or by using a crucible having a non-centrosymmetric shape. According to the growing method of the present invention, the generation of polycrystals is likely to occur in the crystals in which polycrystals are likely to be generated at the crystal shoulders due to the mixing of the crucible metal into the melt and the generation of polycrystal nuclei. Can be prevented. In addition, there is anisotropy particularly in thermal expansion,
For a fragile crystal having features such as cleavage, the generation of polycrystals can be prevented, thereby greatly reducing crystal breakage. Further, when growing is repeated, a pair of semi-cylindrical refractories is used and the gap position is moved each time with respect to the surrounding position of the crucible, whereby deformation of the crucible in a biased direction can be suppressed.

【図面の簡単な説明】 【図1】実施例1におけるるつぼ内融液の対流状態を示
す平面図。 【図2】比較例1におけるるつぼ内融液の対流状態を示
す平面図。 【符号の説明】 1:融液(対流) 2:Irるつぼ 3:るつぼ周り耐火物 4:耐火物 5:高周波コイル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing a convection state of a melt in a crucible in Example 1. FIG. 2 is a plan view showing a convection state of a melt in a crucible in Comparative Example 1. [Description of Signs] 1: Melt (convection) 2: Ir crucible 3: Refractory around crucible 4: Refractory 5: High frequency coil

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−288195(JP,A) 特開 昭59−64590(JP,A) 特開 平7−157390(JP,A) 特公 昭50−3270(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-288195 (JP, A) JP-A-59-64590 (JP, A) JP-A-7-157390 (JP, A) 3270 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 るつぼ内の原料を加熱して融液とし、そ
の融液に種結晶の下端を接触させ、種結晶を引き上げな
がら単結晶を育成する単結晶の育成方法において、るつ
ぼ内融液を非中心対称に加熱することにより、るつぼ内
融液の対流による融液が表面からるつぼ内部に流れ込む
位置が結晶成長の領域外になるようにすることを特徴と
する単結晶の育成方法。
(57) [Claims 1] A single crystal in which a raw material in a crucible is heated to form a melt, and the lower end of a seed crystal is brought into contact with the melt to grow a single crystal while pulling the seed crystal. in the process of training, Ruth
The non-centrosymmetric heating of the melt in the crucible allows the melt to flow from the surface into the crucible from the surface due to the convection of the melt in the crucible outside the crystal growth region. Training method.
JP05967094A 1994-03-30 1994-03-30 Single crystal growth method Expired - Fee Related JP3459676B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05967094A JP3459676B2 (en) 1994-03-30 1994-03-30 Single crystal growth method
US08/413,288 US5690731A (en) 1994-03-30 1995-03-30 Method of growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05967094A JP3459676B2 (en) 1994-03-30 1994-03-30 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH07267773A JPH07267773A (en) 1995-10-17
JP3459676B2 true JP3459676B2 (en) 2003-10-20

Family

ID=13119862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05967094A Expired - Fee Related JP3459676B2 (en) 1994-03-30 1994-03-30 Single crystal growth method

Country Status (1)

Country Link
JP (1) JP3459676B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622326B2 (en) * 2004-06-11 2011-02-02 日立化成工業株式会社 Single crystal manufacturing method

Also Published As

Publication number Publication date
JPH07267773A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
CN202671713U (en) Crucible for polycrystalline silicon cast ingots
JPS6046993A (en) Device for pulling up single crystal
JP2006347853A (en) Method for growing silicon single crystal
JP2006347854A (en) Method for growing silicon single crystal
JP2973917B2 (en) Single crystal pulling method
JP3459676B2 (en) Single crystal growth method
CN113373518B (en) Device and method for growing oversized long-constant-diameter lithium niobate
JPH09328394A (en) Production of oxide single crystal
JP2001240494A (en) Single crystal growth method
JP4201215B2 (en) Single crystal growth method
US4046954A (en) Monocrystalline silicates
JP4622326B2 (en) Single crystal manufacturing method
JP3461559B2 (en) Cerium-activated gadolinium silicate single crystal growth method
CN103556216A (en) Czochralski single-crystal production process capable of reducing swirl defect at head of single crystal and detection method
JP3689898B2 (en) Single crystal growth method
JPH08319195A (en) Production of lithium borate single crystal
JPH08104595A (en) Method for growing single crystal
JP2739554B2 (en) Method for producing lithium tetraborate crystal
JPH08133884A (en) Production of single crystal
CA1047897A (en) Monocrystalline silicates and method of growth
JP2004067452A (en) Method for designing condition for pulling single crystal
JPH07115985B2 (en) Single crystal growth method
JP3555661B2 (en) Single crystal growth method
JPH0692781A (en) Production of single crystal and apparatus therefor
RU2057211C1 (en) Monocrystalline silicon obtaining method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees