JP3461559B2 - Cerium-activated gadolinium silicate single crystal growth method - Google Patents

Cerium-activated gadolinium silicate single crystal growth method

Info

Publication number
JP3461559B2
JP3461559B2 JP05966994A JP5966994A JP3461559B2 JP 3461559 B2 JP3461559 B2 JP 3461559B2 JP 05966994 A JP05966994 A JP 05966994A JP 5966994 A JP5966994 A JP 5966994A JP 3461559 B2 JP3461559 B2 JP 3461559B2
Authority
JP
Japan
Prior art keywords
crystal
growing
seed crystal
diameter
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05966994A
Other languages
Japanese (ja)
Other versions
JPH07267778A (en
Inventor
靖 倉田
和央 蔵重
浩之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP05966994A priority Critical patent/JP3461559B2/en
Priority to US08/413,288 priority patent/US5690731A/en
Publication of JPH07267778A publication Critical patent/JPH07267778A/en
Application granted granted Critical
Publication of JP3461559B2 publication Critical patent/JP3461559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器等に用いられ
る単結晶の育成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal used in electronic equipment and the like.

【0002】[0002]

【従来の技術】原料融液に種結晶を接触させ、種結晶を
徐々に引き上げながら単結晶を育成する方法では、従来
肩部の回転速度は、融液離れ(種結晶が融液から切れて
しまうこと、または界面に空気が入ってしまうこと)が
発生する恐れがあるために、その後の平行部である直胴
部育成時の回転速度より小さいまたは同じ回転速度で育
成を行っている。(文献 高木一正、石井満:実験物理
学講座13、試料の作成と加工:共立出版(1981)P.381)
2. Description of the Related Art In a method in which a seed crystal is brought into contact with a raw material melt and a single crystal is grown while gradually pulling up the seed crystal, the conventional rotation speed of the shoulder is such that the melt is separated from the melt (the seed crystal is cut from the melt). Therefore, the growth is carried out at a rotation speed lower than or the same as the rotation speed at the time of growing the straight body portion which is the parallel portion thereafter. (Reference Kazumasa Takagi, Mitsuru Ishii: Laboratory of Experimental Physics 13, Sample Preparation and Processing: Kyoritsu Shuppan (1981) P.381)

【0003】[0003]

【発明が解決しようとする課題】しかし、この方法で
は、径の大きさ(周速度)よって変化する固液界面形状
が肩部から平行部との境界にかけて大きく変化するため
に、結晶上部において歪を取り込む。これが残留歪とな
り、熱膨張に異方性がある、へい開性がある等の特徴を
有する脆弱な結晶では、育成の冷却中や冷却終了後に結
晶肩部付近に割れが発生する問題がある。本発明は、割
れの発生しない単結晶の育成方法を提供するものであ
る。
However, according to this method, the shape of the solid-liquid interface, which changes depending on the size of the diameter (peripheral velocity), changes greatly from the shoulder to the boundary between the parallel portions, so that strain at the upper portion of the crystal becomes large. Take in. This is a residual strain, and a brittle crystal having characteristics such as anisotropy in thermal expansion and cleavage is problematic in that cracks occur near the crystal shoulder during or after the cooling of the growth. The present invention provides a method for growing a single crystal in which cracking does not occur.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、るつぼ内の原料を加熱して融液と
し、その融液に種結晶の下端を接触させ、種結晶を引き
上げながら単結晶を育成するセリウム付活珪酸ガドリニ
ウム単結晶の育成において、種結晶から目標径まで結晶
径を広げていく過程である肩部形成の育成条件について
検討した。その結果、肩部形成時の回転速度をその後の
平行部である直胴部育成時より大きくして周速度がほぼ
一定になるように結晶径によって変化させることによっ
て、あるいは、肩部形成時の回転速度を平行部よりも大
きい一定速度にすることによって、上記目的を達成でき
ることを見いだすことによって、本発明はなされたもの
である。
In order to achieve the above object, the inventors of the present invention heated a raw material in a crucible to form a melt, and brought the lower end of the seed crystal into contact with the melt to form the seed crystal. Cerium activated gadolinium silicate that grows single crystals while pulling
The growth conditions for shoulder formation, which is the process of expanding the crystal size from the seed crystal to the target size in the growth of the um single crystal, were examined. As a result, the rotation speed at the time of shoulder formation is made larger than that at the time of growing the straight body part which is the parallel part thereafter, and the peripheral speed is changed by the crystal diameter so as to be almost constant, or at the time of shoulder formation. by the rotation speed constant speed greater Ri by the parallel portion, by finding that the object can be achieved, the present invention has been made.

【0005】[0005]

【作用】るつぼ内の原料を加熱して融液とし、その融液
に種結晶の下端を接触させ、種結晶を引き上げながら単
結晶を育成する単結晶の育成において、肩部形成時の回
転速度を平行部(直胴部)よりも大きくすることによっ
て、割れが防止できる原因は次のように考えられる。単
結晶引き上げ時の固液界面形状が下に凸になる結晶にお
いては、回転速度と結晶径、すなわち、周速度によって
その固液界面形状が変化する。るつぼ内の融液には、る
つぼを加熱していることにより、外側から中心付近へ流
れる対流があるが、回転速度を大きくしていくことによ
って、中心から外側方向への強制対流が大きくなる。周
速度(回転速度)を大きくすると、この強制対流の効果
により固液界面形状がフラットに近づく。回転速度を一
定にして、または肩部の回転速度を平行部よりも小さく
して結晶の引き上げを行うと、種付け後から平行部前ま
での肩部では、平行部よりも径が小さいために周速度が
小さく、固液界面形状がより下に凸になる。そして、平
行部の引き上げに入ると、固液界面の形状がフラットに
近づき一定になる。そこで、肩部から平行部の育成初期
にかけて、固液界面形状が急に変化する領域が発生し、
一旦その時の固液界面で結晶化した部分の中央付近が、
界面形状が変化することにより再び融け、変化後の界面
形状で再度固化するという現象(メルトバック)が起こ
る。(文献:前同)これにより、格子欠陥に基づく歪が
発生し、脆弱な結晶では肩部付近での割れを引き起こす
と考えられる。そこで、本発明の方法により、肩部形成
時の回転速度を平行部よりも大きくして周速度がほぼ一
定になるように結晶径によって変化させることによっ
て、あるいは、肩部形成時の回転速度を平行部よりも大
きい一定速度にすることによって、肩部形成時の固液界
面形状を平行部での形状に近づけて、メルトバックの影
響を小さくし、固液界面形状を一様化することにより、
割れを防止することができる。
[Function] The raw material in the crucible is heated to form a melt, and the lower end of the seed crystal is brought into contact with the melt to grow the single crystal while pulling up the seed crystal. The reason why cracking can be prevented by making the diameter larger than the parallel portion (straight body portion) is considered as follows. In a crystal in which the solid-liquid interface shape when pulling a single crystal is convex downward, the solid-liquid interface shape changes depending on the rotation speed and the crystal diameter, that is, the peripheral speed. The melt in the crucible has convection that flows from the outside to the vicinity of the center due to the heating of the crucible, but by increasing the rotation speed, the forced convection from the center to the outside increases. When the circumferential velocity (rotational velocity) is increased, the solid-liquid interface shape approaches a flat shape due to the effect of this forced convection. When the crystal is pulled up with the rotation speed kept constant or the shoulder rotation speed smaller than that of the parallel portion, the diameter of the shoulder portion from the seeding to the front of the parallel portion is smaller than that of the parallel portion. The velocity is small and the solid-liquid interface shape becomes more convex. Then, when the parallel portion is pulled up, the shape of the solid-liquid interface approaches a flat shape and becomes constant. Therefore, a region where the solid-liquid interface shape changes abruptly occurs from the shoulder to the initial stage of parallel growth.
Once near the center of the crystallized part at the solid-liquid interface at that time,
When the interface shape changes, melting again occurs, and the interface shape after the change causes solidification again (meltback). (Reference: Ibid.) It is considered that this causes strain due to lattice defects and causes cracks in the vicinity of shoulders in weak crystals. Therefore, according to the method of the present invention, the rotational speed at the time of forming the shoulder portion is made larger than that at the parallel portion and is changed by the crystal diameter so that the peripheral speed becomes almost constant, or the rotational speed at the time of forming the shoulder portion is changed. By making the solid-liquid interface shape at the time of shoulder formation close to the shape in the parallel section by making the constant speed larger than the parallel section, the effect of meltback is reduced and the solid-liquid interface shape is made uniform. ,
It is possible to prevent cracking.

【0006】[0006]

【実施例】【Example】

実施例1 セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2
iO5)の場合で肩部周速度がほぼ一定になるようにした
例を説明する。原料として、Gd23 約3260g、
SiO2 約540g、CeO2 約10gをφ100mm
のIrるつぼ中に採り、φ50×180mmの結晶をチ
ョクラルスキー法で育成した。高周波誘導加熱によりる
つぼを加熱し原料を融液とし、種結晶の下端を接触さ
せ、1〜5mm/時間で引き上げながら成長させた。種
結晶は、種付け前から100rpmで回転させた。融液
の温度を調整することにより、30〜50mm引き上げ
る間に結晶径をφ50mmまで広げて、それに伴い回転
速度を100から30rpmまで、周速度が1.25c
m/秒でほぼ一定になるように徐々に小さくしていき、
肩部を形成した。その後、自動直径制御に入り、回転速
度は30rpmのままで、約180mm平行部を引き上
げた後、結晶を切り離し、約50時間かけて冷却を行っ
た。
Example 1 Cerium-activated gadolinium silicate single crystal (Ce: Gd 2 S)
An example will be described in which the shoulder peripheral velocity is set to be substantially constant in the case of iO 5 ). As a raw material, about 3260 g of Gd 2 O 3 ,
Approximately 540 g of SiO 2 and approximately 10 g of CeO 2 with a diameter of 100 mm
Was placed in an Ir crucible of and a crystal of φ50 × 180 mm was grown by the Czochralski method. The crucible was heated by high frequency induction heating to use the raw material as a melt, and the lower end of the seed crystal was brought into contact with the crucible, and the seed crystal was grown while being pulled up at 1 to 5 mm / hour. The seed crystal was rotated at 100 rpm before seeding. By adjusting the temperature of the melt, the crystal diameter is expanded to φ50 mm while being pulled up by 30 to 50 mm, and accordingly the rotation speed is from 100 to 30 rpm and the peripheral speed is 1.25 c.
Gradually reduce it so that it is almost constant at m / sec.
Formed shoulders. Then, the automatic diameter control was started, the rotation speed was kept at 30 rpm, the parallel part was pulled up for about 180 mm, the crystal was separated, and the cooling was performed for about 50 hours.

【0007】実施例2 セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2
iO5)の場合で肩部回転速度を一定にした例を説明す
る。原料として、Gd23 約3260g、SiO2
540g、CeO2 約10gをφ100mmのIrるつ
ぼ中に採り、φ50×180mmの結晶をチョクラルス
キー法で育成した。高周波誘導加熱によりるつぼを加熱
し原料を融液とし、種結晶の下端を接触させ、1〜5m
m/時間で引き上げながら成長させた。種結晶は、種付
け前から40rpmで回転させ、融液の温度を調整する
ことにより、30〜50mm引き上げる間に結晶径をφ
50mmまで広げて、肩部を形成した。その後、自動直
径制御に入り、回転数を30rpmまで下げ、約180
mm平行部を引き上げた後、結晶を切り離し、約50時
間かけて冷却を行った。 比較例 実施例1及び実施例2で育成を行うことによる割れの発
生の割合を、従来方法である回転速度を肩部25rp
m、平行部30rpmで同様に育成した場合、回転速
度を肩部30rpm、平行部30rpmで同様に育成し
た場合と比較した。その結果を表1に示す。
Example 2 Cerium activated gadolinium silicate single crystal (Ce: Gd 2 S)
An example in which the shoulder rotation speed is constant in the case of i0 5 ) will be described. As a raw material, about 3260 g of Gd 2 O 3 , about 540 g of SiO 2 and about 10 g of CeO 2 were put into an Ir crucible of φ100 mm, and a crystal of φ50 × 180 mm was grown by the Czochralski method. The crucible is heated by high frequency induction heating to make the raw material a melt, and the lower end of the seed crystal is brought into contact with the melt,
It was grown while being pulled up at m / hour. The seed crystal is rotated at 40 rpm from before seeding and the temperature of the melt is adjusted so that the crystal diameter is φ while being pulled by 30 to 50 mm.
Expanded to 50 mm to form shoulders. After that, the automatic diameter control is started, the rotation speed is reduced to 30 rpm, and about 180
After pulling up the mm parallel part, the crystal was separated and cooled for about 50 hours. Comparative Example The rate of occurrence of cracks caused by growing in Example 1 and Example 2, the rotational speed of the conventional method, shoulder 25rp
In the case of the same growth at m and 30 rpm of the parallel part, the rotation speed was compared with the case of similar growth at the shoulder part of 30 rpm and the parallel part of 30 rpm. The results are shown in Table 1.

【0008】[0008]

【表1】 GSOの割れの発生率 ────────────────────────────────── 比較例 実施例1 実施例2 ────────────────────────────────── 肩部回転速度 (rpm) 25 30 100〜30 40 ────────────────────────────────── 平行部回転速度(rpm) 30 30 30 30 ──────────────────────────────────
割れ発生 有り 有り 無し 無し ──────────────────────────────────
[Table 1] GSO cracking rate ────────────────────────────────── Comparative Example Example 1 Implementation Example 2 ────────────────────────────────── Shoulder rotation speed (rpm) 25 30 100 to 30 40 ─ ───────────────────────────────── Parallel section rotation speed (rpm) 30 30 30 30 30 ─────── ────────────────────────────
Cracking Yes Yes Yes No None ──────────────────────────────────

【0009】この表からわかるように、従来法でも肩部
の回転速度を平行部(直胴部)に比べ小さい速度から同
じ速度にすることにより、割れが減少する傾向が得られ
た。そして、本方法で肩部育成時の回転速度を平行部よ
りも大きくし、周速度がほぼ一定になるように径の広が
りにつれて小さくする方法によって、また、肩部の回転
速度を平行部に比べ大きい一定速度にすることによって
も同様に割れを防止することができた。
As can be seen from this table, even in the conventional method, there was a tendency to reduce cracks by changing the rotational speed of the shoulder portion from a speed smaller than that of the parallel portion (straight body portion) to the same speed. Then, in this method, the rotation speed at the time of shoulder growth is made higher than that of the parallel portion, and the rotation speed of the shoulder portion is made smaller than that of the parallel portion by decreasing the circumferential speed to be almost constant as the diameter increases. It was also possible to prevent cracks by setting a large constant speed.

【0010】[0010]

【発明の効果】本発明の育成方法により、特に、熱膨張
に異方性がある、へい開性がある等の特徴を有する脆弱
な結晶について、残留歪等による冷却中及び冷却終了後
の肩部付近での割れ発生を防止することができる。ま
た、割れが発生しにくい結晶においても、本発明により
内部残留歪が低減できることは、結晶の品質向上に有効
である。
EFFECTS OF THE INVENTION According to the growing method of the present invention, in particular, a fragile crystal having characteristics such as anisotropy in thermal expansion and cleavage, the shoulder during cooling due to residual strain and after cooling It is possible to prevent the occurrence of cracks near the portion. Further, even in a crystal in which cracking is unlikely to occur, the fact that the internal residual strain can be reduced by the present invention is effective in improving the quality of the crystal.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−144998(JP,A) 特開 昭54−152683(JP,A) 特開 昭59−13692(JP,A) 特開 昭60−77197(JP,A) 特開 平2−239183(JP,A) 特公 昭54−31470(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-144998 (JP, A) JP-A-54-152683 (JP, A) JP-A-59-13692 (JP, A) JP-A-60- 77197 (JP, A) JP-A-2-239183 (JP, A) JP-B-54-31470 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C30B 1/00-35 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 るつぼ内の原料を加熱して融液とし、そ
の融液に種結晶の下端を接触させ、種結晶を引き上げな
がら単結晶を育成するセリウム付活珪酸ガドリニウム
結晶の育成方法において、種結晶から目標径まで結晶径
を広げていく過程である肩部育成時の種結晶の回転速度
を、その後の平行部である直胴部育成時の回転速度より
も大きくすることを特徴とするセリウム付活珪酸ガドリ
ニウム単結晶の育成方法。
1. A method for growing a cerium-activated gadolinium silicate single crystal in which a raw material in a crucible is heated to form a melt, the lower end of the seed crystal is brought into contact with the melt, and the single crystal is grown while pulling up the seed crystal. The rotation speed of the seed crystal during shoulder growing, which is the process of expanding the crystal diameter from the seed crystal to the target diameter, is made higher than the rotation speed during straight body growing, which is the parallel portion thereafter. Cerium-activated gadolinium silicate
Method for growing a chloride single crystal.
【請求項2】 種結晶から目標径まで結晶径を広げてい
く過程である肩部育成時の種結晶の回転速度を、その周
速度がその後の平行部である直胴部育成時の周速度とほ
ぼ同じになるように結晶径によって変化させることを特
徴とする請求項1記載のセリウム付活珪酸ガドリニウム
単結晶の育成方法。
2. The rotational speed of the seed crystal during shoulder growth, which is the process of expanding the crystal diameter from the seed crystal to the target diameter, is the peripheral speed at the time of growing the straight body part whose peripheral speed is the parallel portion thereafter. The method for growing a cerium-activated gadolinium silicate single crystal according to claim 1, characterized in that the crystal diameter is changed so as to be substantially the same as the above.
【請求項3】 種結晶から目標径まで結晶径を広げてい
く過程である肩部育成時の種結晶の回転速度を、その後
の平行部である直胴部育成時の回転速度よりも大きい一
定速度とすることを特徴とする請求項1記載のセリウム
付活珪酸ガドリニウム単結晶の育成方法。
3. The rotation speed of the seed crystal during shoulder growth, which is the process of expanding the crystal diameter from the seed crystal to the target diameter, is higher than the rotation speed during subsequent straight body growth, which is a parallel portion. Cerium according to claim 1, characterized in that the speed is set.
Method for growing activated gadolinium silicate single crystal.
JP05966994A 1994-03-30 1994-03-30 Cerium-activated gadolinium silicate single crystal growth method Expired - Lifetime JP3461559B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05966994A JP3461559B2 (en) 1994-03-30 1994-03-30 Cerium-activated gadolinium silicate single crystal growth method
US08/413,288 US5690731A (en) 1994-03-30 1995-03-30 Method of growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05966994A JP3461559B2 (en) 1994-03-30 1994-03-30 Cerium-activated gadolinium silicate single crystal growth method

Publications (2)

Publication Number Publication Date
JPH07267778A JPH07267778A (en) 1995-10-17
JP3461559B2 true JP3461559B2 (en) 2003-10-27

Family

ID=13119837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05966994A Expired - Lifetime JP3461559B2 (en) 1994-03-30 1994-03-30 Cerium-activated gadolinium silicate single crystal growth method

Country Status (1)

Country Link
JP (1) JP3461559B2 (en)

Also Published As

Publication number Publication date
JPH07267778A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
US5690731A (en) Method of growing single crystal
JPS6046993A (en) Device for pulling up single crystal
JPH0321515B2 (en)
JP2973917B2 (en) Single crystal pulling method
JP3461559B2 (en) Cerium-activated gadolinium silicate single crystal growth method
JP4201215B2 (en) Single crystal growth method
JP3172389B2 (en) Manufacturing method of silicon wafer
JP4273793B2 (en) Single crystal manufacturing method
JP2001240494A (en) Single crystal growth method
JPH0692276B2 (en) Quartz crucible for pulling silicon single crystal
JP3689898B2 (en) Single crystal growth method
JPH07300390A (en) Method and system for forming improved silicon crystal by czochralski method
JP3738480B2 (en) Single crystal growth method
JP2602442B2 (en) Quartz crucible for pulling silicon single crystal
JP2739554B2 (en) Method for producing lithium tetraborate crystal
JP3459676B2 (en) Single crystal growth method
US3775066A (en) Method for producing crystal plate of gadolinium molybdate
JP2001026494A (en) Quartz crucible
JPH0692781A (en) Production of single crystal and apparatus therefor
JP2507997B2 (en) Single crystal growth method
JP2781857B2 (en) Single crystal manufacturing method
JP3555661B2 (en) Single crystal growth method
JPH08133884A (en) Production of single crystal
JPH03193698A (en) Silicon single crystal and its production
JPS5933558B2 (en) Method of manufacturing GGG single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term