JP3448794B2 - Refrigeration equipment - Google Patents
Refrigeration equipmentInfo
- Publication number
- JP3448794B2 JP3448794B2 JP15040295A JP15040295A JP3448794B2 JP 3448794 B2 JP3448794 B2 JP 3448794B2 JP 15040295 A JP15040295 A JP 15040295A JP 15040295 A JP15040295 A JP 15040295A JP 3448794 B2 JP3448794 B2 JP 3448794B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- oil temperature
- refrigerant compressor
- gas
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/22—Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/22—Refrigeration systems for supermarkets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21155—Temperatures of a compressor or the drive means therefor of the oil
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、例えばスーパーマー
ケットの低温商品ケース、冷蔵庫、冷凍庫等で使用され
る冷凍装置の信頼性向上に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the reliability of a refrigerating device used in, for example, a low temperature product case in a supermarket, a refrigerator or a freezer.
【0002】[0002]
【従来の技術】図12は従来の冷凍装置、例えば三菱電
機(株)発行の工事・サービスマニュアル(1995年
1月版)に記載されたものの冷媒配管系統を示す図であ
る。図において、1は冷媒圧縮機、2は油分離器、3は
凝縮器、4は凝縮器3で凝縮された液冷媒を収容する液
溜、5は液溜4にて収容された液冷媒を送出する液配
管、6は減圧装置、7は蒸発器、8は気液分離器、9は
気液分離器8と冷媒圧縮機1とを接続する吸入配管であ
る。また、10は吸入操作弁、11は吐出操作弁であ
り、主に市場(例えば、装置出荷先)で真空引き等のサ
ービスを行う際に使われる。吸入操作弁10は冷媒圧縮
機1本体に直接接続されている。また、吸入操作弁10
にはサービス口10aが設けられており、市場でサービ
スを行う際に使用される。以上、冷凍装置内の冷媒回路
を構成している主な部品を示した。その他に付随する配
管がいくつかあるが、ここでは説明を省略する。2. Description of the Related Art FIG. 12 is a view showing a refrigerant piping system of a conventional refrigerating apparatus, for example, one described in a construction / service manual (January 1995 version) issued by Mitsubishi Electric Corporation. In the figure, 1 is a refrigerant compressor, 2 is an oil separator, 3 is a condenser, 4 is a liquid reservoir containing the liquid refrigerant condensed in the condenser 3, and 5 is a liquid refrigerant contained in the liquid reservoir 4. Liquid pipe for delivery, 6 is a pressure reducing device, 7 is an evaporator, 8 is a gas-liquid separator, and 9 is a suction pipe connecting the gas-liquid separator 8 and the refrigerant compressor 1. Further, 10 is a suction operation valve, and 11 is a discharge operation valve, which are mainly used when performing services such as evacuation in the market (for example, equipment shipping destination). The suction operation valve 10 is directly connected to the main body of the refrigerant compressor 1. Further, the suction operation valve 10
Is provided with a service port 10a, which is used when a service is provided in the market. In the above, the main parts which comprise the refrigerant circuit in a refrigerating device were shown. There are some other associated pipes, but the description is omitted here.
【0003】従来の冷凍装置は上記のように構成され、
例えば冷媒圧縮機1に接続された吸入操作弁10のサー
ビス口10aからガス状態で充填された冷媒は、上記冷
媒圧縮機1で圧縮され高温高圧になり、油分離器2で高
温高圧ガスと油に分離される。油分離器2より送出され
た高温高圧の冷媒は、凝縮器3で凝縮されて液化し、こ
の液冷媒は液溜4に収容される。液溜4から液配管5を
介して送出された液冷媒は、減圧装置6で減圧されて気
液二相の状態となり、蒸発器7で外気と熱交換してガス
化し、気液分離器8、吸入配管9を通り、再び冷媒圧縮
機1へ戻って、上記の様なサイクルを繰り返す。また、
運転条件等の変化によって蒸発器7で蒸発しきれなかっ
た液冷媒は気液分離器8に収容され、ここで気液分離さ
れたガス冷媒が吸入配管9を介して冷媒圧縮機1へ戻
り、上記のようなサイクルを繰り返す。また、運転条
件、例えば蒸発器7での冷媒の蒸発温度が−30℃〜−
45℃と低い場合、気液分離器8から送出される冷媒の
温度が非常に下がるため、気液分離器8や吸入配管9と
外気が触れる部分に霜付きや氷結を生じたりすることが
ある。The conventional refrigeration system is constructed as described above,
For example, the refrigerant charged in a gas state from the service port 10a of the suction operation valve 10 connected to the refrigerant compressor 1 is compressed by the refrigerant compressor 1 to have high temperature and high pressure, and the oil separator 2 causes high temperature and high pressure gas and oil. Is separated into The high-temperature and high-pressure refrigerant sent from the oil separator 2 is condensed in the condenser 3 and liquefied, and this liquid refrigerant is stored in the liquid reservoir 4. The liquid refrigerant sent from the liquid reservoir 4 through the liquid pipe 5 is decompressed by the decompression device 6 into a gas-liquid two-phase state, heat-exchanged with the outside air in the evaporator 7 to be gasified, and the gas-liquid separator 8 After passing through the suction pipe 9 and returning to the refrigerant compressor 1, the above cycle is repeated. Also,
The liquid refrigerant that has not been completely evaporated in the evaporator 7 due to changes in operating conditions and the like is stored in the gas-liquid separator 8, and the gas refrigerant separated here is returned to the refrigerant compressor 1 via the suction pipe 9, Repeat the cycle as above. In addition, the operating conditions, for example, the evaporation temperature of the refrigerant in the evaporator 7 is -30 ° C to
When the temperature is as low as 45 ° C., the temperature of the refrigerant sent from the gas-liquid separator 8 is extremely lowered, so that frost or freezing may occur at a portion where the gas-liquid separator 8 or the suction pipe 9 comes into contact with the outside air. .
【0004】[0004]
【発明が解決しようとする課題】従来の冷凍装置は以上
のように構成されているので、運転条件等の変化によっ
て、冷媒圧縮機1吸入側へ液冷媒が直接戻るような場合
があり、冷媒圧縮機1が液冷媒の圧縮により損傷する恐
れがあった。また、市場にて冷媒を充填する際、冷媒圧
縮機1に接続された吸入操作弁10のサービス口10a
から液冷媒が封入される場合があり、これによって冷媒
圧縮機1が損傷するという問題があった。そして、外気
と接する気液分離器8の表面で結露した水分が氷結し、
それがさらに気液分離器8から冷媒圧縮機1にかけての
吸入配管9まで達して成長するため、吸入配管9の外径
は氷結部分も含めると実質的に増大することがある。そ
の時、吸入配管9の固有振動数が運動振動数と一致して
共振し、場合によっては吸入配管9が折損するという問
題点があった。さらに、従来の冷凍装置では、気液分離
器8と液溜4の設置面積が比較的大きいため、製品全体
としてコスト高になるという問題があった。Since the conventional refrigeration system is constructed as described above, there are cases where the liquid refrigerant directly returns to the suction side of the refrigerant compressor 1 due to changes in operating conditions. The compressor 1 may be damaged by the compression of the liquid refrigerant. Further, when charging the refrigerant in the market, the service port 10a of the suction operation valve 10 connected to the refrigerant compressor 1
There is a problem in that the liquid refrigerant may be filled from the inside, which damages the refrigerant compressor 1. Then, the dew condensation water is frozen on the surface of the gas-liquid separator 8 which comes into contact with the outside air,
Since it further reaches and grows up to the suction pipe 9 from the gas-liquid separator 8 to the refrigerant compressor 1, the outer diameter of the suction pipe 9 may be substantially increased when the frozen portion is included. At that time, there was a problem that the natural frequency of the suction pipe 9 resonated in agreement with the motion frequency, and the suction pipe 9 was broken in some cases. Further, in the conventional refrigeration system, since the installation area of the gas-liquid separator 8 and the liquid reservoir 4 is relatively large, there is a problem that the cost of the entire product increases.
【0005】この発明は、かかる従来の問題点を解決す
るためになされたものであり、冷凍装置の信頼性をより
向上させるため、吸入操作弁からの液冷媒充填および運
転中の液冷媒戻りによる冷媒圧縮機の損傷を防止し、適
正な運転を可能とする冷凍装置を得ることを目的として
いる。さらに、気液分離器から吸入配管にかけての氷結
による配管折損等を防ぎ、適正な運転を可能とし、かつ
コスト安となるような冷凍装置を得ることを目的として
いる。The present invention has been made to solve the above-mentioned conventional problems, and in order to further improve the reliability of the refrigeration system, the liquid refrigerant is charged from the suction operation valve and the liquid refrigerant is returned during operation. It is an object of the present invention to obtain a refrigeration system that prevents damage to the refrigerant compressor and enables proper operation. Further, another object of the present invention is to obtain a refrigeration system that prevents pipe breakage due to freezing from the gas-liquid separator to the suction pipe, enables proper operation, and is inexpensive.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
め、この発明による冷凍装置は、冷媒圧縮機、凝縮器、
減圧装置、蒸発器、及び気液分離器等を順次配管接続し
た冷媒回路を有する冷凍装置において、気液分離器と冷
媒圧縮機とを接続する吸入配管に設けられた冷媒流量制
御弁と、冷媒圧縮機に設けられ冷媒圧縮機内の油温度を
検知する油温度検知器と、油温度検知器により検知され
た油温度に基づいて冷媒流量制御弁の開度を制御する第
1の制御器とを備えた構成にしたものである。In order to achieve the above object, a refrigerating apparatus according to the present invention comprises a refrigerant compressor, a condenser,
In a refrigerating device having a refrigerant circuit in which a pressure reducing device, an evaporator, a gas-liquid separator and the like are sequentially connected by piping, a refrigerant flow rate control valve provided in a suction pipe connecting the gas-liquid separator and the refrigerant compressor, and a refrigerant. An oil temperature detector provided in the compressor for detecting the oil temperature in the refrigerant compressor, and a first controller for controlling the opening of the refrigerant flow control valve based on the oil temperature detected by the oil temperature detector are provided. It is a prepared configuration.
【0007】また、冷媒圧縮機、凝縮器、減圧装置、蒸
発器、及び気液分離器等を順次配管接続した冷媒回路を
有する冷凍装置において、気液分離器と冷媒圧縮機とを
接続する吸入配管に設けられた冷媒流量制御弁と、冷媒
圧縮機に設けられ冷媒圧縮機内の油温度を検知する油温
度検知器と、吸入配管に設けられ吸入配管内の圧力を検
知する圧力検知器と、圧力検知器により検知された圧力
に対応する冷媒の飽和温度と油温度検知器により検知さ
れた油温度との差である油温度スーパーヒート量を演算
するとともに、油温度スーパーヒート量に基づいて冷媒
流量制御弁の開度を制御する第2の制御器とを備えたも
のである。Further, in a refrigerating apparatus having a refrigerant circuit in which a refrigerant compressor, a condenser, a pressure reducing device, an evaporator, a gas-liquid separator and the like are sequentially connected by piping, a suction connecting the gas-liquid separator and the refrigerant compressor. A refrigerant flow rate control valve provided in the pipe, an oil temperature detector provided in the refrigerant compressor to detect the oil temperature in the refrigerant compressor, and a pressure detector provided in the intake pipe to detect the pressure in the intake pipe, The oil temperature superheat amount, which is the difference between the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure detector and the oil temperature detected by the oil temperature detector, is calculated, and the refrigerant is calculated based on the oil temperature superheat amount. And a second controller for controlling the opening of the flow control valve.
【0008】更に、冷媒圧縮機、凝縮器、減圧装置、蒸
発器、及び気液分離器等を順次配管接続した冷媒回路を
有する冷凍装置において、気液分離器と冷媒圧縮機とを
接続する吸入配管に設けられた第一電磁弁と、第一電磁
弁と並列に吸入配管に接続された少なくとも一本の並列
配管と、並列配管に設けられた第二電磁弁と、第二電磁
弁と直列に並列配管に設けられ吸入配管よりも小管径の
毛細管と、冷媒圧縮機に設けられ冷媒圧縮機内の油温度
を検知する油温度検知器と、油温度検知器により検知さ
れた油温度に基づいて第一電磁弁と第二電磁弁を適宜開
閉制御する第4の制御器とを備えたものである。Further, in a refrigerating apparatus having a refrigerant circuit in which a refrigerant compressor, a condenser, a pressure reducing device, an evaporator, a gas-liquid separator and the like are sequentially connected by piping, a suction connecting the gas-liquid separator and the refrigerant compressor. A first solenoid valve provided in the pipe, at least one parallel pipe connected to the suction pipe in parallel with the first solenoid valve, a second solenoid valve provided in the parallel pipe, and a second solenoid valve in series Based on the oil temperature detected by the oil temperature detector, which is provided in the parallel pipe and has a smaller diameter than the suction pipe, the oil temperature detector which is provided in the refrigerant compressor and detects the oil temperature in the refrigerant compressor, And a fourth controller for appropriately controlling the opening and closing of the first solenoid valve and the second solenoid valve.
【0009】[0009]
【0010】[0010]
【0011】[0011]
【0012】[0012]
【0013】[0013]
【作用】この発明による冷凍装置においては、油温度検
知器で検知された冷媒圧縮機内の油温度が低下するにし
たがって、第1の制御器は、吸入配管の冷媒流量制御弁
の開度を小さく制御して、液冷媒の冷媒圧縮機への流入
を低減させる。In the refrigerating apparatus according to the present invention, as the oil temperature in the refrigerant compressor detected by the oil temperature detector decreases, the first controller decreases the opening degree of the refrigerant flow control valve in the suction pipe. The control is performed to reduce the inflow of the liquid refrigerant into the refrigerant compressor.
【0014】また、冷媒圧縮機内の油温度と吸入配管内
の圧力に対応する冷媒飽和温度との差である油温度スー
パーヒート量を、第2の制御器が演算し、この油温度ス
ーパーヒート量に基づいて、油温度スーパーヒート量が
低いとき、第2の制御器は冷媒流量制御弁の開度を小さ
く制御して、液冷媒の冷媒圧縮機流入を防ぐ。The second controller calculates the oil temperature superheat amount which is the difference between the oil temperature in the refrigerant compressor and the refrigerant saturation temperature corresponding to the pressure in the suction pipe, and this oil temperature superheat amount is calculated. Based on the above, when the oil temperature superheat amount is low, the second controller controls the opening degree of the refrigerant flow control valve to be small to prevent the liquid refrigerant from flowing into the refrigerant compressor.
【0015】更に、第4の制御器は、冷媒圧縮機の油温
度検知器で検知された油温度に基づいて、吸入配管の第
一電磁弁と、並列配管の第二電磁弁とを適宜開閉制御す
る。従って、油温度に対応して吸入配管へ流入する液冷
媒量に応じて、液冷媒は吸入配管と並列配管とに選択的
に流入する。Further, the fourth controller appropriately opens and closes the first solenoid valve of the suction pipe and the second solenoid valve of the parallel pipe based on the oil temperature detected by the oil temperature detector of the refrigerant compressor. Control. Therefore, the liquid refrigerant selectively flows into the suction pipe and the parallel pipe in accordance with the amount of the liquid refrigerant flowing into the suction pipe corresponding to the oil temperature.
【0016】[0016]
【0017】[0017]
【0018】[0018]
【0019】[0019]
【0020】[0020]
【実施例】以下、この発明の実施例を図面に基づいて説
明する。
実施例1.図1はこの発明の実施例1を示す冷媒配管系
統図であり、符号1〜11は図12で記述した従来装置
の構成要素と同一であるので、これらの詳説は省略す
る。図1において、12は冷媒圧縮機1本体下部に埋設
され冷媒圧縮機1内の潤滑油の温度を検知する油温度検
知器、13は気液分離器8と冷媒圧縮機1とを接続する
吸入配管9の途中に設けられ弁開度可変に冷媒流量を調
整する冷媒流量制御弁、14は油温度検知器12により
検知された油温度に基づいて冷媒流量制御弁13の開度
を制御する制御器(第1の制御器の一例)である。Embodiments of the present invention will be described below with reference to the drawings. Example 1. 1 is a refrigerant piping system diagram showing Embodiment 1 of the present invention, and reference numerals 1 to 11 are the same as the constituent elements of the conventional apparatus described in FIG. 12, and therefore detailed description thereof will be omitted. In FIG. 1, 12 is an oil temperature detector that is embedded in the lower part of the body of the refrigerant compressor 1 and detects the temperature of the lubricating oil in the refrigerant compressor 1, and 13 is a suction connecting the gas-liquid separator 8 and the refrigerant compressor 1. A refrigerant flow rate control valve provided in the middle of the pipe 9 for adjusting the refrigerant flow rate by variably opening the valve, and 14 is a control for controlling the opening degree of the refrigerant flow rate control valve 13 based on the oil temperature detected by the oil temperature detector 12. It is a device (an example of a first controller).
【0021】この冷凍装置は上記のように構成され、例
えば冷媒圧縮機1で圧縮された高温高圧の冷媒は、油分
離器2で高温高圧ガスと油に分離される。油分離器2よ
り送出された高温高圧の冷媒は凝縮器3で凝縮されて液
化し、この液冷媒は液溜4に収容される。液溜4から液
配管5を介して送出された液冷媒は減圧装置6で減圧さ
れて気液二相の状態となり、蒸発器7で外気と熱交換し
てガス化し、気液分離器8、吸入配管9を通り再び冷媒
圧縮機1へ戻り、上記の様なサイクルを繰り返す。ま
た、運転条件等の変化によって、蒸発器7で蒸発しきれ
なかった液冷媒は、気液分離器8に収容され、ここで気
液分離されたガスが吸入配管9を経て冷媒圧縮機1へ戻
り、上記のようなサイクルを繰り返す。ところで、液冷
媒が気液分離器8で気液分離されず冷媒圧縮機1へその
まま送出される場合もある。この際、液冷媒は吸入配管
9を通り、冷媒圧縮機1本体の下部に溜まる。ここに
は、冷媒圧縮機1の内部の部品を潤滑するための潤滑油
が保有されているが、液冷媒の流入により混合される。
すると、潤滑油の粘度が低下し、冷媒圧縮機1内の褶動
部を十分潤滑できなくなって故障に至ることがある。液
冷媒は非常に低い温度であるため(例えば、−40℃〜
0℃)、液冷媒と潤滑油の混合液の温度は低下する。そ
こで、本実施例では、冷媒圧縮機1内に保有されている
潤滑油の温度を油温度検知器12にて検知し、検知した
油温度にしたがって冷媒流量制御弁13の開度を決定す
るようになっている。図2は油温度検知器の検知した油
温度と冷媒流量制御弁の開度の関係を示した図である。
ここでは、冷媒流量制御弁13の開度は全開を100%
とし、全閉を0%として表している。例えば、油温度が
低下するにつれて、弁開度を小さくさせる。つまり、弁
開度を小さくすることにより、冷媒流量制御弁13を通
過して冷媒圧縮機1内へ流入する液冷媒の量を低減させ
るのである。以上のように制御器14が制御することに
より、液冷媒戻りによる冷媒圧縮機1の故障を防ぎ、冷
凍装置を円滑に運転することができる。This refrigerating apparatus is constructed as described above, and the high temperature and high pressure refrigerant compressed by the refrigerant compressor 1 is separated into the high temperature and high pressure gas and the oil by the oil separator 2. The high-temperature and high-pressure refrigerant sent from the oil separator 2 is condensed in the condenser 3 and liquefied, and this liquid refrigerant is stored in the liquid reservoir 4. The liquid refrigerant sent from the liquid reservoir 4 through the liquid pipe 5 is decompressed by the decompression device 6 into a gas-liquid two-phase state, heat-exchanged with the outside air in the evaporator 7 to be gasified, and the gas-liquid separator 8, After passing through the suction pipe 9 and returning to the refrigerant compressor 1, the above cycle is repeated. Further, the liquid refrigerant that has not been completely evaporated in the evaporator 7 due to changes in operating conditions and the like is stored in the gas-liquid separator 8, and the gas separated here is passed through the suction pipe 9 to the refrigerant compressor 1. Return and repeat the cycle as above. By the way, the liquid refrigerant may be directly sent to the refrigerant compressor 1 without being gas-liquid separated by the gas-liquid separator 8. At this time, the liquid refrigerant passes through the suction pipe 9 and collects in the lower portion of the refrigerant compressor 1 main body. Lubricating oil for lubricating the parts inside the refrigerant compressor 1 is held therein, but they are mixed by the inflow of the liquid refrigerant.
Then, the viscosity of the lubricating oil decreases, and the sliding portion in the refrigerant compressor 1 cannot be sufficiently lubricated, which may lead to a failure. Since the liquid refrigerant has a very low temperature (for example, -40 ° C to
(0 ° C.), the temperature of the mixed liquid of the liquid refrigerant and the lubricating oil decreases. Therefore, in this embodiment, the temperature of the lubricating oil held in the refrigerant compressor 1 is detected by the oil temperature detector 12, and the opening of the refrigerant flow control valve 13 is determined according to the detected oil temperature. It has become. FIG. 2 is a diagram showing the relationship between the oil temperature detected by the oil temperature detector and the opening of the refrigerant flow control valve.
Here, the opening of the refrigerant flow control valve 13 is 100% when fully opened.
, And fully closed is expressed as 0%. For example, the valve opening is reduced as the oil temperature decreases. That is, by reducing the valve opening degree, the amount of the liquid refrigerant flowing through the refrigerant flow control valve 13 and flowing into the refrigerant compressor 1 is reduced. By the control by the controller 14 as described above, it is possible to prevent the failure of the refrigerant compressor 1 due to the return of the liquid refrigerant and to smoothly operate the refrigeration system.
【0022】実施例2.実施例1では油温度検知器12
の検知した油温度に基づいて、冷媒流量制御弁13の開
度を決定し制御するようにしたが、本実施例では、図1
に示すように、吸入配管9内の圧力を検知する圧力検知
器15を備えている。また、制御器14(第2の制御器
の一例)は、油温度検知器12にて検知される油温度と
圧力検知器15で検知される吸入配管圧力に対応する冷
媒の飽和温度との差である油温度スーパーヒート量を演
算するとともに、油温度スーパーヒート量の値もしくは
油温度の値に基づいて、冷媒流量制御弁13の開度を制
御するようになっている。例えば、制御器14は、油温
度スーパーヒート量の値が10deg未満であれば、油
温度にかかわらず、常に冷媒流量制御弁13の開度を小
さくする。図3は油温度スーパーヒート量と冷媒流量制
御弁の開度の関係を示した図である。ここでは、冷媒流
量制御弁13の開度は全開を100%とし、全閉を0%
として表している。例えば、油温度スーパーヒート量の
値が10deg未満のときは、冷媒流量制御弁13の開
度は50%とし、10deg以上であれば100%(全
開)とする。つまり、油温度スーパーヒート量が十分確
保されていない場合、液冷媒が油中に寝込んでいること
があるためで、実施例1よりも確実に冷媒圧縮機1への
液冷媒戻りを減少させることができ、冷媒圧縮機1の故
障を防ぐことができる。Example 2. In the first embodiment, the oil temperature detector 12
The opening degree of the refrigerant flow control valve 13 is determined and controlled based on the oil temperature detected by
As shown in, a pressure detector 15 for detecting the pressure in the suction pipe 9 is provided. The controller 14 (an example of a second controller) determines the difference between the oil temperature detected by the oil temperature detector 12 and the saturation temperature of the refrigerant corresponding to the suction pipe pressure detected by the pressure detector 15. The oil temperature superheat amount is calculated, and the opening degree of the refrigerant flow control valve 13 is controlled based on the oil temperature superheat amount value or the oil temperature value. For example, if the value of the oil temperature superheat amount is less than 10 deg, the controller 14 always reduces the opening degree of the refrigerant flow control valve 13 regardless of the oil temperature. FIG. 3 is a diagram showing the relationship between the oil temperature superheat amount and the opening degree of the refrigerant flow control valve. Here, the opening degree of the refrigerant flow control valve 13 is 100% when fully opened and 0% when fully closed.
It is expressed as. For example, when the value of the oil temperature superheat amount is less than 10 deg, the opening degree of the refrigerant flow control valve 13 is 50%, and when it is 10 deg or more, 100% (fully open). That is, when the oil temperature superheat amount is not sufficiently secured, the liquid refrigerant may be laid in the oil, and thus the liquid refrigerant return to the refrigerant compressor 1 may be reduced more reliably than in the first embodiment. Therefore, the failure of the refrigerant compressor 1 can be prevented.
【0023】実施例3.図4はこの発明の実施例3を示
す吸入配管の要部断面図である。図4において、16は
気液分離器8と冷媒圧縮機1とを接続する吸入配管9に
設けられ吸入配管9内に流入した液冷媒を検知する液面
検知器である。また、制御器14(第3の制御器の一
例)は、液面検知器16により検知された液冷媒の液位
に基づいて冷媒流量制御弁13の開度を制御するように
なっている。つまり、液冷媒が噴流となって流れ込むよ
うな過大な液戻りの場合は、この液面検知器16で液冷
媒の液位を検知して冷媒流量制御弁13の開度を所定値
まで小さくし、冷媒圧縮機1への液冷媒の流入を防ぐ。
以上のように制御器14が制御することで、冷媒圧縮機
1の故障を防ぎ、冷凍装置を円滑に運転することができ
る。Example 3. Fourth Embodiment FIG. 4 is a sectional view of a main part of a suction pipe showing a third embodiment of the present invention. In FIG. 4, reference numeral 16 is a liquid level detector provided in the suction pipe 9 connecting the gas-liquid separator 8 and the refrigerant compressor 1 and detecting the liquid refrigerant flowing into the suction pipe 9. The controller 14 (an example of a third controller) controls the opening degree of the refrigerant flow control valve 13 based on the liquid level of the liquid refrigerant detected by the liquid level detector 16. That is, in the case of excessive liquid return such that the liquid refrigerant flows as a jet flow, the liquid level detector 16 detects the liquid level of the liquid refrigerant and reduces the opening degree of the refrigerant flow control valve 13 to a predetermined value. , To prevent the liquid refrigerant from flowing into the refrigerant compressor 1.
By the control by the controller 14 as described above, it is possible to prevent the failure of the refrigerant compressor 1 and smoothly operate the refrigeration system.
【0024】実施例4.図5はこの発明の実施例4を示
す吸入配管近傍の要部配管系統図である。図5におい
て、17は気液分離器8と冷媒圧縮機1とを接続する吸
入配管9に設けられた第一電磁弁、19、19、19は
第一電磁弁17と並列に吸入配管9に接続された3本の
並列配管、18、18、18は各並列配管19にそれぞ
れ設けられた第二電磁弁、20、21、22は第二電磁
弁18と直列に各並列配管19にそれぞれ設けられ吸入
配管9よりも小さな管内径の第一、第二、第三毛細管、
14は油温度検知器12(図1参照)により検知された
油温度に基づいて第一電磁弁17と各第二電磁弁18を
適宜開閉制御する制御器(第4の制御器の一例)であ
る。ここで、第一毛細管20、第二毛細管21、第三毛
細管22は、ほぼ同じ管内径のものである。また、各毛
細管の長さは、第一毛細管20が一番長く、次いで第二
毛細管21が長く、第三毛細管22が一番短く設定され
ている。従って、冷媒が流れる際、第一毛細管20を通
過する流量が一番小さく、第二毛細管21、第三毛細管
22と順に流量が大きくなる。次に動作について説明す
る。気液分離器8から吸入配管9を通り、液冷媒が冷媒
圧縮機1に流入した際、油温度検知器12の検知した温
度に基づいて、制御器14は第二電磁弁18を開閉す
る。具体的にいえば、図6の関係図に示すように、例え
ば油温度検知器12の検知する温度が0℃以上であれ
ば、液冷媒戻りがないと判断し、第一電磁弁17を開き
3つの第二電磁弁18全てを閉じるように制御する。ま
た、油温度検知器12の検知した温度が−10℃〜0℃
であれば、第一電磁弁17を閉じ、第三毛細管22側の
第二電磁弁18を開く。その他の第二電磁弁18は閉じ
る。つまり、液冷媒戻りがあると判断し、第三毛細管2
2を通過させることにより、冷媒圧縮機1への液冷媒戻
りを低減させる。そして、油温度検知器12の検知した
温度が−10℃以下の場合、それぞれ第二毛細管21
側、第一毛細管20側の第二電磁弁18を開放する。す
なわち、油温度検知器12の検知する温度が低いほど液
冷媒戻りが大きいと判断し、毛細管の長い方を通過さ
せ、冷媒圧縮機1への液冷媒戻りを低減させる。以上の
ように制御器14が制御することによって、上記実施例
と同様な効果を期待することができる。Example 4. [Embodiment 4] FIG. 5 is a main part piping system diagram in the vicinity of an intake pipe showing Embodiment 4 of the present invention. In FIG. 5, 17 is a first solenoid valve provided in a suction pipe 9 connecting the gas-liquid separator 8 and the refrigerant compressor 1, and 19, 19 and 19 are provided in the suction pipe 9 in parallel with the first solenoid valve 17. Three parallel pipes connected to each other, 18, 18, 18 are second solenoid valves provided in each parallel pipe 19, and 20, 21, 22 are provided in each parallel pipe 19 in series with the second solenoid valve 18, respectively. The first, second, and third capillaries having a pipe inner diameter smaller than that of the suction pipe 9;
Reference numeral 14 denotes a controller (an example of a fourth controller) that controls opening / closing of the first solenoid valve 17 and each second solenoid valve 18 based on the oil temperature detected by the oil temperature detector 12 (see FIG. 1). is there. Here, the first capillary tube 20, the second capillary tube 21, and the third capillary tube 22 have substantially the same tube inner diameter. The length of each capillary is set such that the first capillary 20 has the longest length, the second capillary 21 has the longest, and the third capillary 22 has the shortest. Therefore, when the refrigerant flows, the flow rate passing through the first capillary tube 20 is the smallest, and the flow rate increases in the order of the second capillary tube 21 and the third capillary tube 22. Next, the operation will be described. When the liquid refrigerant flows from the gas-liquid separator 8 through the suction pipe 9 into the refrigerant compressor 1, the controller 14 opens and closes the second electromagnetic valve 18 based on the temperature detected by the oil temperature detector 12. Specifically, as shown in the relationship diagram of FIG. 6, if the temperature detected by the oil temperature detector 12 is 0 ° C. or higher, it is determined that there is no liquid refrigerant return, and the first solenoid valve 17 is opened. Control is performed so that all three second solenoid valves 18 are closed. Further, the temperature detected by the oil temperature detector 12 is -10 ° C to 0 ° C.
Then, the first solenoid valve 17 is closed and the second solenoid valve 18 on the side of the third capillary tube 22 is opened. The other second solenoid valve 18 is closed. In other words, it is judged that there is a liquid refrigerant return, and the third capillary tube 2
By passing 2 through, the liquid refrigerant return to the refrigerant compressor 1 is reduced. When the temperature detected by the oil temperature detector 12 is -10 ° C or lower, the second capillary 21
Side, the second solenoid valve 18 on the first capillary tube 20 side is opened. That is, it is determined that the lower the temperature detected by the oil temperature detector 12, the greater the liquid refrigerant return, and the liquid refrigerant return to the refrigerant compressor 1 is reduced by passing the longer one of the capillaries. By controlling the controller 14 as described above, the same effect as that of the above-described embodiment can be expected.
【0025】実施例5.図7はこの発明の実施例5を示
す冷媒圧縮機近傍の要部構成図である。図7において、
10は冷媒圧縮機1の冷媒吸入側に配備され外部に対し
冷媒出し入れ可能の吸入操作弁、10aは吸入操作弁1
0から分岐して設けられたチャージ口、23Aはチャー
ジ口10aにフレアナット26を用いて接続された第一
取出配管、23は第一取出配管23Aの先端に設けられ
外部の真空引き手段(図示省略)と着脱可能に接続され
るチェックジョイント、24は冷媒圧縮機1とチェック
ジョイント23との間の第一取出配管23Aに設置され
チェックジョイント23へ向かう方向にのみガスの流通
を許容する逆止弁である。すなわち、主として第一取出
配管23A、チェックジョイント23、逆止弁24から
なる構成により、真空引き専用配管が形成されている。
この為、市場にて吸入操作弁10から冷媒を不用意に充
填するのは不可能となる。更に、第一取出配管23Aは
吸入操作弁10のチャージ口10aからフレアナット2
6にて接続されており、冷媒圧縮機1の交換の支障にな
らないようになっている。Example 5. Fifth Embodiment FIG. 7 is a configuration diagram of essential parts near a refrigerant compressor showing a fifth embodiment of the present invention. In FIG.
Reference numeral 10 denotes a suction operation valve which is provided on the refrigerant suction side of the refrigerant compressor 1 and which allows the refrigerant to be taken in and out of the outside. 10 a denotes a suction operation valve 1.
0 is a charge port provided by branching from 0, 23A is a first take-out pipe connected to the charge port 10a using a flare nut 26, and 23 is provided at the tip of the first take-out pipe 23A and an external vacuuming means (shown in the figure). (Omitted) and a check joint that is detachably connected to the check joint, and 24 is a non-return valve that is installed in the first take-out pipe 23A between the refrigerant compressor 1 and the check joint 23 and allows gas flow only in the direction toward the check joint 23. It is a valve. That is, a vacuum-dedicated pipe is formed mainly by the configuration including the first extraction pipe 23A, the check joint 23, and the check valve 24.
Therefore, it is impossible to inadvertently fill the refrigerant from the suction operation valve 10 in the market. Further, the first extraction pipe 23A is connected to the flare nut 2 from the charge port 10a of the suction operation valve 10.
6 is connected so that replacement of the refrigerant compressor 1 is not hindered.
【0026】実施例6.図8はこの発明の実施例6を示
す気液分離器近傍の要部構成図である。図8において、
23Bは気液分離器8本体に接続される第二取出配管で
ある。ここで、外部の冷媒充填手段(図示省略)と着脱
可能に接続されるチェックジョイント23は第二取出配
管23Bの先端に設けられており、冷媒充填専用配管と
なっている。この場合、気液分離器8本体から分岐して
設けられたチャージ口27に、フレアナット26を用い
て第二取出配管23Bが接続されるようになっており、
気液分離器8の交換には支障のないものとなっている。
尚、チェックジョイント23は、図9に示すように、気
液分離器8の冷媒吸込側配管25に直接溶接された第二
取出配管23Cの先端に設けたものであってもよい。こ
れによっても、気液分離器8の交換には直接的に支障の
ないものとなっている。Example 6. [Embodiment 6] FIG. 8 is a configuration diagram of essential parts near a gas-liquid separator showing Embodiment 6 of the present invention. In FIG.
Reference numeral 23B is a second extraction pipe connected to the main body of the gas-liquid separator 8. Here, a check joint 23 detachably connected to an external refrigerant filling means (not shown) is provided at the tip of the second extraction pipe 23B, and is a dedicated pipe for refrigerant filling. In this case, the second outlet pipe 23B is connected to the charge port 27 provided by branching from the main body of the gas-liquid separator 8 using the flare nut 26,
There is no hindrance to the replacement of the gas-liquid separator 8.
As shown in FIG. 9, the check joint 23 may be provided at the tip of the second extraction pipe 23C directly welded to the refrigerant suction side pipe 25 of the gas-liquid separator 8. This also has no direct hindrance to the replacement of the gas-liquid separator 8.
【0027】実施例7.図10はこの発明の実施例7を
示す冷媒配管系統図である。図10において、蒸発器7
を通過した気液二相状態の冷媒は気液分離器8に流入す
るが、ガス冷媒に比べて液冷媒の割合が多い場合、冷媒
圧縮機1へ液戻りを起こして故障の原因となる。そこ
で、この実施例では、液溜4が気液分離器8の下段に密
着して熱伝導可能に配置されている。これらの液溜4と
気液分離器8とは一体構造になっていて、高温側を液溜
4とし、低温側を気液分離器8として構成され、これら
の間で熱交換できるようになっている。従って、この熱
交換により、気液分離器8中の液冷媒を気化させて冷媒
圧縮機1への液戻りを防ぐことができる。また、この熱
交換によって、図11で示すように気液分離器8と外気
が触れる部分8aの周囲、特に吸入配管9に付いた氷も
融解できるので、共振破損を未然に防ぐことができる。
そして、これらは一体構造なので、冷凍装置内で占める
設置面積が従来のものよりも小さくなり、製造コストの
低減につながる。Example 7. FIG. 10 is a refrigerant piping system diagram showing Embodiment 7 of the present invention. In FIG. 10, the evaporator 7
The refrigerant in the gas-liquid two-phase state that has passed through flows into the gas-liquid separator 8, but if the proportion of the liquid refrigerant is higher than that of the gas refrigerant, the refrigerant returns to the refrigerant compressor 1 and causes a failure. Therefore, in this embodiment, the liquid reservoir 4 is arranged in close contact with the lower stage of the gas-liquid separator 8 so that heat can be conducted. The liquid reservoir 4 and the gas-liquid separator 8 are integrally structured, and the high temperature side is configured as the liquid reservoir 4 and the low temperature side is configured as the gas liquid separator 8 so that heat can be exchanged between them. ing. Therefore, this heat exchange makes it possible to vaporize the liquid refrigerant in the gas-liquid separator 8 and prevent the liquid from returning to the refrigerant compressor 1. Further, by this heat exchange, as shown in FIG. 11, the ice around the portion 8a where the gas-liquid separator 8 comes into contact with the outside air, in particular, the suction pipe 9 can also be melted, so that resonance damage can be prevented in advance.
And since these are an integral structure, the installation area which occupies in a refrigerating device becomes smaller than the conventional one, and it leads to reduction of manufacturing cost.
【0028】[0028]
【発明の効果】以上のように、この発明によれば、冷媒
圧縮機に油温度検知器を備え、油温度検知器で検知され
た油温度が低下するにしたがって、吸入配管の冷媒流量
制御弁の開度を小さく制御するようにしたので、液冷媒
の冷媒圧縮機への流入を低減させて、冷媒圧縮機の故障
を防ぐことができ、もって冷凍装置を円滑に運転させる
ことができる。As described above, according to the present invention, the refrigerant compressor is provided with the oil temperature detector, and as the oil temperature detected by the oil temperature detector decreases, the refrigerant flow control valve of the suction pipe. Since the opening degree is controlled to be small, the inflow of the liquid refrigerant into the refrigerant compressor can be reduced, and the refrigerant compressor can be prevented from malfunctioning, so that the refrigeration system can be operated smoothly.
【0029】また、冷媒圧縮機に油温度検知器を備え、
また吸入配管には圧力検知器を備え、油温度と吸入配管
内の圧力に対応する冷媒飽和温度との差である油温度ス
ーパーヒート量を演算し、この油温度スーパーヒート量
に基づいて、油温度スーパーヒート量が低いときは、冷
媒流量制御弁の開度を小さく制御するようにしたので、
より確実に冷媒圧縮機の故障を防ぎ、冷凍装置を円滑に
運転させることができる。Further, the refrigerant compressor is provided with an oil temperature detector,
The suction pipe is equipped with a pressure detector to calculate the oil temperature superheat amount, which is the difference between the oil temperature and the refrigerant saturation temperature corresponding to the pressure in the suction pipe, and the oil temperature superheat amount is calculated based on this oil temperature superheat amount. When the temperature superheat amount is low, the opening of the refrigerant flow control valve is controlled to be small.
The refrigerant compressor can be more reliably prevented from malfunctioning, and the refrigeration system can be operated smoothly.
【0030】更に、吸入配管に第一電磁弁を設け、吸入
配管と並列接続され第二電磁弁および毛細管を有する並
列配管を設け、冷媒圧縮機の油温度検知器で検知された
油温度に基づいて第一電磁弁と第二電磁弁を適宜開閉制
御するようにした、つまり油温度に対応して吸入配管へ
流入する液冷媒量に応じて、液冷媒を吸入配管と並列配
管とに選択的に流入させるようにしたので、液冷媒の冷
媒圧縮機への流入を低減させて、冷媒圧縮機の故障を防
止でき、冷凍装置を円滑に運転させることができる。Further, a first solenoid valve is provided in the suction pipe, and a parallel pipe having a second solenoid valve and a capillary tube connected in parallel with the suction pipe is provided, and based on the oil temperature detected by the oil temperature detector of the refrigerant compressor. The first solenoid valve and the second solenoid valve are controlled to be opened / closed appropriately, that is, the liquid refrigerant is selectively supplied to the suction pipe and the parallel pipe in accordance with the amount of the liquid refrigerant flowing into the suction pipe corresponding to the oil temperature. Since the flow of the liquid refrigerant into the refrigerant compressor is reduced, the refrigerant compressor can be prevented from malfunctioning, and the refrigeration system can be operated smoothly.
【0031】[0031]
【0032】[0032]
【0033】[0033]
【0034】[0034]
【図1】 この発明の実施例1を示す冷媒配管系統図で
ある。FIG. 1 is a refrigerant pipe system diagram showing a first embodiment of the present invention.
【図2】 この発明の実施例1を示す油温度と冷媒流量
制御弁の開度の関係図である。FIG. 2 is a relationship diagram of the oil temperature and the opening degree of the refrigerant flow control valve showing the first embodiment of the present invention.
【図3】 この発明の実施例2を示す油温度スーパーヒ
ート量と冷媒流量制御弁の開度の関係図である。FIG. 3 is a relationship diagram of an oil temperature superheat amount and an opening degree of a refrigerant flow rate control valve, showing a second embodiment of the present invention.
【図4】 この発明の実施例3を示す吸入配管の要部断
面図である。FIG. 4 is a sectional view of a main part of an intake pipe showing a third embodiment of the present invention.
【図5】 この発明の実施例4を示す吸入配管近傍の要
部配管系統図である。FIG. 5 is a main part piping system diagram in the vicinity of an intake pipe showing a fourth embodiment of the present invention.
【図6】 この発明の実施例4を示す油温度と第二電磁
弁の開閉状態の関係図である。FIG. 6 is a relationship diagram of an oil temperature and an open / closed state of a second solenoid valve according to a fourth embodiment of the present invention.
【図7】 この発明の実施例5を示す冷媒圧縮機近傍の
要部構成図である。FIG. 7 is a main part configuration diagram in the vicinity of a refrigerant compressor showing a fifth embodiment of the present invention.
【図8】 この発明の実施例6を示す気液分離器近傍の
要部構成図である。FIG. 8 is a configuration diagram of essential parts near a gas-liquid separator showing a sixth embodiment of the present invention.
【図9】 この発明の実施例6の別例を示す気液分離器
近傍の要部構成図である。FIG. 9 is a main part configuration diagram in the vicinity of a gas-liquid separator showing another example of the sixth embodiment of the present invention.
【図10】 この発明の実施例7を示す冷媒配管系統図
である。FIG. 10 is a refrigerant piping system diagram showing Embodiment 7 of the present invention.
【図11】 この発明の実施例7による一体構造の気液
分離器および液溜を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing a gas-liquid separator and a liquid reservoir having an integral structure according to Embodiment 7 of the present invention.
【図12】 従来の冷凍装置を示す冷媒配管系統図であ
る。FIG. 12 is a refrigerant piping system diagram showing a conventional refrigeration system.
1 冷媒圧縮機、3 凝縮器、4 液溜、6 減圧装
置、7 蒸発器、8 気液分離器、9 吸入配管、10
吸入操作弁、12 油温度検知器、13 冷媒流量制
御弁、14 制御器、15 圧力検知器、16 液面検
知器、17 第一電磁弁、18 第二電磁弁、19 並
列配管、20 第一毛細管、21 第二毛細管、22
第三毛細管、23 チェックジョイント、23A 第一
取出配管、23B 第二取出配管、23C 第二取出配
管、24 逆止弁、25 冷媒吸入側配管。1 Refrigerant compressor, 3 Condenser, 4 Liquid reservoir, 6 Pressure reducing device, 7 Evaporator, 8 Gas-liquid separator, 9 Suction pipe, 10
Intake operation valve, 12 Oil temperature detector, 13 Refrigerant flow control valve, 14 Controller, 15 Pressure detector, 16 Liquid level detector, 17 First solenoid valve, 18 Second solenoid valve, 19 Parallel piping, 20 First Capillaries, 21 second capillaries, 22
Third capillary, 23 check joint, 23A first take-out pipe, 23B second take-out pipe, 23C second take-out pipe, 24 check valve, 25 refrigerant suction side pipe.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 覚 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (56)参考文献 特開 平5−87428(JP,A) 特開 平4−217754(JP,A) 特開 平3−207971(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 304 F25B 43/00 F25B 45/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Ishii 6-5-66 Tehira, Wakayama City Mitsubishi Electric Corporation Wakayama Works (56) Reference JP-A-5-87428 (JP, A) JP-A 4-217754 (JP, A) JP-A-3-207971 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 1/00 304 F25B 43/00 F25B 45/00
Claims (3)
器、及び気液分離器等を順次配管接続した冷媒回路を有
する冷凍装置において、上記気液分離器と上記冷媒圧縮
機とを接続する吸入配管に設けられた冷媒流量制御弁
と、上記冷媒圧縮機に設けられ上記冷媒圧縮機内の油温
度を検知する油温度検知器と、上記油温度検知器により
検知された油温度に基づいて上記冷媒流量制御弁の開度
を制御する第1の制御器とを備えたことを特徴とする冷
凍装置。1. A refrigeration system having a refrigerant circuit in which a refrigerant compressor, a condenser, a decompression device, an evaporator, a gas-liquid separator and the like are sequentially connected by piping, and the gas-liquid separator and the refrigerant compressor are connected to each other. A refrigerant flow rate control valve provided in the suction pipe, an oil temperature detector provided in the refrigerant compressor for detecting the oil temperature in the refrigerant compressor, and based on the oil temperature detected by the oil temperature detector. A refrigeration apparatus comprising: a first controller that controls an opening of the refrigerant flow rate control valve.
器、及び気液分離器等を順次配管接続した冷媒回路を有
する冷凍装置において、上記気液分離器と上記冷媒圧縮
機とを接続する吸入配管に設けられた冷媒流量制御弁
と、上記冷媒圧縮機に設けられ上記冷媒圧縮機内の油温
度を検知する油温度検知器と、上記吸入配管に設けられ
上記吸入配管内の圧力を検知する圧力検知器と、上記圧
力検知器により検知された圧力に対応する冷媒の飽和温
度と上記油温度検知器により検知された油温度との差で
ある油温度スーパーヒート量を演算するとともに、上記
油温度スーパーヒート量に基づいて上記冷媒流量制御弁
の開度を制御する第2の制御器とを備えたことを特徴と
する冷凍装置。2. A refrigeration system having a refrigerant circuit in which a refrigerant compressor, a condenser, a pressure reducing device, an evaporator, a gas-liquid separator, etc. are sequentially connected by piping, and the gas-liquid separator is connected to the refrigerant compressor. Refrigerant flow control valve provided in the suction pipe, an oil temperature detector provided in the refrigerant compressor for detecting the oil temperature in the refrigerant compressor, and a pressure in the suction pipe provided in the suction pipe A pressure detector, and calculating the oil temperature superheat amount which is the difference between the saturation temperature of the refrigerant corresponding to the pressure detected by the pressure detector and the oil temperature detected by the oil temperature detector, and A second controller that controls the opening degree of the refrigerant flow control valve based on the oil temperature superheat amount.
器、及び気液分離器等を順次配管接続した冷媒回路を有
する冷凍装置において、上記気液分離器と上記冷媒圧縮
機とを接続する吸入配管に設けられた第一電磁弁と、上
記第一電磁弁と並列に上記吸入配管に接続された少なく
とも一本の並列配管と、上記並列配管に設けられた第二
電磁弁と、上記第二電磁弁と直列に上記並列配管に設け
られ上記吸入配管よりも小管径の毛細管と、上記冷媒圧
縮機に設けられ上記冷媒圧縮機内の油温度を検知する油
温度検知器と、上記油温度検知器により検知された油温
度に基づいて上記第一電磁弁と上記第二電磁弁を適宜開
閉制御する第4の制御器とを備えたことを特徴とする冷
凍装置。3. A refrigeration apparatus having a refrigerant circuit in which a refrigerant compressor, a condenser, a decompression device, an evaporator, a gas-liquid separator and the like are sequentially connected by piping, and the gas-liquid separator and the refrigerant compressor are connected to each other. A first solenoid valve provided in the suction pipe, at least one parallel pipe connected to the suction pipe in parallel with the first solenoid valve, a second solenoid valve provided in the parallel pipe, A capillary tube that is provided in the parallel pipe in series with the second solenoid valve and has a smaller diameter than the suction pipe, an oil temperature detector that is provided in the refrigerant compressor and detects the oil temperature in the refrigerant compressor, and the oil. A refrigeration system comprising: a first controller that appropriately controls opening and closing of the first electromagnetic valve and the second electromagnetic valve based on an oil temperature detected by a temperature detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15040295A JP3448794B2 (en) | 1995-06-16 | 1995-06-16 | Refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15040295A JP3448794B2 (en) | 1995-06-16 | 1995-06-16 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH094932A JPH094932A (en) | 1997-01-10 |
JP3448794B2 true JP3448794B2 (en) | 2003-09-22 |
Family
ID=15496195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15040295A Expired - Fee Related JP3448794B2 (en) | 1995-06-16 | 1995-06-16 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3448794B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3934601B2 (en) * | 2003-12-19 | 2007-06-20 | 三星電子株式会社 | Air conditioner |
JP6536061B2 (en) * | 2015-02-09 | 2019-07-03 | 富士電機株式会社 | Cooling system |
CN105115062B (en) * | 2015-08-21 | 2018-03-30 | Tcl空调器(中山)有限公司 | Air-conditioner outdoor unit and air conditioner |
CN106016801B (en) * | 2016-06-22 | 2018-11-06 | 海信容声(广东)冷柜有限公司 | A kind of anti-low temperature frozen oil auto-cascading refrigeration system and its control method |
CN106288570A (en) * | 2016-08-19 | 2017-01-04 | 芜湖美智空调设备有限公司 | The method for heating and controlling of compressor oil sump and compressor, air conditioning system |
CN108592466A (en) * | 2018-05-02 | 2018-09-28 | 顾晓航 | A kind of efficiently point oily reclaiming unit with forvacuum |
CN110762914A (en) * | 2019-10-25 | 2020-02-07 | 青岛海尔空调电子有限公司 | Method for controlling heating belt of compressor |
US11841179B2 (en) * | 2020-01-14 | 2023-12-12 | Goodman Global Group, Inc. | Heating, ventilation, and air-conditioning systems and methods |
WO2022176652A1 (en) * | 2021-02-22 | 2022-08-25 | 住友重機械工業株式会社 | Compressor for ultra-low-temperature freezer, and adsorber unit |
CN113654275B (en) * | 2021-08-26 | 2023-08-22 | 浙江吉利控股集团有限公司 | Device and method for preventing oil shortage of compressor and integrated gas-liquid separator |
-
1995
- 1995-06-16 JP JP15040295A patent/JP3448794B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH094932A (en) | 1997-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5953934A (en) | Refrigerant circulating apparatus and method of assembling a refrigerant circuit | |
JP3743861B2 (en) | Refrigeration air conditioner | |
JP2001296066A (en) | Refrigerating cycle | |
JP2013257121A (en) | Refrigerating device | |
JPH09318169A (en) | Refrigerating apparatus | |
JP3448794B2 (en) | Refrigeration equipment | |
US5381665A (en) | Refrigerating system with compressor cooled by liquid refrigerant | |
JP5783783B2 (en) | Heat source side unit and refrigeration cycle apparatus | |
JP2007322048A (en) | Refrigerating device | |
JP4082435B2 (en) | Refrigeration equipment | |
US7451615B2 (en) | Refrigeration device | |
JP2005214575A (en) | Refrigerator | |
JP2019035579A (en) | Freezing device | |
EP1496321B1 (en) | Refrigerating equipment | |
JP4269459B2 (en) | Freezer refrigerator | |
JP4274250B2 (en) | Refrigeration equipment | |
JP3788309B2 (en) | Refrigeration equipment | |
JP2007333376A (en) | Refrigeration device | |
JPH09318205A (en) | Refrigerating device | |
WO2016135904A1 (en) | Refrigeration apparatus | |
JP7179445B2 (en) | refrigeration cycle equipment | |
JP3182188B2 (en) | Refrigeration equipment | |
CN115143555B (en) | Air conditioning system | |
JP2006177598A (en) | Refrigerating cycle device | |
JP2757689B2 (en) | Refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |