JP3442803B2 - Method for producing high-purity β-type silicon carbide powder - Google Patents
Method for producing high-purity β-type silicon carbide powderInfo
- Publication number
- JP3442803B2 JP3442803B2 JP33298392A JP33298392A JP3442803B2 JP 3442803 B2 JP3442803 B2 JP 3442803B2 JP 33298392 A JP33298392 A JP 33298392A JP 33298392 A JP33298392 A JP 33298392A JP 3442803 B2 JP3442803 B2 JP 3442803B2
- Authority
- JP
- Japan
- Prior art keywords
- purity
- silicon carbide
- type silicon
- raw material
- carbide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は若干の不純物元素を含む
原料から、主に焼成助剤を用いず、高純度焼結体をつく
るための、高純度のβ型炭化ケイ素粉末の製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity β-type silicon carbide powder for producing a high-purity sintered body from a raw material containing a small amount of impurity elements, mainly without using a sintering aid. .
【0002】[0002]
【従来の技術】従来、低品質の炭化ケイ素の製造方法と
しては、アチソン法が知られており、やや純度の高い炭
化ケイ素を得る方法としては、シリカ還元法が用いられ
る。これはシリカ粉末とカーボンを混合し、不活性ガス
中で1700℃から2200℃で焼成して炭化ケイ素を
得る方法で、比較的安価に中品質の炭化ケイ素を得るこ
とができる。2. Description of the Related Art The Acheson method has hitherto been known as a method for producing low-quality silicon carbide, and the silica reduction method is used as a method for obtaining silicon carbide having a slightly high purity. This is a method in which silica powder and carbon are mixed and fired at 1700 ° C. to 2200 ° C. in an inert gas to obtain silicon carbide, and it is possible to obtain medium-quality silicon carbide at a relatively low cost.
【0003】さらに、高品質のものを得る方法として、
近年、気相法で炭化ケイ素を得る方法も提案されてい
る。これは、原料にシラン系ガスと炭素源としての炭化
水素ガス、例としてはメタン、エタン、プロパン、エチ
レン等を用いて、これらの混合ガスを熱分解又はプラズ
マ中で分解することにより炭化ケイ素を得るものであ
る。また、液相法として、アルキルシリケート、ケイ酸
水溶液等の液状のケイ素化合物と残炭率の高い液状の有
機化合物や樹脂水溶液を混合、乾燥後、不活性ガス中で
炭化及び焼成を行いβ型炭化ケイ素粉末を得る方法が知
られている(特公平1−42886)。Further, as a method for obtaining a high quality product,
In recent years, a method of obtaining silicon carbide by a vapor phase method has also been proposed. This is to use a silane-based gas as a raw material and a hydrocarbon gas as a carbon source, for example, methane, ethane, propane, ethylene, etc., to decompose silicon carbide by thermally decomposing or mixing these mixed gases in plasma. I will get it. Further, as a liquid phase method, a liquid silicon compound such as an alkyl silicate or a silicic acid aqueous solution is mixed with a liquid organic compound or a resin aqueous solution having a high residual carbon ratio, dried, and then carbonized and baked in an inert gas to form a β type A method for obtaining a silicon carbide powder is known (Japanese Patent Publication No. 1-242886).
【0004】さらに、高純度炭化ケイ素を得る方法とし
て、特開平2−204318号には、鉄(Fe)に代表
される不純物を数百ppm含むα型とβ型炭化ケイ素を
予め1μm以下に粉砕後、高温で熱処理して再結晶させ
100μm以下の平均粒径となし、フッ酸−硝酸混合液
で洗浄する方法が開示されており、特開昭61−611
0号にはエチルシリケートの如き液状ケイ素化合物と液
状フェノール樹脂の如き官能基を有する有機化合物にケ
イ素質固体及びカーボンブラックの如き炭素質固体を加
えて前駆体固形物を生成し、これを炭化、焼成すること
によりβ型炭化ケイ素粉末を得る方法が記載されてい
る。Further, as a method for obtaining high-purity silicon carbide, Japanese Patent Laid-Open No. 2-204318 discloses that α-type and β-type silicon carbide containing several hundred ppm of impurities represented by iron (Fe) is previously pulverized to 1 μm or less. After that, a method of heat-treating at a high temperature to recrystallize to obtain an average particle size of 100 μm or less and washing with a hydrofluoric acid-nitric acid mixed solution is disclosed. JP-A-61-611
In No. 0, a silicon solid and a carbonaceous solid such as carbon black are added to a liquid silicon compound such as ethyl silicate and an organic compound having a functional group such as a liquid phenol resin to produce a precursor solid, which is carbonized, A method for obtaining β-type silicon carbide powder by firing is described.
【0005】[0005]
【発明が解決しようとする課題】このように、高純度炭
化ケイ素を得るために多数の技術が提案されているが、
シリカ還元法においては、原料としての高純度カーボン
が得難く、また、混合工程で不純物が混入する問題があ
り、気相法は高純度品が得られるものの、生産性が悪
く、高価なであるため工業的に用いることができず、液
相法も、目的とする高純度品を得るためには、原料とし
て不純物がppbオーダーの超高純度品を必要とする問
題があった。また、特開平2−204318号に記載の
方法は、非酸化性雰囲気中で1時間にわたる1500〜
2200℃の高温処理が必要であるためコストが高くな
り、しかも鉄に代表される不純物を所望のオーダーまで
除去できず、特開昭61−6110号に記載の方法で
は、原料である炭素質固体中の金属不純物の量を所望量
以下に抑えることができないため、目的とする高純度品
が得難いという問題があった。As described above, many techniques have been proposed to obtain high-purity silicon carbide.
In the silica reduction method, it is difficult to obtain high-purity carbon as a raw material, and there is a problem that impurities are mixed in in the mixing step. Although the gas-phase method can obtain a high-purity product, the productivity is poor and the cost is high. Therefore, it cannot be used industrially, and the liquid phase method also has a problem that an ultrahigh-purity product with impurities of ppb order is required as a raw material in order to obtain a desired high-purity product. Further, the method described in JP-A-2-204318 is 1500 to 500 for 1 hour in a non-oxidizing atmosphere.
Since the high temperature treatment at 2200 ° C. is required, the cost becomes high, and the impurities represented by iron cannot be removed to a desired order. In the method described in JP-A-61-1610, the carbonaceous solid as a raw material is used. Since the amount of metal impurities in it cannot be suppressed to a desired amount or less, there is a problem that it is difficult to obtain a desired high-purity product.
【0006】このように、高純度炭化ケイ素原料を得難
いため、超高純度の炭化ケイ素焼結体を必要とする半導
体工業分野等においては、純度が不充分な焼結製品にC
VD法で超高純度の炭化ケイ素被膜を形成させ、不純物
の飛散を防ぐ方法が行われている。As described above, since it is difficult to obtain a high-purity silicon carbide raw material, in the field of the semiconductor industry, etc., which requires an ultra-high-purity silicon carbide sintered body, a sintered product having insufficient purity can be used as a C product.
A method of forming an ultra-high-purity silicon carbide coating film by the VD method and preventing scattering of impurities is used.
【0007】すなわち、本発明の目的は、超高純度の炭
化ケイ素焼結体を必要とする半導体工業分野等において
使用される各種炭化ケイ素製品のための超高純度原料粉
体すなわち、各不純物濃度を好ましくは1ppm以下に
おさえた、超高純度β型炭化ケイ素粉末の工業的にも使
用可能な製造方法を提供するものである。That is, the object of the present invention is to provide ultra-high-purity raw material powders for various silicon carbide products used in the field of semiconductor industry, etc. which require ultra-high-purity silicon carbide sintered bodies, that is, respective impurity concentrations. The present invention provides a method for industrially using ultrahigh-purity β-type silicon carbide powder, which is preferably 1 ppm or less.
【0008】[0008]
【課題を解決するための手段】本発明の請求項1に記載
の高純度β型炭化ケイ素粉末の製造方法は、液状のケイ
素化合物と、官能基を有し加熱により炭素を生成する液
状の有機化合物を原料とし、これらに均一に溶化する高
純度の重合又は架橋触媒を加え、重合又は架橋反応さ
せ、得られた均一な前駆体物質を非酸化性雰囲気中で、
加熱炭化して得た中間体生成物を、非酸化性雰囲気中で
さらに高温で焼成することからなるβ型炭化ケイ素粉末
の製造方法において、各不純物濃度が50ppm以下の
該原料及び/又は触媒に、金属成分を実質的に含有しな
いハロゲン化合物である高純度のフッ酸を添加すること
を特徴とする。The method for producing a high-purity β-type silicon carbide powder according to claim 1 of the present invention comprises a liquid silicon compound and a liquid organic compound which has a functional group and produces carbon by heating. Using a compound as a raw material, a high-purity polymerization or cross-linking catalyst that uniformly solubilizes them, and polymerize or cross-link them to obtain a uniform precursor substance in a non-oxidizing atmosphere,
In a method for producing a β-type silicon carbide powder, which comprises firing an intermediate product obtained by heating and carbonizing at a higher temperature in a non-oxidizing atmosphere, each impurity concentration is 50 ppm or less.
It is characterized in that high-purity hydrofluoric acid , which is a halogen compound containing substantially no metal component , is added to the raw material and / or the catalyst .
【0009】[0009]
【0010】本発明の請求項2に記載の高純度β型炭化
ケイ素粉末の製造方法は、請求項1に記載の方法であっ
て、前記原料に高純度炭素質固体及びケイ素質固体を添
加することを特徴とする。The method for producing high-purity β-type silicon carbide powder according to claim 2 of the present invention is the method according to claim 1, wherein a high-purity carbonaceous solid and a siliconaceous solid are added to the raw material. It is characterized by
【0011】すなわち、本発明者らは高純度β型炭化ケ
イ素の製造方法において、不純物の反応機構に着目し
て、鋭意検討を重ねた結果、原料及び触媒を液状で混合
する時点で、簡便に、金属成分を含まないハロゲン化合
物を均質に含有させる等によって、不純物を塩化物にし
て高温焼成時に蒸発除去できることを見出すことによっ
て、目的を達成し、本発明を完成するに至った。That is, the inventors of the present invention have made intensive studies in the method for producing high-purity β-type silicon carbide by paying attention to the reaction mechanism of impurities, and as a result, they can be simply and simply added at the time of mixing the raw materials and the catalyst in a liquid state. The inventors have achieved the object and completed the present invention by finding out that impurities can be converted to chlorides by evaporation to remove impurities during high temperature firing by homogeneously containing a halogen compound containing no metal component.
【0012】本発明における高純度β型炭化ケイ素の高
純度とは、好ましくは、各不純物濃度が1ppm以下であ
ることを指し、さらに好ましくは0.5ppm以下であ
る。The high purity of the high-purity β-type silicon carbide in the present invention preferably means that each impurity concentration is 1 ppm or less, more preferably 0.5 ppm or less.
【0013】ハロゲン化合物としては、ハロゲン化水
素、加水分解によりハロゲン化水素を発生させる非金属
性の化合物、又はハロゲン化アンモニウムが好ましく、
具体例としては、塩化水素、塩化アンモニウム、塩化ケ
イ素(SiCl4) 、塩化チオニル、塩化燐、フッ化水素、フ
ッ化アンモニウム、フッ化ケイ素、臭化水素(HBr) 、臭
化アンモニウム、塩化ヨウ素、臭化ヨウ素等が挙げら
れ、塩化水素、塩化アンモニウム、塩化ケイ素が好まし
い。これらハロゲン化合物は高純度であり、金属成分を
含まないものが好ましい。The halogen compound is preferably hydrogen halide, a non-metallic compound which generates hydrogen halide by hydrolysis, or ammonium halide.
Specific examples include hydrogen chloride, ammonium chloride, silicon chloride (SiCl 4 ), thionyl chloride, phosphorus chloride, hydrogen fluoride, ammonium fluoride, silicon fluoride, hydrogen bromide (HBr), ammonium bromide, iodine chloride, Examples thereof include iodine bromide, and hydrogen chloride, ammonium chloride and silicon chloride are preferable. It is preferable that these halogen compounds have high purity and do not contain a metal component.
【0014】ハロゲン化合物の添加方法としては、触媒
水溶液に予め添加してもよいし、混合工程で添加しても
よく、その後の工程、すなわち、炭化、焼成工程の変更
は必要ない。As a method of adding the halogen compound, it may be added in advance to the catalyst aqueous solution or may be added in the mixing step, and it is not necessary to change the subsequent steps, that is, the carbonization and firing steps.
【0015】ハロゲン化合物の添加量としては、原料混
合物1Kgに対してハロゲンイオン濃度として0.00
1モル〜0.3モルが好ましく、0.01モル〜0.1
モルが、更に好ましい。該ハロゲン化合物の添加量、す
なわち、ハロゲンイオン濃度は原料中の不純物が少ない
ほど低くすることができる。The amount of the halogen compound added is 0.001 as the halogen ion concentration with respect to 1 kg of the raw material mixture.
1 mol to 0.3 mol is preferable, 0.01 mol to 0.1
Molar is more preferred. The amount of the halogen compound added, that is, the halogen ion concentration, can be lowered as the amount of impurities in the raw material decreases.
【0016】以下に本発明を詳細に説明する。本発明に
用いられる液状のケイ素化合物には、メチルシリケー
ト、エチルシリケート等のアルキルシリケート、ケイ酸
アルカリを脱アルカリして得られたケイ酸又はケイ酸ポ
リマー水溶液、水酸基を持つ有機化合物とケイ酸のエス
テル溶液等が挙げられる。中でもメチルシリケートモノ
マー、エチルシリケートモノマー及びオリゴマーが好適
に用いられる。The present invention will be described in detail below. The liquid silicon compound used in the present invention includes methyl silicate, alkyl silicates such as ethyl silicate, silicic acid or silicic acid polymer aqueous solution obtained by dealkalizing alkali silicate, and organic compounds having a hydroxyl group and silicic acid. Examples thereof include ester solutions. Among them, methyl silicate monomer, ethyl silicate monomer and oligomer are preferably used.
【0017】本発明において、官能基を有し加熱により
炭素を生成する液状の有機化合物としては、特に残炭率
が高く、触媒又は加熱により、重合又は架橋する有機化
合物、例えばフェノール樹脂、ニトリル樹脂、フラン樹
脂、ポリイミド樹脂、スチレン樹脂、キシレン樹脂、ポ
リフェニレンオキシド、ポリフェニレンスルフィド、ポ
リアニリン等の樹脂(高分子)のモノマーやプレポリマ
ーが挙げられる。中でもレゾール型又はノボラック型の
液状フェノール樹脂が好適である。In the present invention, the liquid organic compound having a functional group to generate carbon by heating has a particularly high residual carbon rate and is an organic compound which is polymerized or crosslinked by a catalyst or heating, such as a phenol resin or a nitrile resin. Examples include resins (polymers) such as furan resin, polyimide resin, styrene resin, xylene resin, polyphenylene oxide, polyphenylene sulfide, and polyaniline, and prepolymers. Above all, a liquid phenol resin of resol type or novolac type is preferable.
【0018】本発明で、原料に均一に溶化する高純度の
重合又は架橋触媒としては、原料としてフェノール樹脂
又はフラン樹脂のモノマー、オリゴマーを用いる場合、
トルエンスルフォン酸、硝酸、硫酸、シュウ酸等の酸類
が好ましく、特に界面活性作用を持つトルエンスルフォ
ン酸が好適である。ニトリル樹脂のモノマー又はオリゴ
マーを用いる場合は、過硫酸アンモニウム、過酸化水
素、各種ヒドロペルオキシド類、過酸化アルキル類、過
酸化エステル類、アゾ化合物類等の通常用いられるラジ
カル重合開始剤が好適である。また、他の有機化合物を
用いる場合も通常用いられる重合又は架橋触媒を用いる
ことができる。In the present invention, as the high-purity polymerization or crosslinking catalyst which is uniformly dissolved in the raw material, when a phenol resin or furan resin monomer or oligomer is used as the raw material,
Acids such as toluene sulfonic acid, nitric acid, sulfuric acid, and oxalic acid are preferable, and toluene sulfonic acid having a surface-active effect is particularly preferable. When a monomer or oligomer of a nitrile resin is used, a commonly used radical polymerization initiator such as ammonium persulfate, hydrogen peroxide, various hydroperoxides, alkyl peroxides, peroxide esters, and azo compounds is suitable. Further, when other organic compound is used, a polymerization or crosslinking catalyst which is usually used can be used.
【0019】本発明において、原料を重合又は架橋反応
させて得られた前駆体物質は非酸化性雰囲気中で加熱炭
化されるが、その場合の炭化温度は700〜1100℃
が用いられ、好ましくは800〜1000℃が採用され
る。また該前駆体物質を炭化して得られた中間生成物は
非酸化性雰囲気中でさらに高温で焼成されるが、その場
合の温度は1600〜2200℃であり、1700〜2
000℃が好ましく用いられる。In the present invention, the precursor substance obtained by polymerizing or cross-linking the raw materials is heated and carbonized in a non-oxidizing atmosphere, and the carbonization temperature in that case is 700 to 1100 ° C.
Is used, and preferably 800 to 1000 ° C. is adopted. The intermediate product obtained by carbonizing the precursor substance is fired at a higher temperature in a non-oxidizing atmosphere. In that case, the temperature is 1600 to 2200 ° C., and 1700 to 2
000 ° C. is preferably used.
【0020】本発明における重要な要素である不純物除
去に関する事項を次に述べる。前記β型炭化ケイ素は不
純物元素を実質的に含まないものであるが、含まれてい
ても各不純物元素の含有量は1ppm以下であることを要
する。本発明で用いられる原料は、各不純物元素の含有
量は50ppm以下で、好ましくは10ppm以下が好適であ
る。Matters concerning the removal of impurities, which is an important element in the present invention, will be described below. The β-type silicon carbide does not substantially contain an impurity element, but even if it is contained, the content of each impurity element needs to be 1 ppm or less. The raw material used in the present invention has a content of each impurity element of 50 ppm or less, preferably 10 ppm or less.
【0021】この原料を混合する過程において、前記ハ
ロゲン化合物を添加して、よく混合し、触媒により重合
または硬化させる。この時、ハロゲンイオンが不純物と
充分反応するよう、触媒の添加時期を遅らせることもで
きる。In the process of mixing the raw materials, the halogen compound is added, mixed well, and polymerized or cured by a catalyst. At this time, the catalyst addition timing can be delayed so that the halogen ions sufficiently react with the impurities.
【0022】この時、例えば、ハロゲン化合物として塩
化ケイ素を用いたとき、加水分解により塩化水素とケイ
酸水溶液となり、ケイ酸は炭化ケイ素の原料の一部とな
り、反応効率上好ましい。また、炭素を生成する有機化
合物としてレゾール型の液状フェノール樹脂を用いる場
合には、塩化水素(塩酸)が架橋触媒にもなるため、触
媒の添加量を減らすことができるという利点がある。こ
のように、使用原料によって、添加するハロゲン化合物
を選択することにより、不純物の除去のみならず、他の
効果も得ることができる。At this time, for example, when silicon chloride is used as the halogen compound, hydrogen chloride and an aqueous solution of silicic acid are hydrolyzed, and silicic acid becomes a part of the raw material of silicon carbide, which is preferable in terms of reaction efficiency. Further, when a resol type liquid phenol resin is used as an organic compound that generates carbon, hydrogen chloride (hydrochloric acid) also serves as a crosslinking catalyst, which has an advantage that the amount of the catalyst added can be reduced. As described above, by selecting the halogen compound to be added depending on the raw material used, not only the removal of impurities but also other effects can be obtained.
【0023】ここで不純物元素とは周期律表のIa〜 V
IIa族元素、VIII族元素、Ib〜 IIIb族元素、IVb族
の原子番号32以上の元素及びVb族の原子番号33以
上の元素をいう。Here, the impurity elements are Ia to V in the periodic table.
A group IIa element, a group VIII element, a group Ib to group IIIb element, a group IVb element having an atomic number of 32 or more and a group Vb element having an atomic number of 33 or more.
【0024】本発明において、前駆体物質を炭化して得
られる中間体生成物中の炭素/ケイ素のモル比は、2.
0〜4.0であり、好ましくは2.3〜3.4である。In the present invention, the carbon / silicon molar ratio in the intermediate product obtained by carbonizing the precursor material is 2.
It is 0 to 4.0, and preferably 2.3 to 3.4.
【0025】この炭化物を1600〜2200℃で非酸
化性雰囲気中で焼成して得られた炭化ケイ素中に残存炭
素が含まれていても、含まれていなくてもよく、炭化ケ
イ素の最終的な使用目的に応じて任意に選択することが
できる。また、得られた炭化ケイ素粉体の粒径は0.1
μm〜10μmが適当である。Silicon carbide obtained by firing this carbide at 1600 to 2200 ° C. in a non-oxidizing atmosphere may or may not contain residual carbon. It can be arbitrarily selected according to the purpose of use. The particle size of the obtained silicon carbide powder is 0.1.
μm to 10 μm is suitable.
【0026】上記のように、本発明の高純度β型炭化ケ
イ素を得る方法は、液状の原料を混合する過程でハロゲ
ン化合物の溶液を添加する簡便な方法で、ある程度の不
純物を含む原料から、高純度の炭化ケイ素粉末を効率よ
く得る手段を提供するものである。As described above, the method of obtaining high-purity β-type silicon carbide of the present invention is a simple method of adding a solution of a halogen compound in the process of mixing liquid raw materials, and from a raw material containing impurities to some extent, It is intended to provide means for efficiently obtaining high-purity silicon carbide powder.
【0027】さらに、本発明の製造方法においては、コ
ストダウンの目的で、原料に高純度炭素質固体及びケイ
素質固体を添加することができる。炭素質固体として
は、各不純物含有量が10ppm以下のカーボンブラッ
ク、黒鉛等が好ましく、ケイ素質固体としては、各不純
物含有量が10ppm以下の無定形シリカ、石英粉、一酸
化ケイ素(SiO )粉末等が好ましいが、特に、これらに
限定されるものではない。Further, in the production method of the present invention, a high-purity carbonaceous solid and a siliconaceous solid can be added to the raw materials for the purpose of cost reduction. The carbonaceous solid is preferably carbon black or graphite having an impurity content of 10 ppm or less, and the siliconaceous solid is amorphous silica, quartz powder or silicon monoxide (SiO 2) powder having an impurity content of 10 ppm or less. However, the present invention is not limited to these.
【0028】[0028]
【作用】本発明の不純物除去の反応機構は明らかではな
いが、触媒又は原料と触媒の混合物にハロゲン化合物を
添加することにより、原料、触媒中に含まれる、金属成
分を含有する不純物が該ハロゲン化合物と反応して、酸
化物等に比較して沸点の低い金属ハロゲン化物を生成
し、これが次の非酸化性雰囲気中、800℃〜1200
℃の条件での炭化工程及び非酸化性雰囲気中、1600
℃〜2200℃の条件での焼成工程において気化し、消
失するためと推定される。The reaction mechanism for removing impurities of the present invention is not clear. However, by adding a halogen compound to a catalyst or a mixture of a raw material and a catalyst, impurities containing a metal component contained in the raw material and the catalyst are contained in the halogen. It reacts with a compound to form a metal halide having a lower boiling point than that of an oxide or the like, which is 800 ° C. to 1200 ° C. in the next non-oxidizing atmosphere.
1600 in carbonization process and non-oxidizing atmosphere at ℃ condition
It is presumed that this is due to vaporization and disappearance in the firing process under the condition of ℃ to 2200 ℃.
【0029】[0029]
【実施例】以下に実施例を挙げて、本発明をより具体的
に説明するが、本実施の主旨を越えないかぎり本実施例
に限定されるものではない。EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.
【0030】〔比較例1〕
液状ケイ素化合物として二酸化ケイ素含有量40重量%
の市販のエチルシリケート(エチルシリケート 40:
コルコー社製)620gと含水率20%の特に高純度処
理していない液状レゾール型フェノール樹脂(PR50
75:住友デュレス社製)290gの混合液に、触媒と
してp−トルエンスルフォン酸の50%水溶液50gと
ハロゲン化合物として高純度塩酸の2%水溶液63gを
加え硬化させて均質な樹脂状固体を得た。これを窒素雰
囲気中で900℃で1時間炭化した。得られた炭化物の
元素分析から炭素とケイ素のモル比は2.32であっ
た。この炭化物をアルゴン雰囲気中で昇温速度40℃/
分で1900℃まで昇温、加熱し、45分間保持して炭
化ケイ素化反応を行った。得られた粉末の色は緑白色で
あった。 Comparative Example 1 Silicon dioxide content as liquid silicon compound 40% by weight
Commercially available ethyl silicate (ethyl silicate 40:
Liquid resol-type phenol resin (PR50) not treated with high purity having 620 g of water content of 20% and made by Koruko.
(75: manufactured by Sumitomo Durres Co., Ltd.) To a mixed solution of 290 g, 50 g of a 50% aqueous solution of p-toluenesulfonic acid as a catalyst and 63 g of a 2% aqueous solution of high-purity hydrochloric acid as a halogen compound were added and cured to obtain a homogeneous resinous solid. . This was carbonized at 900 ° C. for 1 hour in a nitrogen atmosphere. From the elemental analysis of the obtained carbide, the molar ratio of carbon and silicon was 2.32. This carbide is heated in an argon atmosphere at a heating rate of 40 ° C /
The temperature was raised to 1900 ° C. in minutes, heated, and held for 45 minutes to carry out the silicon carbide reaction. The color of the obtained powder was green-white.
【0031】本粉末のX線回折による炭化ケイ素の結晶
形はβ型(立方晶)であった。本粉末の不純物分析(I
CP−質量分析及びフレームス原子吸光法)の結果を表
1に示す。The crystal form of silicon carbide of this powder by X-ray diffraction was β type (cubic crystal). Impurity analysis of this powder (I
The results of CP-mass spectrometry and flames atomic absorption method are shown in Table 1.
【0032】〔実施例1〕
ハロゲン化合物として、塩酸の代わりに高純度のフッ酸
2%水溶液を50g加えた以外は比較例1と同様の方法
でβ型炭化ケイ素粉末を得た。本粉末の不純物分析の結
果を表1に示す。 Example 1 A β-type silicon carbide powder was obtained in the same manner as in Comparative Example 1 except that 50 g of a highly pure 2% aqueous solution of hydrofluoric acid was added instead of hydrochloric acid as a halogen compound. The results of the impurity analysis of this powder are shown in Table 1.
【0033】〔比較例2〕
エチルシリケート690g、フェノール樹脂326gを
用い、ハロゲン化合物として、塩酸の代わりに四塩化ケ
イ素を3.4g加えた以外は、実施例1と同様に行っ
た。得られた炭化物の元素分析を行った結果、炭素とケ
イ素のモル比は2.58であった。本炭化物を比較例1
と同様に炭化ケイ素化し、得られた粉末の炭素分析及び
X線回折を行った結果は、各々5.2重量%及びβ型炭
化ケイ素であった。本粉末の不純物分析の結果を表1に
示す。 Comparative Example 2 The procedure of Example 1 was repeated except that 690 g of ethyl silicate and 326 g of phenol resin were used, and 3.4 g of silicon tetrachloride was added as a halogen compound instead of hydrochloric acid. As a result of elemental analysis of the obtained carbide, the molar ratio of carbon to silicon was 2.58. Comparative Example 1 with this carbide
The results of carbon analysis and X-ray diffraction of the obtained powder were 5.2% by weight and β-type silicon carbide, respectively. The results of the impurity analysis of this powder are shown in Table 1.
【0034】〔比較例3〕
エチルシリケート68重量%と液状フェノール樹脂32
重量%を均一に混合した液状物に、高純度無定形シリカ
微粉末と高純度合成黒鉛微粉末を重量比2:1で混合し
た粉末を、重量比で液状物の1/4添加し、さらに、p
−トルエンスルフォン酸の50%水溶液を5重量%及び
高純度塩酸の2%水溶液を10重量%加えて攪拌し、固
化、乾燥して樹脂状固形物を得た。これを比較例1と同
様に炭化し、炭化ケイ素化した。 [Comparative Example 3] 68 wt% of ethyl silicate and liquid phenol resin 32
To a liquid substance in which the weight% is uniformly mixed, a powder obtained by mixing high-purity amorphous silica fine powder and high-purity synthetic graphite fine powder in a weight ratio of 2: 1 is added by 1/4 in a weight ratio, and further, , P
5% by weight of a 50% aqueous solution of toluenesulfonic acid and 10% by weight of a 2% aqueous solution of high-purity hydrochloric acid were added, stirred, solidified and dried to obtain a resinous solid. This was carbonized in the same manner as in Comparative Example 1 to form silicon carbide.
【0035】得られたβ型炭化ケイ素粉末を実施例1と
同様に不純物分析し、その結果を表1に示す。The β-type silicon carbide powder thus obtained was analyzed for impurities in the same manner as in Example 1, and the results are shown in Table 1.
【0036】〔比較例4〕
高純度塩酸を添加しなかったこと以外は、比較例1と同
様に行った。得られた炭化物の元素分析を行った結果、
炭素とケイ素のモル比は2.35であった。本炭化物を
比較例1と同様に炭化ケイ素化したところ、黄緑色の粉
末が得られた。本粉末の炭素分析及びX線回折を行った
結果は、各々0.05重量%及びβ型炭化ケイ素であっ
た。本粉末の不純物分析の結果を表1に示す。 Comparative Example 4 The procedure of Comparative Example 1 was repeated, except that high-purity hydrochloric acid was not added. As a result of elemental analysis of the obtained carbide,
The molar ratio of carbon to silicon was 2.35. This carbide
When silicon carbide was formed in the same manner as in Comparative Example 1 , yellow green powder was obtained. The results of carbon analysis and X-ray diffraction of this powder were 0.05% by weight and β-type silicon carbide, respectively. The results of the impurity analysis of this powder are shown in Table 1.
【0037】〔比較例5〕
高純度塩酸を添加しなかったこと以外は、比較例3と同
様に行い、β型炭化ケイ素を得た。これを、比較例1と
同様に不純物分析を行った結果を表1に示す。 [Comparative Example 5] β-type silicon carbide was obtained in the same manner as in Comparative Example 3 except that high-purity hydrochloric acid was not added. Table 1 shows the result of performing an impurity analysis on this in the same manner as in Comparative Example 1 .
【0038】[0038]
【表1】 [Table 1]
【0039】表1の結果から明らかな如く、同じ原料を
使用しているにもかかわらず、比較例と対比して、本発
明の実施例では、得られたβ型炭化ケイ素粉末は各不純
物元素の含有量が1ppm以下の超高純度品であり、こ
れが簡便な方法により得られた。As is clear from the results shown in Table 1, in comparison with the comparative example, the β-type silicon carbide powder obtained in the examples of the present invention contained the respective impurity elements in spite of using the same raw materials. Was an ultra-high purity product having a content of 1 ppm or less, which was obtained by a simple method.
【0040】[0040]
【発明の効果】本発明の高純度β型炭化ケイ素粉末の製
造方法は、上記構成としたので、通常市販されているよ
うな比較的純度の高い原料を使って、各不純物濃度を1
ppm以下に抑えた超高純度のβ型炭化ケイ素を簡便に
得ることができ、シリカやカーボン等のケイ素質固体や
炭素質固体の添加も可能なため比較的安価に高純度β型
炭化ケイ素粉末を得ることができるという優れた効果を
有する。Since the method for producing high-purity β-type silicon carbide powder of the present invention has the above-mentioned constitution, it is possible to adjust the impurity concentration to 1 by using a relatively high-purity raw material which is usually commercially available.
High-purity β-type silicon carbide powder can be obtained relatively inexpensively because it is possible to easily obtain ultra-high-purity β-type silicon carbide that is suppressed to ppm or less, and to add silicon-based solids such as silica and carbon or carbon-based solids. It has an excellent effect that can be obtained.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−149017(JP,A) 特開 昭62−212213(JP,A) 特開 昭63−170207(JP,A) 特開 昭60−226406(JP,A) 特開 昭54−67599(JP,A) 特開 平2−204318(JP,A) 倉地育夫、田中英彦,ケイ酸エステル とフェノール樹脂縮合物を前駆体とし、 その熱分解により合成されたβ−SiC 粉末の合成,高分子学会予稿集,日本, 1989年,Vol.38,No.12,p. 4303−4305 田中英彦、倉地育夫,エチルシリケー ト・フェノール樹脂からβ−SiC粉末 の合成,窯業協会昭和62年年会講演予稿 集,日本,1987年,Vol.1987,N o.2,p.271−272 (58)調査した分野(Int.Cl.7,DB名) C01B 31/36 C04B 35/56 JICSTファイル(JOIS)─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-4-149017 (JP, A) JP-A-62-212213 (JP, A) JP-A-63-170207 (JP, A) JP-A-60- 226406 (JP, A) JP-A-54-67599 (JP, A) JP-A-2-204318 (JP, A) Ikuo Kurachi, Hidehiko Tanaka, silicate ester and phenol resin condensate as precursors, and their thermal decomposition Of β-SiC Powder Synthesized by J., Polymer Society of Japan Proceedings, Japan, 1989, Vol. 38, No. 12, p. 4303-4305 Hidehiko Tanaka, Ikuo Kurachi, Synthesis of β-SiC powder from ethyl silicate phenol resin, Proceedings of the 1987 Ceramic Society of Japan, Japan, 1987, Vol. 1987, No. 2, p. 271-272 (58) Fields surveyed (Int.Cl. 7 , DB name) C01B 31/36 C04B 35/56 JISST file (JOIS)
Claims (2)
熱により炭素を生成する液状の有機化合物を原料とし、
これらに均一に溶化する高純度の重合又は架橋触媒を加
え、重合又は架橋反応させ、得られた均一な前駆体物質
を非酸化性雰囲気中で、加熱炭化して得た中間体生成物
を、非酸化性雰囲気中でさらに高温で焼成することから
なるβ型炭化ケイ素粉末の製造方法において、各不純物
濃度が50ppm以下の該原料及び/又は触媒に、金属
成分を実質的に含有しないハロゲン化合物である高純度
のフッ酸を添加することを特徴とする高純度β型炭化ケ
イ素粉末の製造方法。1. A raw material is a liquid silicon compound and a liquid organic compound which has a functional group and produces carbon by heating.
An intermediate product obtained by adding a high-purity polymerization or crosslinking catalyst that solubilizes uniformly to these, polymerizing or crosslinking reaction, and heating and carbonizing the obtained uniform precursor substance in a non-oxidizing atmosphere, In the method for producing β-type silicon carbide powder, which comprises firing at a higher temperature in a non-oxidizing atmosphere, each impurity
High purity , which is a halogen compound containing substantially no metal component in the raw material and / or catalyst having a concentration of 50 ppm or less
1. A method for producing a high-purity β-type silicon carbide powder, characterized in that the hydrofluoric acid is added.
質固体を添加することを特徴とする請求項1記載の高純
度β型炭化ケイ素粉末の製造方法。 2. High purity carbonaceous solid and silicon as the raw material
High-purity according to claim 1, characterized in that a high quality solid is added.
Method for producing β-type silicon carbide powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33298392A JP3442803B2 (en) | 1992-12-14 | 1992-12-14 | Method for producing high-purity β-type silicon carbide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33298392A JP3442803B2 (en) | 1992-12-14 | 1992-12-14 | Method for producing high-purity β-type silicon carbide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06183718A JPH06183718A (en) | 1994-07-05 |
JP3442803B2 true JP3442803B2 (en) | 2003-09-02 |
Family
ID=18261001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33298392A Expired - Fee Related JP3442803B2 (en) | 1992-12-14 | 1992-12-14 | Method for producing high-purity β-type silicon carbide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3442803B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5863325A (en) * | 1995-05-31 | 1999-01-26 | Bridgestone Corporation | Process for producing high purity silicon carbide powder for preparation of a silicon carbide single crystal and single crystal |
WO2002018669A1 (en) * | 2000-08-31 | 2002-03-07 | Sumitomo Titanium Corporation | Silicon monoxide vapor deposition material, process for producing the same, raw material for producing the same, and production apparatus |
JP3879813B2 (en) | 2001-03-14 | 2007-02-14 | 信越化学工業株式会社 | Method for producing β-silicon carbide fine powder |
JP4700835B2 (en) * | 2001-05-01 | 2011-06-15 | 株式会社ブリヂストン | Silicon carbide powder, method for producing the same, and silicon carbide sintered body |
JP2006076864A (en) * | 2004-09-13 | 2006-03-23 | Bridgestone Corp | Silicon carbide porous body and its producing method |
JP5618302B2 (en) * | 2011-05-26 | 2014-11-05 | 独立行政法人産業技術総合研究所 | Production method and production apparatus for fine silicon carbide powder |
KR101907719B1 (en) * | 2011-07-04 | 2018-10-12 | 다이헤이요 세멘토 가부시키가이샤 | Particles formed of silica and carbon, and method for producing mixture of silica and carbon |
JP6749230B2 (en) * | 2016-12-27 | 2020-09-02 | 太平洋セメント株式会社 | Method for producing silicon carbide |
-
1992
- 1992-12-14 JP JP33298392A patent/JP3442803B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
倉地育夫、田中英彦,ケイ酸エステルとフェノール樹脂縮合物を前駆体とし、その熱分解により合成されたβ−SiC粉末の合成,高分子学会予稿集,日本,1989年,Vol.38,No.12,p.4303−4305 |
田中英彦、倉地育夫,エチルシリケート・フェノール樹脂からβ−SiC粉末の合成,窯業協会昭和62年年会講演予稿集,日本,1987年,Vol.1987,No.2,p.271−272 |
Also Published As
Publication number | Publication date |
---|---|
JPH06183718A (en) | 1994-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5589116A (en) | Process for preparing a silicon carbide sintered body for use in semiconductor equipment | |
US5863325A (en) | Process for producing high purity silicon carbide powder for preparation of a silicon carbide single crystal and single crystal | |
KR101678624B1 (en) | A method for preparing silicon carbide powder of ultra-high purity | |
JP3442803B2 (en) | Method for producing high-purity β-type silicon carbide powder | |
US5318761A (en) | Process for preparing silicon carbide powder for use in semiconductor equipment | |
JPH02164706A (en) | Manufacture of finely divided carbide | |
US4652436A (en) | Preparation of nitride and carbide from inorganic-organic polymer complex | |
JPH07157307A (en) | Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal | |
JP2002293525A (en) | Silicon carbine powder, its production method and silicon carbine monocrystal | |
GB2316679A (en) | Making silicon carbide particles | |
JPH0616404A (en) | Production of high-purity carbon powder, high-purity carbide powder and high-purity nitride powder and sintered compact of the powders | |
US20210163301A1 (en) | Method for producing large granular alpha-phase silicon carbide powders with a high-purity | |
JP2008050201A (en) | Method for producing silicon carbide powder, and silicon carbide powder | |
CN109110753A (en) | A kind of preparation method based on molysite catalyzed graphitization nitrogen-doped carbon nano material | |
JP2973762B2 (en) | Method for producing silicon carbide sintered body for semiconductor production | |
KR20100115993A (en) | A method for manufacturing sic micro-powder with high purity at low temperature | |
JP4234800B2 (en) | Method for producing silicon carbide powder | |
JPS61132509A (en) | Production of silicon carbide | |
US4701316A (en) | Preparation of silicon nitride powder | |
JP2006256937A (en) | Method for manufacturing silicon carbide | |
JPH07157367A (en) | Production of high purity beta-silicon carbide sintered compact for device for producing semiconductor | |
JPS62212213A (en) | Production of beta-silicon carbide | |
JPH08290905A (en) | Hexagonal boron nitride powder and its production | |
JP4111478B2 (en) | Method for producing silicon carbide microspheres | |
JPH01203205A (en) | Production of boron nitride powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |