JPH07157307A - Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal - Google Patents

Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal

Info

Publication number
JPH07157307A
JPH07157307A JP5304901A JP30490193A JPH07157307A JP H07157307 A JPH07157307 A JP H07157307A JP 5304901 A JP5304901 A JP 5304901A JP 30490193 A JP30490193 A JP 30490193A JP H07157307 A JPH07157307 A JP H07157307A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
powder
carbide powder
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5304901A
Other languages
Japanese (ja)
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP5304901A priority Critical patent/JPH07157307A/en
Publication of JPH07157307A publication Critical patent/JPH07157307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a high purity beta-type silicon carbide powder by hardening and drying a mixed solution of a liquid silicon compound, an organic compound and a polymerizing or cross-linking catalyst, which do not practically contain any impure element, and burning after carbonizing by heating. CONSTITUTION:A precursor material is obtained by polymerizing or cross-linking the mixed solution of the liquid silicon compound and the liquid organic compound having a functional group and forming carbon by heating and the polymerizing or cross-linking catalyst, which do not practically contain any impure element respectively. An intermediate material 2.3-2.5 in the mol ratio of carbon/ silicon is obtained by heating and carbonizing the precursor material at 700-1100 deg.C in a non-oxidizing atmosphere. Further, by burning the intermediate material at 1600-2000 deg.C in the non-oxidizing atmosphere under the selected condition of temp. and time, the beta-type silicon carbide powder <=1ppm in the content of the impurity element is obtained. A high purity silicon carbide single crystal small in crystal defect is grown at a high yield by using the high purity silicon carbide powder as the raw material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高純度で、結晶欠陥が少
なく、歩止りのよい炭化ケイ素単結晶を育成するための
高純度β型炭化ケイ素原料粉末を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity β-type silicon carbide raw material powder for growing a silicon carbide single crystal having high purity, few crystal defects and good yield.

【0002】[0002]

【従来の技術】従来、炭化ケイ素単結晶の製造方法とし
ては、図1に示す高純度黒鉛容器を用い、炭化ケイ素の
種結晶上に炭化ケイ素粉体を2000℃以上の高温で昇
華し、炭化ケイ素単結晶を得る改良レーリー法(改良昇
華再結晶法)が知られている(FC report
No1 P22[1993])。
2. Description of the Related Art Conventionally, as a method for producing a silicon carbide single crystal, a high-purity graphite container shown in FIG. 1 was used, and silicon carbide powder was sublimated at a high temperature of 2000 ° C. or higher on a seed crystal of silicon carbide and carbonized. An improved Rayleigh method (improved sublimation recrystallization method) for obtaining a silicon single crystal is known (FC report 1
1 No1 P22 [1993]).

【0003】一方、前記炭化ケイ素粉末の製造方法とし
ては、ケイ砂と石油コークスを原料とし、炭化ケイ素粉
末を得るアチソン法が知られている。しかし、この方法
によれば、上記原料に不純物が多く含まれているために
炭化ケイ素単結晶を育成すると単結晶中に不純物が混入
するだけでなく、結晶欠陥も多発することが文献(第5
1回応用物理学会学術講演予稿集29−W−1[199
0])に開示されている。
On the other hand, as a method for producing the above-mentioned silicon carbide powder, the Acheson method for obtaining silicon carbide powder from silica sand and petroleum coke as raw materials is known. However, according to this method, when the above-mentioned raw material contains a large amount of impurities, when a silicon carbide single crystal is grown, not only impurities are mixed into the single crystal but also crystal defects frequently occur (Reference 5).
Proceedings of the 1st JSAP Academic Lecture 29-W-1 [199
0]).

【0004】[0004]

【発明が解決しようとする課題】本発明は、不純物含有
量が少なく、結晶欠陥の数も少ない良質の炭化ケイ素単
結晶を製造するため、原料である炭化ケイ素粉体として
各不純物元素の含有量が少なく、かつ焼結工程時に比表
面積の大幅な減少を起こさない粒度の炭化ケイ素粉体を
得る製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, in order to produce a high-quality silicon carbide single crystal having a low content of impurities and a small number of crystal defects, the content of each impurity element in the silicon carbide powder as a raw material is improved. It is an object of the present invention to provide a method for producing a silicon carbide powder having a small particle size and a particle size that does not significantly reduce the specific surface area during the sintering step.

【0005】[0005]

【発明を解決するための手段】本発明の炭化ケイ素単結
晶製造用高純度β型炭化ケイ素粉末の製造方法は、不純
物元素を実質的に含まない液状のケイ素化合物と官能基
を有し加熱により炭素を生成する不純物元素を実質的に
含まない液状の有機化合物と不純物元素を実質的に含ま
ない重合又は架橋触媒との混合溶液を硬化乾燥し、得ら
れた固形物を非酸化性雰囲気下で加熱炭化した後、得ら
れた中間体物質をさらに非酸化性雰囲気下、1600〜
2000℃で焼成することにより、平均粒径が10μm
〜500μmであり、かつ各不純物元素の含有量が1p
pm以下のβ型炭化ケイ素粉末を得ることを特徴とす
る。
The method for producing a high-purity β-type silicon carbide powder for producing a silicon carbide single crystal according to the present invention comprises a liquid silicon compound containing substantially no impurity element and a functional group, and Curing and drying a mixed solution of a liquid organic compound that does not substantially contain an impurity element that generates carbon and a polymerization or crosslinking catalyst that does not substantially contain an impurity element, and obtain a solid product under a non-oxidizing atmosphere. After carbonization by heating, the obtained intermediate substance is further subjected to 1600 to 1600 under a non-oxidizing atmosphere.
By firing at 2000 ° C, the average particle size is 10 μm
~ 500 μm and the content of each impurity element is 1 p
It is characterized in that β-type silicon carbide powder having a particle size of pm or less is obtained.

【0006】すなわち、本発明者らは高純度β型炭化ケ
イ素粉末の製造方法において、全工程の不純物、炭化物
(中間体生成物)の組成等に着目し、鋭意検討を重ねた
結果、不純物元素を実質的に含まない液状の物質を原料
に用いることにより、ケイ素と炭素の分散の良い中間体
物質が得られ、その結果として比較的粒径のそろった高
純度β型炭化ケイ素多結晶粉体を得る製造方法を確立
し、本発明を完成するに至った。また、炭化物中間体の
炭素/ケイ素のモル比及び焼成工程の温度と時間につい
て再検討した結果、炭化物中間体の炭素/ケイ素のモル
比を2.3〜2.5とし、さらに従来の温度に比べ比較
的低い温度(1600〜2000℃)で焼成することに
より、所望の平均粒径で、かつ残留炭素を実質的に含ま
ない高純度β型炭化ケイ素多結晶粉体が得られることが
わかった。
That is, the inventors of the present invention have conducted intensive studies in the method of producing high-purity β-type silicon carbide powder, paying attention to impurities in all steps, composition of carbides (intermediate products), etc. By using a liquid substance that does not substantially contain as a raw material, an intermediate substance having a good dispersion of silicon and carbon can be obtained. As a result, a high-purity β-type silicon carbide polycrystalline powder with a relatively uniform particle size is obtained. The present invention has been completed by establishing a manufacturing method for obtaining In addition, as a result of reexamination of the carbon / silicon molar ratio of the carbide intermediate and the temperature and time of the firing step, the carbon / silicon molar ratio of the carbide intermediate was set to 2.3 to 2.5, and the temperature was changed to the conventional temperature. It was found that by firing at a relatively low temperature (1600 to 2000 ° C.), a high-purity β-type silicon carbide polycrystalline powder having a desired average particle size and substantially free of residual carbon can be obtained. .

【0007】[0007]

【作用】高純度β型炭化ケイ素粉体においては、不純物
元素の含有量を少なくし、単結晶育成時に比表面積の大
幅な減少を起こさない粒度に調整されることが好ましい
が、従来の炭化ケイ素粉体は、原料として、例えばケイ
砂や石油コークス等を用いること及び粉砕工程を経るた
めに不純物が混入しており、単結晶を育成した際に結晶
欠陥が多発していたが、本発明の製造方法によって得ら
れる高純度β型炭化ケイ素粉体を用いて炭化ケイ素単結
晶を製造することにより、高純度で、結晶欠陥の少ない
単結晶を得ることができ、さらに、単結晶育成時に比表
面積の大幅な減少を起こさない粒径に調整可能である優
れた効果を奏するものである。
In the high-purity β-type silicon carbide powder, it is preferable that the content of the impurity element is reduced and the grain size is adjusted so that the specific surface area is not significantly reduced during the growth of the single crystal. The powder contains impurities as a raw material, for example, silica sand or petroleum coke, and has undergone a pulverizing step, and impurities are mixed in the powder. By producing a silicon carbide single crystal using the high-purity β-type silicon carbide powder obtained by the production method, a single crystal with high purity and few crystal defects can be obtained. It has an excellent effect that the particle size can be adjusted without causing a large decrease in

【0008】[0008]

【実施例】以下に本発明を詳細に説明する。本発明にお
いて、液状のケイ素化合物としては、メチルシリケー
ト、エチルシリケート等のアルキルシリケート、ケイ酸
ポリマー水溶液、水酸基を持つ有機化合物とケイ酸のエ
ステル溶液等が挙げられ、特に、エチルシリケートモノ
マー及びオリゴマーが好ましい。
The present invention will be described in detail below. In the present invention, examples of the liquid silicon compound include an alkyl silicate such as methyl silicate and ethyl silicate, an aqueous solution of silicic acid polymer, an ester solution of an organic compound having a hydroxyl group and silicic acid, and in particular, an ethyl silicate monomer and an oligomer. preferable.

【0009】本発明において、官能基を有し加熱により
炭素を生成する液状の有機化合物としては、特に残炭率
の高く、触媒又は加熱により、重合又は架橋する有機化
合物、例えば、フェノール樹脂、ニトリル樹脂、フラン
樹脂、ポリイミド樹脂、スチレン樹脂、キシレン樹脂、
ポリフェニレンオキシド、ポリフェニレンスルフィド、
ポリアニリン等の樹脂(高分子)のモノマーやプレポリ
マーが挙げられ、レゾール型又はノボラック型のフェノ
ール樹脂が好ましい。
In the present invention, the liquid organic compound having a functional group to generate carbon by heating has a particularly high residual carbon content, and is an organic compound which is polymerized or crosslinked by a catalyst or heating, such as phenol resin or nitrile. Resin, furan resin, polyimide resin, styrene resin, xylene resin,
Polyphenylene oxide, polyphenylene sulfide,
Examples thereof include resin (polymer) monomers and prepolymers such as polyaniline, and a resol-type or novolac-type phenol resin is preferable.

【0010】本発明において、原料に均一に溶化する重
合又は架橋触媒としては、原料としてフェノール樹脂を
用いる場合、トルエンスルホン酸、塩酸、硫酸、シュウ
酸等の酸類が好ましく、特に、界面活性作用を持つトル
エンスルホン酸がより好ましい。ニトリル樹脂のモノマ
ーやオリゴマーを用いる場合は、過硫酸アンモニウム、
過酸化水素、各種ヒドロペルオキシド類、過酸化アルキ
ル類、過酸化エステル類、アゾ化合物類等のラジカル重
合開始剤が好ましい。また、この他の有機化合物を用い
る場合も一般に用いられる重合又は架橋触媒が好まし
い。
In the present invention, when a phenol resin is used as a raw material, the polymerization or cross-linking catalyst which is uniformly solubilized in the raw material is preferably an acid such as toluenesulfonic acid, hydrochloric acid, sulfuric acid or oxalic acid, and particularly has a surfactant effect. More preferred is toluene sulfonic acid. When using monomers or oligomers of nitrile resin, ammonium persulfate,
Radical polymerization initiators such as hydrogen peroxide, various hydroperoxides, alkyl peroxides, peroxide esters, and azo compounds are preferable. Also, when other organic compounds are used, generally used polymerization or crosslinking catalysts are preferable.

【0011】本発明において、原料を重合又は架橋反応
させて得られた前駆体物質は非酸化性雰囲気中で加熱炭
化されるが、炭化温度としては、700〜1100℃が
用いられ、好ましくは800〜1000℃が採用され
る。また、前記前駆体物質を炭化して得られた中間生成
物は非酸化性雰囲気中でさらに高温で焼成されるが、焼
成温度としては、1600〜2000℃が用いられ、好
ましくは1600〜1900℃が採用される。
In the present invention, the precursor substance obtained by polymerizing or cross-linking the raw material is heated and carbonized in a non-oxidizing atmosphere, and the carbonization temperature is 700 to 1100 ° C., preferably 800. ~ 1000 ° C is adopted. The intermediate product obtained by carbonizing the precursor substance is fired at a higher temperature in a non-oxidizing atmosphere, and the firing temperature is 1600 to 2000 ° C, preferably 1600 to 1900 ° C. Is adopted.

【0012】本発明における重要な要素である不純物の
関連事項を次に述べる。前記高純度β型炭化ケイ素粉末
は不純物元素を実質的に含まないものであるが、含まれ
ていても各不純物元素の含有量は1ppm以下であるこ
とを要する。本発明で用いられる原料は、不純物元素を
実質的に含まないものであるが、含まれていても各不純
物元素の含有量は0.5ppm以下で、好ましくは0.
1ppmであるが、焼成温度(1600〜2000℃)
で蒸発する元素または元素の化合物についてはこの限り
ではない。
The matters related to impurities, which are important elements in the present invention, will be described below. Although the high-purity β-type silicon carbide powder does not substantially contain impurity elements, the content of each impurity element needs to be 1 ppm or less even if it is included. The raw material used in the present invention contains substantially no impurity element, but even if it is contained, the content of each impurity element is 0.5 ppm or less, preferably 0.
1ppm, but firing temperature (1600-2000 ° C)
This does not apply to elements or compounds of elements that evaporate at.

【0013】また、ここでいう不純物元素とは周期律表
のIa(水素を除く)〜IIIa族元素、Ib〜VIIb族元
素、VIII族元素、IVa族の原子番号32以上の元素及
びVa族の原子番号33以上の元素をいう。
The term "impurity element" used herein means an element of group Ia (excluding hydrogen) to group IIIa, an element of group Ib to group VIIb, an element of group VIII, an element of group IVa having an atomic number of 32 or more, and a group Va of the periodic table. An element with an atomic number of 33 or higher.

【0014】本発明に用いる触媒、添加剤、溶媒(水を
含む)等、前工程に使用の物質は、不純物を実質的に含
まない高純度品を用いる必要がある。また、原料、製品
はクラス1000以下のクリーン・ブース中で取り扱う
ことが好ましい。
As the substances used in the previous step, such as the catalyst, additives, solvents (including water) used in the present invention, it is necessary to use high-purity substances that do not substantially contain impurities. In addition, raw materials and products are preferably handled in a clean booth of class 1000 or lower.

【0015】本発明において、前駆体物質を炭化して得
られる中間体生成物中の炭素/ケイ素のモル比は2.3
〜2.5が好ましい。このモル比で、炭化温度700〜
1100℃、焼成温度が1600〜2000℃の条件で
純粋な炭化ケイ素が得られる。本来、理論的には中間体
生成物中の炭素/ケイ素のモル比が3.0で得られた炭
化ケイ素中の炭素量が0重量%となるはずであるが、本
発明により、このモル比が2.3〜2.5で炭素が存在
しない高純度β型炭化ケイ素が得られ、このモル比が
2.5を越える場合には炭素が残留することを知見して
いる。
In the present invention, the carbon / silicon molar ratio in the intermediate product obtained by carbonizing the precursor material is 2.3.
~ 2.5 is preferred. At this molar ratio, the carbonization temperature is 700-
Pure silicon carbide is obtained under the conditions of 1100 ° C. and a firing temperature of 1600 to 2000 ° C. Originally, theoretically, the carbon amount in the obtained silicon carbide should be 0% by weight when the carbon / silicon molar ratio in the intermediate product is 3.0. It was found that a high-purity β-type silicon carbide in which the carbon number is 2.3 to 2.5 and carbon does not exist, and carbon remains when the molar ratio exceeds 2.5.

【0016】得られた炭化ケイ素の平均粒径は10〜5
00μm、好ましくは100〜300μmである。平均
粒径が10μm以下になると、単結晶をつくるための炭
化ケイ素の昇華温度(2000〜2500℃)で焼結を
起こし、昇華表面積が小さくなり、単結晶の成長が遅く
なる。また、500μm以上になると、粒子自身の非表
面積が小さいため、やはり単結晶の成長が遅くなる。
The average particle size of the obtained silicon carbide is 10 to 5
The thickness is 00 μm, preferably 100 to 300 μm. When the average particle diameter is 10 μm or less, sintering occurs at the sublimation temperature (2000 to 2500 ° C.) of silicon carbide for forming a single crystal, the sublimation surface area becomes small, and the growth of the single crystal becomes slow. On the other hand, when the particle size is 500 μm or more, the non-surface area of the particles themselves is small, so that the growth of the single crystal is also delayed.

【0017】この平均粒径が10〜500μmである炭
化ケイ素粉体を得るには、焼成時の温度と時間を適当に
選択する必要がある。例えば、1900℃で焼成を行う
場合、150μmの粒径を得るためには約3時間の加熱
時間が必要となる。しかし、温度が1600℃以下だと
結晶粒子の成長速度が非常に速くなるため実用的には炭
化ケイ素が得られず、また、2000℃以上だと粒子の
成長にともない炭化ケイ素の昇華分解が起こるため高純
度の炭化ケイ素が得られない。
In order to obtain a silicon carbide powder having an average particle size of 10 to 500 μm, it is necessary to properly select the temperature and time during firing. For example, when firing at 1900 ° C., a heating time of about 3 hours is required to obtain a particle size of 150 μm. However, if the temperature is 1600 ° C. or lower, the growth rate of crystal grains becomes very high, so that practically no silicon carbide can be obtained, and if the temperature is 2000 ° C. or higher, sublimation decomposition of silicon carbide occurs with the grain growth. Therefore, high-purity silicon carbide cannot be obtained.

【0018】本発明において、ケイ素源として液状のケ
イ素化合物及び炭素源として液状の有機化合物の原料に
重合又は架橋反応を行っているので、得られた前駆体物
質はケイ素、炭素共に分子オーダーで均質に混合されて
いるため、炭化後の中間体物質を経て、焼成された炭化
ケイ素は粒界の少ない良質な結晶であり、粒子径を焼成
時に制御するために粉砕等による不純物の混入もなく、
生産性よく目的の粉体を得ることができる。
In the present invention, since the raw materials of the liquid silicon compound as the silicon source and the liquid organic compound as the carbon source are polymerized or crosslinked, the obtained precursor substance is homogeneous in both silicon and carbon in molecular order. Therefore, the silicon carbide that has been fired through the intermediate substance after carbonization is a good quality crystal with few grain boundaries, and there is no mixing of impurities due to crushing or the like to control the particle size during firing,
The target powder can be obtained with good productivity.

【0019】以下に、実施例を挙げて本発明をより具体
的に説明するが、本発明の主旨を越えない限り、本実施
例に限定されるものではない。なお、本実施例では従来
の製造方法との優位性を確認するため、改良レーリー法
(昇華再結晶法)を用いて単結晶の育成を試みた。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded. In this example, in order to confirm the superiority to the conventional manufacturing method, an attempt was made to grow a single crystal by using an improved Rayleigh method (sublimation recrystallization method).

【0020】(高純度炭化ケイ素単結晶の製造装置)炭
化ケイ素粉末の製造装置は図1に示した円筒状の高純度
黒鉛容器1及び蓋2を用いて、粉体試料3が入る部分を
高周波コイル6で加熱し、加熱部分と種結晶4に近い上
側面部の温度測定ができるようにした。反応炉は真空又
は不活性ガス置換ができ、さらに内圧をコントロールで
きるものを用いた。
(Production Device for High Purity Silicon Carbide Single Crystal) The production device for silicon carbide powder uses the cylindrical high purity graphite container 1 and the lid 2 shown in FIG. The coil 6 was used for heating so that the temperature of the heated portion and the upper side surface portion near the seed crystal 4 could be measured. The reactor used was one capable of vacuum or substitution with an inert gas and capable of controlling the internal pressure.

【0021】(実施例A1)液状ケイ素化合物としてS
iO2 含有量40%の高純度のエチルシリケート690
gと、含水率20%の高純度液体レゾール型フェノール
樹脂305gの混合液に、触媒として高純度p−トルエ
ンスルホン酸の25%水溶液137gを加えて硬化・乾
燥させ、均質な樹脂状固形物を得た。これを窒素雰囲気
下で900℃で1時間炭化した。得られた炭化物の炭素
/ケイ素のモル比は元素分析から2.4であった。この
炭化物をアルゴン雰囲気下で1900℃まで昇温、加熱
し、4時間保持して炭化ケイ素化反応及び結晶粒成長を
行った。得られた粉末の色は黄緑色であった。また、X
線回折による炭化ケイ素の結晶形はβ型(立方晶)であ
った。本粉末の不純物分析(ICP−質量分析及びフレ
ームス原子吸光法)の結果を表1に示す。また、本粉末
を粒度分布測定機(TSUB−TEC)で測定したとこ
ろ、平均粒径が185μmであった。
Example A1 S as a liquid silicon compound
High-purity ethyl silicate 690 with iO 2 content of 40%
g and 305 g of a high-purity liquid resol-type phenol resin having a water content of 20%, 137 g of a 25% aqueous solution of high-purity p-toluenesulfonic acid as a catalyst was added, and the mixture was cured and dried to give a homogeneous resinous solid. Obtained. This was carbonized at 900 ° C. for 1 hour in a nitrogen atmosphere. The carbon / silicon molar ratio of the obtained carbide was 2.4 based on elemental analysis. This carbide was heated to 1900 ° C. in an argon atmosphere, heated, and held for 4 hours to carry out silicon carbide reaction and crystal grain growth. The color of the obtained powder was yellow-green. Also, X
The crystal form of silicon carbide by line diffraction was β type (cubic crystal). The results of impurity analysis (ICP-mass spectrometry and flames atomic absorption method) of this powder are shown in Table 1. Moreover, when the present powder was measured with a particle size distribution analyzer (TSUB-TEC), the average particle size was 185 μm.

【表1】 [Table 1]

【0022】(比較例A1)炭化ケイ素化反応温度を1
700℃、加熱温度を30分とした以外は実施例1と同
様にして炭化ケイ素粉体を得た。得られた粉末の色は灰
白色、X線回折による炭化ケイ素の結晶形はβ型(立方
晶)、また、本粉末の平均粒径は1.2μmであった。
本粉末の不純物分析の結果を表1に示す。
(Comparative Example A1) Silicon carbide reaction temperature was 1
Silicon carbide powder was obtained in the same manner as in Example 1 except that the temperature was 700 ° C. and the heating temperature was 30 minutes. The color of the obtained powder was grey-white, the crystal form of silicon carbide by X-ray diffraction was β type (cubic crystal), and the average particle size of this powder was 1.2 μm.
The results of the impurity analysis of this powder are shown in Table 1.

【0023】(比較例A2)#100の研磨用炭化ケイ
素粉体を不純物を含まない高純度塩酸溶液でよく洗浄し
た後、乾燥後2000℃で10分間高純度処理をした。
得られた粉末の色は黒色、X線回折による炭化ケイ素の
結晶形はα型であった。本粉末の不純物分析の結果を表
1に示す。
(Comparative Example A2) The # 100 polishing silicon carbide powder was thoroughly washed with a high-purity hydrochloric acid solution containing no impurities, dried, and then subjected to high-purity treatment at 2000 ° C. for 10 minutes.
The color of the obtained powder was black, and the crystal form of silicon carbide by X-ray diffraction was α type. The results of the impurity analysis of this powder are shown in Table 1.

【0024】(実施例B1)図1のグラファイト容器
に、実施例A1で得た粉体約100gを入れ、蓋の部分
に種結晶としてアチソン法でつくられた6H{000
1}面カットのウェハー10mm×10mmを設置し、
反応炉に入れアルゴンの10Torr減圧下で粉体部分
を高周波誘導加熱により2350℃に保った。この時の
容器上部の温度は2280℃であった。この条件で約5
時間単結晶の育成を行ったところ、直径10mm、長さ
が5.5mmの単結晶を得ることができた。この結晶の
種結晶にできるだけ遠い部分をスライスし、鏡面研磨し
た。これを溶融アルカリによりエッシングして、欠陥を
観察したところ、欠陥密度は1.0×103 個/cm2
であった。また、この結晶の不純物分析(ICP−質量
分析及びフレームス原子吸光法)を行った結果を表2に
示す。
(Example B1) About 100 g of the powder obtained in Example A1 was placed in the graphite container of FIG. 1 and 6H {000 produced by the Acheson method as a seed crystal in the lid portion.
1mm surface cut wafer 10mm × 10mm is installed,
The powder portion was placed in a reaction furnace and kept at 2350 ° C. by high frequency induction heating under a reduced pressure of 10 Torr of argon. The temperature of the upper part of the container at this time was 2280 ° C. About 5 under these conditions
When a single crystal was grown for an hour, a single crystal with a diameter of 10 mm and a length of 5.5 mm could be obtained. A portion of the crystal as far as possible from the seed crystal was sliced and mirror-polished. When this was ashed with molten alkali and the defects were observed, the defect density was 1.0 × 10 3 defects / cm 2.
Met. In addition, Table 2 shows the results of impurity analysis (ICP-mass spectrometry and flames atomic absorption method) of this crystal.

【表2】 [Table 2]

【0025】(比較例B1)原料粉体として実施例A2
で得たものを用いた以外、実施例B1と同様にして単結
晶を育成したところ成長した長さは約2mmであった。
また、冷却した原料を観察したところ焼結して固まって
いた。本結晶の欠陥密度は3.3×103 個/cm2
あった。また、この結晶の不純物分析を行った結果を表
2に示す。
Comparative Example B1 Example A2 as raw material powder
A single crystal was grown in the same manner as in Example B1 except that the one obtained in 1. was used, and the grown length was about 2 mm.
Further, when the cooled raw material was observed, it was found to be sintered and solidified. The defect density of this crystal was 3.3 × 10 3 defects / cm 2 . Table 2 shows the results of impurity analysis of this crystal.

【0026】(比較例B2)原料粉体として比較例A1
で得たものを用いた以外、実施例B1と同様にして単結
晶を育成したところ成長した長さは約4.5mmであっ
た。また、冷却した原料を観察したところ焼結して固ま
っていた。本結晶の欠陥密度は8.7×104 個/cm
2 であった。また、この結晶の不純物分析を行った結果
を表2に示す。
Comparative Example B2 Comparative Example A1 as raw material powder
A single crystal was grown in the same manner as in Example B1 except that the one obtained in 1. was used, and the grown length was about 4.5 mm. Further, when the cooled raw material was observed, it was found to be sintered and solidified. The defect density of this crystal is 8.7 × 10 4 defects / cm
Was 2 . Table 2 shows the results of impurity analysis of this crystal.

【0027】[0027]

【発明の効果】以上記載したように、本発明の製造方法
により得られた高純度炭化ケイ素を用いることにより、
高純度で、結晶欠陥が少なく、歩止りのよい炭化ケイ素
単結晶を育成可能となり、例えば、パワーデバイス、高
周波デバイス、青色発行ダイオード等で良好な特性を示
す炭化ケイ素単結晶ウェハーを提供することが可能とな
る。
As described above, by using the high-purity silicon carbide obtained by the production method of the present invention,
It is possible to provide a silicon carbide single crystal wafer having high purity, few crystal defects, and good yield, which makes it possible to grow a silicon carbide single crystal and shows good characteristics in, for example, a power device, a high frequency device, a blue emitting diode, and the like. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の高純度β型炭化ケイ素単結晶製
造装置の断面図である。
FIG. 1 is a sectional view of a high-purity β-type silicon carbide single crystal manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 高純度黒鉛容器 2 高純度黒鉛蓋 3 原料炭化ケイ素 4 種結晶 5 育成した単結晶 6 高周波コイル 1 high purity graphite container 2 high purity graphite lid 3 raw material silicon carbide 4 seed crystal 5 grown single crystal 6 high frequency coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不純物元素を実質的に含まない液状のケ
イ素化合物と官能基を有し加熱により炭素を生成する不
純物元素を実質的に含まない液状の有機化合物と不純物
元素を実質的に含まない重合又は架橋触媒との混合溶液
を硬化乾燥し、得られた固形物を非酸化性雰囲気下で加
熱炭化した後、得られた中間体物質をさらに非酸化性雰
囲気下、1600〜2000℃で焼成することにより、
平均粒径が10μm〜500μmであり、かつ各不純物
元素の含有量が1ppm以下のβ型炭化ケイ素粉末を得
ることを特徴とする炭化ケイ素単結晶製造用高純度β型
炭化ケイ素粉末の製造方法。
1. A liquid silicon compound which does not substantially contain an impurity element and a liquid organic compound which has a functional group and which produces carbon by heating and does not substantially contain an impurity element and does not substantially contain an impurity element. After curing and drying the mixed solution with the polymerization or crosslinking catalyst and heating and carbonizing the obtained solid matter in a non-oxidizing atmosphere, the obtained intermediate substance is further calcined at 1600 to 2000 ° C. in a non-oxidizing atmosphere. By doing
A method for producing a high-purity β-type silicon carbide powder for producing a silicon carbide single crystal, which comprises obtaining a β-type silicon carbide powder having an average particle size of 10 μm to 500 μm and a content of each impurity element of 1 ppm or less.
JP5304901A 1993-12-06 1993-12-06 Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal Pending JPH07157307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304901A JPH07157307A (en) 1993-12-06 1993-12-06 Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304901A JPH07157307A (en) 1993-12-06 1993-12-06 Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH07157307A true JPH07157307A (en) 1995-06-20

Family

ID=17938659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304901A Pending JPH07157307A (en) 1993-12-06 1993-12-06 Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH07157307A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053813A1 (en) * 2000-12-28 2002-07-11 Bridgestone Corporation Silicon carbide single crystal, and method and apparatus for producing the same
JP2003002794A (en) * 2001-06-15 2003-01-08 Bridgestone Corp Silicon carbide single crystal and method for producing the same
US6733736B2 (en) 2001-05-01 2004-05-11 Bridgestone Corporation Silicon carbide powder and method for producing the same
JP2005093519A (en) * 2003-09-12 2005-04-07 Shikusuon:Kk Silicon carbide substrate and method of manufacturing the same
US7553373B2 (en) 2001-06-15 2009-06-30 Bridgestone Corporation Silicon carbide single crystal and production thereof
US7807123B2 (en) 2005-01-28 2010-10-05 Canon Kabushiki Kaisha Method of manufacturing silicon carbide
JP2010248025A (en) * 2009-04-14 2010-11-04 Bridgestone Corp Method for producing silicon carbide powder
JP2012046424A (en) * 2000-12-28 2012-03-08 Bridgestone Corp Silicon carbide single crystal
WO2015015662A1 (en) * 2013-07-31 2015-02-05 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal
JP2016030719A (en) * 2014-07-30 2016-03-07 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal
JP2016183108A (en) * 2016-07-27 2016-10-20 住友電気工業株式会社 Silicon carbide substrate
US11242618B2 (en) 2011-09-21 2022-02-08 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046424A (en) * 2000-12-28 2012-03-08 Bridgestone Corp Silicon carbide single crystal
US7048798B2 (en) 2000-12-28 2006-05-23 Bridgestone Corporation Silicon carbide single crystal and method and apparatus for producing the same
WO2002053813A1 (en) * 2000-12-28 2002-07-11 Bridgestone Corporation Silicon carbide single crystal, and method and apparatus for producing the same
US6733736B2 (en) 2001-05-01 2004-05-11 Bridgestone Corporation Silicon carbide powder and method for producing the same
US7029643B2 (en) 2001-05-01 2006-04-18 Bridgestone Corporation Silicon carbide powder and method for producing the same
JP2003002794A (en) * 2001-06-15 2003-01-08 Bridgestone Corp Silicon carbide single crystal and method for producing the same
US7553373B2 (en) 2001-06-15 2009-06-30 Bridgestone Corporation Silicon carbide single crystal and production thereof
JP2005093519A (en) * 2003-09-12 2005-04-07 Shikusuon:Kk Silicon carbide substrate and method of manufacturing the same
JP4661039B2 (en) * 2003-09-12 2011-03-30 住友電気工業株式会社 Method for manufacturing silicon carbide substrate
US7807123B2 (en) 2005-01-28 2010-10-05 Canon Kabushiki Kaisha Method of manufacturing silicon carbide
JP2010248025A (en) * 2009-04-14 2010-11-04 Bridgestone Corp Method for producing silicon carbide powder
US11242618B2 (en) 2011-09-21 2022-02-08 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method of manufacturing the same
WO2015015662A1 (en) * 2013-07-31 2015-02-05 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal
US9816200B2 (en) 2013-07-31 2017-11-14 Taiheiyo Cement Corporation Silicon carbide powder and method for producing silicon carbide single crystal
JP2016030719A (en) * 2014-07-30 2016-03-07 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal
JP2016183108A (en) * 2016-07-27 2016-10-20 住友電気工業株式会社 Silicon carbide substrate

Similar Documents

Publication Publication Date Title
JP3934695B2 (en) Method for producing high-purity silicon carbide powder for producing silicon carbide single crystal
US5863325A (en) Process for producing high purity silicon carbide powder for preparation of a silicon carbide single crystal and single crystal
KR101678622B1 (en) - - A porous composite of silicon dioxide-carbon and a method for preparing granules of -phase silicon carbide powder with a high purity by using it
KR101413653B1 (en) A method for manufacturing SiC powders with high purity
JP2009173501A (en) Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal
US10106423B2 (en) Method for preparing ultrahigh-purity silicon carbide powder
JP2011102205A (en) METHOD FOR CONTROLLING PARTICLE SIZE OF alpha-SILICON CARBIDE POWDER AND SILICON CARBIDE SINGLE CRYSTAL
JPH07157307A (en) Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal
JP2012101996A (en) Silicon carbide powder for producing silicon carbide single crystal, and production method therefor
KR101976594B1 (en) Silicon carbide powder, method for manufacturing the same and method for fabricating single crystal
JP5230882B2 (en) Method for producing silicon carbide powder and silicon carbide single crystal
US20210163301A1 (en) Method for producing large granular alpha-phase silicon carbide powders with a high-purity
KR20150142245A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JPH1017382A (en) Production of silicon carbide formed body
KR102496031B1 (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JPH06183718A (en) Production of high purity beta-silicon carbide powder
KR20100115993A (en) A method for manufacturing sic micro-powder with high purity at low temperature
JP3483920B2 (en) Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment
KR102090082B1 (en) Method for growing silicon carbide single crystal ingot
US6387834B1 (en) Sintered silicon carbide body and method for producing the same
KR101084735B1 (en) Preparing method of silicon carbide powder
KR102413929B1 (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
KR20150142246A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JPH06211574A (en) Production of silicon carbide sintered compact for producing semiconductor
KR102318521B1 (en) Silicon carbide powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019