JP3441695B2 - Manufacturing method of sintered oil-impregnated bearing - Google Patents
Manufacturing method of sintered oil-impregnated bearingInfo
- Publication number
- JP3441695B2 JP3441695B2 JP2000097513A JP2000097513A JP3441695B2 JP 3441695 B2 JP3441695 B2 JP 3441695B2 JP 2000097513 A JP2000097513 A JP 2000097513A JP 2000097513 A JP2000097513 A JP 2000097513A JP 3441695 B2 JP3441695 B2 JP 3441695B2
- Authority
- JP
- Japan
- Prior art keywords
- core rod
- green compact
- bearing
- manufacturing
- view
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、VTRのキャプス
タンモータやCD−ROMのディスク媒体用のスピンド
ルモータ等に使用され、広い回転速度域にわたってシャ
フトを軸支する焼結含油軸受の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sintered oil-impregnated bearing which is used in a capstan motor of a VTR, a spindle motor for a disk medium of a CD-ROM, or the like and which supports a shaft over a wide rotation speed range. .
【0002】[0002]
【従来の技術】従来、VTRのキャプスタンモータ用軸
受やCD−ROMのスピンドルモータ用軸受には、高精
度で安価な焼結含油軸受が広く使用されている。そし
て、近年、VTRやCD−ROMの高機能化に伴い、広
い回転速度領域に使用可能なモータ用軸受が必要とされ
ている。2. Description of the Related Art Heretofore, highly accurate and inexpensive sintered oil-impregnated bearings have been widely used as bearings for VTR capstan motors and CD-ROM spindle motor bearings. Further, in recent years, as the VTRs and CD-ROMs have become more sophisticated, there has been a demand for motor bearings that can be used in a wide range of rotational speeds.
【0003】一般に、軸受の表面開口率を大きくする
と、自己給油作用によって油の供給が促進されて、高回
転速度領域での油切れが防止でき潤滑特性が向上する。
一方、表面開口率を小さくすれば、油の逃げが防止でき
るので、安定した油膜の形成が可能となり、低回転速度
領域での潤滑特性が向上する。したがって、表面開口率
の大きい粗部と表面開口率の小さい密部とを有する軸受
は、広い回転速度領域に使用可能なモータ用軸受として
期待できる。Generally, when the surface opening ratio of the bearing is increased, the supply of oil is promoted by the self-lubricating action, the oil running out in the high rotation speed region can be prevented, and the lubrication characteristics are improved.
On the other hand, if the surface aperture ratio is reduced, the escape of oil can be prevented, so that a stable oil film can be formed and the lubricating characteristics in the low rotation speed region are improved. Therefore, a bearing having a rough portion having a large surface aperture ratio and a dense portion having a small surface aperture ratio can be expected as a motor bearing that can be used in a wide rotational speed range.
【0004】内周面に粗部と密部とを有する焼結含油軸
受は公知である。例えば、特開平1−219108号公
報には、外周面に複数の溝を有する成形体を焼結後、真
円の金型を用いてサイジングすることにより、ポア比
(ポアの面積/全体の面積)小の密な面とポア比大の粗
な面とが隣接してなる軸受が提案されている。また、特
開平6−123313号公報には、外周面の所定箇所に
表面の粗い荒し部を有するコアロッドを用い、圧粉体成
形時に前記荒し部に接する部分の圧粉体のポーラスを潰
して表面開口率を小さくし、シャフトとの摺動面とした
軸受が提案されている。また、特開平11−28076
6号公報には、圧粉体成形時にセンタコアの溝によって
形成された凸部を、センタコアを抜き出す際にしごいて
削りとることにより形成された表面開口率の小さい目潰
し部を有する軸受が提案されている。A sintered oil-impregnated bearing having a rough portion and a dense portion on its inner peripheral surface is known. For example, in Japanese Unexamined Patent Publication No. 1-219108, a sintered body having a plurality of grooves on its outer peripheral surface is sintered and then sized by using a perfect circular die to obtain a pore ratio (pore area / total area). ) A bearing in which a small dense surface and a rough surface having a large pore ratio are adjacent to each other has been proposed. Further, in Japanese Unexamined Patent Publication No. 6-123313, a core rod having a roughened surface portion at a predetermined location on the outer peripheral surface is used, and the surface of the green compact is crushed by crushing the porosity of the green compact portion in contact with the roughened portion during compacting. A bearing having a small opening ratio and a sliding surface with respect to the shaft has been proposed. In addition, JP-A-11-28076
No. 6 discloses a bearing having a crushed portion having a small surface opening ratio, which is formed by shaving a convex portion formed by a groove of a center core during green compact molding when the center core is extracted. There is.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
従来の方法では、アンダーカットを有する圧粉体をコア
ロッドから抜き取ろうとすると、以下のような問題があ
った。図面を用いて説明する。However, in the above-mentioned conventional method, when attempting to extract the green compact having the undercut from the core rod, there were the following problems. This will be described with reference to the drawings.
【0006】図36は、従来の焼結含油軸受の製造方法
における圧粉体の製造工程を示す模式的な断面図であ
る。原料粉末51は、上下方向を軸方向とする外型のダ
イ53と、ダイ53内に同軸的に配置された内型のコア
ロッド54と、ダイ53とコアロッド54間に摺動自在
に嵌合された下パンチ55との間に充填される(図36
(a))。次いで、上パンチ56を下降させてダイ53
とコアロッド54との間に摺動自在に嵌合させ原料粉末
51を加圧圧縮して圧粉体52とする(図36
(b))。そして、上パンチ56がダイ53より上昇し
た後、下パンチ55を上昇させてダイ53から圧粉体5
2を抜き出す(図36(c))。そして、圧粉体52を
排出するとともに、下パンチ55を下降させる(図36
(d)。FIG. 36 is a schematic sectional view showing a process for producing a green compact in a conventional method for producing a sintered oil-impregnated bearing. The raw material powder 51 is slidably fitted between an outer die 53 having an up-down direction as an axial direction, an inner die core rod 54 coaxially arranged in the die 53, and the die 53 and the core rod 54. Between the lower punch 55 and the lower punch 55 (see FIG. 36).
(A)). Then, the upper punch 56 is lowered to move the die 53.
36 and the core rod 54 are slidably fitted to each other and the raw material powder 51 is compressed under pressure to form a green compact 52 (FIG. 36).
(B)). Then, after the upper punch 56 is lifted from the die 53, the lower punch 55 is lifted to move the green compact 5 from the die 53.
2 is extracted (FIG. 36 (c)). Then, the green compact 52 is discharged and the lower punch 55 is lowered (see FIG. 36).
(D).
【0007】すなわち、従来の方法では、コアロッドの
外周面と圧粉体の内周面との摩擦により、微細なポーラ
スが移動・集約されて大きなポーラスとなり凸部や凸部
以外の内周面の表面開口率が大きくなる場合があるの
で、アンダーカットの形状に応じて表面開口率を変化さ
せ粗部と密部とを形成するのは容易ではなかった。その
ため、広い回転速度領域に対応できる軸受特性を得るこ
とが困難であった。That is, in the conventional method, the fine porous material is moved and aggregated by the friction between the outer peripheral surface of the core rod and the inner peripheral surface of the green compact to form a large porous material. Since the surface aperture ratio may increase, it is not easy to change the surface aperture ratio according to the shape of the undercut to form the rough portion and the dense portion. Therefore, it has been difficult to obtain bearing characteristics that can accommodate a wide range of rotation speeds.
【0008】そこで、本発明は、アンダーカットの形状
に応じて表面開口率を容易に変化させることの可能な焼
結含油軸受の製造方法を提供することを目的とした。Therefore, an object of the present invention is to provide a method for manufacturing a sintered oil-impregnated bearing capable of easily changing the surface aperture ratio according to the shape of the undercut.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
め、圧粉体の成形において、金型内で加圧後、圧粉体を
上パンチ及び下パンチにより加圧した状態を保持したま
まで、コアロッドと上パンチ及び下パンチとを同期させ
て軸方向に移動させダイより圧粉体の抜き出しと、圧粉
体からのコアロッドの抜き取りとを行なうものであり、
これにより、圧粉体の内周面に凹溝部と凸条部とからな
る凹凸面を形成するものである。In order to achieve the above object, in the molding of a green compact, after the powder is pressed in a mold, the green compact is kept pressed by an upper punch and a lower punch. Then, the core rod and the upper punch and the lower punch are synchronously moved in the axial direction to extract the green compact from the die and extract the core rod from the green compact.
As a result, a concavo-convex surface including concave groove portions and convex rib portions is formed on the inner peripheral surface of the green compact.
【0010】すなわち、本発明の製造方法においては、
ダイ内に同軸的に配置されるコアロッドの外周面に複数
の凹部及び凸部を形成し、ダイとコアロッド間に摺動自
在に嵌合された下パンチとの間に原料粉末を充填し、下
パンチと上パンチとを軸方向に移動させ、原料粉末を加
圧圧縮して圧粉体とするが、その特徴は、該圧粉体を上
パンチ及び下パンチにより加圧した状態を保持したまま
で、コアロッドと上パンチ及び下パンチとを同期させて
軸方向に移動せしめてダイより抜き出して、ダイからの
圧粉体への圧縮力を解放せしめ、上下加圧保持のまま、
スプリングバックにより内径の拡大した圧粉体よりコア
ロッドを抜き取るものである。That is, in the manufacturing method of the present invention,
A plurality of recesses and protrusions are formed on the outer peripheral surface of the core rod coaxially arranged in the die, and raw material powder is filled between the die and the lower punch slidably fitted between the core rod and the lower punch. The punch and the upper punch are moved in the axial direction, and the raw material powder is pressure-compressed to obtain a green compact, which is characterized by maintaining the state in which the green compact is pressed by the upper punch and the lower punch. Then, the core rod and the upper punch and the lower punch are synchronously moved in the axial direction and extracted from the die to release the compressive force from the die to the green compact, and while maintaining the vertical pressure,
The core rod is pulled out from the powder compact whose inner diameter is enlarged by spring back.
【0011】本発明の製造方法によれば、上パンチと下
パンチによる圧粉体の軸方向への加圧状態を保持したま
まで、ダイから圧粉体への圧縮力を解放させているの
で、従来のように圧粉体を上パンチと下パンチとで加圧
した状態を保持しない場合に比べ、圧粉体のスプリング
バック量を2倍近く大きくすることができる。したがっ
て、本発明の方法では、アンダーカットを有するコアロ
ッドを圧粉体から容易に抜き取ることができる。これに
より、圧粉体の内周面とコアロッドの外周面との摩擦を
低減する又はなくすことができるので、コアロッド抜き
取り時に微細なポーラスが移動・集約されて大きなポー
ラスとなるのを防止することが可能となる。According to the manufacturing method of the present invention, the compression force from the die to the green compact is released while maintaining the axially pressed state of the green compact by the upper punch and the lower punch. The springback amount of the green compact can be almost doubled as compared with the conventional case where the state where the green compact is pressed by the upper punch and the lower punch is not held. Therefore, in the method of the present invention, the core rod having the undercut can be easily extracted from the green compact. As a result, the friction between the inner peripheral surface of the green compact and the outer peripheral surface of the core rod can be reduced or eliminated, so that it is possible to prevent the fine pores from being moved and aggregated to become a large pore when the core rod is extracted. It will be possible.
【0012】また、アンダーカット量、即ち、コアロッ
ドの外周面の凸部の突出量を大きくとることができるの
で圧粉体の内周面に付与できるアンダーカットの形状を
かなり自由に設定し形成することができる。これによ
り、使用する回転速度域に合わせて油を供給し循環させ
る油路形状の形成が容易となる。Further, since the amount of undercut, that is, the amount of protrusion of the convex portion of the outer peripheral surface of the core rod can be made large, the shape of the undercut that can be applied to the inner peripheral surface of the green compact can be set and formed quite freely. be able to. This facilitates the formation of an oil passage shape in which oil is supplied and circulated according to the rotation speed range used.
【0013】また、本発明の製造方法においては、上記
凹部と凸部とを形成した圧粉体を焼結した後、焼結体の
内周面を真円状に仕上加工し、内周面の凸部には表面開
口率の小さい密部を、凹部には密部より表面開口率の大
きい粗部を形成することができる。内径仕上げ工具を用
いて仕上げ加工すると、塑性変形により凸部と凹部とが
真円状に加工される。ここで、凹部と凸部の仕上げ代の
違いにより、凸部は微細なポーラスが潰され表面開口率
の小さい密部となり、油の逃げが防止できるので安定し
た油膜の形成が可能となる。一方、凹部には密部よりは
表面開口率の大きい粗部にあたる油路が形成され、油の
供給部と油の循環部となる。Further, in the manufacturing method of the present invention, after the green compact having the above-mentioned concave and convex portions is sintered, the inner peripheral surface of the sintered body is finished into a perfect circular shape, and the inner peripheral surface is finished. It is possible to form a dense portion having a small surface aperture ratio in the convex portion and a rough portion having a larger surface aperture ratio in the concave portion. When finishing is performed using an inner diameter finishing tool, the convex portion and the concave portion are processed into a perfect circular shape due to plastic deformation. Here, due to the difference in the finishing allowance between the concave portion and the convex portion, the convex portion becomes a dense portion with a small surface aperture ratio by crushing fine pores, and oil escape can be prevented, so that a stable oil film can be formed. On the other hand, an oil passage corresponding to a rough portion having a surface opening ratio larger than that of the dense portion is formed in the concave portion and serves as an oil supply portion and an oil circulation portion.
【0014】また、本発明においては、従来に比べ、ス
プリングバック量を大きくすることができるので、圧粉
体の内周面の凸部の突出量を大きくすることができる。
これにより、仕上げ加工時における凸部への内径仕上げ
工具の圧縮力が増加するので、塑性変形によるポーラス
の潰しが促進され、より表面開口率を小さくすることが
可能となる。Further, in the present invention, the springback amount can be increased as compared with the prior art, so that the protrusion amount of the convex portion on the inner peripheral surface of the green compact can be increased.
As a result, the compressive force of the inner diameter finishing tool on the convex portion at the time of finishing is increased, so that the crushing of the porous due to plastic deformation is promoted and the surface aperture ratio can be further reduced.
【0015】本発明の製造方法により作製された焼結含
油軸受は、内周面に、表面開口率が大である粗部と、粗
部より表面開口率の小さい密部とを複数有し、かつ、従
来に比べ、平均的には微細なポーラスを有する。密部に
おいては表面開口率を、10%以下、好ましくは8%以
下を容易に得ることができる。粗部は、油を多く保持
し、シャフト回転時に密部へ油を供給し、循環させるの
で、密部において安定した油膜が形成され、広い回転速
度領域に使用可能な軸受となる。The sintered oil-impregnated bearing manufactured by the manufacturing method of the present invention has, on the inner peripheral surface thereof, a plurality of rough portions having a large surface opening ratio and dense portions having a surface opening ratio smaller than that of the rough portions. In addition, it has a fine pore on average as compared with the conventional one. A surface aperture ratio of 10% or less, preferably 8% or less, can be easily obtained in the dense portion. The rough portion holds a large amount of oil and supplies and circulates the oil to the dense portion when the shaft rotates, so that a stable oil film is formed in the dense portion, and the bearing can be used in a wide rotation speed range.
【0016】[0016]
【発明の実施の形態】実施の形態1.図1は、実施の形
態1に係る焼結含油軸受の製造方法において、圧粉体の
製造工程を示す模式断面図である。粉末充填時には、上
下方向を軸方向とする外型のストレート型の中空内面を
有するダイ3と、ダイ3内面に同軸的に配置された内型
のコアロッド4と、ダイ3とコアロッド4との間に摺動
自在に嵌合された下パンチ6とが配置され、原料粉末1
がダイ3とコアロッド4との空隙に充填される(図1
(a))。次いで、上パンチ5を下降させてダイ3とコ
アロッド4との間に嵌入し、上パンチ5と下パンチ6と
により原料粉末1を加圧圧縮して圧粉体2とする(図1
(b))。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a schematic cross-sectional view showing a process for producing a green compact in the method for producing a sintered oil-impregnated bearing according to the first embodiment. At the time of powder filling, a die 3 having an outer straight type hollow inner surface whose axial direction is the vertical direction, an inner core rod 4 coaxially arranged on the inner surface of the die 3, and a space between the die 3 and the core rod 4. A lower punch 6 slidably fitted to the raw powder 1
Is filled in the space between the die 3 and the core rod 4 (see FIG. 1).
(A)). Next, the upper punch 5 is lowered and fitted between the die 3 and the core rod 4, and the raw material powder 1 is pressure-compressed by the upper punch 5 and the lower punch 6 to obtain a green compact 2 (FIG. 1).
(B)).
【0017】コアロッド4には、図2に示すような、外
周面に、複数の所定幅の凹溝部と凸条部とが交互に配置
された凹凸面からなるアンダーカットが形成されている
ものを用いることができる。コアロッドの上記凹凸面
は、圧粉体の加圧圧縮時に圧粉体の内周面に転写賦形さ
れる。As shown in FIG. 2, the core rod 4 has an outer peripheral surface on which an undercut is formed which is an uneven surface in which a plurality of recessed grooves and projections having a predetermined width are alternately arranged. Can be used. The uneven surface of the core rod is transferred and shaped on the inner peripheral surface of the green compact when the green compact is pressed and compressed.
【0018】そして、圧粉体2を上パンチ5及び下パン
チ6により加圧保持した状態で、コアロッド4と上パン
チ5及び下パンチ6とを同期させて軸方向に移動させダ
イ3より抜き出して、ダイ3から圧粉体2への圧縮力を
解放させる(図1(c))。この時、圧粉体2は上パン
チ5と下パンチ6とにより軸方向に加圧されているの
で、軸方向に加圧していない場合に比べ、2倍近い0.
3〜0.5%の大きなスプリングバック量が得られる。
このスプリングバックにより、圧粉体2の内径が拡大す
るので、コアロッド4を容易に抜き取ることができる
(図1(d))。次いで、圧粉体2を排出して下パンチ
6を下降させて圧粉体の作製工程が終了する(図1
(e))。Then, in a state where the green compact 2 is pressed and held by the upper punch 5 and the lower punch 6, the core rod 4 and the upper punch 5 and the lower punch 6 are synchronously moved in the axial direction and extracted from the die 3. , The compression force from the die 3 to the green compact 2 is released (FIG. 1 (c)). At this time, since the green compact 2 is pressed in the axial direction by the upper punch 5 and the lower punch 6, it is almost twice as large as that in the case where it is not pressed in the axial direction.
A large springback amount of 3 to 0.5% can be obtained.
The spring back expands the inner diameter of the green compact 2 so that the core rod 4 can be easily pulled out (FIG. 1 (d)). Next, the green compact 2 is discharged and the lower punch 6 is lowered to complete the green compact manufacturing process (FIG. 1).
(E)).
【0019】ここで、アンダーカットを有しない圧粉体
についてのスプリングバック量と相対密度との関係を実
験的に求めた結果を、図3のグラフに示す。試料1は、
本実施の形態の方法を用いて形成した圧粉体であり、試
料2は従来の方法により形成された圧粉体である。な
お、相対密度は、圧粉体の密度を圧粉体にポーラスがな
いと仮定した場合の密度で割ったもので、相対密度が大
きいと表面開口率が低下する。相対密度が76〜86%
の範囲で、試料2は、ほぼ0.2%のスプリングバック
率であるのに対し、試料1は、0.35〜0.45%程
度と、試料2の2倍近いスプリングバック率を与えた。The graph of FIG. 3 shows the experimental results of the relationship between the springback amount and the relative density of a green compact having no undercut. Sample 1 is
It is a green compact formed by the method of the present embodiment, and sample 2 is a green compact formed by the conventional method. The relative density is obtained by dividing the density of the green compact by the density on the assumption that the green compact has no porosity. If the relative density is large, the surface aperture ratio decreases. Relative density is 76-86%
In the range of, the sample 2 has a springback rate of about 0.2%, while the sample 1 has a springback rate of about 0.35 to 0.45%, which is almost twice as much as that of the sample 2. .
【0020】また、このようにして作製した圧粉体2
は、焼結工程を経た後、内径仕上げ加工を施される。図
4は、仕上げ加工の工程を示す模式図であり、軸受部分
のみ断面図で示している。一対の軸受10a,10bは
所定のホルダー16に圧入された後、固定用治具17に
固定される。そして、回転器チャック部18に取り付け
られた外接面が正確に所望直径に形成された仕上げ工具
19を軸孔に回転挿入させることにより、軸受10a,
10bの内周面が塑性変形されて真円状に加工される。
この加工の際に、焼結体の内周面の凸部が圧縮されて、
ほぼ真円の円筒面が形成される。Further, the green compact 2 produced in this way
After undergoing a sintering process, is subjected to inner diameter finishing. FIG. 4 is a schematic diagram showing a finishing process, and only the bearing portion is shown in a sectional view. The pair of bearings 10a and 10b are press-fitted into a predetermined holder 16 and then fixed to a fixing jig 17. Then, by rotatably inserting the finishing tool 19 with the circumscribed surface attached to the rotator chuck portion 18 having a desired diameter into the shaft hole, the bearing 10a,
The inner peripheral surface of 10b is plastically deformed and processed into a perfect circle.
At the time of this processing, the convex portion of the inner peripheral surface of the sintered body is compressed,
A substantially circular cylindrical surface is formed.
【0021】図5に示すように、得られた焼結含油軸受
11には、表面開口率の大きい粗部12、粗部12より
表面開口率の小さい密部13とが形成されている。圧粉
体内周面に形成されていた凸部と凹部は、仕上げ代の違
いから、それぞれ、密部13と粗部12となる。As shown in FIG. 5, the obtained sintered oil-impregnated bearing 11 is formed with a rough portion 12 having a large surface opening ratio and a dense portion 13 having a surface opening ratio smaller than that of the rough portion 12. The convex portion and the concave portion formed on the inner surface of the green compact become the dense portion 13 and the rough portion 12, respectively, due to the difference in finishing allowance.
【0022】[0022]
【表1】 [Table 1]
【0023】表1に、上記試料1と2の仕上げ加工前後
の表面開口率とポーラスの個数を実験的に求めた結果を
示す。仕上げ加工前では試料1と2の表面開口率はほぼ
同じであるが、仕上げ加工後の試料1の表面開口率は試
料2の半分程度まで小さくなった。また、仕上げ加工の
前後いずれの場合も、試料1は試料2の2倍程度の数の
ポーラスを有していた。これより、本実施の形態の方法
を用いて形成した圧粉体の焼結体を仕上げ加工すること
により、従来の方法に比べ、より表面開口率を小さくで
きることが可能なことがわかる。また、本実施の形態の
方法を用いて形成した圧粉体は、従来の方法を用いて形
成した圧粉体に比べ、元々微細なポーラスが多く、焼結
後、仕上げ加工する際の塑性変形により、微細なポーラ
スは潰れ易いので、表面開口率が小さくなり易い。Table 1 shows the results obtained by experimentally determining the surface aperture ratio and the number of pores of Samples 1 and 2 before and after finishing. The surface aperture ratios of Samples 1 and 2 were almost the same before finishing, but the surface aperture ratio of Sample 1 after finishing was reduced to about half that of Sample 2. Further, in both cases before and after the finishing process, the sample 1 had a porosity about twice as many as the sample 2. From this, it is understood that by finishing the sintered compact of the green compact formed using the method of the present embodiment, the surface aperture ratio can be made smaller than that of the conventional method. In addition, the green compact formed by the method of the present embodiment originally has many fine porous particles as compared with the green compact formed by the conventional method, and plastic deformation during finishing after sintering is performed. As a result, the fine pores are easily crushed, so that the surface aperture ratio tends to be small.
【0024】これは、図6〜9の圧粉体の表面状態の顕
微鏡写真からも明らかである。ここで、図6と7は、そ
れぞれ、試料2と1の仕上げ加工前の圧粉体の表面状態
を示し、図8と9は、それぞれ、仕上げ加工後の試料2
と1の表面状態を示す。これより、仕上げ加工前後にお
いて、試料2は試料1に比べ、大きなポーラスが多く存
在していることが明らかである。This is also apparent from the micrographs of the surface state of the green compact shown in FIGS. Here, FIGS. 6 and 7 show the surface state of the green compact before finishing of Samples 2 and 1, respectively, and FIGS. 8 and 9 show the sample 2 after finishing, respectively.
And the surface condition of 1 are shown. From this, it is clear that before and after the finishing process, the sample 2 has a large number of large pores as compared with the sample 1.
【0025】本実施の形態によれば、スプリングバック
量を増加させることにより、次式で規定される圧粉体の
内周面へのアンダーカット量を内周面の直径の0.7%
程度まで増加させることが可能となる。アンダーカット
量≦スプリングバック量+圧粉体の弾性変形量これによ
り、仕上げ加工による内周面の粗部と密部との表面開口
率の差を大きくすることができるので、アンダーカット
の形状に応じて表面開口率を変化させるのが容易とな
る。よって、広い回転速度領域に対応できる軸受を得る
ことが可能となる。また、コアロッドのアンダーカット
量に対する高い寸法精度が不要となり、より安価なコア
ロッドを使用することができる。According to the present embodiment, by increasing the springback amount, the undercut amount of the green compact defined by the following equation to the inner peripheral surface is 0.7% of the diameter of the inner peripheral surface.
It is possible to increase to a certain degree. Undercut amount ≤ Springback amount + Elastic deformation amount of green compact By this, it is possible to increase the difference in surface aperture ratio between the rough portion and the dense portion of the inner peripheral surface due to the finishing process, so the shape of the undercut Accordingly, it becomes easy to change the surface aperture ratio. Therefore, it is possible to obtain a bearing that can handle a wide range of rotation speeds. Further, high dimensional accuracy with respect to the undercut amount of the core rod becomes unnecessary, and a cheaper core rod can be used.
【0026】本実施の形態の製造方法により得られた軸
受は、内周面の円周方向に配置された粗部と密部とを有
しているので、粗部から密部への油の供給が容易であ
り、キャプスタンモータ用やスピンドルモータ用の広い
回転速度領域のモータ用の軸受に好適に使用できる。Since the bearing obtained by the manufacturing method of the present embodiment has the rough portion and the dense portion arranged in the circumferential direction of the inner peripheral surface, the oil from the rough portion to the dense portion can be prevented. It is easy to supply and can be suitably used for bearings for motors in a wide rotation speed range for capstan motors and spindle motors.
【0027】また、コアロッドを抜き取る時の摩擦を低
減し、又は解除することができるので、圧粉体の内周面
の微細なポーラスが移動・集約されて大きなポーラスと
なるのを抑制できる。これにより、従来に比べ内周面の
表面開口率を平均的に小さくすることが可能となり、摺
動面における油膜の形成を安定させることができる。さ
らに、油の逃げを防止できるので金属接触が低減され、
シャフトが側圧を受ける場合には、なじみに要する時間
を短縮できる効果も有する。Further, since it is possible to reduce or cancel the friction at the time of pulling out the core rod, it is possible to prevent the fine porous particles on the inner peripheral surface of the green compact from being moved and aggregated to form a large porous material. As a result, the surface aperture ratio of the inner peripheral surface can be made smaller on average than in the conventional case, and the formation of the oil film on the sliding surface can be stabilized. In addition, since oil escape can be prevented, metal contact is reduced,
When the shaft is subjected to lateral pressure, it also has the effect of shortening the time required for running in.
【0028】実施の形態2.図10は、本実施の形態2
における圧粉体の製造工程を示す模式断面図である。ダ
イに段付きダイを用い、図11に示す、外周面の軸方向
に、所定幅の環状の凹部と凸部とが交互に配置されたア
ンダーカットを有するコアロッドを用いた以外は、実施
の形態1と同様の方法により焼結含油軸受を形成でき
る。Embodiment 2. FIG. 10 shows the second embodiment.
FIG. 3 is a schematic cross-sectional view showing the manufacturing process of the green compact in FIG. Embodiment except that a stepped die is used as the die and a core rod having an undercut in which annular recesses and protrusions of a predetermined width are alternately arranged in the axial direction of the outer peripheral surface shown in FIG. 11 is used. A sintered oil-impregnated bearing can be formed by the same method as in No. 1.
【0029】本実施の形態によれば、図12に示すよう
な、内周面の軸方向に、所定幅で粗部12と密部13と
を環状に複数交互に配置した焼結含油軸受を作製するこ
とができる。本実施の形態においても、実施の形態1と
同様な効果を有する。すなわち、仕上げ加工による内周
面の粗部と密部との表面開口率の差を大きくすることが
できるので、アンダーカットの形状に応じて表面開口率
を変化させるのが容易となる。また、コアロッドのアン
ダーカット量に対する高い寸法精度が不要となり、より
安価なコアロッドを使用することができる。さらに、粗
部から密部への油の供給と油の循環が容易であり、キャ
プスタンモータ用やスピンドルモータ用の広い回転速度
領域のモータ用の軸受に好適に使用できる。また、従来
に比べ摺動面における油膜の形成を安定させることがで
き、油の逃げが防止できるので金属接触が低減され、シ
ャフトが側圧を受ける場合には、なじみに要する時間を
短縮できる。According to the present embodiment, as shown in FIG. 12, a sintered oil-impregnated bearing in which a plurality of rough portions 12 and dense portions 13 having a predetermined width are alternately arranged in an annular direction in the axial direction of the inner peripheral surface is provided. Can be made. Also in this embodiment, the same effect as that of the first embodiment is obtained. That is, since the difference in the surface aperture ratio between the rough portion and the dense portion of the inner peripheral surface due to the finishing process can be increased, it becomes easy to change the surface aperture ratio according to the shape of the undercut. Further, high dimensional accuracy with respect to the undercut amount of the core rod becomes unnecessary, and a cheaper core rod can be used. Further, it is easy to supply and circulate oil from the rough portion to the dense portion, and it can be suitably used as a bearing for a motor of a capstan motor or a spindle motor in a wide rotation speed range. Further, as compared with the conventional case, the formation of an oil film on the sliding surface can be stabilized, and the escape of oil can be prevented, so that metal contact is reduced, and when the shaft receives lateral pressure, the time required for running-in can be shortened.
【0030】また、本発明によれば、コアロッドのアン
ダーカット量を大きくとれるので、コアロッドに加工可
能な形状であればいかなる形状でも形成できる。これに
より、実施の形態1と2に示したアンダーカットの形状
以外にも、種々な形状のアンダーカットを軸受に賦与す
ることができる。以下に示す変形例は、実施の形態1の
変形例であり、コアロッドのアンダーカットの形状が異
なる以外は、実施の形態1と同様の方法により作製さ
れ、かつ、実施の形態1と同様の効果を示すものであ
る。Further, according to the present invention, since the undercut amount of the core rod can be made large, any shape can be formed as long as it can be processed into a core rod. As a result, in addition to the undercut shapes shown in the first and second embodiments, various shapes of undercut can be provided to the bearing. The modification shown below is a modification of the first embodiment, and is manufactured by the same method as that of the first embodiment except that the shape of the undercut of the core rod is different, and the same effect as that of the first embodiment. Is shown.
【0031】すなわち、以下に説明する実施の形態1の
変形例のいずれにおいても、仕上げ加工による内周面の
粗部と密部との表面開口率の差を大きくすることができ
るので、アンダーカットの形状に応じて表面開口率を変
化させるのが容易となる。また、コアロッドのアンダー
カット量に対する高い寸法精度が不要となり、より安価
なコアロッドを使用することができる。さらに、粗部か
ら密部への油の供給と油の循環が容易であり、キャプス
タンモータ用やスピンドルモータ用の広い回転速度領域
のモータ用の軸受に好適に使用できる。また、従来に比
べ摺動面における油膜の形成を安定させることができ、
油の逃げが防止できるので金属接触が低減され、シャフ
トが側圧を受ける場合には、なじみに要する時間を短縮
できる。That is, in any of the modifications of the first embodiment described below, the difference in the surface aperture ratio between the rough portion and the dense portion of the inner peripheral surface due to the finishing process can be increased, so that the undercut It becomes easy to change the surface aperture ratio according to the shape of the. Further, high dimensional accuracy with respect to the undercut amount of the core rod becomes unnecessary, and a cheaper core rod can be used. Further, it is easy to supply and circulate oil from the rough portion to the dense portion, and it can be suitably used as a bearing for a motor of a capstan motor or a spindle motor in a wide rotation speed range. In addition, compared to the past, it is possible to stabilize the formation of an oil film on the sliding surface,
Since the escape of oil can be prevented, metal contact is reduced, and when the shaft is subjected to lateral pressure, the time required for running-in can be shortened.
【0032】変形例1.図13は、用いたコアロッドの
形状を示す模式平面図であり、長手方向に凹溝部14と
凸条部15とが交互に配置された形状を有するものであ
る。図14(a)は、そのコアロッドを用いて作製した
焼結含油軸受の構造を示す模式断面図であり、粗部12
と密部13とが円周方向に交互に格子状に配置されてい
る。また、図14(b)は、図13に示したコアロッド
の凹溝部14と凸条部15を逆にしたコアロッドを用い
て作製した焼結含油軸受の構造を示す模式断面図であ
る。Modification 1. FIG. 13 is a schematic plan view showing the shape of the core rod used, and has a shape in which the groove portions 14 and the ridge portions 15 are alternately arranged in the longitudinal direction. FIG. 14A is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured by using the core rod.
And dense portions 13 are alternately arranged in a grid pattern in the circumferential direction. Further, FIG. 14B is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured using a core rod in which the concave groove portion 14 and the convex ridge portion 15 of the core rod shown in FIG. 13 are reversed.
【0033】変形例2.図11に示すコアロッドを使用
した。図15(a)の模式断面図で示すように、円周方
向に環状の粗部12と密部13とが交互に配置された形
状を有するものである。また、図15(b)は、、図1
1に示したコアロッドの凹溝部14と凸条部15を逆に
したコアロッドを用いて作製した焼結含油軸受の構造を
示す模式断面図である。Modification 2. The core rod shown in FIG. 11 was used. As shown in the schematic cross-sectional view of FIG. 15A, it has a shape in which annular rough portions 12 and dense portions 13 are alternately arranged in the circumferential direction. In addition, FIG.
FIG. 3 is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing produced by using a core rod in which the concave groove portion 14 and the convex stripe portion 15 of the core rod shown in 1 are reversed.
【0034】変形例3.図16は、用いたコアロッドの
形状を示す模式平面図であり、幅方向の周縁部に幅狭の
凹溝部14と中央部に幅広の凸条部15とが配置された
形状を有するものである。図17(a)は、そのコアロ
ッドを用いて作製した焼結含油軸受の構造を示す模式断
面図であり、軸方向の周縁部に幅狭の環状の粗部12と
中央部に幅広の環状の密部13とが配置された形状を有
するものである。また、図17(b)は、図16に示し
たコアロッドの凹溝部14と凸条部15を逆にしたコア
ロッドを用いて作製した焼結含油軸受の構造を示す模式
断面図である。Modification 3. FIG. 16 is a schematic plan view showing the shape of the core rod used, which has a shape in which a narrow groove portion 14 is arranged at the peripheral portion in the width direction and a wide ridge portion 15 is arranged at the center portion. . FIG. 17 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing produced by using the core rod, in which a narrow annular rough portion 12 is provided at the peripheral portion in the axial direction and a wide annular portion is provided at the central portion. It has a shape in which the dense portion 13 is arranged. 17B is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured using a core rod in which the concave groove portion 14 and the convex stripe portion 15 of the core rod shown in FIG. 16 are reversed.
【0035】変形例4.図18は、用いたコアロッドの
形状を示す模式平面図であり、斜行し交互に長手方向に
配置された凹溝部14と凸条部15とを有している。図
19(a)は、そのコアロッドを用いて作製した焼結含
油軸受の構造を示す模式断面図であり、斜行する粗部1
2と密部13とが円周方向に交互に配置された形状を有
するものである。また、図19(b)は、図18に示し
たコアロッドの凹溝部14と凸条部15を逆にしたコア
ロッドを用いて作製した焼結含油軸受の構造を示す模式
断面図である。Modification 4. FIG. 18 is a schematic plan view showing the shape of the core rod used, which has concave groove portions 14 and convex stripe portions 15 that are oblique and are alternately arranged in the longitudinal direction. FIG. 19 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured by using the core rod, in which the rough portion 1 is inclined.
2 and the dense portion 13 have a shape in which they are alternately arranged in the circumferential direction. 19B is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured by using a core rod in which the concave groove portion 14 and the convex streak portion 15 of the core rod shown in FIG. 18 are reversed.
【0036】変形例5.図20は、用いたコアロッドの
形状を示す模式平面図であり、矩形の凹部14が長手方
向と幅方向とで互い違いになるように、所定間隔離間し
て配置されている。図21(a)は、そのコアロッドを
用いて作製した焼結含油軸受の構造を示す模式断面図で
あり、矩形の密部13が円周方向と幅方向に互い違いに
なるように所定間隔離間して配置された形状を有するも
のである。また、図21(b)は、図20に示したコア
ロッドの凹部14と凸部15を逆にしたコアロッドを用
いて作製した焼結含油軸受の構造を示す模式断面図であ
る。Modification 5 FIG. 20 is a schematic plan view showing the shape of the core rod used, and the rectangular recesses 14 are arranged at predetermined intervals so as to be staggered in the longitudinal direction and the width direction. FIG. 21 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured by using the core rod, and the rectangular dense portions 13 are spaced by a predetermined distance so that they are staggered in the circumferential direction and the width direction. It has a shape that is arranged. 21B is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured by using the core rod in which the concave portion 14 and the convex portion 15 of the core rod shown in FIG. 20 are reversed.
【0037】変形例6.図22は、用いたコアロッドの
形状を示す模式平面図であり、菱形の凹部14が、長手
方向と幅方向とで互い違いになるように、所定間隔離間
して配置されている。図23(a)は、そのコアロッド
を用いて作製した焼結含油軸受の構造を示す模式断面図
であり、矩形の密部13が円周方向と軸方向に互い違い
になるように所定間隔離間して配置された形状を有する
ものである。また、図23(b)は、図22に示したコ
アロッドの凹部14と凸部15を逆にしたコアロッドを
用いて作製した焼結含油軸受の構造を示す模式断面図で
ある。Modification 6. FIG. 22 is a schematic plan view showing the shape of the core rod used, and the diamond-shaped recesses 14 are arranged at predetermined intervals so as to be staggered in the longitudinal direction and the width direction. FIG. 23 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing produced by using the core rod, and the rectangular dense portions 13 are spaced by a predetermined distance so as to alternate in the circumferential direction and the axial direction. It has a shape that is arranged. Also, FIG. 23B is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured using a core rod in which the concave portions 14 and the convex portions 15 of the core rod shown in FIG. 22 are reversed.
【0038】変形例7.図24は、用いたコアロッドの
形状を示す模式平面図であり、長手方向にV字状の凹溝
部14とV字状の凸条部15とが交互に配置されてい
る。図25(a)は、そのコアロッドを用いて作製した
焼結含油軸受の構造を示す模式断面図であり、円周方向
にV字状の粗部12とV字状の密部13とが交互に配置
された形状を有するものである。また、図25(b)
は、図24に示したコアロッドの凹溝部14と凸条部1
5を逆にしたコアロッドを用いて作製した焼結含油軸受
の構造を示す模式断面図である。Modified Example 7. FIG. 24 is a schematic plan view showing the shape of the core rod used, in which V-shaped concave groove portions 14 and V-shaped convex streak portions 15 are alternately arranged in the longitudinal direction. FIG. 25 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured using the core rod, in which V-shaped rough portions 12 and V-shaped dense portions 13 alternate in the circumferential direction. It has a shape arranged in. Further, FIG. 25 (b)
Is the concave groove portion 14 and the ridge portion 1 of the core rod shown in FIG.
It is a schematic cross section which shows the structure of the sintered oil-impregnated bearing produced using the core rod which reversed 5.
【0039】変形例8.図26は、用いたコアロッドの
形状を示す模式平面図であり、幅方向の周縁凹溝部と幅
方向に延びるジグザク凹溝部とからなる凹溝部14が長
手方向に配置されている。図27(a)は、そのコアロ
ッドを用いて作製した焼結含油軸受の構造を示す模式断
面図であり、軸方向に延びるジグザク密部と周縁密部と
からなる密部13と、その周囲の粗部12とが円周方向
に配置された形状を有するものである。また、図27
(b)は、図26に示したコアロッドの凹溝部14と凸
部15を逆にしたコアロッドを用いて作製した焼結含油
軸受の構造を示す模式断面図である。Modified Example 8. FIG. 26 is a schematic plan view showing the shape of the core rod used, in which the concave groove portion 14 including the peripheral edge concave groove portion in the width direction and the zigzag concave groove portion extending in the width direction is arranged in the longitudinal direction. FIG. 27 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing produced by using the core rod, and shows a dense portion 13 composed of a zigzag dense portion and a peripheral dense portion extending in the axial direction, and a surrounding portion thereof. The rough portion 12 and the rough portion 12 are arranged in the circumferential direction. In addition, FIG.
FIG. 27B is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured using a core rod in which the concave groove portions 14 and the convex portions 15 of the core rod shown in FIG. 26 are reversed.
【0040】変形例9.図28は、用いたコアロッドの
形状を示す模式平面図であり、幅方向の周縁凹溝部と斜
行して長手方向に延びるジグザク凹部と、ジグザク凹部
と周縁凹溝部との間中央部に配置された菱形凹部とから
なる凹部14が長手方向に配置されている。図29
(a)は、そのコアロッドを用いて作製した焼結含油軸
受の構造を示す模式断面図であり、軸方向の周縁密部
と、斜行して長手方向に延びるジグザク密部と、ジグザ
ク密部と周縁密部との間中央部に配置された菱形密部と
からなるからなる密部13と、密部13の周囲の密部1
2とを有するものである。また、図29(b)は、図2
8に示したコアロッドの凹部14と凸部15を逆にした
コアロッドを用いて作製した焼結含油軸受の構造を示す
模式断面図である。Modification 9 FIG. 28 is a schematic plan view showing the shape of the core rod used, and it is arranged in a zigzag recessed portion that obliquely extends along the widthwise peripheral recessed groove portion and extends in the longitudinal direction, and in a central portion between the zigzag recessed portion and the peripheral recessed groove portion. A recess 14 composed of a diamond-shaped recess is arranged in the longitudinal direction. FIG. 29
(A) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing produced by using the core rod, and shows a peripheral peripheral dense portion in the axial direction, a zigzag dense portion that obliquely extends in the longitudinal direction, and a zigzag dense portion. And a dense part 13 composed of a diamond-shaped dense part arranged in the central part between the dense part 1 and the peripheral dense part, and a dense part 1 around the dense part 13.
2 and. In addition, FIG. 29 (b) corresponds to FIG.
9 is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured by using a core rod in which the concave portions 14 and the convex portions 15 of the core rod shown in FIG. 8 are reversed.
【0041】変形例10.図30は、用いたコアロッド
の形状を示す模式平面図であり、長手方向に配置された
W字状の凹溝部14を有する。図31(a)は、そのコ
アロッドを用いて作製した焼結含油軸受の構造を示す模
式断面図であり、W字状の密部13と、密部13と交互
に円周方向に配置されたW字状の凸条粗部と軸方向の周
縁粗部とからなる粗部12とを有するものである。ま
た、図31(b)は、図30に示したコアロッドの凹溝
部14と凸部15を逆にしたコアロッドを用いて作製し
た焼結含油軸受の構造を示す模式断面図である。Modification 10 FIG. 30 is a schematic plan view showing the shape of the core rod used, and has a W-shaped concave groove portion 14 arranged in the longitudinal direction. FIG. 31 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured by using the core rod, and the W-shaped dense portions 13 and the dense portions 13 are alternately arranged in the circumferential direction. It has a rough portion 12 composed of a W-shaped convex rough portion and a peripheral rough portion in the axial direction. Further, FIG. 31B is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured using a core rod in which the concave groove portions 14 and the convex portions 15 of the core rod shown in FIG. 30 are reversed.
【0042】変形例11.図32は、用いたコアロッド
の形状を示す模式平面図であり、幅方向にX状に交差し
長手方向に多数連接した凹溝と、凹溝の間中央部に配置
された菱形凹部と、周縁部に沿って配置された三角凹部
とからなる凹部14を有している。図33(a)は、そ
のコアロッドを用いて作製した焼結含油軸受の構造を示
す模式断面図であり、幅方向にX状に交差し長手方向に
多数連接したX状密部と、X状粗部の間中央部に配置さ
れた菱形密部と、周縁部に沿って配置された三角密部と
からなる密部13と、その周囲の粗部12とを有するも
のである。また、図33(b)は、図32に示したコア
ロッドの凹部14と凸部15を逆にしたコアロッドを用
いて作製した焼結含油軸受の構造を示す模式断面図であ
る。Modified Example 11. FIG. 32 is a schematic plan view showing the shape of the core rod used, in which a plurality of concave grooves intersecting with each other in the width direction in an X-shape and connected in the longitudinal direction, a diamond-shaped concave portion arranged in the central portion between the concave grooves, and a peripheral edge It has a concave portion 14 formed of a triangular concave portion arranged along the portion. FIG. 33 (a) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing produced by using the core rod, and shows an X-shaped dense portion intersecting in the X-direction in the width direction and connected in the longitudinal direction, and an X-shape. It has a dense portion 13 composed of a rhombic dense portion arranged in the central portion between the rough portions, a triangular dense portion arranged along the peripheral portion, and a rough portion 12 around the dense portion 13. 33 (b) is a schematic cross-sectional view showing the structure of a sintered oil-impregnated bearing manufactured using a core rod in which the concave portions 14 and the convex portions 15 of the core rod shown in FIG. 32 are reversed.
【0043】[0043]
【実施例】以下、実施例を用いて、本発明を詳細に説明
する。EXAMPLES The present invention will be described in detail below with reference to examples.
【0044】実施例1.本発明の製造方法を用いて作製
した図5に示すアンダーカットの形状を有する内径3.
5mmφの軸受をキャプスタンモータに組み込み、60
℃、10rpmの条件で軸ロス(モータ消費電流値)の
変化を測定した。Example 1. 2. An inner diameter having an undercut shape shown in FIG. 5, which is manufactured by using the manufacturing method of the present invention.
The bearing of 5mmφ is installed in the capstan motor, and 60
The change in shaft loss (motor current consumption value) was measured under the conditions of ° C and 10 rpm.
【0045】比較例1.従来の製造方法により作製した
アンダーカットを有しない軸受を用いた以外は実施例1
と同様に、軸受をキャプスタンモータに組み込み、軸ロ
スの変化を測定した。Comparative Example 1. Example 1 except that a bearing having no undercut manufactured by a conventional manufacturing method was used.
In the same manner as above, the bearing was incorporated into the capstan motor and the change in shaft loss was measured.
【0046】図34は、実施例1と比較例1における、
時間とキャプスタンモータの軸ロスとの関係を示すグラ
フである。実施例1の軸受は、比較例1の軸受に比べ、
回転開始後、短時間で軸ロスが低下しなじみが速く、か
つ、シャフトの回転負荷も30%程度低下し、良好な潤
滑特性を有していた。FIG. 34 shows the results of Example 1 and Comparative Example 1.
It is a graph which shows the relationship between time and the shaft loss of a capstan motor. The bearing of Example 1 is different from the bearing of Comparative Example 1 in
In a short time after the start of rotation, the shaft loss was reduced and the fitting was fast, and the rotational load of the shaft was reduced by about 30%, and the lubricating properties were good.
【0047】実施例2.本発明の製造方法を用いて作製
した図5に示すアンダーカットの形状を有する内径2.
5mmφの軸受をスピンドルモータに組み込み、60
℃、10000rpmの条件で軸ロスの変化を測定し
た。Example 2. 1. An inner diameter having an undercut shape shown in FIG. 5, which is manufactured by using the manufacturing method of the present invention.
The bearing of 5mmφ is installed in the spindle motor, and 60
The change in axial loss was measured under conditions of 10000 rpm and 10,000 rpm.
【0048】比較例2.従来の製造方法により作製した
アンダーカットを有しない軸受を用いた以外は実施例2
と同様に、軸受をスピンドルモータに組み込み、軸ロス
の変化を測定した。Comparative Example 2. Example 2 except that a bearing having no undercut manufactured by a conventional manufacturing method was used.
Similarly to the above, the bearing was incorporated into the spindle motor and the change in the shaft loss was measured.
【0049】図35は、実施例2と比較例2における、
時間とスピンドルモータの軸ロスとの関係を示すグラフ
である。実施例2の軸受は、比較例2の軸受に比べ、な
じみが早く、シャフトの回転負荷も20%程度低下し、
良好な潤滑特性を有していた。FIG. 35 shows the results of Example 2 and Comparative Example 2.
It is a graph which shows the relationship between time and the shaft loss of a spindle motor. The bearing of Example 2 is more familiar than the bearing of Comparative Example 2 and the rotational load of the shaft is reduced by about 20%,
It had good lubricating properties.
【0050】[0050]
【発明の効果】以上述べたように、本発明の焼結含油軸
受の製造方法によれば、圧粉体の作製時に、圧粉体を上
パンチ及び下パンチにより加圧した状態を保持しなが
ら、コアロッドと上パンチ及び下パンチとを同期させて
軸方向に移動させダイより抜き出し、ダイから圧粉体へ
の圧縮力を解放させるとともに、スプリングバックを利
用して圧粉体からコアロッドを抜き取るようにしたの
で、従来に比べスプリングバック量が増加しアンダーカ
ット量を多くとることができ、アンダーカットの形状に
応じて表面開口率を変化させるのが容易となり、広い回
転速度領域に使用可能な軸受の生産コストを低減でき
る。As described above, according to the method for manufacturing a sintered oil-impregnated bearing of the present invention, during the production of a green compact, the green compact is kept pressed by the upper punch and the lower punch. , The core rod and the upper punch and the lower punch are synchronously moved in the axial direction and extracted from the die to release the compression force from the die to the green compact, and the spring back is used to extract the core rod from the green compact. As a result, the amount of springback can be increased and the amount of undercut can be increased compared to the conventional case, and it becomes easy to change the surface aperture ratio according to the shape of the undercut, and the bearing can be used in a wide range of rotational speeds. The production cost can be reduced.
【0051】また、本発明の製造方法は、凹部と凸部と
を形成した圧粉体を焼結した後、焼結体の内周面を真円
状に仕上加工し、内周面の凸部には表面開口率の小さい
密部を、凹部には密部より表面開口率の大きい粗部にあ
たる油路を形成するようにしたので、粗部から密部への
油の供給と油の循環が容易となり、より潤滑特性を向上
させることができる。Further, according to the manufacturing method of the present invention, after the green compact having the concave portion and the convex portion formed is sintered, the inner peripheral surface of the sintered body is finished into a perfect circular shape so that the inner peripheral surface has a convex shape. Since a dense part with a small surface opening ratio is formed in the part and an oil passage corresponding to a rough part with a larger surface opening ratio than the dense part is formed in the concave part, the oil supply from the rough part to the dense part and the oil circulation Can be facilitated and the lubrication characteristics can be further improved.
【図1】 本発明の実施の形態1に係る製造方法の圧粉
体の成形工程を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a step of molding a green compact in a manufacturing method according to a first embodiment of the present invention.
【図2】 本発明の実施の形態1に用いたコアロッドの
先端形状を示す模式図であり、(a)は凸部を有する場
合、(b)は凹部を有する場合を示す。FIG. 2 is a schematic diagram showing a tip shape of a core rod used in the first embodiment of the present invention, where (a) shows a case having a convex portion and (b) shows a case having a concave portion.
【図3】 本発明に用いる圧粉体のスプリングバック率
と相対密度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the springback ratio and the relative density of the green compact used in the present invention.
【図4】 本発明の実施の形態1に係る製造方法の仕上
げ工程を示す模式図であり、(a)は模式側面図、
(b)は焼結体の仕上げ加工前の真円度、(c)は焼結
体の仕上げ加工後の真円度である。FIG. 4 is a schematic diagram showing a finishing step of the manufacturing method according to the first embodiment of the present invention, in which (a) is a schematic side view,
(B) is the roundness of the sintered body before finishing, and (c) is the roundness of the sintered body after finishing.
【図5】 本発明の実施の形態1に係る製造方法を用い
て作製された軸受の構造を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing the structure of a bearing manufactured by using the manufacturing method according to the first embodiment of the present invention.
【図6】 従来の製造方法を用いて成形された圧粉体の
焼結体の仕上げ工程前の表面状態を示す顕微鏡写真であ
る。FIG. 6 is a micrograph showing a surface state of a sintered compact of a green compact molded by a conventional manufacturing method before a finishing step.
【図7】 本発明の実施の形態1に係る製造方法を用い
て成形された圧粉体の焼結体の仕上げ工程前の表面状態
を示す顕微鏡写真である。FIG. 7 is a micrograph showing a surface state of a green compact sintered body molded by the manufacturing method according to the first embodiment of the present invention before a finishing step.
【図8】 従来の製造方法を用いて成形された圧粉体の
焼結体の仕上げ工程後の表面状態を示す顕微鏡写真であ
る。FIG. 8 is a micrograph showing a surface condition of a sintered compact of a green compact which has been molded by a conventional manufacturing method, after a finishing step.
【図9】 本発明の実施の形態1に係る製造方法を用い
て成形された圧粉体の焼結体の仕上げ工程後の表面状態
を示す顕微鏡写真である。FIG. 9 is a micrograph showing a surface condition of a sintered compact of a green compact molded by the manufacturing method according to the first embodiment of the present invention after a finishing step.
【図10】 本発明の実施の形態2に係る製造方法の圧
粉体の成形工程を示す模式断面図である。FIG. 10 is a schematic cross-sectional view showing a step of molding a green compact in the manufacturing method according to the second embodiment of the present invention.
【図11】 本発明の実施の形態2に係る製造方法に用
いたコアロッドの先端形状を示す模式平面図である。FIG. 11 is a schematic plan view showing the tip shape of the core rod used in the manufacturing method according to the second embodiment of the present invention.
【図12】 本発明の実施の形態2に係る製造方法を用
いて作製された軸受の構造を示す模式断面図である。FIG. 12 is a schematic cross-sectional view showing the structure of a bearing manufactured by the manufacturing method according to the second embodiment of the present invention.
【図13】 本発明の実施の形態1に係る変形例1の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 13 is a schematic plan view showing the shape of the core rod used in the production of the bearing of Modification 1 according to Embodiment 1 of the present invention.
【図14】 本発明の実施の形態1に係る変形例1の軸
受の構造を示す図であり、(a)は図13に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
13に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。14A and 14B are views showing a structure of a bearing of a modified example 1 according to the first embodiment of the present invention, FIG. 14A is a schematic sectional view of a bearing manufactured by using the core rod shown in FIG. 13, and FIG. FIG. 14 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 13.
【図15】 本発明の実施の形態1に係る変形例2の軸
受の構造を示す図であり、(a)は図11に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
11に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。15A and 15B are views showing a structure of a bearing of Modification 2 according to the first embodiment of the present invention, FIG. 15A is a schematic cross-sectional view of the bearing manufactured by using the core rod shown in FIG. 11, and FIG. FIG. 12 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 11.
【図16】 本発明の実施の形態1に係る変形例3の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 16 is a schematic plan view showing the shape of a core rod used for manufacturing the bearing of Modification 3 according to Embodiment 1 of the present invention.
【図17】 本発明の実施の形態1に係る変形例3の軸
受の構造を示す図であり、(a)は図16に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
16に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。FIG. 17 is a diagram showing the structure of a bearing of Modification 3 according to the first embodiment of the present invention, (a) is a schematic cross-sectional view of a bearing manufactured using the core rod shown in FIG. 16, and (b) is a diagram. FIG. 17 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 16.
【図18】 本発明の実施の形態1に係る変形例4の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 18 is a schematic plan view showing the shape of a core rod used for manufacturing the bearing of Modification 4 according to Embodiment 1 of the present invention.
【図19】 本発明の実施の形態1に係る変形例4の軸
受の構造を示す図であり、(a)は図18に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
18に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。FIG. 19 is a diagram showing a structure of a bearing of Modification 4 according to the first embodiment of the present invention, (a) is a schematic cross-sectional view of the bearing manufactured by using the core rod shown in FIG. 18, and (b) is a diagram. FIG. 19 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 18.
【図20】 本発明の実施の形態1に係る変形例5の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 20 is a schematic plan view showing the shape of a core rod used for manufacturing the bearing of Modification 5 according to Embodiment 1 of the present invention.
【図21】 本発明の実施の形態1に係る変形例5の軸
受の構造を示す図であり、(a)は図20に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
20に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。21 is a diagram showing the structure of a bearing of Modification 5 according to Embodiment 1 of the present invention, (a) is a schematic cross-sectional view of a bearing manufactured using the core rod shown in FIG. 20, and (b) is a diagram. FIG. 21 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 20.
【図22】 本発明の実施の形態1に係る変形例6の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 22 is a schematic plan view showing the shape of a core rod used for manufacturing the bearing of Modification 6 according to Embodiment 1 of the present invention.
【図23】 本発明の実施の形態1に係る変形例6の軸
受の構造を示す図であり、(a)は図22に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
22に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。FIG. 23 is a diagram showing a structure of a bearing of Modification 6 according to the first embodiment of the present invention, (a) is a schematic cross-sectional view of a bearing manufactured by using the core rod shown in FIG. 22, and (b) is a diagram. 23 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG.
【図24】 本発明の実施の形態1に係る変形例7の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 24 is a schematic plan view showing the shape of a core rod used for manufacturing the bearing of Modification 7 according to Embodiment 1 of the present invention.
【図25】 本発明の実施の形態1に係る変形例7の軸
受の構造を示す図であり、(a)は図24に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
24に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。FIG. 25 is a diagram showing a structure of a bearing of Modification 7 according to the first embodiment of the present invention, (a) is a schematic cross-sectional view of the bearing manufactured by using the core rod shown in FIG. 24, and (b) is a diagram. FIG. 25 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 24.
【図26】 本発明の実施の形態1に係る変形例8の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 26 is a schematic plan view showing the shape of the core rod used for manufacturing the bearing of Modification 8 according to Embodiment 1 of the present invention.
【図27】 本発明の実施の形態1に係る変形例8の軸
受の構造を示す図であり、(a)は図26に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
26に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。27 is a diagram showing the structure of a bearing of Modification 8 according to Embodiment 1 of the present invention, FIG. 27 (a) is a schematic cross-sectional view of a bearing produced using the core rod shown in FIG. 26, and FIG. FIG. 27 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 26.
【図28】 本発明の実施の形態1に係る変形例9の軸
受の作製に用いたコアロッドの形状を示す模式平面図で
ある。FIG. 28 is a schematic plan view showing the shape of the core rod used for manufacturing the bearing of Modification 9 according to Embodiment 1 of the present invention.
【図29】 本発明の実施の形態1に係る変形例9の軸
受の構造を示す図であり、(a)は図28に示すコアロ
ッドを用いて作製した軸受の模式断面図、(b)は、図
28に示すコアロッドの凹部と凸部を逆にして作製した
軸受の模式断面図である。FIG. 29 is a diagram showing the structure of a bearing of Modification 9 according to the first embodiment of the present invention, (a) is a schematic cross-sectional view of the bearing manufactured using the core rod shown in FIG. 28, and (b) is a diagram. FIG. 29 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 28.
【図30】 本発明の実施の形態1に係る変形例10の
軸受の作製に用いたコアロッドの形状を示す模式平面図
である。FIG. 30 is a schematic plan view showing the shape of the core rod used for manufacturing the bearing of Modification 10 according to Embodiment 1 of the present invention.
【図31】 本発明の実施の形態1に係る変形例10の
軸受の構造を示す図であり、(a)は図30に示すコア
ロッドを用いて作製した軸受の模式断面図、(b)は、
図30に示すコアロッドの凹部と凸部を逆にして作製し
た軸受の模式断面図である。FIG. 31 is a diagram showing the structure of a bearing of Modification 10 according to Embodiment 1 of the present invention, (a) is a schematic cross-sectional view of the bearing manufactured by using the core rod shown in FIG. 30, and (b) is a diagram. ,
FIG. 31 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 30.
【図32】 本発明の実施の形態1に係る変形例11の
軸受の作製に用いたコアロッドの形状を示す模式平面図
である。FIG. 32 is a schematic plan view showing the shape of a core rod used for manufacturing the bearing of Modification 11 according to Embodiment 1 of the present invention.
【図33】 本発明の実施の形態1に係る変形例11の
軸受の構造を示す図であり、(a)は図32に示すコア
ロッドを用いて作製した軸受の模式断面図、(b)は、
図32に示すコアロッドの凹部と凸部を逆にして作製し
た軸受の模式断面図である。FIG. 33 is a diagram showing a structure of a bearing of Modification 11 according to the first embodiment of the present invention, (a) is a schematic cross-sectional view of the bearing manufactured by using the core rod shown in FIG. 32, and (b) is a diagram. ,
FIG. 33 is a schematic cross-sectional view of a bearing manufactured by reversing the concave portion and the convex portion of the core rod shown in FIG. 32.
【図34】 本発明の製造方法を用いて作製した軸受を
取り付けたキャプスタンモータの軸ロスの時間変化を示
すグラフである。FIG. 34 is a graph showing a change over time in shaft loss of a capstan motor to which a bearing manufactured using the manufacturing method of the present invention is attached.
【図35】 本発明の製造方法を用いて作製した軸受を
取り付けたスピンドルモータの軸ロスの時間変化を示す
グラフである。FIG. 35 is a graph showing the change over time in the shaft loss of a spindle motor equipped with a bearing manufactured using the manufacturing method of the present invention.
【図36】 従来の製造方法における圧粉体の製造工程
を示す模式断面図である。FIG. 36 is a schematic cross-sectional view showing a manufacturing process of a green compact in a conventional manufacturing method.
1 原料粉末、2 圧粉体、3 ダイ、4 コアロッ
ド、5 上パンチ、6 下パンチ、10a,10b 焼
結体、11 軸受、12 粗部、13 密部、14コア
ロッドの凹部、15 コアロッドの凸部、16 軸受ホ
ルダー、17 固定冶具、18 回転器チャック部、1
9 仕上げ工具。1 raw material powder, 2 powder compact, 3 die, 4 core rod, 5 upper punch, 6 lower punch, 10a, 10b sintered body, 11 bearing, 12 rough part, 13 dense part, 14 core rod recess, 15 core rod protrusion Parts, 16 bearing holders, 17 fixing jigs, 18 rotator chuck parts, 1
9 Finishing tools.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F16C 33/14 F16C 33/14 A (72)発明者 原野 拓治 大阪府寝屋川市大成町12番32号 日本科 学冶金株式会社内 (56)参考文献 特開 平11−190344(JP,A) 特開2000−54003(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 3/02 - 3/035,5/00 B30B 11/00 - 11/02 F16C 33/14 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification symbol FI F16C 33/14 F16C 33/14 A (72) Inventor Takuji Harano 12-32 Taisei-cho, Neyagawa-shi, Osaka Japan Department Gakuin Metallurgical Co., Ltd. (56) References JP-A-11-190344 (JP, A) JP-A-2000-54003 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22F 3/02-3 / 035,5 / 00 B30B 11/00-11/02 F16C 33/14
Claims (2)
れ外周面に複数の凹部及び凸部を形成したコアロッド
と、ダイとコアロッド間に摺動自在に嵌合された下パン
チとから形成される空隙に原料粉末を充填し、下パンチ
と上パンチとを軸方向に移動させ、原料粉末を加圧圧縮
して圧粉体となし、後に圧粉体を焼結する焼結含油軸受
の製造方法において、 該圧粉体を上パンチ及び下パンチにより加圧した状態を
保持しながら、コアロッドと上パンチ及び下パンチとを
同期させて軸方向に移動せしめてダイより抜き出して、
ダイからの圧粉体への圧縮力を解放させるとともに、ス
プリングバックにより内径の拡大した圧粉体からコアロ
ッドを抜き取り、次いで、上パンチを除去して内周面に
複数の凹部と凸部とを有する圧粉体を形成することを特
徴とする焼結含油軸受の製造方法。1. An outer die, a core rod coaxially arranged in the die and having a plurality of recesses and protrusions on its outer peripheral surface, and a lower punch slidably fitted between the die and the core rod. Sintered oil impregnation in which raw material powder is filled in the voids formed by the above, the lower punch and the upper punch are moved in the axial direction, the raw material powder is pressure-compressed to form a green compact, and then the green compact is sintered. In the method of manufacturing a bearing, while maintaining the pressed state of the green compact by the upper punch and the lower punch, the core rod and the upper punch and the lower punch are synchronously moved in the axial direction and extracted from the die,
While releasing the compressive force from the die to the green compact, the core rod is pulled out from the green compact with the expanded inner diameter by springback, and then the upper punch is removed to form multiple concave and convex parts on the inner peripheral surface. A method for manufacturing a sintered oil-impregnated bearing, comprising forming a green compact having the same.
焼結した後、内周面を真円状に仕上加工し、内周面の凸
部を表面開口率が小である密部に、凹部を密部より表面
開口率が大きい粗部に形成する請求項1記載の製造方
法。2. The manufacturing method according to claim 1, further comprising sintering the green compact, finishing the inner peripheral surface into a perfect circle, and projecting the inner peripheral surface into a dense portion having a small surface aperture ratio. The manufacturing method according to claim 1, wherein the concave portion is formed in the rough portion having a surface aperture ratio larger than that of the dense portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000097513A JP3441695B2 (en) | 2000-03-31 | 2000-03-31 | Manufacturing method of sintered oil-impregnated bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000097513A JP3441695B2 (en) | 2000-03-31 | 2000-03-31 | Manufacturing method of sintered oil-impregnated bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001279301A JP2001279301A (en) | 2001-10-10 |
JP3441695B2 true JP3441695B2 (en) | 2003-09-02 |
Family
ID=18612127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000097513A Expired - Fee Related JP3441695B2 (en) | 2000-03-31 | 2000-03-31 | Manufacturing method of sintered oil-impregnated bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3441695B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004322169A (en) * | 2003-04-25 | 2004-11-18 | Tsubakimoto Chain Co | Cylindrical shaft bushing member and its producing method |
JP5352978B2 (en) * | 2007-09-11 | 2013-11-27 | 株式会社ダイヤメット | Manufacturing method of sintered bearing |
US10697496B2 (en) * | 2015-03-17 | 2020-06-30 | Ntn Corporation | Sintered bearing |
WO2019098240A1 (en) * | 2017-11-15 | 2019-05-23 | 三菱マテリアル株式会社 | Oil impregnated sintered bearing and production method thereof |
JP7466471B2 (en) | 2021-01-05 | 2024-04-12 | 住友重機械工業株式会社 | Flexible mesh gear device |
-
2000
- 2000-03-31 JP JP2000097513A patent/JP3441695B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001279301A (en) | 2001-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5217078B2 (en) | Method for producing sintered oil-impregnated bearing | |
JP3954695B2 (en) | Manufacturing method of dynamic pressure type porous oil-impregnated bearing | |
JP3441695B2 (en) | Manufacturing method of sintered oil-impregnated bearing | |
JP3607492B2 (en) | Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof | |
JP4573349B2 (en) | Manufacturing method of hydrodynamic bearing | |
JP3607661B2 (en) | Hydrodynamic porous oil-impregnated bearing and method for producing the same | |
CN111566366B (en) | Sintered oil-retaining bearing and method for manufacturing same | |
JP2001012470A (en) | Manufacture of bearing | |
JPH07332363A (en) | Inside diameter intermediate cavity shaped bearing and manufacture thereof | |
JPH11182551A (en) | Manufacture of hydrodynamic porous oil retaining bearing | |
JP4414574B2 (en) | Manufacturing method of sintered bearing with dynamic pressure groove | |
JP3784690B2 (en) | Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof | |
JP3582895B2 (en) | Sintered oil-impregnated bearing and its manufacturing method | |
JP2001041244A (en) | Manufacture of bearing | |
JP3856363B2 (en) | Manufacturing method of bearing | |
JP2001020956A (en) | Manufacture method of bearing | |
JP3377681B2 (en) | Sintered oil-impregnated bearing and its manufacturing method | |
JP2003073715A (en) | Method for manufacturing oil-impregnated sintered bearing | |
JP3602320B2 (en) | Manufacturing method of hydrodynamic sintered oil-impregnated bearing | |
JP4188288B2 (en) | Manufacturing method of dynamic pressure type porous oil-impregnated bearing | |
JP3886683B2 (en) | Hollow ball screw shaft and manufacturing method thereof | |
JP2003176823A (en) | Oil-impregnated sintered bearing and its manufacturing method | |
JP3602318B2 (en) | Manufacturing method of hydrodynamic porous oil-impregnated bearing | |
JP2001012471A (en) | Manufacture of bearing | |
JP2001059106A (en) | Manufacture of bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |