JP3440157B2 - Tunnel freezer for food freezing - Google Patents

Tunnel freezer for food freezing

Info

Publication number
JP3440157B2
JP3440157B2 JP04478395A JP4478395A JP3440157B2 JP 3440157 B2 JP3440157 B2 JP 3440157B2 JP 04478395 A JP04478395 A JP 04478395A JP 4478395 A JP4478395 A JP 4478395A JP 3440157 B2 JP3440157 B2 JP 3440157B2
Authority
JP
Japan
Prior art keywords
food
zone
tunnel
temperature
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04478395A
Other languages
Japanese (ja)
Other versions
JPH08219617A (en
Inventor
潤二 松田
誠 佐野
公 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP04478395A priority Critical patent/JP3440157B2/en
Publication of JPH08219617A publication Critical patent/JPH08219617A/en
Application granted granted Critical
Publication of JP3440157B2 publication Critical patent/JP3440157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品を冷凍するための
トンネルフリーザ、特に食品に低温冷気流を衝突させな
がら食品を冷凍するためのトンネルフリーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunnel freezer for freezing foods, and more particularly to a tunnel freezer for freezing foods by colliding them with a low temperature cold air flow.

【0002】[0002]

【従来の技術】従来の食品等の冷却、冷凍等に使用され
るトンネルフリーザは、被冷却物(食品)をベルトコン
ベアやネットコンベア上に載置してトンネル内の冷却帯
域に連続的に導入移送し、前記冷却帯域内の冷気ガス化
した冷ガスに強制対流を起こさせ移送中の前記被冷却物
の周囲に攪拌ガス流を起こさせたり、被冷却物の移送方
向に対し向流または平行流をなす冷ガス流を起こして冷
却する冷凍方式を取っている。
2. Description of the Related Art A conventional tunnel freezer used for cooling and freezing foods or the like places an object to be cooled (food) on a belt conveyor or a net conveyor and continuously introduces it into a cooling zone in the tunnel. It is transferred and forced convection is caused in the cold gas gasified cold gas in the cooling zone to cause a stirring gas flow around the object to be cooled, or countercurrent or parallel to the transfer direction of the object to be cooled. It adopts a freezing system that cools a flowing cold gas flow.

【0003】上記方式の場合、熱の伝達は被冷却物の表
面と冷ガスとの接触による伝熱と、冷ガス同志の間の伝
熱に分離して考えられるが、前記接触伝熱はガス流の流
れが速いほど効果がある。後者の冷ガス同志の間の伝熱
はガス流が層流をなしているとき熱伝達率の向上は考え
られない。即ち、上記、一様流の冷却ないし冷凍方式の
場合は、冷ガス間の熱伝達係数の向上が望めず、結果的
に伝熱性能が悪く大風量、大伝熱面積の冷却器を必要と
してきた。
In the case of the above method, heat transfer can be considered as being divided into heat transfer due to contact between the surface of the object to be cooled and the cold gas and heat transfer between the cold gases, but the contact heat transfer is the gas transfer. The faster the flow, the more effective. In the latter case, the heat transfer between the cold gases is not expected to improve the heat transfer coefficient when the gas flow is laminar. That is, in the case of the uniform flow cooling or refrigerating system, the heat transfer coefficient between the cold gases cannot be improved, and as a result, the heat transfer performance is poor and a cooler having a large air volume and a large heat transfer area is required. Came.

【0004】このため、最善の冷却効果をあげるために
は、冷ガス塊を細かく分散乱流状態とし、前記ガス塊の
表面で被冷却物の表面に接触させるのではなく前記ガス
塊を分散粒子状態とし、該分散粒子をきめ細かく接触さ
せることが必要であることが分かり、そのため、ガス流
を多数の低温高速スリット状のジェット気流に分散して
被冷却物表面に直角に衝突させ、被冷却物表面を低温高
速乱流ガス流中に置き、冷却効率を挙げるという、いわ
ゆる衝突噴流理論が提案され、該理論を応用した食品ト
ンネルフリーザが開発され、被冷却物面の熱伝達係数の
大幅な改善がみられるている。然し、このフリーザで
は、衝突噴流源である空気冷却器等は従来のプレートフ
ィン式の熱交換器が使用され、さらに、衝突噴流を形成
するための整流板、スリット、ノズルを必要とし、本来
の目的であるフリーザの小型化、大容量化を図るには十
分でない状況にある。
Therefore, in order to obtain the best cooling effect, the cold gas mass is made into a finely divided and scattered flow state, and the gas mass is not brought into contact with the surface of the object to be cooled but the gas mass is dispersed particles. It was found that it is necessary to bring the dispersed particles into close contact with each other in a fine state, and therefore, the gas flow is dispersed in a large number of low-temperature, high-speed slit-like jet streams and made to collide at right angles with the surface of the object to be cooled. A so-called impinging jet theory, in which the surface is placed in a low-temperature high-speed turbulent gas flow to increase cooling efficiency, a so-called impinging jet theory has been proposed, and a food tunnel freezer applying this theory has been developed to greatly improve the heat transfer coefficient of the surface to be cooled. Is seen. However, in this freezer, a conventional plate fin type heat exchanger is used for the air cooler, which is the impinging jet source, and further, a straightening plate, a slit, and a nozzle for forming the impinging jet are required, and the original The situation is not sufficient to reduce the size and increase the capacity of the freezer, which is the objective.

【0005】一方食品の冷却、冷凍の場合、冷却の初期
過程において、主に暖かい未冷凍の食品から発生する水
蒸気が冷却器内の冷却コイルのコイル列の入り口部に集
中して霜を形成し、冷却コイル列の障害となり、冷ガス
の流れを妨害し冷凍器の機能も低下させ、製品の凍結塊
の形成状態が不安定となり、連続運転が困難となり生産
を停止せざるを得ない状況が惹起され、運転効率を低下
させる問題点がある。
On the other hand, in the case of cooling and freezing foods, in the initial stage of cooling, water vapor mainly generated from warm unfrozen foods concentrates at the inlet of the coil row of the cooling coil in the cooler to form frost. However, it becomes an obstacle to the cooling coil array, obstructs the flow of cold gas, lowers the function of the refrigerator, and the frozen state of the frozen product becomes unstable, making continuous operation difficult and having to stop production. There is a problem that it is caused and the operation efficiency is reduced.

【0006】そのため、この問題解決のため、特公昭6
1ー38789号公報記載の発明においては、予冷却ユ
ニット付冷凍装置が開示されている。上記発明の概略の
構成は図7に示すように、ネットコンベアが配設された
トンネルフリーザ52と、予冷却ユニット53と、冷却
器コイル列54と、前記トンネルフリーザ52の出口近
くの上部より予冷却ユニット53の出口へトンネルフリ
ーザ52の冷却空気を送る流入管55と、前記予冷却ユ
ニット53の入り口よりトンネルフリーザ52の冷却コ
イル列の吸気側へ連結するようにした流出管56とより
構成してある。そして、前記冷却空気はトンネルフリー
ザ上部より流入管55を経由して予冷却ユニット出口よ
り該ユニットに入り食品の流れに逆行して該ユニットの
入り口に至り、流出管56を介してコイル列57の吸気
側へ戻るように構成し、冷凍装置内の空気の均衡維持を
図り霜が全コイル列に一様に均等分散するようにしたも
のである。
Therefore, in order to solve this problem, Japanese Patent Publication No. 6
The invention described in JP-A 1-38789 discloses a refrigeration system with a pre-cooling unit. As shown in FIG. 7, the schematic configuration of the invention described above includes a tunnel freezer 52 provided with a net conveyor, a pre-cooling unit 53, a cooler coil array 54, and an upper portion near the exit of the tunnel freezer 52. It is composed of an inflow pipe 55 for sending the cooling air of the tunnel freezer 52 to the outlet of the cooling unit 53, and an outflow pipe 56 for connecting from the inlet of the precooling unit 53 to the intake side of the cooling coil array of the tunnel freezer 52. There is. Then, the cooling air enters the unit from the outlet of the pre-cooling unit through the inflow pipe 55 from the upper part of the tunnel freezer, goes counter to the flow of the food and reaches the inlet of the unit, and passes through the outflow pipe 56 of the coil array 57. The configuration is such that it returns to the intake side, and the air in the refrigeration system is maintained in an equilibrium state so that frost is evenly distributed over all coil rows.

【0007】然しこの場合は予冷却ユニットの冷却空気
温度に対する食品冷凍上必要とする温度的配慮及び、霜
発生の原因である水蒸気の除去に対する配慮は皆無で、
ただ、霜が全コイル列全域にわたり均等に発生するよう
にして、霜取りのための運転休止の合間を長くしただけ
のものである。
However, in this case, there is no consideration on the temperature of the cooling air of the pre-cooling unit, which is necessary for freezing the food, and on the removal of water vapor which causes frost,
However, the frost is generated evenly over the entire coil array, and the interval between operation suspensions for defrosting is lengthened.

【0008】また、食品冷却ないし冷凍が実用化される
につれ、冷却冷凍過程を温度及び時間的に分割し、例え
ば予冷過程と急速冷凍過程と保冷過程とに分け、食品中
の自由水の結晶化による未凍結部分の細胞を圧迫しドリ
ップの細胞からの流出を防止することが強く望まれ、そ
のためにも連続トンネルの流れ方向に、冷却温度別にゾ
ーン化を図ることが食品トンネルフリーザの計画上必須
事項と考えられてきていている。例えば、特公昭55ー
9623号公報記載の発明に開示されているように、図
8の要部断面図に示すように、冷却帯域60の内部は被
冷却物の移送方向に複数の区画61、62、63、64
に分割し、該区画内にはそれぞれ送風機65、65、6
5、65が設けられ、中央に被冷却物を移送するコンベ
ア66が設けられ該コンベア上には前記区画61、6
2、63、64に対応した仕切り部材67が設けられ、
被冷却物を矢印A方向に一定ピッチずつ間欠的に移送す
る構成にしてある。なお、68は被冷却物の投入口であ
る。
Further, as food cooling or freezing is put into practical use, the cooling and freezing process is divided in terms of temperature and time, for example, a precooling process, a quick freezing process, and a cold storage process to crystallize free water in food. It is strongly desired to prevent cells from flowing out of the drip cells by compressing the cells in the unfrozen part due to the above.For this reason, it is essential for the plan of the food tunnel freezer to zone the cooling temperature in the continuous tunnel flow direction. It is considered to be a matter. For example, as disclosed in the invention described in Japanese Examined Patent Publication No. Sho 55-9623, as shown in the sectional view of the main part of FIG. 8, the inside of the cooling zone 60 is divided into a plurality of compartments 61 in the transfer direction of the object to be cooled, 62, 63, 64
And the air blowers 65, 65, 6 in the compartment, respectively.
5, 65 are provided, a conveyor 66 for transferring an object to be cooled is provided at the center, and the sections 61, 6 are provided on the conveyor.
A partition member 67 corresponding to 2, 63, 64 is provided,
The object to be cooled is intermittently transferred at a constant pitch in the direction of arrow A. Reference numeral 68 is an inlet for the object to be cooled.

【0009】本従来技術は上記構成において、該移送方
向の下手側にある区画63、64に於いては被冷却物の
最終所望の冷却温度に対応する冷ガスをノズル69、7
0より噴出充満させ、移送方向の上手側にある区画6
1、62であつて被冷却物に単に予冷的に冷却すればよ
いだけの区画に対しては低温液化ガスの噴出を行なわず
通常の熱交換器71を以て区画内雰囲気を冷却するよう
にしたものである。但しこの場合は各区画ごとに冷ガス
ないし冷却空気を移送方向を横切る点線矢印に示すよう
に循環させ、一部を外部へ放出するようにしてある。
In the above-mentioned construction, the present prior art provides nozzles 69, 7 with cold gas corresponding to the final desired cooling temperature of the object to be cooled in the sections 63, 64 on the lower side in the transfer direction.
Section 6 on the upper side in the transfer direction, filled from 0
For the compartments 1 and 62 in which the object to be cooled only needs to be cooled in a precooling manner, the low temperature liquefied gas is not jetted and the atmosphere in the compartment is cooled by the ordinary heat exchanger 71. Is. However, in this case, cold gas or cooling air is circulated in each section as indicated by a dotted arrow crossing the transfer direction, and a part of the cold gas or cooling air is discharged to the outside.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記従
来技術は食品の冷却冷凍のため特別に提案されたもので
なく、効率の良い冷却装置の提供を目的としたものであ
る。このためトンネルフリーザ内を複数の温度域に区分
し、複数ゾーン化を図ったものである点においては本発
明に類似する、食品の冷凍を考慮したものでないため
に、次の様な問題が生じる。即ち前記従来技術において
は、予冷域を本凍結に用いる低温液化ガスの気化による
温度ゾーンを設定しているために、予冷域は必然的に0
℃以下の温度ゾーンとなり、この為かかる冷凍装置では
食品の冷却冷凍に使用した場合、食品より発生する水蒸
気による冷却コイルへの霜付除去のため長時間の休転を
余儀なくさせられている問題がある。
However, the above-mentioned prior art is not specially proposed for cooling and freezing food, but it is intended to provide an efficient cooling device. Therefore, since the inside of the tunnel freezer is divided into a plurality of temperature regions and is designed to have a plurality of zones, the present invention is similar to the present invention in that it does not consider the freezing of foods, and therefore the following problems occur. . That is, in the above-mentioned conventional technique, the precooling region is set to a temperature zone by vaporization of the low-temperature liquefied gas used for the main freezing, and therefore the precooling region is necessarily 0
Since it becomes a temperature zone of ℃ or less, when used for cooling and freezing food in such a refrigerating device, there is a problem that it is forced to take a long time to rest due to removal of frost on the cooling coil due to water vapor generated from food. is there.

【0011】また、前記冷凍装置は各温度域ゾーン毎に
仕切板により仕切られている為に、コンベアを用いた場
合でも間欠駆動をせざるを得ず、生産性に問題がある。
又食品は一般に速やかに最大氷結晶生成帯を短時間で通
過完了する必要があるために、衝突噴流式が適切である
が、前記いずれの技術においても衝突噴流式の細隙より
噴出させるジェット気流に対する整流板やノズル及びス
リットを持った適切な熱交換器がなく、従来のプレート
フィン式熱交換器で衝突噴流式を採用すると、ジェット
噴流生成手段の上側にプレートフィン式熱交換器を配設
する必要があり、必然的に大型化してしまう。
Further, since the refrigerating device is partitioned by the partition plate for each temperature zone, it is unavoidable to intermittently drive even if a conveyor is used, and there is a problem in productivity.
In addition, since it is generally necessary for food to pass through the maximum ice crystal production zone in a short time in a short time, the collision jet type is suitable, but in any of the above technologies, the jet stream jetted from the narrow gap of the collision jet type. If there is no appropriate heat exchanger with a straightening plate, nozzles and slits for the above, and if a collision jet type is adopted in the conventional plate fin type heat exchanger, the plate fin type heat exchanger is arranged above the jet jet generation means. Must be done, and inevitably increases in size.

【0012】本発明は、上記問題点に鑑みなされたもの
で、食品の冷却冷凍において、従来のプレートフィン式
熱交換器に頼る事無く、伝熱効率の良い衝突噴流式冷却
を可能とするとともに、冷却コイルである蒸発器への霜
付を皆無とし、且つ食品の冷却冷凍に最適の複数ゾーン
よりなる食品衝突噴流式トンネルフリーザの提供を目的
とするものである。
The present invention has been made in view of the above-mentioned problems, and in cooling and refrigerating food, it is possible to perform collision jet cooling with good heat transfer efficiency without relying on a conventional plate fin type heat exchanger, An object of the present invention is to provide a food collision jet type tunnel freezer which is free from frost on the evaporator which is a cooling coil and which is composed of a plurality of zones most suitable for cooling and freezing food.

【0013】[0013]

【課題を解決するための手段】本第1発明は、上記技術
的課題を達成する為に、食品移送手段を介して食品を、
トンネル内の所定温度域ゾーンに順次移送させながら所
定温度までの冷凍を行うトンネルフリーザにおいて、前
記温度域ゾーンを食品移送方向に沿って複数の温度域ゾ
ーンに分割するとともに、トンネル内に食品が導入され
る最初の温度域ゾーンを約0〜5℃の温度域の非凍結温
度域ゾーンに設定するとともに、前記非凍結温度域ゾー
ン(以下第1ゾーンという)で蒸発した水蒸気を液滴と
して除去する除去手段を設け、該除去手段により前記非
凍結温度域で食品の不要な水蒸気を除去した後、食品が
冷凍温度域ゾーンに侵入可能に構成した事を特徴とす
る。尚水蒸気を液滴として除去する除去手段としては後
記実施例に示すように、0〜1℃の熱交換コイルで過冷
却して液滴化してもよく、又フィルタ等で除去してもよ
い。
In order to achieve the above-mentioned technical object, the first invention of the present invention provides a food by means of a food transferring means,
In a tunnel freezer that freezes to a predetermined temperature while sequentially transferring to a predetermined temperature zone in the tunnel, divides the temperature zone into a plurality of temperature zones along the food transfer direction, and introduces food into the tunnel. The first temperature range zone to be set is set to a non-freezing temperature range zone of a temperature range of about 0 to 5 ° C., and water vapor evaporated in the non-freezing temperature range zone (hereinafter referred to as the first zone) is removed as droplets. It is characterized in that a removing means is provided, and after removing unnecessary steam of the food in the non-freezing temperature range by the removing means, the food can enter the freezing temperature range zone. As the removing means for removing the water vapor as liquid droplets, as shown in the examples below, it may be supercooled by a heat exchange coil at 0 to 1 ° C. to form liquid droplets, or may be removed by a filter or the like.

【0014】この場合前記非凍結温度域ゾーン通過後の
温度域ゾーンは、例えば最大氷結晶生成帯を短時間で通
過完了する急速冷凍用の第2ゾーンと、冷却保存する保
冷用の第3ゾーンとにより構成し、且つ第1ゾーンと第
2ゾーンとの間のコンベア上方域には冷ガス遮断用の隔
壁を設ける構成とするのがよい。尚、前記隣接するゾー
ン間の温度遮断をスリット状の冷気カーテンにより行っ
てもよく、又隔壁により行ってもよいが、いずれにして
も前記食品移送手段をベルト若しくはネットコンベアで
構成し、前記トンネル内を食品が連続移送可能に構成す
ることにより、生産性の向上につながる。
In this case, the temperature range zone after passing through the non-freezing temperature range zone is, for example, the second zone for quick freezing which completes the passage of the maximum ice crystal production zone in a short time and the third zone for cold storage for cooling and preservation. It is preferable that a partition for shielding cold gas is provided in the upper area of the conveyor between the first zone and the second zone. The temperature cutoff between the adjacent zones may be performed by a slit-shaped cool air curtain or a partition wall, but in any case, the food transfer means is constituted by a belt or a net conveyor, and the tunnel is used. It is possible to improve the productivity by constructing a food product in which the food can be continuously transferred.

【0015】又、前記トンネルフリーザの冷凍系を2段
圧縮機で構成するとともに、非凍結温度域ゾーン生成後
の冷媒ガスを前記2段圧縮機の高段側に直接導入可能に
構成するのがよい。
The refrigeration system of the tunnel freezer is composed of a two-stage compressor, and the refrigerant gas after the non-freezing temperature zone is generated can be directly introduced into the high-stage side of the two-stage compressor. Good.

【0016】そして第2の発明においては、食品移送手
段を介してトンネル内に導入させた食品に低温冷気流を
衝突させながら、食品の冷凍を行うトンネルフリーザに
おいて、移送方向に対しほぼ直交する方向に沿って平行
に延在する略断面略矩形状の冷媒通路を、スリット空隙
を介して多数本配設し、前記スリット空隙を通過する冷
気流が前記通路内の冷媒と熱交換しながら高速化して食
品に衝突可能に構成した事を特徴とする。この場合、前
記熱交換通路内を循環する冷媒ガスの温度を所定ゾーン
毎に異ならせ、前記スリット空隙を通過する冷気流の温
度域ゾーンを食品移送方向に沿って複数の温度域ゾーン
に分割することにより、前記第一発明が容易に達成され
る。
In the second aspect of the invention, in the tunnel freezer for freezing the food while colliding the low temperature cold air flow with the food introduced into the tunnel through the food transferring means, a direction substantially orthogonal to the transferring direction. A large number of refrigerant passages having a substantially rectangular cross-section extending in parallel along the slit gaps are arranged, and the cooling airflow passing through the slit gaps is accelerated while exchanging heat with the refrigerant in the passages. It is characterized that it can collide with food. In this case, the temperature of the refrigerant gas circulating in the heat exchange passage is made different for each predetermined zone, and the temperature zone of the cold airflow passing through the slit gap is divided into a plurality of temperature zones along the food transfer direction. As a result, the first invention can be easily achieved.

【0017】そしてこの場合も前記トンネルフリーザの
冷凍系を2段圧縮機で構成するとともに、食品導入側に
位置する温度域ゾーン通過後の冷媒ガスを前記2段圧縮
機の高段側に直接導入可能に構成するのがよい。
Also in this case, the refrigeration system of the tunnel freezer is constituted by a two-stage compressor, and the refrigerant gas after passing through the temperature zone located on the food introduction side is directly introduced to the high stage side of the two-stage compressor. It should be configured as possible.

【0018】[0018]

【作用】上記技術的構成により、トンネルフリーザは、
冷却温度0〜5℃の第1ゾーンを設けた為に、第1ゾー
ンで、食品より発生した無用の水蒸気は液滴として除去
される為に、その後の凍結温度域ゾーンで蒸発する水蒸
気が大幅に削減され、又第1ゾーンは0℃以上の温度域
であるために、前記第1ゾーンで過冷却した水蒸気は液
滴として容易に除去され、第1ゾーンでも霜として付着
する事がない。その結果、霜除去のためのデフロスト運
転の間隔を大幅に長くして運転効率を挙げることが出来
る。又前記第1ゾーンで食品は0〜5℃前後に冷却され
ているために、次段の急速冷凍用の第2ゾーンで食品は
最大氷結晶生成帯を短時間で通過することができ、食品
中の自由水の結晶化による未凍結部分の細胞を圧迫する
ことにより、惹起されるドリップ等を有効に防止でき、
良好な食品冷凍を行なうことができる。
With the above technical configuration, the tunnel freezer is
Since the first zone with a cooling temperature of 0 to 5 ° C is provided, unnecessary water vapor generated from food is removed as droplets in the first zone, so that the water vapor that evaporates in the subsequent freezing temperature zone is greatly reduced. Further, since the first zone is in the temperature range of 0 ° C. or higher, the steam supercooled in the first zone is easily removed as droplets and does not adhere as frost even in the first zone. As a result, it is possible to significantly increase the interval between defrosting operations for removing frost and improve operating efficiency. Further, since the food is cooled to around 0 to 5 ° C. in the first zone, the food can pass through the maximum ice crystal formation zone in a short time in the second zone for rapid freezing in the next stage. By compressing the cells in the unfrozen part due to the crystallization of free water in the inside, it is possible to effectively prevent drip etc. caused by
Good food freezing can be performed.

【0019】さて、まぐろ等のように−30〜−40℃
に低温凍結を行う食品の場合は、軸動力の低減を図る為
に、冷凍系の圧縮機を2段圧縮機にすることが好ましい
が、この際第1ゾーン通過後の冷媒ガス温度は約0℃
で、一方次段以降の凍結ゾーン通過後の冷媒ガス温度は
−30〜−40℃前後となる。
Now, like tuna, -30 to -40 ° C
In the case of foods that are frozen at low temperature, it is preferable to use a two-stage compressor as the refrigeration system in order to reduce the shaft power. At this time, the refrigerant gas temperature after passing through the first zone is about 0. ℃
On the other hand, the temperature of the refrigerant gas after passing through the freezing zone in the subsequent stages is around -30 to -40 ° C.

【0020】この為第1ゾーン通過後の0℃前後の冷媒
ガスはを前記2段圧縮機の高段側に直接導入し、一方次
段以降の凍結ゾーン通過後の−40℃前後の冷媒ガス温
度は低段側に入れるのがよい。
Therefore, the refrigerant gas around 0 ° C. after passing through the first zone is directly introduced into the high-stage side of the two-stage compressor, while the refrigerant gas around -40 ° C. after passing through the freezing zone after the next stage. It is better to put the temperature on the lower stage side.

【0021】第2発明は、略断面略矩形状の冷媒通路を
スリット空隙を介して多数本配設することにより、該ス
リット空隙を介してジェット冷気ガスが生成出来るとと
もに、該冷気ガスが通路を介して直接通路内の冷媒と熱
交換でき、好ましい。この結果前記通路とその配設構造
によりプレートフィン式熱交換器や整流板、ノズル等と
兼用出来る為に、装置の小型化もしくは大容量化を図る
ことが出来る。
According to the second aspect of the present invention, by arranging a plurality of refrigerant passages each having a substantially rectangular cross section through the slit gaps, jet cold air gas can be generated through the slit gaps, and the cold air gas passes through the passages. It is preferable because heat can be directly exchanged with the refrigerant in the passage via the above. As a result, the passage and the arrangement structure thereof can be used also as a plate fin type heat exchanger, a rectifying plate, a nozzle, etc., so that the device can be downsized or the capacity can be increased.

【0022】又前記構成により奪熱効率が向上し、前記
食品移送手段をベルト若しくはネットコンベアで構成
し、前記トンネル内を食品が連続移送可能に構成するこ
とが出来、生産性の向上につながる。
Further, the heat removal efficiency is improved by the above configuration, the food transfer means can be configured by a belt or a net conveyor, and the food can be continuously transferred in the tunnel, which leads to improvement in productivity.

【0023】[0023]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。ただし、この実施例に記載
されている構成部品の寸法、形状、その相対的位置等は
特に特定的な記載がないかぎりは、この発明の範囲をそ
れに限定する趣旨ではなく、単なる説明例にすぎない。
図1は、本発明の食品衝突噴流式トンネルフリーザの概
略の構成を示す縦断面図で、図2は横断面図で、図3は
冷媒通路の配設構成を示し、図4は予冷ゾーンにおける
冷ガス中に発生した液滴が蒸発器表面にそって滴下する
状況を示す図で、図5は冷媒通路とスリットの関係を示
す模式的断面図、図6は冷媒通路の全体平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be exemplarily described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Absent.
FIG. 1 is a vertical cross-sectional view showing a schematic structure of a food collision jet type tunnel freezer of the present invention, FIG. 2 is a horizontal cross-sectional view, FIG. 3 shows an arrangement structure of a refrigerant passage, and FIG. 4 shows a precooling zone. It is a figure which shows the condition which the droplet generate | occur | produced in the cold gas drips along the evaporator surface, FIG. 5 is a typical sectional view which shows the relationship between a refrigerant passage and a slit, and FIG. 6 is an overall plan view of a refrigerant passage. .

【0024】図1に示すように、本発明の食品衝突噴流
式トンネルフリーザは、食品を矢印方向に移送するネッ
トコンベア14を設けたトンネル式冷却器31を3つの
ゾーンに分割し、食品導入方向に沿って上流より下流に
向け食品の水蒸気蒸発させ、該水蒸気を液滴として除去
する第1のゾーン10と、最大氷晶生成帯を短時間で通
過完了しうる急速凍結用の第2ゾーン11と、凍結保存
する保冷用の第3ゾーン12とを順次配設し、第1ゾー
ン10で3〜5℃の高速冷気ガスを食品に衝突させるこ
とにより、食品表面の無用の水蒸気を除去し、第2ゾー
ン11で−30〜−40℃の高速冷気ガスを食品に衝突
させることによりドリップを防止しながら急速凍結、第
3のゾーンで−40℃前後の高速冷気ガスを食品に衝突
させることにより冷凍の安定化を図るゾーン式トンネル
フリーザを構成する。なお、第1ゾーン10と第2ゾー
ン11との間には温度差があるために冷ガス遮断用の隔
壁24を設ける構成とした。
As shown in FIG. 1, in the food impact jet type tunnel freezer of the present invention, a tunnel type cooler 31 provided with a net conveyor 14 for transferring food in the direction of an arrow is divided into three zones, and a food introducing direction is provided. Along with, a first zone 10 for evaporating food from upstream to downstream and removing the water vapor as droplets, and a second zone 11 for quick freezing capable of completing passage through the maximum ice crystal formation zone in a short time And, the third zone 12 for cold storage for freezing and storing is sequentially arranged, and unnecessary steam on the surface of the food is removed by colliding high-speed cold air gas of 3 to 5 ° C. with the food in the first zone 10. In the second zone 11, the high-speed cold air gas of −30 to −40 ° C. collides with the food to quickly freeze it while preventing drip, and in the third zone, the high-speed cold air gas of around −40 ° C. collides with the food. Constituting the zone type tunnel freezer to stabilize the freeze. Since there is a temperature difference between the first zone 10 and the second zone 11, the partition wall 24 for blocking the cold gas is provided.

【0025】次に冷凍系の構成を説明するに、15はカ
ップリング32を介してモ−タ33に連結された冷凍用
の2段圧縮機で、第2及び第3ゾーンに配設された冷媒
通路20B、20C通過後の冷媒ガス(−30℃前後)
は低段側15Aに導入されて低段圧縮が行われ(約5℃
程度に昇温)、該低段で圧縮された冷媒ガスは第1ゾー
ン10に配設された冷媒通路20A通過後の冷媒ガス
(5℃前後)と混合されて高段側15Bに導入され、高
段圧縮される。
Next, the structure of the refrigeration system will be described. Reference numeral 15 is a two-stage compressor for refrigeration which is connected to the motor 33 via the coupling 32 and is arranged in the second and third zones. Refrigerant gas after passing through the refrigerant passages 20B and 20C (around -30 ° C)
Is introduced to the lower stage side 15A and low stage compression is performed (about 5 ° C.
The temperature of the refrigerant gas compressed in the low stage is mixed with the refrigerant gas (about 5 ° C.) after passing through the refrigerant passage 20A arranged in the first zone 10 and introduced into the high stage side 15B, High-stage compression.

【0026】そして高段圧縮側15Bより吐出された圧
縮ガスは、凝縮器16にて液化され、液化後の冷媒は所
定に開度調整された夫々の膨張弁22A〜20Bにより
膨張され、第1ゾーン10では、0〜1℃の冷媒ガス
に、第2及び及び第3ゾーンでは−40℃にそれぞれ設
定している。熱交換器17、18、19は、図2、図5
及び図6に示すように、断面薄型矩形の横長コの字状に
形成した冷媒通路20A〜20Cをコンベア14の上部
を横断するように平行に多数本配設し、隣接する通路間
及び通路に挟まれるスリット空隙29を設けるととも
に、該通路20A〜20C内を冷媒ガス39が循環可能
に中空状に形成する。
The compressed gas discharged from the high-stage compression side 15B is liquefied in the condenser 16, and the liquefied refrigerant is expanded by the respective expansion valves 22A to 20B whose opening degrees are adjusted to a predetermined level. In the zone 10, the refrigerant gas of 0 to 1 ° C. is set, and in the second and third zones, it is set to −40 ° C., respectively. The heat exchangers 17, 18, and 19 are shown in FIGS.
And, as shown in FIG. 6, a plurality of refrigerant passages 20A to 20C formed in a horizontally-long U-shape having a thin rectangular cross section are arranged in parallel so as to traverse the upper part of the conveyor 14, and between adjacent passages and passages. A slit space 29 to be sandwiched is provided, and a refrigerant gas 39 is formed in a hollow shape so that the refrigerant gas 39 can circulate in the passages 20A to 20C.

【0027】そして各ゾーン毎の隣接する通路20A、
20B、20Cそれぞれの通路間は図6に示すようにコ
イル状の熱交換コイル38にて連結し、各ゾーン毎に閉
回路にて前記冷媒ガスの循環を確保する。そして前記熱
交換コイル38は各ゾーン毎のコンベア14の側部に配
設された予冷クーラ17内に収納されている。
The adjacent passages 20A for each zone,
The passages of 20B and 20C are connected by a coil-shaped heat exchange coil 38 as shown in FIG. 6, and the circulation of the refrigerant gas is secured by a closed circuit for each zone. The heat exchange coil 38 is housed in the precooling cooler 17 arranged on the side of the conveyor 14 for each zone.

【0028】前記予冷クーラ17は、下側に還流用ファ
ン21A、21Cを各ゾーン毎に設け、前記コンベア1
4に衝突して奪熱を行った冷気ガスを前記熱交換コイル
38と熱交換させて再度冷却して冷媒通路20上方に循
環し、該再冷却した冷気ガスを前記通路間のスリット空
隙29を通す事により、高速化且つ通路内の冷媒ガスと
熱交換させて高速ジェット冷気ガス流30をコンベア1
4上の食品に衝突させる。なお、図5に示すように前記
スリット(冷却板間隙)28の間隙を、L=1mm〜8
mmに構成し、ジェット冷気ガス流30の速さを10〜
25m/sに設定した場合、熱伝達係数を100〜20
0Kcal/m2×h×℃ が得られた。尚前記冷媒通
路20は、コンベア14上部を横断する複数の並列冷媒
通路20により構成しても良い。
The precooling cooler 17 is provided with reflux fans 21A and 21C on the lower side for each zone, and the conveyor 1
The cold air gas that has absorbed heat by colliding with the heat exchanger 4 is heat-exchanged with the heat exchange coil 38, is cooled again, and is circulated above the refrigerant passage 20, and the recooled cold air gas is passed through the slit gap 29 between the passages. By passing through the conveyor 1, the high-speed jet cold air gas flow 30 can be speeded up and exchanged heat with the refrigerant gas in the passage.
Collide with the food on 4. In addition, as shown in FIG. 5, the gap of the slit (cooling plate gap) 28 is set to L = 1 mm to 8 mm.
mm, and the speed of the jet cold air gas flow 30 is 10 to 10.
When set to 25 m / s, the heat transfer coefficient is 100 to 20
0 Kcal / m2 × h × ° C. was obtained. The refrigerant passage 20 may be composed of a plurality of parallel refrigerant passages 20 that cross the upper portion of the conveyor 14.

【0029】さて前記第1の予冷ゾーンの予冷クーラ1
7の下方底部には図3に示すように、ドレーン受け26
が配設され、0〜1℃の熱交換コイル38との接触によ
り水蒸気が過冷却され、該コイル30に付着した液滴が
ドレーン受け26に落下するように構成されている。な
お、第1ゾーン10と第2ゾーン11との間には前記の
ように冷ガス遮断用の隔壁24を設け、水蒸気を多分に
含んだ第1ゾーン10の冷ガスが第2ゾーン11に移行
する事なく第2ゾーン11の蒸発器18の表面での霜の
発生を防止する構成としてある。
Now, the precooling cooler 1 of the first precooling zone
As shown in FIG. 3, the drain receiver 26
Is arranged so that the water vapor is supercooled by contact with the heat exchange coil 38 at 0 to 1 ° C., and the droplets adhering to the coil 30 drop onto the drain receiver 26. In addition, the partition wall 24 for blocking the cold gas is provided between the first zone 10 and the second zone 11 as described above, and the cold gas in the first zone 10 containing a large amount of water vapor is transferred to the second zone 11. Without this, frost is prevented from being generated on the surface of the evaporator 18 in the second zone 11.

【0030】次にかかる実施例の作用を説明する。ネッ
トコンベア上に載置された食品はネットコンベア14の
移動にしたがって第1ゾーン10内に侵入する。第1ゾ
ーン10ではネットコンベア下方に配設された還流ファ
ンの吸引によりトンネルフリーザ上方に位置する空気が
前記冷媒通路20のスリット空隙29を通って、高速化
されるとともに通路内の冷媒ガスと熱交換させて0〜5
℃、好ましくは3〜5℃の高速ジェット冷気流30を生
成し、該ジェット気流をコンベア14上の食品に衝突さ
せる。これにより食品より無用な水蒸気が蒸発して、該
水蒸気は奪熱後の冷気ガス流とともに還流ファン21に
より予冷クーラ17内に導かれ、該予冷クーラ17内で
0〜1℃の熱交換コイルとの接触により水蒸気が過冷却
され該コイルに付着する。そしてコイルに付着した液滴
がドレーン受け26部に落下する。
Next, the operation of this embodiment will be described. The food placed on the net conveyor enters the first zone 10 as the net conveyor 14 moves. In the first zone 10, the air located above the tunnel freezer is accelerated by the suction of the reflux fan arranged below the net conveyor, passes through the slit gap 29 of the refrigerant passage 20 and is accelerated, and the refrigerant gas and heat in the passage are heated. Exchange it 0-5
C., preferably 3-5.degree. C., produces a high velocity jet cold air stream 30 which impinges on the food on the conveyor 14. As a result, unnecessary steam is evaporated from the food, and the steam is introduced into the pre-cooling cooler 17 by the reflux fan 21 together with the cold air gas flow after the heat is removed, and in the pre-cooling cooler 17, a heat exchange coil of 0 to 1 ° C. Of water vapor supercools and adheres to the coil. Then, the droplets attached to the coil drop onto the drain receiver 26.

【0031】一方水蒸気を除去した冷気ガスは、前記熱
交換コイル38と熱交換させて再度冷却して冷媒通路2
0上方に循環し、以下前記動作を繰り返す。尚、前記熱
交換コイル38は0℃以上の温度域であるために、前記
コイル38に付着した水蒸気は液滴として容易に下方に
落下除去され、前記冷媒通路20のスリット空隙29に
霜として付着する事がない。そして無用の水蒸気を除去
した食品は次段の急速冷凍用の第2ゾーン11に侵入し
て該ゾーンで、冷媒通路20のスリット空隙29を通過
する−40℃前後の低温高速ジェット冷気流30が食品
と接触し、これにより該食品は最大氷結晶生成帯を短時
間で通過することができ、食品中の自由水の結晶化によ
る未凍結部分の細胞を圧迫することにより、惹起される
ドリップ等を有効に防止でき、良好な食品冷凍を行なう
ことができる。そして第3ゾーン12で更に凍結温度を
安定化させてコンベア14によりフリーザ25外に食品
を排出される。
On the other hand, the cold air gas from which the water vapor has been removed is heat-exchanged with the heat exchange coil 38 and cooled again to cool the refrigerant passage 2
It circulates upward by 0 and repeats the above operation. Since the heat exchange coil 38 is in a temperature range of 0 ° C. or higher, the water vapor adhering to the coil 38 is easily dropped and removed downward as a droplet, and adheres as frost to the slit void 29 of the refrigerant passage 20. There is nothing to do. Then, the food product from which unnecessary steam has been removed enters the second zone 11 for quick freezing in the next stage, and in this zone, the low-temperature high-speed jet cold airflow 30 of about -40 ° C passes through the slit void 29 of the refrigerant passage 20. Contact with food, which allows the food to pass through the maximum ice crystal formation zone in a short time, and drip caused by pressing cells in the unfrozen portion of the food due to crystallization of free water Can be effectively prevented, and good food freezing can be performed. Then, the freezing temperature is further stabilized in the third zone 12, and the conveyor 14 discharges the food to the outside of the freezer 25.

【0032】[0032]

【発明の効果】かかる発明によれば、冷却温度3〜5℃
よりなるプラス温度に制御する液滴除去用の第1ゾーン
を設けたため、第1ゾーンで、食品より発生した水蒸気
は奪熱後の冷ガス中に混在させ、所定の箇所に設けた液
滴除去手段により液滴として除去されるために、霜とし
て第1ゾーンや次工程の凍結ゾーンに付着する事なく、
又次工程で僅かに前記スリット壁に付着しても前記ジェ
ット気流のため吹き飛ばすことができる。その結果、霜
除去のための休転の合間を長くして運転効率を高め、ノ
ンデフロスト長時間連続運転を可能にすることが出来
る。
According to the present invention, the cooling temperature is 3 to 5 ° C.
Since the first zone for removing droplets for controlling the positive temperature is provided, the water vapor generated from the food is mixed in the cold gas after the heat is removed in the first zone to remove the droplets provided at a predetermined location. Since it is removed as droplets by the means, it does not adhere to the first zone and the freezing zone in the next step as frost,
Further, even if it slightly adheres to the slit wall in the next step, it can be blown off due to the jet stream. As a result, it is possible to increase the operation interval by increasing the period of rest for frost removal, and to enable non-defrost long-time continuous operation.

【0033】又第2発明によれば、衝突噴流であるジェ
ット気流の形成と冷却を、スリット状に形成された路壁
構造を持った冷媒通路20と還流ファンその他の吸引手
段とより構成としたため、プレートフィン式熱交換器や
整流板、ノズル等は不要となり、装置の飛躍的小型化も
しくは大容量化を図ることが出来る。等の種々の著効を
有す。
Further, according to the second aspect of the invention, the formation and cooling of the jet airflow, which is the impinging jet flow, are made up of the refrigerant passage 20 having the slit-shaped passage wall structure and the recirculation fan and other suction means. Since the plate fin type heat exchanger, the straightening plate, the nozzle, etc. are not required, the size of the apparatus can be dramatically reduced or the capacity can be increased. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明食品衝突噴流式トンネルフリーザの概略
の構成を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a food impact jet type tunnel freezer of the present invention.

【図2】図1の横断面図である。2 is a cross-sectional view of FIG.

【図3】図1の第1ゾーンにおける冷ガス中に発生した
水蒸気を液滴として滴下する状況を示す図である。
FIG. 3 is a diagram showing a situation in which steam generated in cold gas in the first zone of FIG. 1 is dropped as droplets.

【図4】図1の冷媒通路の概略構成を示す斜視図であ
る。
FIG. 4 is a perspective view showing a schematic configuration of a refrigerant passage of FIG.

【図5】図4の冷媒通路とスリットの関係を示す模式的
断面図である。
5 is a schematic cross-sectional view showing the relationship between the refrigerant passage and the slit shown in FIG.

【図6】図4の冷媒通路の全体構成を示す平面図であ
る。
6 is a plan view showing the overall configuration of the refrigerant passage of FIG. 4. FIG.

【図7】予冷によるデフロストをした従来技術の概略断
面図である。
FIG. 7 is a schematic cross-sectional view of a conventional technique in which defrosting is performed by precooling.

【図8】温度差を設けた区画冷却をする従来技術を示す
概略要部断面図である。
FIG. 8 is a schematic cross-sectional view of a main part showing a conventional technique for cooling compartments with a temperature difference.

【符号の説明】[Explanation of symbols]

10 非凍結温度域ゾーン 14 ベルト若しくはネットコンベア 15 2段圧縮機 20 液滴除去手段 29 スリット空隙 52 トンネルフリーザ 10 Non-freezing temperature zone 14 Belt or net conveyor 15 Two-stage compressor 20 Droplet removing means 29 slit void 52 Tunnel Freezer

フロントページの続き (56)参考文献 特開 昭60−152876(JP,A) 特開 平5−223368(JP,A) 実開 平5−42980(JP,U) 実開 平3−115375(JP,U) 実開 平3−57378(JP,U) 実開 平6−13495(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25D 13/06 Continuation of the front page (56) References JP-A-60-152876 (JP, A) JP-A-5-223368 (JP, A) Actual Kaihei 5-42980 (JP, U) Actual Kaihei 3-115375 (JP , U) Actual Kaihei 3-57378 (JP, U) Actual Kaihei 6-13495 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25D 13/06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 食品移送手段を介して食品を、トンネル
内の所定温度域ゾーンに順次移送させながら所定温度ま
での冷凍を行うトンネルフリーザにおいて、 前記温度域ゾーンを食品移送方向に沿って複数の温度域
ゾーンに分割するとともに、トンネル内に食品が導入さ
れる最初の温度域ゾーンを約0〜5℃の温度域の非凍結
温度域ゾーンに設定するとともに、前記非凍結温度域ゾ
ーンで蒸発した水蒸気を液滴として除去する除去手段を
設け、該除去手段により前記非凍結温度域で食品の不要
な水蒸気を除去した後、食品が冷凍温度域ゾーンに侵入
可能に構成した事を特徴とするトンネルフリーザ
1. A tunnel freezer for freezing a food to a predetermined temperature while sequentially transferring the food to a predetermined temperature zone in a tunnel through a food transfer means, wherein a plurality of temperature zones are provided along the food transfer direction. In addition to dividing into temperature zones, the first temperature zone in which food is introduced into the tunnel is set to a non-freezing temperature zone of a temperature range of about 0 to 5 ° C, and evaporation is performed in the non-freezing temperature zone. A tunnel characterized in that a removing means for removing water vapor as droplets is provided, and after removing unnecessary water vapor of food in the non-freezing temperature range by the removing means, the food can enter the freezing temperature range zone. Freeza
【請求項2】 前記食品移送手段をベルト若しくはネッ
トコンベアで構成し、前記トンネル内を食品が連続移送
可能に構成した請求項1記載のトンネルフリーザ
2. The tunnel freezer according to claim 1, wherein the food transfer means is constituted by a belt or a net conveyor, and the food can be continuously transferred in the tunnel.
【請求項3】 前記トンネルフリーザの冷凍系を2段圧
縮機で構成するとともに、非凍結温度域ゾーン生成後の
冷媒ガスを前記2段圧縮機の高段側に直接導入可能に構
成した請求項1記載のトンネルフリーザ
3. The refrigeration system of the tunnel freezer is configured by a two-stage compressor, and the refrigerant gas after generation of the non-freezing temperature zone can be directly introduced into the high-stage side of the two-stage compressor. Tunnel freezer described in 1.
【請求項4】 食品移送手段を介してトンネル内に導入
させた食品に低温冷気流を衝突させながら、食品の冷凍
を行うトンネルフリーザにおいて、 移送方向に対しほぼ直交する方向に沿って平行に延在す
る略断面略矩形状の冷媒通路を、スリット空隙を介して
多数本配設し、前記スリット空隙を通過する冷気流が前
記通路内の冷媒と熱交換しながら高速化してして食品に
衝突可能に構成した事を特徴とするトンネルフリーザ
4. In a tunnel freezer for freezing food while colliding a low temperature cold air flow with the food introduced into the tunnel through the food transfer means, the freezer extends parallel to a direction substantially orthogonal to the transfer direction. A large number of existing refrigerant passages having a substantially rectangular cross section are arranged through slit gaps, and the cold airflow passing through the slit gaps accelerates while exchanging heat with the refrigerant in the passages and collides with food. Tunnel freezer characterized by being configured as possible
【請求項5】 前記熱交換通路内を循環する冷媒ガスの
温度を所定ゾーン毎に異ならせ、前記スリット空隙を通
過する冷気流の温度域ゾーンを食品移送方向に沿って複
数の温度域ゾーンに分割してなる請求項1記載のトンネ
ルフリーザ
5. The temperature of the refrigerant gas circulating in the heat exchange passage is varied for each predetermined zone, and the temperature zone of the cold air flow passing through the slit gap is divided into a plurality of temperature zones along the food transfer direction. The tunnel freezer according to claim 1, which is divided.
【請求項6】 前記トンネルフリーザの冷凍系を2段圧
縮機で構成するとともに、食品導入側に位置する温度域
ゾーン通過後の冷媒ガスを前記2段圧縮機の高段側に直
接導入可能に構成した請求項1記載のトンネルフリーザ
6. The refrigeration system of the tunnel freezer is configured by a two-stage compressor, and the refrigerant gas after passing through the temperature zone located on the food introduction side can be directly introduced to the high stage side of the two-stage compressor. The constructed tunnel freezer according to claim 1.
JP04478395A 1995-02-09 1995-02-09 Tunnel freezer for food freezing Expired - Fee Related JP3440157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04478395A JP3440157B2 (en) 1995-02-09 1995-02-09 Tunnel freezer for food freezing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04478395A JP3440157B2 (en) 1995-02-09 1995-02-09 Tunnel freezer for food freezing

Publications (2)

Publication Number Publication Date
JPH08219617A JPH08219617A (en) 1996-08-30
JP3440157B2 true JP3440157B2 (en) 2003-08-25

Family

ID=12701013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04478395A Expired - Fee Related JP3440157B2 (en) 1995-02-09 1995-02-09 Tunnel freezer for food freezing

Country Status (1)

Country Link
JP (1) JP3440157B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430691B1 (en) * 2000-09-08 2004-05-10 대성산업가스 주식회사 Rapid food freezer with closed cycle refrigerator and liquid nitrogen
EP1430256A4 (en) * 2001-08-30 2006-06-07 Integrated Marine Systems Inc Continuous throughput blast freezer
JP4999381B2 (en) * 2006-07-12 2012-08-15 株式会社フリーザーシステム Continuous cooling system
JP4853868B2 (en) * 2006-07-12 2012-01-11 株式会社フリーザーシステム Continuous refrigeration equipment
JP5143597B2 (en) * 2008-03-11 2013-02-13 株式会社テクニカン Frozen product manufacturing method and manufacturing apparatus
KR101219674B1 (en) * 2009-06-25 2013-01-08 한국식품연구원 Apparatus of scattering for apparatus manufacturing frozen rice
CN108071400A (en) * 2016-11-10 2018-05-25 上海宝冶集团有限公司 Horizontal freezing consolidation combines shield driving construction method with steel jacket box
JP6818221B2 (en) * 2017-12-21 2021-01-20 古賀産業株式会社 Cooling system
JP7277161B2 (en) * 2019-02-08 2023-05-18 ダイキン工業株式会社 Refrigeration equipment and cooling system
CN110307630B (en) * 2019-06-28 2020-12-04 南京六创科技发展有限公司 Liquid type evaporator for air conditioner
JP6946500B2 (en) * 2019-12-20 2021-10-06 浙江大学舟山海洋研究中心Ocean Research Center of Zhoushan,Zhejiang University High-precision control system and method for onboard ultra-low temperature quick freezing with liquid nitrogen of marine products
JP7285241B2 (en) * 2020-10-02 2023-06-01 タカハシガリレイ株式会社 Cooling module and continuous rapid cooling device
KR20230168432A (en) * 2022-06-07 2023-12-14 쿠팡 주식회사 Fulfillment center system

Also Published As

Publication number Publication date
JPH08219617A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP3440157B2 (en) Tunnel freezer for food freezing
US4501130A (en) Refrigerating device
CN1167243A (en) Cooling device with multiple evaporators
CN101038113A (en) Heat exchanging device for refrigerator
US4590773A (en) Heat exchanger for refrigerator
JP3588345B2 (en) Refrigerator cool air circulation device
JPWO2013088462A1 (en) refrigerator
US5706673A (en) Freezing compartment air flow system of refrigerator
JP3372170B2 (en) refrigerator
JP5512198B2 (en) Food freezing method and apparatus
JP7364777B2 (en) Cooling device and cooling method
JP3157360B2 (en) Cooler
WO2023234121A1 (en) Vehicle-mounted heat exchanger
JP3609812B2 (en) refrigerator
KR0136069Y1 (en) Radiating system of a refrigerator
CN1256563C (en) Evaporation device of refrigerator
KR0156369B1 (en) Cooling air circulating device of a refrigerator
JP2002181435A (en) Refrigerator
JP2002340465A (en) Refrigerator
JPH05118707A (en) Refrigerator of cold air circulating showcase
JP3040198B2 (en) Refrigeration heat exchanger
JPS581744Y2 (en) Food freezing equipment using liquefied gas
JPH04240394A (en) Heat exchanger for refrigeration
JP2001221557A (en) Food freezer
JP2002195737A (en) Defrosted water draining device for cooler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees