JPH04240394A - Heat exchanger for refrigeration - Google Patents

Heat exchanger for refrigeration

Info

Publication number
JPH04240394A
JPH04240394A JP560591A JP560591A JPH04240394A JP H04240394 A JPH04240394 A JP H04240394A JP 560591 A JP560591 A JP 560591A JP 560591 A JP560591 A JP 560591A JP H04240394 A JPH04240394 A JP H04240394A
Authority
JP
Japan
Prior art keywords
fins
row
heat exchanger
air inflow
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP560591A
Other languages
Japanese (ja)
Inventor
Masafumi Kawai
河合 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP560591A priority Critical patent/JPH04240394A/en
Publication of JPH04240394A publication Critical patent/JPH04240394A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Abstract

PURPOSE:To provide a heat exchanger for refrigeration, in which clogging period of time due to frosting is elongaged to reduce the number of times of defrosting and excellent defrosting efficiency is obtained, in the heat exchanger for refrigeration, which cools ventilated air and accompanies frosting on the surface thereof, such as a refrigerating evaporator for a freezing refrigerator, refrigerating showcase and the like. CONSTITUTION:The pitch P1 of refrigerant pipe 4, orthogonal to first row fins 6 and penetrating them, is made larger than the pitch P of the refrigerant tube 4, orthogonal to fins after a second row and penetrating them.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷凍冷蔵庫、冷凍ショ
ーケース等の冷凍用蒸発器の如く、通風された空気を冷
却し、表面に着霜を伴う冷凍用熱交換器に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration heat exchanger that cools ventilated air and causes frost to form on its surface, such as a refrigeration evaporator for a refrigerator-freezer or a refrigeration showcase.

【0002】0002

【従来の技術】近年、冷凍冷蔵庫、冷凍ショーケースの
デフロストサイクル時間をのばし省電力を図る為、着霜
による目詰まり時間の長い冷凍用熱交換器が望まれてい
る。また、容積効率を向上させる為、コンパクトな冷凍
用熱交換器の要望も根強くある。従来の冷凍用熱交換器
は、実開昭57−120889号公報に示される構成が
一般的であった。
BACKGROUND OF THE INVENTION In recent years, in order to save power by extending the defrost cycle time of refrigerator-freezers and freezer showcases, there has been a demand for heat exchangers for refrigeration that have a longer time for clogging due to frost formation. Additionally, there is a strong desire for compact refrigeration heat exchangers to improve volumetric efficiency. Conventional refrigeration heat exchangers generally have a configuration shown in Japanese Utility Model Application Publication No. 57-120889.

【0003】以下、図面を参照しながら従来の冷凍用熱
交換器について説明する。図4は従来の冷凍用熱交換器
の平面図である。図4において、1は第一列フィン、2
は第二列フィン、3は最終列フィンで、各々空気を冷却
する。4は冷媒管で、前記フィンに直交し、貫通し、フ
ィンを冷却する。5は端板で、冷媒管4を保持する。
A conventional refrigeration heat exchanger will be explained below with reference to the drawings. FIG. 4 is a plan view of a conventional refrigeration heat exchanger. In FIG. 4, 1 is the first row of fins, 2
3 is the second row of fins, and 3 is the last row of fins, each of which cools the air. Reference numeral 4 denotes a refrigerant pipe that extends perpendicularly to and penetrates the fins to cool the fins. 5 is an end plate that holds the refrigerant pipe 4.

【0004】以上のように構成された冷凍用熱交換器に
ついて以下その動作について説明する。熱交換効率を上
げる為、冷媒管4が貫通する第一列フィン1,第二列フ
ィン,最終列フィン3を空気流入方向(矢印で示す)に
対して若干の間隔lを隔てて独立せしめ、かつ空気流入
側の第一列フィン1が疎に、第二列フィン2,最終フィ
ン3が順次密になるよう配列されている。また冷媒管4
は管ピッチPで規則的に配列されている。冷凍用熱交換
器に流入する空気は、第一列フィン,第二列フィン,最
終フィン各々で冷却され、冷凍冷蔵庫等の庫内(図示せ
ず)へ供給される。
The operation of the refrigeration heat exchanger constructed as described above will be explained below. In order to increase heat exchange efficiency, the first row of fins 1, the second row of fins, and the last row of fins 3 through which the refrigerant pipes 4 pass are made independent with a slight distance l in the air inflow direction (indicated by the arrow). The first row of fins 1 on the air inflow side are arranged sparsely, and the second row fins 2 and the last fins 3 are arranged densely. Also, refrigerant pipe 4
are regularly arranged with a pipe pitch P. The air flowing into the refrigeration heat exchanger is cooled by the first row of fins, the second row of fins, and the final fin, and then supplied to the inside of a refrigerator-freezer (not shown).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、第1の課題として冷却量の一番多い第
一列フィンの着霜量が多くなり、フィンピッチを疎にし
ているにもかかわらず、着霜による目詰まりが比較的短
時間で発生しデフロストの回数が増え、デフロスト効率
が悪くなるという課題を有していた。
[Problems to be Solved by the Invention] However, with the above configuration, the first problem is that the amount of frost builds up on the first row of fins, which have the largest amount of cooling, and even though the fin pitch is sparse, Regardless, the problem is that clogging due to frost occurs in a relatively short period of time, increasing the number of defrosting operations, and deteriorating defrosting efficiency.

【0006】また、第2の課題として上記のような構成
では、冷却量の多い第一列フィンと第二列フィンの隙間
Sで、フィンピッチが疎から密となる影響で気流が変化
し霜が付きやすくなり、着霜による目詰まりが比較的短
時間で発生しデフロストの回数が増え、デフロスト効率
が悪くなるという課題を有していた。
[0006] A second problem with the above configuration is that in the gap S between the first row of fins and the second row of fins, where the amount of cooling is large, the airflow changes due to the effect of the fin pitch becoming denser than that of the sparse one, causing frost to form. This has led to problems in that frost tends to form, clogging occurs in a relatively short period of time, the number of defrost operations increases, and defrost efficiency deteriorates.

【0007】また第3の課題として上記のような構成で
は、冷却量の最も少ない最終列フィン3は、熱交換効率
が悪く、フィン表面積は有効利用されておらず、容積の
大きな冷凍用熱交換器となっている為、冷凍冷蔵庫等の
容積効率を低下させているという課題を有していた。
[0007] A third problem is that in the above configuration, the heat exchange efficiency of the last row of fins 3, which has the least amount of cooling, is poor, and the fin surface area is not effectively used, and the heat exchanger for refrigeration, which has a large volume, has poor heat exchange efficiency. Because it is a container, it has the problem of reducing the volumetric efficiency of refrigerators, freezers, etc.

【0008】[0008]

【課題を解決するための手段】上記第1の課題を解決す
るために本発明は、多数並列され、空気流入方向に対し
て各列単位に独立せしめ、かつ前記各列を空気流入側よ
り流出側へ順次疎から密へ配列されたフィンと、これら
に直交し、貫通する冷媒管より構成され、前記フィンの
内、空気流入側に位置する第一列フィンに直交し、貫通
する前記冷媒管の管ピッチを、第二列以降のフィンに直
交し、貫通する冷媒管の管ピッチより大きくするという
構成を備えたものである。
[Means for Solving the Problems] In order to solve the first problem, the present invention provides a system in which a large number of devices are arranged in parallel, each row is independent in the air inflow direction, and each row is connected to an air outlet from the air inflow side. The refrigerant pipe is composed of fins arranged from sparse to dense in order from side to side, and a refrigerant pipe that penetrates and intersects perpendicularly to these, and that perpendicularly intersects and penetrates a first row of fins located on the air inflow side among the fins. The pipe pitch of the refrigerant pipes is made larger than the pipe pitch of the refrigerant pipes that are perpendicular to and pass through the fins in the second and subsequent rows.

【0009】また第2の課題を解決するために本発明は
、多数並列され、空気流入方向に対して各列単位に独立
せしめ、かつ前記各列を空気流入側より流出側へ順次疎
から密へ配列されたフィンと、これらに直交し、貫通す
る冷媒管より構成され、前記フィンの内、空気流入側に
位置する第一列フィンの空気流出側エッジと、第二列フ
ィンの空気流入側エッジの間隔を、第二列フィンのフィ
ンピッチと同等以上に長くするという構成を備えたもの
である。
In order to solve the second problem, the present invention arranges a large number of air filters in parallel, each row is independent in the air inflow direction, and each row is sequentially arranged from sparse to dense from the air inflow side to the air outflow side. The air outflow side edge of the first row of fins located on the air inflow side among the fins and the air inflow side of the second row of fins This configuration has a configuration in which the interval between edges is made longer than the fin pitch of the second row of fins.

【0010】また第3の課題を解決するために本発明は
、多数並列され、空気流入方向に対して各列単位に独立
せしめ、かつ前記各列を空気流入側より流出側へ順次疎
から密へ配列されたフィンと、これらに直交し、貫通す
る冷媒管より構成され、前記フィンの内、空気流出側に
位置する最終列フィンに直交し、貫通する前記冷媒管の
管ピッチを、最終列より風上側に位置するフィンに直交
し、貫通する冷媒管の管ピッチよりも小さくするという
構成を備えたものである。
[0010] In order to solve the third problem, the present invention arranges a large number of air filters in parallel, each row is independent with respect to the air inflow direction, and each row is sequentially arranged from sparse to dense from the air inflow side to the air outflow side. The pitch of the refrigerant pipes perpendicular to and penetrating the last row of fins located on the air outflow side among the fins is defined as the last row. This structure is such that the pipe pitch is smaller than the pipe pitch of the refrigerant pipes that intersect perpendicularly to the fins located on the windward side and pass through them.

【0011】[0011]

【作用】本発明は上記した構成によって、冷却量の一番
多い第一列フィンの着霜量が多くとも、着霜スペースが
大きくなるので、着霜による目詰まり時間をのばしデフ
ロスト回数を減少させデフロスト効率を向上させること
ができる。
[Function] With the above-described configuration, the present invention has a large frosting space even if the first row of fins, which have the largest amount of cooling, has a large amount of frost, thereby extending the time for clogging due to frosting and reducing the number of defrost operations. Defrost efficiency can be improved.

【0012】また、フィンピッチが疎から密となる影響
で霜が付いても、着霜スペースが大きくなるので、着霜
による目詰まり時間をのばしデフロスト回数を減少させ
、デフロスト効率を向上させることができる。
[0012] Furthermore, even if frost forms due to the effect of changing the fin pitch from sparse to dense, the frost formation space becomes larger, so the time for clogging due to frost formation can be extended, the number of defrost operations can be reduced, and the defrost efficiency can be improved. can.

【0013】更に、フィン表面積を有効利用し、コンパ
クトな冷凍用熱交換器を実現させ、冷凍冷蔵庫等の容積
効率を上げることができる。
Furthermore, by effectively utilizing the fin surface area, a compact refrigeration heat exchanger can be realized, and the volumetric efficiency of refrigerator-freezers and the like can be improved.

【0014】[0014]

【実施例】以下本発明の第1発明の実施例について図面
を参照しながら説明する。図1は第1発明の実施例の冷
凍用熱交換器の平面図である。図1において従来と同一
構成については同一符号を付してその詳細な説明を省略
する。図1において、6は第一列フィンで、空気を冷却
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the first aspect of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a refrigeration heat exchanger according to an embodiment of the first invention. In FIG. 1, components that are the same as those of the prior art are designated by the same reference numerals and detailed explanation thereof will be omitted. In FIG. 1, 6 is a first row of fins that cools the air.

【0015】以上にように構成された本発明の実施例の
冷凍用熱交換器について説明する。熱交換効率を上げる
為、冷媒管4が、貫通する第一列フィン1,第二列フィ
ン2,最終列フィン3を空気流入方向(矢印で示す)に
対して若干の間隔lを隔てて独立せしめ、かつ空気流入
側の第一列フィン1が疎に、第二列フィン2,最終フィ
ン3が順次密になるよう配列されている。
A refrigeration heat exchanger according to an embodiment of the present invention constructed as described above will be explained. In order to increase heat exchange efficiency, the refrigerant pipe 4 separates the penetrating first row fins 1, second row fins 2, and last row fins 3 with a slight distance l in the air inflow direction (indicated by the arrow). The first row of fins 1 on the air inflow side are arranged sparsely, and the second row fins 2 and the last fins 3 are arranged densely.

【0016】空気が流入すると、各列フィンと接触し、
空気は冷却されるとともに各列フィンに着霜する。冷却
量の一番多い第一列フィンの着霜量が多いので、空気流
入側に位置する第一列フィンに直交し、貫通する冷媒管
の管ピッチP1を、第二列以降のフィンに直交し、貫通
する冷媒管の管ピッチPよりも大きくすることにより、
着霜スペースを大きくし、着霜による目詰まり時間をの
ばすことができる。
When air enters, it contacts each row of fins,
The air is cooled and frost forms on each row of fins. Since the amount of frost builds up on the first row of fins, which have the largest amount of cooling, the pipe pitch P1 of the refrigerant pipes that are perpendicular to and penetrate the first row of fins located on the air inflow side is set to be perpendicular to the second and subsequent rows of fins. However, by making it larger than the pipe pitch P of the refrigerant pipes passing through,
The frosting space can be enlarged and the time for clogging due to frosting can be extended.

【0017】これらの作用により、着霜による目詰まり
時間をのばしデフロストの回数を減少させ、デフロスト
効率を向上させることができる。
[0017] These actions can extend the time for clogging due to frost formation, reduce the number of defrost operations, and improve defrost efficiency.

【0018】つぎに、本発明の第2発明の実施例につい
て図面を参照しながら説明する。図2は第2発明の実施
例の冷凍用熱交換器の平面図である。図2において従来
と同一構成については同一符号を付してその詳細な説明
を省略する。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a plan view of a refrigeration heat exchanger according to an embodiment of the second invention. In FIG. 2, components that are the same as those of the prior art are designated by the same reference numerals and detailed explanation thereof will be omitted.

【0019】以上のように構成された本発明の実施例の
冷凍用熱交換器について説明する。熱交換効率及びデフ
ロスト効率を上げる為、空気流入方向(矢印で示す)に
対して第一列フィンと第二列フィンの間隔をl1、第二
列フィンと最終列フィンの間隔をlとし各フィンを独立
せしめ、かつ空気流入側の第一列フィンが疎に、第二列
フィン2,最終フィン3が順次密によるよう配列されて
いる。
A refrigeration heat exchanger according to an embodiment of the present invention constructed as described above will be explained. In order to increase heat exchange efficiency and defrost efficiency, the distance between the first row of fins and the second row of fins is l1 in the air inflow direction (indicated by the arrow), and the distance between the second row of fins and the last row of fins is set to l. The first row of fins on the air inflow side are arranged sparsely, and the second row fins 2 and the last fins 3 are arranged densely.

【0020】空気が流入すると、各列フィンと接触し、
空気は要れ客されるとともに、各列フィンに着霜する。 冷却量の多い第一列フィンと第二列フィンの隙間S1(
破線で示す)で、フィンピッチが疎から密となる影響で
気流が変化し霜が付きやすくなるので、空気流入側に位
置する第一列フィンの空気流出側エッジと、第二列フィ
ンの空気流入側エッジの間隔l1を、第二列フィンのフ
ィンピッチP2と同等以上に長くすることにより、S1
での着霜スペースを大きくし、着霜による目詰まり時間
をのばすことができる。
When air enters, it contacts each row of fins,
As the air is drawn in, frost forms on each row of fins. Gap S1 (
(shown by the broken line), the airflow changes due to the effect of the fin pitch changing from sparse to dense, making it easier for frost to form. By increasing the interval l1 between the inflow side edges to a length equal to or greater than the fin pitch P2 of the second row of fins, S1
It is possible to increase the space for frost formation and extend the time for clogging due to frost formation.

【0021】これらの作用により、着霜による目詰まり
時間をのばしデフロスト回数を減少させ、デフロスト効
率を向上させることができる。
[0021] These actions can extend the time for clogging due to frost formation, reduce the number of defrost operations, and improve defrost efficiency.

【0022】つぎに、本発明の第3発明の実施例につい
て図面を参照しながら説明する。図3は第3発明の実施
例の冷凍冷蔵用交換器の平面図である。図3において従
来と同一構成については同一符号を付してその詳細な説
明を省略する。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a plan view of a refrigerator/freezer exchanger according to an embodiment of the third invention. In FIG. 3, components that are the same as those of the prior art are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

【0023】図3において、7は最終列フィンで、空気
を冷却する。以上にように構成された本発明の実施例の
冷凍用熱交換器について説明する。
In FIG. 3, 7 is the last row of fins for cooling the air. A refrigeration heat exchanger according to an embodiment of the present invention configured as described above will be explained.

【0024】熱交換効率を上げる為、冷媒管4が、貫通
する第一列フィン1,第二列フィン2,最終列フィン7
を空気流入方向(矢印で示す)に対して若干の間隔lを
隔てて独立せしめ、かつ空気流入側の第一列フィン1が
疎に、第二列フィン2,最終フィン3が順次密になるよ
う配列されている。
In order to increase heat exchange efficiency, the refrigerant pipe 4 passes through the first row of fins 1, the second row of fins 2, and the last row of fins 7.
are separated from each other by a slight distance l in the air inflow direction (indicated by the arrow), and the first row of fins 1 on the air inflow side are sparsely spaced, and the second row fins 2 and the last fins 3 are successively denser. It is arranged like this.

【0025】空気が流入すると、各列フィンと接触し、
空気は冷却されるとともに各列フィンに着霜する。冷却
量の最も少なく着霜量も少ない最終列フィン3は、熱交
換率が悪く、フィン表面積は有効利用されていないので
、空気流出側に位置する最終列フィンに直交し、貫通す
る冷媒管の管ピッチP3を、最終列より風上側に位置す
るフィンに直交し、貫通する冷媒管の管ピッチPよりも
小さくすることにより、冷却量を減少させることなく冷
凍用熱交換器の容積を減少させることができる。
When air flows in, it contacts each row of fins,
The air is cooled and frost forms on each row of fins. The last row of fins 3, which have the lowest amount of cooling and the least amount of frost formation, have a poor heat exchange rate and the fin surface area is not effectively used. By making the pipe pitch P3 smaller than the pipe pitch P of the refrigerant pipes that are perpendicular to and penetrate the fins located on the windward side of the last row, the volume of the refrigeration heat exchanger can be reduced without reducing the amount of cooling. be able to.

【0026】これらの作用により、コンパクトな冷凍用
熱交換器を実現させ、冷凍冷蔵庫等の容積効率を向上さ
せることができる。
[0026] These effects make it possible to realize a compact refrigeration heat exchanger and improve the volumetric efficiency of refrigerator-freezers and the like.

【0027】[0027]

【発明の効果】以上にように本発明は、多数並列され、
空気流入方向に対して各列単位に独立せしめ、かつ前記
各列を空気流入側より流出側へ順次疎から密へ配列され
たフィンと、これらに直交し、貫通する冷媒管より構成
され、前記フィンの内、空気流入側に位置する第一列フ
ィンに直交し、貫通する前記冷媒管の管ピッチを、第二
列以降のフィンに直交し、貫通する冷媒管の管ピッチよ
りも大きくすることにより、着霜による目詰まり時間を
のばしデフロスト回数を減少させ、デフロスト効率の良
い冷凍用熱交換器を提供できる。
[Effects of the Invention] As described above, the present invention has many parallel
Each row is made independent in the air inflow direction, and each row is made up of fins arranged sequentially from sparse to dense from the air inflow side to the air outflow side, and a refrigerant pipe that penetrates and intersects perpendicularly to these fins. A pipe pitch of the refrigerant pipes that perpendicularly intersect and penetrate the first row of fins located on the air inflow side among the fins is made larger than a pipe pitch of the refrigerant pipes that perpendicularly intersect and penetrate the second and subsequent rows of fins. As a result, the time for clogging due to frost formation can be extended, the number of defrost operations can be reduced, and a refrigeration heat exchanger with high defrost efficiency can be provided.

【0028】また、多数並列され、空気流入方向に対し
て各列単位に独立せしめ、かつ前記各列を空気流入側よ
り流出側へ順次疎から密へ配列されたフィンと、これら
に直交し、貫通する冷媒管より構成され、前記フィンの
内、空気流入側に位置する第一列フィンの空気流出側エ
ッジと、第二列フィンの空気流入側エッジの間隔を、第
二列フィンのフィンピッチと同等以上に長くすることに
より、着霜による目詰まり時間をのばしデフロスト回数
を減少させ、デフロスト効率の良い冷凍用熱交換器を提
供できる。
[0028] Also, a large number of fins are arranged in parallel, each row is independent in the air inflow direction, and each row is sequentially arranged from sparse to dense from the air inflow side to the air outflow side; The interval between the air outflow side edge of the first row of fins located on the air inflow side and the air inflow side edge of the second row of fins, which are composed of penetrating refrigerant pipes, is defined as the fin pitch of the second row of fins. By increasing the length to be equal to or longer than , it is possible to extend the time for clogging due to frost formation and reduce the number of times of defrosting, thereby providing a refrigeration heat exchanger with good defrosting efficiency.

【0029】更に、多数並列され、空気流入方向に対し
て各列単位に独立せしめ、かつ前記各列を空気流入側よ
り流出側へ順次疎から密へ配列されたフィンと、これら
に直交し、貫通する冷媒管より構成され、前記フィンの
内、空気流出側に位置する最終列フィンに直交し、貫通
する前記冷媒管の管ピッチを、最終列より風上側に位置
するフィンに直交し、貫通する冷媒管の管ピッチよりも
小さくすることにより、コンパクトな冷凍用熱交換器を
実現させ、冷凍冷蔵庫等の容積効率を向上させる冷凍用
熱交換器を提供できる。
Further, a large number of fins are arranged in parallel, each row is independent in the air inflow direction, and each row is sequentially arranged from sparse to dense from the air inflow side to the air outflow side, and perpendicular to these fins, The pipe pitch of the refrigerant pipes is perpendicular to the last row of fins located on the air outflow side of the fins, and the pipe pitch of the refrigerant pipes is perpendicular to the fins located on the windward side of the last row. By making the pipe pitch smaller than the pipe pitch of the refrigerant pipes, it is possible to realize a compact refrigeration heat exchanger and provide a refrigeration heat exchanger that improves the volumetric efficiency of refrigerator-freezers and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の冷凍用熱交換器の平面図FIG. 1 is a plan view of a refrigeration heat exchanger according to an embodiment of the present invention.


図2】本発明の第二の実施例の冷凍用熱交換器の平面図
[
FIG. 2: A plan view of a refrigeration heat exchanger according to a second embodiment of the present invention

【図3】本発明の第三の実施例の冷凍用熱交換器の平面
FIG. 3 is a plan view of a refrigeration heat exchanger according to a third embodiment of the present invention.

【図4】従来の冷凍用熱交換器の平面図[Figure 4] Plan view of a conventional refrigeration heat exchanger

【符号の説明】[Explanation of symbols]

1,6  第一列フィン 2      第二列フィン 4      冷媒管 7      最終列フィン 1,6 First row fins 2 Second row fins 4 Refrigerant pipe 7 Last row fin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  多数並列され、空気流入方向に対して
各列単位に独立せしめ、かつ前記各列を空気流入側より
流出側へ順次疎から密へ配列されたフィンと、これらに
直交し、貫通する冷媒管より構成され、前記フィンの内
、空気流入側に位置する第一列フィンに直交し、貫通す
る前記冷媒管の管ピッチを、第二列以降のフィンに直交
し、貫通する冷媒管の管ピッチよりも大きくすることを
特徴とする冷凍用熱交換器。
1. A large number of fins arranged in parallel, each row being independent in the air inflow direction, and arranged in each row sequentially from sparse to dense from the air inflow side to the air outflow side, and perpendicular to these fins, The refrigerant pipe is composed of penetrating refrigerant pipes, and the pipe pitch of the refrigerant pipes is perpendicular to the first row of fins located on the air inflow side of the fins, and the pipe pitch of the refrigerant pipes is perpendicular to the second and subsequent rows of fins. A refrigeration heat exchanger characterized by having a pitch larger than the pipe pitch of the pipes.
【請求項2】  多数並列され、空気流入方向に対して
各列単位に独立せしめ、かつ前記各列を空気流入側より
流出側へ順次疎から密へ配列されたフィンと、これらに
直交し、貫通する冷媒管より構成され、前記フィンの内
、空気流入側に位置する第一列フィンの空気流出側エッ
ジと、第二列フィンの空気流入側エッジの間隔を、第二
列フィンのフィンピッチと同等以上に長くすることを特
徴とする冷凍用熱交換器。
2. A large number of fins arranged in parallel, each row being independent in the air inflow direction, and arranged in each row sequentially from sparse to dense from the air inflow side to the air outflow side, and perpendicular to these fins, The interval between the air outflow side edge of the first row of fins located on the air inflow side and the air inflow side edge of the second row of fins, which are composed of penetrating refrigerant pipes, is defined as the fin pitch of the second row of fins. A refrigeration heat exchanger characterized by having a length equal to or longer than that of the refrigeration heat exchanger.
【請求項3】  多数並列され、空気流入方向に対して
各列単位に独立せしめ、かつ前記各列を空気流入側より
流出側へ順次疎から密へ配列されたフィンと、これらに
直交し、貫通する冷媒管より構成され、前記フィンの内
、空気流出側に位置する最終列フィンに直交し、貫通す
る前記冷媒管の管ピッチを、最終列より風上側に位置す
るフィンに直交し、貫通する冷媒管の管ピッチよりも小
さくすることを特徴とする冷凍用熱交換器。
3. A large number of fins arranged in parallel, each row being independent in the air inflow direction, and arranged in each row sequentially from sparse to dense from the air inflow side to the air outflow side, and perpendicular to these fins, The pipe pitch of the refrigerant pipes is perpendicular to the last row of fins located on the air outflow side of the fins, and the pipe pitch of the refrigerant pipes is perpendicular to the fins located on the windward side of the last row. A refrigeration heat exchanger characterized by having a pipe pitch smaller than that of refrigerant pipes.
JP560591A 1991-01-22 1991-01-22 Heat exchanger for refrigeration Pending JPH04240394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP560591A JPH04240394A (en) 1991-01-22 1991-01-22 Heat exchanger for refrigeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP560591A JPH04240394A (en) 1991-01-22 1991-01-22 Heat exchanger for refrigeration

Publications (1)

Publication Number Publication Date
JPH04240394A true JPH04240394A (en) 1992-08-27

Family

ID=11615845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP560591A Pending JPH04240394A (en) 1991-01-22 1991-01-22 Heat exchanger for refrigeration

Country Status (1)

Country Link
JP (1) JPH04240394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102097A3 (en) * 2003-05-06 2005-01-27 H2Gen Innovations Inc Heat exchanger and method of performing chemical processes
JP2007046869A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Evaporator
CN106524594A (en) * 2016-10-13 2017-03-22 杭州三花家电热管理系统有限公司 Coil pipe type heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102097A3 (en) * 2003-05-06 2005-01-27 H2Gen Innovations Inc Heat exchanger and method of performing chemical processes
JP2007503570A (en) * 2003-05-06 2007-02-22 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド Heat exchanger and method of performing chemical treatment
US7195059B2 (en) * 2003-05-06 2007-03-27 H2Gen Innovations, Inc. Heat exchanger and method of performing chemical processes
AU2004239228B2 (en) * 2003-05-06 2008-09-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchanger and method of performing chemical processes
JP2007046869A (en) * 2005-08-12 2007-02-22 Showa Denko Kk Evaporator
CN106524594A (en) * 2016-10-13 2017-03-22 杭州三花家电热管理系统有限公司 Coil pipe type heat exchanger

Similar Documents

Publication Publication Date Title
US6857288B2 (en) Heat exchanger for refrigerator
CN103185435A (en) Direct-cooling refrigerator
JP2008202823A (en) Refrigerator
CN100404979C (en) Condenser of refrigerator
JP2011158250A (en) Heat exchanger and refrigerator-freezer mounted with the heat exchanger
CN208332759U (en) Refrigerator micro-channel evaporator
JPH04240394A (en) Heat exchanger for refrigeration
JPH09159311A (en) Heat exchanger for refrigerator
GB2344413A (en) Refrigerators having freezing and cooling compartment evaporators
WO2012003703A1 (en) Heat exchange equipment and cooling system
CN209744822U (en) Refrigerating system of refrigerator
CN1420334A (en) Independent refrigeration electric refrigerator
JP2021191996A (en) Heat transfer pipe and heat exchanger
CN216644622U (en) Even evaporator of refrigeration for freezing show case
JP3040198B2 (en) Refrigeration heat exchanger
CN211233432U (en) Carbon dioxide refrigerating system suitable for fruit and vegetable refrigeration
CN215765825U (en) Intelligent energy-saving system capable of self-adapting to freezing water temperature
JPS5837457A (en) Refrigerant circuit for refrigerator
CN2624143Y (en) Refrigeration cycle control device for refrigerator
KR970009814B1 (en) Cool air circulating type show case of a refrigerator
CN209877415U (en) Finned evaporator
JPH05157478A (en) Heat exchanger and refrigerator using the same
JP3686463B2 (en) refrigerator
CN211146971U (en) Frostless evaporator and refrigerator comprising same
JP4762266B2 (en) Heat exchanger and refrigerator-freezer equipped with this heat exchanger