WO2023234121A1 - Vehicle-mounted heat exchanger - Google Patents

Vehicle-mounted heat exchanger Download PDF

Info

Publication number
WO2023234121A1
WO2023234121A1 PCT/JP2023/019157 JP2023019157W WO2023234121A1 WO 2023234121 A1 WO2023234121 A1 WO 2023234121A1 JP 2023019157 W JP2023019157 W JP 2023019157W WO 2023234121 A1 WO2023234121 A1 WO 2023234121A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
paths
air flow
heat exchange
exchange section
Prior art date
Application number
PCT/JP2023/019157
Other languages
French (fr)
Japanese (ja)
Inventor
侑士 大谷
匡陛 辻
Original Assignee
株式会社デンソーエアクール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソーエアクール filed Critical 株式会社デンソーエアクール
Publication of WO2023234121A1 publication Critical patent/WO2023234121A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a vehicle heat exchanger.
  • Patent Document 1 a heat exchanger having a plurality of plate fins arranged in parallel and a tube that is inserted into an insertion hole formed in the plate fin and allows a refrigerant to flow from an inlet to an outlet is disclosed in Patent Document 1, for example. is proposed.
  • the heat exchanger is arranged so that the direction of movement of the refrigerant is in a counterflow to the air flow. That is, the tubes are arranged so that cold refrigerant flows downstream of the airflow, while warm refrigerant flows upstream of the airflow.
  • an object of the present disclosure to provide an on-vehicle heat exchanger that can suppress the drop in refrigeration efficiency while suppressing the scattering of condensed water from the air blowing side.
  • an in-vehicle heat exchanger includes a plurality of plate fins that are plate-shaped and arranged in parallel, and a plurality of tubes that pass through the plurality of plate fins and through which a refrigerant flows. Includes replacement parts.
  • the plurality of tubes constitute at least one path.
  • the most downstream tube located at the most downstream side of the refrigerant flow in at least one path is arranged at the most downstream side of the air flow of the heat exchange section in the air flow direction parallel to the surface direction of the plurality of plate fins.
  • the air passing through the most downstream side of the air flow in the heat exchange section is difficult to be cooled by the high temperature refrigerant flowing into the most downstream tube. Therefore, the condensed water is less likely to freeze around the most downstream tube, and the air outlet side of the heat exchange section is less likely to be clogged with ice.
  • FIG. 1 is a plan view of an on-vehicle heat exchanger according to one embodiment.
  • FIG. 2 is a side view of the side plate in FIG.
  • FIG. 3 is a diagram showing a case where multiple paths are arranged on one plane
  • FIG. 4 is a diagram comparing the refrigerant flow image, the operation immediately after the start of operation, and the operation over time for the current product and the improved product.
  • Figure 5 is a diagram showing a performance comparison between the current product and the improved product.
  • FIG. 6 is a diagram showing paths according to another embodiment.
  • the in-vehicle heat exchanger according to the present embodiment is applied, for example, to a plate-fin tube type heat exchanger that exchanges heat between a refrigerant in a refrigeration cycle and air.
  • the on-vehicle heat exchanger is mounted on the loading platform of a refrigerated vehicle and is used to cool the inside of a freezer to a medium temperature range of, for example, 0° C. to 20° C.
  • the in-vehicle heat exchanger 100 includes a plurality of plate fins 101, a plurality of tubes 102, two side plates 103 and 104, a plurality of connecting pipes 105, a distributor 106, and Contains a collector 107.
  • Each tube 102, each plate fin 101, each side plate 103, 104, and each connecting pipe 105 are made of aluminum or copper, for example.
  • Made of aluminum means made of aluminum or aluminum alloy.
  • “Made of copper” means that it is made of copper or a copper alloy.
  • the plate fins 101 are heat transfer promoting members that increase the heat transfer area between the air and the tubes 102 to promote heat exchange between the air and the refrigerant.
  • the plate fins 101 are formed in a plate shape, and a plurality of plate fins are arranged in parallel. Note that, for example, R404A or R452A can be used as the refrigerant.
  • the direction parallel to the surface direction of each plate fin 101 is the air flow direction.
  • the direction of air flow is determined by supplying air to the vehicle heat exchanger 100 by a fan (not shown).
  • the air flow direction is unidirectional. Note that, as the fan, a turbo fan that can supply a stable air volume without decreasing the air volume can be used.
  • the side plates 103 and 104 are plate components provided on the top and bottom layers of the plurality of plate fins 101.
  • the tube 102 is a straight pipe through which a refrigerant flows.
  • the longitudinal portions of the plurality of tubes 102 are arranged in parallel.
  • the plurality of tubes 102 pass through through holes provided in each plate fin 101 and each side plate 103, 104, and are fixed to each plate fin 101 and each side plate 103, 104. Therefore, the refrigerant flow direction in which the refrigerant flows through each tube 102 is perpendicular to the air flow direction.
  • the connecting pipe 105 is a U-shaped pipe that connects the ends of each tube 102 to each other.
  • Each connecting tube 105 is arranged on the side opposite to each tube 102 in the side plates 103 and 104, that is, on the outside of the side plates 103 and 104.
  • Each connecting pipe 105 is joined to each tube 102 by brazing.
  • Each plate fin 101, each tube 102, each side plate 103, 104, and each connection pipe 105 described above constitute a heat exchange section 108 that exchanges heat between air and refrigerant.
  • each tube 102 and each connecting pipe 105 constitute a plurality of paths.
  • five paths 110 to 150 are provided.
  • FIG. 1 shows a path 150 located at the top layer.
  • the temperature of the refrigerant increases as it progresses through each path 110-150. Furthermore, the refrigerant temperature changes depending on various operating conditions.
  • the distributor 106 is a container-shaped device for distributing refrigerant to each of the paths 110 to 150.
  • the collector 107 is a container-shaped device for collecting refrigerant from each path 110-150.
  • the distributor 106 and the collector 107 are connected to a path through which refrigerant circulates.
  • each path 110 to 150 will be specifically explained. As shown in FIG. 2, in this embodiment, each of the paths 110 to 150 is arranged in five stages in the vertical direction.
  • the vertical direction is a direction perpendicular to the refrigerant flow direction and the air flow direction.
  • the coolant flow direction is perpendicular to the plane of the paper.
  • each pass 110-150 includes a parallel flow pass 120, 140 and a counterflow pass 110, 130, 150. Note that in FIG. 3, the plurality of paths 110 to 150 are separated into one plane, but in reality, the paths 110 to 150 are stacked.
  • the most downstream tubes 121 and 141 located at the most downstream position of the refrigerant flow among the parallel flow paths 120 and 140 are arranged at the most downstream position of the air flow of the heat exchange section 108 in the air flow direction. It's a pass. That is, the most downstream tubes 121 and 141 are arranged at the most downstream side of the air flow in the heat exchange section 108 in the air flow direction. Further, the parallel flow paths 120 and 140 are paths in which the refrigerant movement direction indicating the direction of movement of the refrigerant in the air flow direction and the air flow direction are parallel flows.
  • the refrigerant movement direction indicates the direction in which the refrigerant moves along the air flow direction.
  • the direction of the refrigerant flowing through the tubes 102 and the connecting pipes 105 is not the refrigerant movement direction but the refrigerant flow direction.
  • the counterflow paths 110, 130, 150 are the most upstream tubes 112, 132, 152 located at the most upstream position of the refrigerant flow among the counterflow paths 110, 130, 150. This is the path placed at the most downstream position. Further, counterflow paths 110, 130, and 150 are paths in which the refrigerant movement direction and the air flow direction are opposite flows.
  • the number of counterflow paths 110, 130, 150 is greater than the number of parallel flow paths 120, 140.
  • the number of counterflow paths 110, 130, 150 is three, and the number of parallel flow paths 120, 140 is two. Note that when the number of passes is six, for example, the number of counterflow passes is four, and the number of parallel flow passes is two.
  • the most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 are They are staggered in the vertical direction at the downstream end of the air flow.
  • the most downstream tubes 121, 141 of the parallel flow paths 120, 140 are located closer to the air outlet 108B of the heat exchange section 108 than the most upstream tubes 112, 132, 152 of the counter flow paths 110, 130, 150 in the refrigerant movement direction. positioned.
  • the most downstream tubes 111, 131, 151 located at the most downstream of the refrigerant flow among the counterflow paths 110, 130, 150, and the most upstream tube 122 located at the most upstream of the refrigerant flow among the parallel flow paths 120, 140, 142 are arranged in a staggered manner in the vertical direction at the most upstream side of the air flow in the heat exchange section 108 .
  • the most downstream tubes 111, 131, 151 of the counterflow paths 110, 130, 150 are located closer to the air inlet 108A of the heat exchange section 108 than the most upstream tubes 122, 142 of the parallel flow paths 120, 140 in the refrigerant movement direction. positioned.
  • the above is the overall configuration of the vehicle heat exchanger 100.
  • all of the most downstream tubes 111, 121, 131, 141, and 151 located at the most downstream position in the flow of the refrigerant are arranged on the side of the air inlet 108A of the on-vehicle heat exchanger 100. Therefore, as a refrigerant flow image, high-temperature refrigerant flows in a concentrated manner upstream of the heat exchange section 108 in the air flow direction.
  • the condensed water 200 moves downstream of the heat exchange section 108 on the wind, and is intensively cooled downstream of the heat exchange section 108. Therefore, the condensed water 200 freezes around the most upstream tubes 112, 122, 132, 142, and 152, and frost 400 grows. Note that in the initial stage of freezing, the drainage of the condensed water 200 is normal.
  • the operating conditions of the in-vehicle heat exchanger 100 were as follows: outside air was 20° C., humidity was 90%, internal temperature was set at 1° C., the freezer door was open, and the elapsed operating time was 2 hours. This is one of the conditions in which water splashing is most likely to occur.
  • the air outlet 108B was blocked due to the growth of frost 400. Therefore, air becomes difficult to pass through the inside of the heat exchange section 108 and passes through the gap between the drain pan 300 and the heat exchange section 108. In other words, the gap between the drain pan 300 and the heat exchange section 108 becomes a wind path.
  • the condensed water 200 accumulated in the drain pan 300 was carried by the air passing through the gap between the drain pan 300 and the heat exchange section 108 and scattered into the refrigerator. For example, when using a turbo fan, it is difficult to reduce the air volume, so it is difficult to suppress the amount of water splashed. Note that after the operation has progressed, the amount of drained condensed water 200 has decreased.
  • the refrigeration efficiency of the vehicle-mounted heat exchanger 100 has decreased. Specifically, the heat exchange area decreased by about 20% due to freezing of the condensed water. That is, assuming that the refrigeration performance of the current product immediately after the start of operation is 100, the refrigeration performance when the condensed water is frozen has decreased by about 20% to about 80.
  • the most downstream tubes 121 and 141 located at the most downstream of the refrigerant flow among the parallel flow paths 120 and 140 are arranged at the most downstream of the air flow of the heat exchange section 108 in the air flow direction. . That is, the high temperature refrigerant flows on the downstream side of the heat exchange section 108 in the air flow direction.
  • the most upstream tubes 122 and 142 located at the most upstream side of the refrigerant flow among the parallel flow paths 120 and 140 are arranged at the most upstream side of the air flow of the heat exchange section 108 in the air flow direction. Therefore, as a refrigerant flow image, the situation where the temperature is concentrated on the upstream side of the heat exchange section 108 in the air flow direction is alleviated.
  • the temperature distribution in the air flow direction is made uniform. Therefore, immediately after the on-vehicle heat exchanger 100 starts operating, the condensed water 200 is less likely to freeze around the most downstream tubes 121 and 141, so freezing and growth of the condensed water 200 can be suppressed. In other words, the air outlet 108B side of the heat exchange section 108 is less likely to be blocked by the frost 400.
  • the most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 are the most Downstream, they are staggered vertically. According to this, the high temperature refrigerant and the low temperature refrigerant are dispersed in the air flow direction in the heat exchange section 108. Therefore, the concentrated arrangement of the tubes 112, 122, 132, 142, and 152 through which low-temperature refrigerant flows is eliminated at the most downstream part of the air flow in the heat exchange section 108. Therefore, the amount of frozen condensed water 200 can be reduced.
  • the air outlet 108B is not blocked by frost 400, making it difficult for the condensed water 200 to pass through the gap between the drain pan 300 and the heat exchange section 108. Accordingly, it is possible to suppress the condensed water 200 falling from the heat exchange section 108 into the drain pan 300 from being pushed by the air and scattering from the heat exchange section 108 into the refrigerator. Under the above conditions, the amount of water splash was zero.
  • the on-vehicle heat exchanger 100 since the on-vehicle heat exchanger 100 includes the parallel flow paths 120 and 140, the amount of freezing on the most downstream side of the air flow in the heat exchange section 108 is reduced. Therefore, the amount of ice that is scattered by the cold wind can be reduced.
  • the improved product has parallel flow paths 120 and 140, so the refrigeration performance immediately after the start of operation is 92.
  • the heat exchange area decreased by about 5% due to freezing of condensed water, so the reduction in refrigeration performance when freezing condensed water immediately after the start of operation was 5%.
  • the refrigerating performance of the current product decreased from 100 to 80 when the condensed water was frozen, but the improved product's refrigerating performance of 92 decreased by only 5%, so the refrigerating performance was 88.
  • the improved product has a 10% improvement in freezing performance when freezing condensed water compared to the current product.
  • the preset temperature inside the refrigerator is set to 0°C.
  • the temperature control range for control is, for example, from +2°C to -2°C.
  • the refrigerant temperature in the refrigerant outlet heating temperature region of the heat exchanger 108 is set to +10° C. or higher than the refrigerant evaporation temperature.
  • the current product reaches the lower limit of the temperature control range first in the initial stage of operation.
  • the current product reaches the lower limit of the temperature control range in 120 minutes, for example.
  • the improved product reaches the lower limit of the temperature control range with a delay of -8% in refrigeration performance compared to the current product.
  • the arrival time is about 9 minutes later than the current product.
  • control is performed so that the internal temperature does not exceed the temperature control range.
  • the refrigerator stops.
  • the refrigerator starts operating again. In this way, by repeating operation and stop of the refrigerator, the temperature inside the refrigerator is controlled within the temperature control range.
  • the current product takes, for example, 10 minutes to reach the lower limit of the temperature control range. Since the current product has a refrigeration performance of 80 and the improved product has a refrigeration performance of 88, the improved product reaches the lower limit of the temperature control range sooner than the current product.
  • the improved product's refrigeration performance is 10% higher than the current product, so it reaches the lower limit of the temperature control range about one minute earlier than the current product. In this way, when the condensed water freezes, the cooling time inside the refrigerator can be shortened by improving the freezing performance of the improved product.
  • the number of paths 110 to 150 is not limited to five.
  • the heat exchange section 108 only needs to include at least one path 110 to 150. As shown in FIG. 6, in the case of one pass 110, the most downstream tube 111 located at the most downstream side of the refrigerant flow is disposed at the most downstream side of the air flow of the heat exchange section 108 in the air flow direction. Good.
  • the distributor 106 and the concentrator 107 may be provided in multiple stages instead of one.
  • the most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 are arranged in a staggered manner in the vertical direction at the most downstream side of the air flow in the heat exchange section 108. It doesn't have to be placed.
  • the most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 may be located at the same position in the air flow direction. The same applies to the most downstream tubes 111, 131, 151 of the counterflow paths 110, 130, 150 and the most upstream tubes 122, 142 of the parallel flow paths 120, 140.
  • the number of counterflow paths 110, 130, 150 and the number of parallel flow paths 120, 140 can be set as appropriate.
  • the number of countercurrent paths 110, 130, 150 is greater than the number of parallel current paths 120, 140, i.e. the number of passes is an odd number, but The numbers of paths 120 and 140 may be the same.
  • Each of the paths 110 to 150 may be branched into a plurality of paths between the distributor 106 and the heat exchange section 108. Thereby, the number of passes in the heat exchange section 108 can be increased without increasing the number of distributors 106.
  • the paths 110 to 150 may be connected vertically across layers as long as the refrigerant flows in opposite directions or in parallel.
  • tube 102 of counterflow path 110 is connected to tube 102 of counterflow 130.
  • a heat exchange section (108) having a plurality of plate fins (101) that are plate-shaped and arranged in parallel, and a plurality of tubes (102) that pass through the plurality of plate fins and through which a refrigerant flows; If a refrigerant flow path through which the refrigerant flows through the heat exchange section is defined as a path (110 to 150), the plurality of tubes constitute at least one path, The most downstream tube (121, 141) located at the most downstream position in the refrigerant flow of the at least one path controls the air flow in the heat exchange section in the air flow direction parallel to the surface direction of the plurality of plate fins.
  • the plurality of tubes constitute a plurality of paths, In at least one of the plurality of paths, the most downstream tube is disposed at the most downstream position of the heat exchange section in the air flow direction, and the movement of the refrigerant in the air flow direction is controlled.
  • the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction.
  • the on-vehicle heat exchanger according to item 2 further comprising counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows.
  • the most upstream tube of the counterflow path and the most downstream tube of the parallel flow path are arranged in the refrigerant flow direction and the air flow direction in which the refrigerant flows through the plurality of tubes in the air flow most downstream of the heat exchange section.
  • the on-vehicle heat exchanger according to item 3 which is arranged in a staggered vertical direction perpendicular to .
  • the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction. and includes counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows, 5.
  • the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction.
  • the on-vehicle heat exchanger according to any one of items 3 to 5, which is arranged in a staggered manner in a vertical direction perpendicular to the refrigerant flow direction and the air flow direction in the most upstream air flow direction of the heat exchange section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A vehicle-mounted heat exchanger (100) includes a heat exchanging unit (108) comprising a plurality of plate fins (101) which are plate-shaped and are disposed parallel to one another, and a plurality of tubes (102) which penetrate through the plurality of plate fins and through which a refrigerant flows. If a refrigerant flow passage through which the refrigerant flows in the heat exchanging unit is defined as a path (110 to 150), the plurality of tubes form at least one path. A most downstream tube (121, 141) positioned most downstream, in the refrigerant flow, within the at least one path is disposed on an airflow most downstream side of the heat exchanging unit in an airflow direction parallel to a surface direction of the plurality of plate fins.

Description

車載用熱交換器Automotive heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年5月31日に出願された日本特許出願2022-88212号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2022-88212 filed on May 31, 2022, and the contents thereof are incorporated herein.
 本開示は、車載用熱交換器に関する。 The present disclosure relates to a vehicle heat exchanger.
 従来、平行に配置される複数のプレートフィンと、プレートフィンに形成される挿入穴に挿入されると共に流入口から流出口へ冷媒を流通させるチューブと、を有する熱交換器が、例えば特許文献1で提案されている。 Conventionally, a heat exchanger having a plurality of plate fins arranged in parallel and a tube that is inserted into an insertion hole formed in the plate fin and allows a refrigerant to flow from an inlet to an outlet is disclosed in Patent Document 1, for example. is proposed.
特開2020-165548号公報JP2020-165548A
 通常、熱交換器は、空気流れに対して冷媒の移動の方向が対向流となるように配置される。すなわち、チューブは、空気流れの下流側に冷たい冷媒が流れる一方、空気流れの上流側に温かい冷媒が流れるように配置される。 Usually, the heat exchanger is arranged so that the direction of movement of the refrigerant is in a counterflow to the air flow. That is, the tubes are arranged so that cold refrigerant flows downstream of the airflow, while warm refrigerant flows upstream of the airflow.
 また、空気がプレートフィンで露点以下に冷やされると、プレートフィンに凝縮水が発生する。このため、熱交換器の下部には、凝縮水を受け止めて排水するためのドレンパンが配置される。 Additionally, when the air is cooled below the dew point by the plate fins, condensed water is generated on the plate fins. For this reason, a drain pan is placed below the heat exchanger to catch and drain the condensed water.
 しかしながら、プレートフィンで発生する凝縮水の一部は、空気流れに乗って熱交換器の下流側に移動してしまう。そして、凝縮水は、冷たい冷媒が流れるチューブの周りで凍結すると共に、氷が成長してしまう。このため、熱交換器のうちの空気の吹き出し側の隙間が氷で閉塞してしまう。 However, some of the condensed water generated on the plate fins moves downstream of the heat exchanger along with the air flow. The condensed water then freezes around the tubes through which the cold refrigerant flows, causing ice to grow. As a result, the gap on the air outlet side of the heat exchanger becomes clogged with ice.
 その結果、空気は、熱交換器の内部を通過することが難しくなるので、ドレンパンと熱交換器との隙間を通過することになる。ドレンパンと熱交換器との隙間は熱交換器の内部の隙間よりも狭いので、熱交換器とドレンパンとの隙間を通過する空気の速度が上がってしまい、凝縮水が空気に押されてドレンパンから飛散してしまう。また、空気がドレンパンと熱交換器との隙間を通過してしまうので、空気が熱交換されない。よって、熱交換器の冷凍効率が低下してしまう。 As a result, it becomes difficult for air to pass through the inside of the heat exchanger, so it ends up passing through the gap between the drain pan and the heat exchanger. Since the gap between the drain pan and the heat exchanger is narrower than the gap inside the heat exchanger, the speed of air passing through the gap between the heat exchanger and the drain pan increases, and the condensed water is pushed by the air and flows out of the drain pan. It will scatter. Moreover, since air passes through the gap between the drain pan and the heat exchanger, heat exchange is not performed with the air. Therefore, the refrigeration efficiency of the heat exchanger will decrease.
 特に、車載用冷凍機に適用される車載用熱交換器は、荷台のドアが開け閉めされることで湿度を持った空気が荷台に入り込んでしまう。このため、車載用熱交換器は凝縮水が発生しやすい環境に置かれやすいので、車載用熱交換器のうちの空気の吹き出し側に氷が発生しやすくなってしまう。 In particular, in an on-vehicle heat exchanger applied to an on-vehicle refrigerator, humid air enters the cargo bed when the door of the cargo bed is opened or closed. For this reason, the vehicle-mounted heat exchanger is likely to be placed in an environment where condensed water is likely to be generated, and therefore ice is likely to form on the air outlet side of the vehicle-mounted heat exchanger.
 本開示は上記点に鑑み、空気の吹き出し側から凝縮水が飛散することを抑制しつつ、冷凍効率の低下を抑制することができる車載用熱交換器を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide an on-vehicle heat exchanger that can suppress the drop in refrigeration efficiency while suppressing the scattering of condensed water from the air blowing side.
 本開示の一態様によると、車載用熱交換器は、板状であると共に平行に配置された複数のプレートフィンと、複数のプレートフィンを貫通すると共に冷媒が流れる複数のチューブと、を有する熱交換部を含む。 According to one aspect of the present disclosure, an in-vehicle heat exchanger includes a plurality of plate fins that are plate-shaped and arranged in parallel, and a plurality of tubes that pass through the plurality of plate fins and through which a refrigerant flows. Includes replacement parts.
 熱交換部に冷媒を流す冷媒流路をパスと定義すると、複数のチューブは少なくとも1つのパスを構成する。 If the refrigerant flow path through which the refrigerant flows through the heat exchange section is defined as a path, then the plurality of tubes constitute at least one path.
 少なくとも1つのパスのうちの冷媒流れ最下流に位置する最下流チューブが、複数のプレートフィンの面方向に平行な空気流れ方向において、熱交換部のうちの空気流れ最下流側に配置される。 The most downstream tube located at the most downstream side of the refrigerant flow in at least one path is arranged at the most downstream side of the air flow of the heat exchange section in the air flow direction parallel to the surface direction of the plurality of plate fins.
 これによると、熱交換部のうちの空気流れ最下流側を通過する空気が、最下流チューブに流れる高温の冷媒によって冷えにくくなる。このため、凝縮水は、最下流チューブの周りで凍結しにくくなるので、熱交換部のうちの空気の吹き出し側が氷で閉塞しにくくなる。 According to this, the air passing through the most downstream side of the air flow in the heat exchange section is difficult to be cooled by the high temperature refrigerant flowing into the most downstream tube. Therefore, the condensed water is less likely to freeze around the most downstream tube, and the air outlet side of the heat exchange section is less likely to be clogged with ice.
 よって、凝縮水がドレンパンと熱交換部との隙間を通過しにくくなるようにすることができる。これに伴い、熱交換部からドレンパンに落ちる凝縮水が空気に押されて熱交換部のうちの空気の吹き出し側から飛散することを抑制することができる。 Therefore, it is possible to make it difficult for condensed water to pass through the gap between the drain pan and the heat exchange section. Accordingly, it is possible to suppress condensed water falling from the heat exchange section to the drain pan from being pushed by the air and scattering from the air blowing side of the heat exchange section.
 また、空気がドレンパンと熱交換部との隙間を通過しにくくなるので、空気が熱交換部を通過しやすくなる。したがって、熱交換部の冷凍効率の低下を抑制することができる。 Also, since it becomes difficult for air to pass through the gap between the drain pan and the heat exchange section, it becomes easier for air to pass through the heat exchange section. Therefore, a decrease in the refrigerating efficiency of the heat exchange section can be suppressed.
 本開示についての上記及び他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、一実施形態に係る車載用熱交換器の平面図である。 図2は、図1においてサイドプレートを見た側面図であり、 図3は、複数のパスを一平面に配置した場合を示した図であり、 図4は、現行品と改良品について、冷媒流れイメージ、運転開始直後、及び運転経過時の動作を比較した図であり、 図5は、現行品と改良品の性能比較を示した図であり、 図6は、他の実施形態に係るパスを示した図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. In the attached drawings,
FIG. 1 is a plan view of an on-vehicle heat exchanger according to one embodiment. FIG. 2 is a side view of the side plate in FIG. FIG. 3 is a diagram showing a case where multiple paths are arranged on one plane, FIG. 4 is a diagram comparing the refrigerant flow image, the operation immediately after the start of operation, and the operation over time for the current product and the improved product. Figure 5 is a diagram showing a performance comparison between the current product and the improved product. FIG. 6 is a diagram showing paths according to another embodiment.
 以下、一実施形態について図を参照して説明する。本実施形態に係る車載用熱交換器は、例えば冷凍サイクルの冷媒と空気との間で熱交換を行うプレートフィンチューブ型の熱交換器に適用される。車載用熱交換器は、冷凍車両の荷台に搭載されると共に、冷凍庫内を例えば0℃~20℃の中温域に冷やすために用いられる。 Hereinafter, one embodiment will be described with reference to the drawings. The in-vehicle heat exchanger according to the present embodiment is applied, for example, to a plate-fin tube type heat exchanger that exchanges heat between a refrigerant in a refrigeration cycle and air. The on-vehicle heat exchanger is mounted on the loading platform of a refrigerated vehicle and is used to cool the inside of a freezer to a medium temperature range of, for example, 0° C. to 20° C.
 図1及び図2に示されるように、車載用熱交換器100は、複数のプレートフィン101、複数のチューブ102、2枚のサイドプレート103、104、複数の接続管105、分配器106、及び集合器107を含む。 As shown in FIGS. 1 and 2, the in-vehicle heat exchanger 100 includes a plurality of plate fins 101, a plurality of tubes 102, two side plates 103 and 104, a plurality of connecting pipes 105, a distributor 106, and Contains a collector 107.
 各チューブ102、各プレートフィン101、各サイドプレート103、104、各接続管105は、例えばアルミニウム製または銅製である。アルミニウム製とは、アルミニウムまたはアルミニウム合金により構成されていることを意味する。銅製とは、銅または銅合金により構成されていることを意味する。 Each tube 102, each plate fin 101, each side plate 103, 104, and each connecting pipe 105 are made of aluminum or copper, for example. Made of aluminum means made of aluminum or aluminum alloy. "Made of copper" means that it is made of copper or a copper alloy.
  プレートフィン101は、空気とチューブ102との伝熱面積を増大させて空気と冷媒との熱交換を促進する伝熱促進部材である。プレートフィン101は、板状に形成されていると共に、複数が平行に配置されている。なお、冷媒として、例えばR404AやR452Aを用いることができる。 The plate fins 101 are heat transfer promoting members that increase the heat transfer area between the air and the tubes 102 to promote heat exchange between the air and the refrigerant. The plate fins 101 are formed in a plate shape, and a plurality of plate fins are arranged in parallel. Note that, for example, R404A or R452A can be used as the refrigerant.
 各プレートフィン101の面方向に平行な方向が空気流れ方向となる。風が図示しないファンによって車載用熱交換器100に供給されることで、空気流れ方向が決まる。空気流れ方向は一方向である。なお、ファンとして、風量が落ちにくく安定した風量を供給できるターボファンを用いることができる。 The direction parallel to the surface direction of each plate fin 101 is the air flow direction. The direction of air flow is determined by supplying air to the vehicle heat exchanger 100 by a fan (not shown). The air flow direction is unidirectional. Note that, as the fan, a turbo fan that can supply a stable air volume without decreasing the air volume can be used.
 サイドプレート103、104は、複数のプレートフィン101の最上層と最下層とに設けられた板部品である。 The side plates 103 and 104 are plate components provided on the top and bottom layers of the plurality of plate fins 101.
  チューブ102は、冷媒が内部を流通する直線状の配管である。複数のチューブ102は、長手部分が並列に配置されている。複数のチューブ102は、各プレートフィン101及び各サイドプレート103、104に設けられた貫通孔を貫通すると共に、各プレートフィン101及び各サイドプレート103、104に固定されている。よって、各チューブ102に冷媒が流れる冷媒流れ方向は、空気流れ方向に対して垂直な方向となる。 The tube 102 is a straight pipe through which a refrigerant flows. The longitudinal portions of the plurality of tubes 102 are arranged in parallel. The plurality of tubes 102 pass through through holes provided in each plate fin 101 and each side plate 103, 104, and are fixed to each plate fin 101 and each side plate 103, 104. Therefore, the refrigerant flow direction in which the refrigerant flows through each tube 102 is perpendicular to the air flow direction.
 接続管105は、各チューブ102の端部同士を接続するU字状の配管である。各接続管105は、サイドプレート103、104において各チューブ102とは反対側、すなわちサイドプレート103、104の外側に配置される。各接続管105は、ろう付けによって各チューブ102に接合されている。 The connecting pipe 105 is a U-shaped pipe that connects the ends of each tube 102 to each other. Each connecting tube 105 is arranged on the side opposite to each tube 102 in the side plates 103 and 104, that is, on the outside of the side plates 103 and 104. Each connecting pipe 105 is joined to each tube 102 by brazing.
 上記の各プレートフィン101、各チューブ102、サイドプレート103、104、及び各接続管105によって、空気と冷媒とを熱交換する熱交換部108が構成されている。 Each plate fin 101, each tube 102, each side plate 103, 104, and each connection pipe 105 described above constitute a heat exchange section 108 that exchanges heat between air and refrigerant.
 ここで、熱交換部108に冷媒を流す冷媒流路をパス110~150と定義すると、各チューブ102及び各接続管105は、複数のパスを構成している。図1及び図2に示された車載用熱交換器100では、5つのパス110~150が設けられている。 Here, if the refrigerant channels through which the refrigerant flows through the heat exchange section 108 are defined as paths 110 to 150, each tube 102 and each connecting pipe 105 constitute a plurality of paths. In the vehicle heat exchanger 100 shown in FIGS. 1 and 2, five paths 110 to 150 are provided.
 なお、図1では最上層に位置するパス150が示されている。冷媒は各パス110~150の内部を進むにつれ温度が上昇する。また、冷媒温度は各種運転条件で変化する。 Note that FIG. 1 shows a path 150 located at the top layer. The temperature of the refrigerant increases as it progresses through each path 110-150. Furthermore, the refrigerant temperature changes depending on various operating conditions.
 分配器106は、各パス110~150に対して冷媒を分配するための容器状の装置である。集合器107は、各パス110~150から冷媒を集めるための容器状の装置である。分配器106及び集合器107は、冷媒が循環する経路に接続されている。 The distributor 106 is a container-shaped device for distributing refrigerant to each of the paths 110 to 150. The collector 107 is a container-shaped device for collecting refrigerant from each path 110-150. The distributor 106 and the collector 107 are connected to a path through which refrigerant circulates.
 次に、各パス110~150について具体的に説明する。図2に示されるように、本実施形態では、各パス110~150は、垂直方向において、5段に配置されている。垂直方向は、冷媒流れ方向及び空気流れ方向に垂直な方向である。図2において、冷媒流れ方向は、紙面に垂直な方向である。 Next, each path 110 to 150 will be specifically explained. As shown in FIG. 2, in this embodiment, each of the paths 110 to 150 is arranged in five stages in the vertical direction. The vertical direction is a direction perpendicular to the refrigerant flow direction and the air flow direction. In FIG. 2, the coolant flow direction is perpendicular to the plane of the paper.
 図3に示されるように、各パス110~150は、並行流パス120、140及び対向流パス110、130、150を含む。なお、図3では複数のパス110~150が一平面に分解されているが、実際は各パス110~150が積層されている。 As shown in FIG. 3, each pass 110-150 includes a parallel flow pass 120, 140 and a counterflow pass 110, 130, 150. Note that in FIG. 3, the plurality of paths 110 to 150 are separated into one plane, but in reality, the paths 110 to 150 are stacked.
 並行流パス120、140は、並行流パス120、140のうちの冷媒流れ最下流に位置する最下流チューブ121、141が空気流れ方向において熱交換部108のうちの空気流れ最下流に配置されるパスである。すなわち、最下流チューブ121、141は、空気流れ方向において、熱交換部108のうちの空気流れ最下流側に配置される。また、並行流パス120、140は、空気流れ方向における冷媒の移動の方向を示す冷媒移動方向と空気流れ方向とが並行流となるパスである。 In the parallel flow paths 120 and 140, the most downstream tubes 121 and 141 located at the most downstream position of the refrigerant flow among the parallel flow paths 120 and 140 are arranged at the most downstream position of the air flow of the heat exchange section 108 in the air flow direction. It's a pass. That is, the most downstream tubes 121 and 141 are arranged at the most downstream side of the air flow in the heat exchange section 108 in the air flow direction. Further, the parallel flow paths 120 and 140 are paths in which the refrigerant movement direction indicating the direction of movement of the refrigerant in the air flow direction and the air flow direction are parallel flows.
 なお、冷媒移動方向は、空気流れ方向に沿って冷媒が移動する方向を示している。チューブ102や接続管105を流れる冷媒の方向は、冷媒移動方向ではなく、冷媒流れ方向である。 Note that the refrigerant movement direction indicates the direction in which the refrigerant moves along the air flow direction. The direction of the refrigerant flowing through the tubes 102 and the connecting pipes 105 is not the refrigerant movement direction but the refrigerant flow direction.
 対向流パス110、130、150は、対向流パス110、130、150のうちの冷媒流れ最上流に位置する最上流チューブ112、132、152が空気流れ方向において熱交換部108のうちの空気流れ最下流に配置されるパスである。また、対向流パス110、130、150は、冷媒移動方向と空気流れ方向とが対向流となるパスである。 The counterflow paths 110, 130, 150 are the most upstream tubes 112, 132, 152 located at the most upstream position of the refrigerant flow among the counterflow paths 110, 130, 150. This is the path placed at the most downstream position. Further, counterflow paths 110, 130, and 150 are paths in which the refrigerant movement direction and the air flow direction are opposite flows.
 そして、対向流パス110、130、150の数は、並行流パス120、140の数よりも多い。本実施形態では、対向流パス110、130、150の数は3本であり、並行流パス120、140の数は2本である。なお、パスの数が6段に構成されている場合、例えば対向流パスの数が4本であり、並行流パスの数が2本である。 And the number of counterflow paths 110, 130, 150 is greater than the number of parallel flow paths 120, 140. In this embodiment, the number of counterflow paths 110, 130, 150 is three, and the number of parallel flow paths 120, 140 is two. Note that when the number of passes is six, for example, the number of counterflow passes is four, and the number of parallel flow passes is two.
 そして、図2に示されるように、対向流パス110、130、150の最上流チューブ112、132、152及び並行流パス120、140の最下流チューブ121、141は、熱交換部108のうちの空気流れ最下流において、垂直方向に千鳥配置される。並行流パス120、140の最下流チューブ121、141は、冷媒移動方向において、対向流パス110、130、150の最上流チューブ112、132、152よりも熱交換部108の空気流出口108B側に位置している。 As shown in FIG. 2, the most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 are They are staggered in the vertical direction at the downstream end of the air flow. The most downstream tubes 121, 141 of the parallel flow paths 120, 140 are located closer to the air outlet 108B of the heat exchange section 108 than the most upstream tubes 112, 132, 152 of the counter flow paths 110, 130, 150 in the refrigerant movement direction. positioned.
 また、対向流パス110、130、150のうちの冷媒流れ最下流に位置する最下流チューブ111、131、151及び並行流パス120、140のうちの冷媒流れ最上流に位置する最上流チューブ122、142は、熱交換部108のうちの空気流れ最上流において、垂直方向に千鳥配置される。対向流パス110、130、150の最下流チューブ111、131、151は、冷媒移動方向において、並行流パス120、140の最上流チューブ122、142よりも熱交換部108の空気流入口108A側に位置している。以上が、車載用熱交換器100の全体構成である。 Further, the most downstream tubes 111, 131, 151 located at the most downstream of the refrigerant flow among the counterflow paths 110, 130, 150, and the most upstream tube 122 located at the most upstream of the refrigerant flow among the parallel flow paths 120, 140, 142 are arranged in a staggered manner in the vertical direction at the most upstream side of the air flow in the heat exchange section 108 . The most downstream tubes 111, 131, 151 of the counterflow paths 110, 130, 150 are located closer to the air inlet 108A of the heat exchange section 108 than the most upstream tubes 122, 142 of the parallel flow paths 120, 140 in the refrigerant movement direction. positioned. The above is the overall configuration of the vehicle heat exchanger 100.
 続いて、各パス110~150を全て対向流に配置した場合と、各パス110~150の一部を並行流パス120、140に配置した場合と、を比較する。以下、各パス110~150を全て対向流に配置した場合を現行品と呼び、各パス110~150を対向流パス110、130、150及び並行流パス120、140に配置した場合を改良品と呼ぶ。 Next, a comparison will be made between a case where all of the paths 110 to 150 are arranged in counterflow and a case where a part of each of the paths 110 to 150 is arranged in parallel flow paths 120 and 140. Hereinafter, the case in which all the paths 110 to 150 are arranged in counterflow will be referred to as the current product, and the case in which each of the paths 110 to 150 are arranged in counterflow paths 110, 130, 150 and parallel flow paths 120, 140 will be referred to as an improved product. call.
 図4に示されるように、現行品では、冷媒流れ最上流に位置する最上流チューブ112、122、132、142、152の全てが熱交換部108の空気流出口108Bの側に配置される。よって、冷媒流れイメージとして、空気流れ方向における熱交換部108の下流側に低温の冷媒が集中して流れることで熱交換部108の下流側が集中的に冷やされる。 As shown in FIG. 4, in the current product, all of the most upstream tubes 112, 122, 132, 142, and 152 located at the most upstream side of the refrigerant flow are arranged on the side of the air outlet 108B of the heat exchange section 108. Therefore, as a refrigerant flow image, the low temperature refrigerant flows in a concentrated manner on the downstream side of the heat exchange section 108 in the air flow direction, so that the downstream side of the heat exchange section 108 is intensively cooled.
 また、冷媒流れ最下流に位置する最下流チューブ111、121、131、141、151の全てが車載用熱交換器100の空気流入口108Aの側に配置される。よって、冷媒流れイメージとして、空気流れ方向における熱交換部108の上流側に高温の冷媒が集中して流れる。 Further, all of the most downstream tubes 111, 121, 131, 141, and 151 located at the most downstream position in the flow of the refrigerant are arranged on the side of the air inlet 108A of the on-vehicle heat exchanger 100. Therefore, as a refrigerant flow image, high-temperature refrigerant flows in a concentrated manner upstream of the heat exchange section 108 in the air flow direction.
 そして、車載用熱交換器100の運転開始直後である冷凍の初期段階では、空気が熱交換部108に送られると、空気がプレートフィン101で露点以下に冷やされることで、プレートフィン101に凝縮水200が発生する。熱交換部108から落ちる凝縮水200は、車載用熱交換器100の下に配置されたドレンパン300によって受け止められると共に、排水される。 In the initial stage of refrigeration, which is immediately after the in-vehicle heat exchanger 100 starts operating, when the air is sent to the heat exchange section 108, the air is cooled to below the dew point by the plate fins 101, and condenses on the plate fins 101. 200 ml of water is generated. Condensed water 200 falling from the heat exchange section 108 is received and drained by a drain pan 300 disposed below the vehicle heat exchanger 100.
 また、凝縮水200の一部は、風に乗って熱交換部108の下流側に移動し、熱交換部108の下流側で集中的に冷やされる。このため、凝縮水200は、最上流チューブ112、122、132、142、152の周りで凍結すると共に、霜400が成長してしまう。なお、冷凍の初期段階では、凝縮水200の排水は正常である。 Further, a part of the condensed water 200 moves downstream of the heat exchange section 108 on the wind, and is intensively cooled downstream of the heat exchange section 108. Therefore, the condensed water 200 freezes around the most upstream tubes 112, 122, 132, 142, and 152, and frost 400 grows. Note that in the initial stage of freezing, the drainage of the condensed water 200 is normal.
 ここで、車載用熱交換器100の運転条件は、外気を20℃、湿度を90%、庫内設定温度を1℃、冷凍庫のドアを開放状態、運転経過時間を2時間とした。これは、最も水飛びしやすい条件の一つである。 Here, the operating conditions of the in-vehicle heat exchanger 100 were as follows: outside air was 20° C., humidity was 90%, internal temperature was set at 1° C., the freezer door was open, and the elapsed operating time was 2 hours. This is one of the conditions in which water splashing is most likely to occur.
 運転経過後では、霜400の成長に伴って、空気流出口108Bが閉塞してしまった。このため、空気は熱交換部108の内部を通過しにくくなり、ドレンパン300と熱交換部108との隙間を通る。つまり、ドレンパン300と熱交換部108との隙間が風パスとなる。 After the operation progressed, the air outlet 108B was blocked due to the growth of frost 400. Therefore, air becomes difficult to pass through the inside of the heat exchange section 108 and passes through the gap between the drain pan 300 and the heat exchange section 108. In other words, the gap between the drain pan 300 and the heat exchange section 108 becomes a wind path.
 ドレンパン300に溜まった凝縮水200は、ドレンパン300と熱交換部108との隙間を通る空気に乗って庫内に飛散してしまった。例えばターボファンを用いる場合、風量を落としにくいので、水飛び量を抑制することが難しい。なお、運転経過後では、凝縮水200の排水量は少なくなってしまった。 The condensed water 200 accumulated in the drain pan 300 was carried by the air passing through the gap between the drain pan 300 and the heat exchange section 108 and scattered into the refrigerator. For example, when using a turbo fan, it is difficult to reduce the air volume, so it is difficult to suppress the amount of water splashed. Note that after the operation has progressed, the amount of drained condensed water 200 has decreased.
 また、空気が熱交換部108で熱交換されずにドレンパン300と熱交換部108との隙間を通過してしまうので、車載用熱交換器100の冷凍効率が低下してしまった。具体的には、凝縮水凍結により、熱交換面積が約20%減少してしまった。すなわち、現行品における運転開始直後の冷凍性能を100とすると、凝縮水凍結時の冷凍性能が約20%低下して約80になってしまった。 Furthermore, since the air passes through the gap between the drain pan 300 and the heat exchange section 108 without undergoing heat exchange in the heat exchange section 108, the refrigeration efficiency of the vehicle-mounted heat exchanger 100 has decreased. Specifically, the heat exchange area decreased by about 20% due to freezing of the condensed water. That is, assuming that the refrigeration performance of the current product immediately after the start of operation is 100, the refrigeration performance when the condensed water is frozen has decreased by about 20% to about 80.
 これに対し、改良品の場合、並行流パス120、140のうちの冷媒流れ最下流に位置する最下流チューブ121、141が、空気流れ方向における熱交換部108の空気流れ最下流に配置される。すなわち、熱交換部108のうちの空気流れ方向の下流側で高温の冷媒が流れる。 On the other hand, in the case of the improved product, the most downstream tubes 121 and 141 located at the most downstream of the refrigerant flow among the parallel flow paths 120 and 140 are arranged at the most downstream of the air flow of the heat exchange section 108 in the air flow direction. . That is, the high temperature refrigerant flows on the downstream side of the heat exchange section 108 in the air flow direction.
 よって、冷媒流れイメージとして、空気流れ方向における熱交換部108の下流側が集中的に冷やされる状況が緩和される。つまり、低温領域が空気流れ方向に分散される。これに伴い、熱交換部108のうちの空気流れ最下流を通過する空気が、最下流チューブ121、141に流れる高温の冷媒によって冷えにくくなる。 Therefore, in terms of refrigerant flow, the situation where the downstream side of the heat exchange section 108 in the air flow direction is intensively cooled is alleviated. That is, the low temperature regions are distributed in the direction of air flow. Accordingly, the air passing through the most downstream part of the heat exchange section 108 becomes difficult to be cooled by the high temperature refrigerant flowing into the most downstream tubes 121 and 141.
 また、並行流パス120、140のうちの冷媒流れ最上流に位置する最上流チューブ122、142が、空気流れ方向における熱交換部108の空気流れ最上流に配置される。よって、冷媒流れイメージとして、空気流れ方向における熱交換部108の上流側が集中的に高温になる状況が緩和される。 Moreover, the most upstream tubes 122 and 142 located at the most upstream side of the refrigerant flow among the parallel flow paths 120 and 140 are arranged at the most upstream side of the air flow of the heat exchange section 108 in the air flow direction. Therefore, as a refrigerant flow image, the situation where the temperature is concentrated on the upstream side of the heat exchange section 108 in the air flow direction is alleviated.
 したがって、冷媒の温度が集中する領域が空気流れ方向に分散されるので、空気流れ方向における温度分布が均一化される。このため、車載用熱交換器100の運転開始直後、凝縮水200は、最下流チューブ121、141の周りで凍結しにくくなるので、凝縮水200の凍結及び成長を抑制することができる。つまり、熱交換部108のうちの空気流出口108Bの側が霜400で閉塞しにくくなる。 Therefore, since the region where the temperature of the refrigerant is concentrated is dispersed in the air flow direction, the temperature distribution in the air flow direction is made uniform. Therefore, immediately after the on-vehicle heat exchanger 100 starts operating, the condensed water 200 is less likely to freeze around the most downstream tubes 121 and 141, so freezing and growth of the condensed water 200 can be suppressed. In other words, the air outlet 108B side of the heat exchange section 108 is less likely to be blocked by the frost 400.
 特に、本実施形態では、対向流パス110、130、150の最上流チューブ112、132、152及び並行流パス120、140の最下流チューブ121、141が、熱交換部108のうちの空気流れ最下流において、垂直方向に千鳥配置されている。これによると、熱交換部108において高温の冷媒と低温の冷媒とが空気流れ方向に分散される。このため、熱交換部108のうちの空気流れ最下流において、低温の冷媒が流れるチューブ112、122、132、142、152の集中配置が解消される。よって、凝縮水200の凍結量を軽減させることができる。 In particular, in this embodiment, the most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 are the most Downstream, they are staggered vertically. According to this, the high temperature refrigerant and the low temperature refrigerant are dispersed in the air flow direction in the heat exchange section 108. Therefore, the concentrated arrangement of the tubes 112, 122, 132, 142, and 152 through which low-temperature refrigerant flows is eliminated at the most downstream part of the air flow in the heat exchange section 108. Therefore, the amount of frozen condensed water 200 can be reduced.
 車載用熱交換器100の運転経過後、空気流出口108Bが霜400によって閉塞しないので、凝縮水200がドレンパン300と熱交換部108との隙間を通過しにくくなるようにすることができる。これに伴い、熱交換部108からドレンパン300に落ちる凝縮水200が空気に押されて熱交換部108から庫内に飛散することを抑制することができる。上記の条件では、水飛び量はゼロだった。 After the in-vehicle heat exchanger 100 has been operated, the air outlet 108B is not blocked by frost 400, making it difficult for the condensed water 200 to pass through the gap between the drain pan 300 and the heat exchange section 108. Accordingly, it is possible to suppress the condensed water 200 falling from the heat exchange section 108 into the drain pan 300 from being pushed by the air and scattering from the heat exchange section 108 into the refrigerator. Under the above conditions, the amount of water splash was zero.
 すなわち、本実施形態では、車載用熱交換器100は並行流パス120、140を含んでいるので、熱交換部108のうちの空気流れ最下流側の凍結量が軽減される。よって、冷風に同伴されて飛散する氷の量を軽減させることができる。 That is, in this embodiment, since the on-vehicle heat exchanger 100 includes the parallel flow paths 120 and 140, the amount of freezing on the most downstream side of the air flow in the heat exchange section 108 is reduced. Therefore, the amount of ice that is scattered by the cold wind can be reduced.
 また、空気がドレンパン300と熱交換部108との隙間を通過しにくくなるので、空気が熱交換部108を通過しやすくなる。したがって、空気が熱交換部108で熱交換されるので、熱交換部108の冷凍効率の低下を抑制することができる。 Furthermore, since it becomes difficult for air to pass through the gap between the drain pan 300 and the heat exchange section 108, it becomes easier for air to pass through the heat exchange section 108. Therefore, since the air is heat exchanged in the heat exchange section 108, a decrease in the refrigerating efficiency of the heat exchange section 108 can be suppressed.
 具体的には、現行品における運転開始直後の冷凍性能を100とした場合、改良品は並行流パス120、140を含むために運転開始直後の冷凍性能は92となる。また、改良品は、凝縮水凍結により、熱交換面積が約5%減少したので、運転開始直後からの凝縮水凍結時の冷凍性能の低下は5%となった。 Specifically, if the refrigeration performance of the current product immediately after the start of operation is 100, the improved product has parallel flow paths 120 and 140, so the refrigeration performance immediately after the start of operation is 92. In addition, in the improved product, the heat exchange area decreased by about 5% due to freezing of condensed water, so the reduction in refrigeration performance when freezing condensed water immediately after the start of operation was 5%.
 上述の通り、現行品の冷凍性能が凝縮水凍結時に100から80に低下したが、改良品は92の冷凍性能が5%低下しただけであるので、冷凍性能は88となる。つまり、改良品は、凝縮水凍結時の冷凍性能が現行品よりも10%向上した。 As mentioned above, the refrigerating performance of the current product decreased from 100 to 80 when the condensed water was frozen, but the improved product's refrigerating performance of 92 decreased by only 5%, so the refrigerating performance was 88. In other words, the improved product has a 10% improvement in freezing performance when freezing condensed water compared to the current product.
 本実施形態では、対向流パス110、130、150の数が並行流パス120、140の数よりも多いので、運転開始直後の冷凍の初期段階での冷凍性能低下を軽減させることができた。 In this embodiment, since the number of counterflow paths 110, 130, 150 is greater than the number of parallel flow paths 120, 140, it was possible to reduce the reduction in refrigeration performance at the initial stage of refrigeration immediately after the start of operation.
 図5に示されるように、例えば庫内設定温度が0℃に設定される。この場合、例えば+2℃から-2℃が制御上の温度管理幅となる。なお、熱交換部108の冷媒出口加熱温度領域における冷媒温度は、冷媒蒸発温度の+10℃以上とする。 As shown in FIG. 5, for example, the preset temperature inside the refrigerator is set to 0°C. In this case, the temperature control range for control is, for example, from +2°C to -2°C. Note that the refrigerant temperature in the refrigerant outlet heating temperature region of the heat exchanger 108 is set to +10° C. or higher than the refrigerant evaporation temperature.
 現行品の冷凍性能が100であり、改良品の冷凍性能が92であるから、運転初期では、先に現行品が温度管理幅の下限値に到達する。現行品は、例えば120分で温度管理幅の下限値に到達する。改良品は現行品に対して-8%の冷凍性能に応じた時間だけ遅れて温度管理幅の下限値に到達する。到達時間は、現行品に対して9分程度遅れる。 Since the refrigeration performance of the current product is 100 and the refrigeration performance of the improved product is 92, the current product reaches the lower limit of the temperature control range first in the initial stage of operation. The current product reaches the lower limit of the temperature control range in 120 minutes, for example. The improved product reaches the lower limit of the temperature control range with a delay of -8% in refrigeration performance compared to the current product. The arrival time is about 9 minutes later than the current product.
 庫内温度が温度管理幅の下限値に到達した後、庫内温度が温度管理幅を超えないように制御が行われる。すなわち、冷凍機が停止する。冷凍機停止期間で庫内温度が温度管理幅の上限値に到達すると再び冷凍機が動作する。このように、冷凍機が動作と停止を繰り返すことで、庫内温度が温度管理幅に制御される。 After the internal temperature reaches the lower limit of the temperature control range, control is performed so that the internal temperature does not exceed the temperature control range. In other words, the refrigerator stops. When the temperature inside the refrigerator reaches the upper limit of the temperature control range during the refrigerator stop period, the refrigerator starts operating again. In this way, by repeating operation and stop of the refrigerator, the temperature inside the refrigerator is controlled within the temperature control range.
 そして、凝縮水凍結時では、現行品は温度管理幅の下限値に到達するまで例えば10分掛かる。現行品の冷凍性能が80であり、改良品の冷凍性能が88であるから、改良品が現行品よりも温度管理幅の下限値に到達する時間が早くなる。改良品の冷凍性能は現行品よりも10%高いので、現行品よりも1分程度早く温度管理幅の下限値に到達する。このように、凝縮水凍結時では、改良品の冷凍性能向上によって庫内の冷やし込み時間を短縮させることができる。 When the condensed water is frozen, the current product takes, for example, 10 minutes to reach the lower limit of the temperature control range. Since the current product has a refrigeration performance of 80 and the improved product has a refrigeration performance of 88, the improved product reaches the lower limit of the temperature control range sooner than the current product. The improved product's refrigeration performance is 10% higher than the current product, so it reaches the lower limit of the temperature control range about one minute earlier than the current product. In this way, when the condensed water freezes, the cooling time inside the refrigerator can be shortened by improving the freezing performance of the improved product.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the embodiments described above, and can be modified in various ways as described below without departing from the spirit of the present disclosure.
 例えば、パス110~150の数は5個に限られない。 For example, the number of paths 110 to 150 is not limited to five.
 熱交換部108は、少なくとも1つのパス110~150を備えていれば良い。図6に示されるように、1つのパス110の場合、冷媒流れ最下流に位置する最下流チューブ111が、空気流れ方向において、熱交換部108のうちの空気流れ最下流側に配置されていれば良い。 The heat exchange section 108 only needs to include at least one path 110 to 150. As shown in FIG. 6, in the case of one pass 110, the most downstream tube 111 located at the most downstream side of the refrigerant flow is disposed at the most downstream side of the air flow of the heat exchange section 108 in the air flow direction. Good.
 パス110~150の数が10個のように多くなる場合、分配器106や集合器107は1つではなく複数段に設けられていても構わない。 When the number of paths 110 to 150 is as large as 10, the distributor 106 and the concentrator 107 may be provided in multiple stages instead of one.
 対向流パス110、130、150の最上流チューブ112、132、152及び並行流パス120、140の最下流チューブ121、141は、熱交換部108のうちの空気流れ最下流において、垂直方向に千鳥配置されていなくても良い。例えば、対向流パス110、130、150の最上流チューブ112、132、152及び並行流パス120、140の最下流チューブ121、141は、空気流れ方向において同じ位置に配置されていても構わない。対向流パス110、130、150の最下流チューブ111、131、151及び並行流パス120、140の最上流チューブ122、142についても同様である。 The most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 are arranged in a staggered manner in the vertical direction at the most downstream side of the air flow in the heat exchange section 108. It doesn't have to be placed. For example, the most upstream tubes 112, 132, 152 of the counterflow paths 110, 130, 150 and the most downstream tubes 121, 141 of the parallel flow paths 120, 140 may be located at the same position in the air flow direction. The same applies to the most downstream tubes 111, 131, 151 of the counterflow paths 110, 130, 150 and the most upstream tubes 122, 142 of the parallel flow paths 120, 140.
 対向流パス110、130、150の数と並行流パス120、140の数は適宜設定することができる。対向流パス110、130、150の数は、並行流パス120、140の数よりも多い、すなわちパスの数は奇数であることが好ましいが、対向流パス110、130、150の数と並行流パス120、140の数が同じでも構わない。 The number of counterflow paths 110, 130, 150 and the number of parallel flow paths 120, 140 can be set as appropriate. Preferably, the number of countercurrent paths 110, 130, 150 is greater than the number of parallel current paths 120, 140, i.e. the number of passes is an odd number, but The numbers of paths 120 and 140 may be the same.
 各パス110~150は、分配器106と熱交換部108との間において複数に分岐されても良い。これにより、分配器106を増やさずに、熱交換部108におけるパスの数を増やすことができる。 Each of the paths 110 to 150 may be branched into a plurality of paths between the distributor 106 and the heat exchange section 108. Thereby, the number of passes in the heat exchange section 108 can be increased without increasing the number of distributors 106.
 各パス110~150は、冷媒の対向流同士あるいは並行流同士であれば、垂直方向に階層をまたいで接続されても良い。一例として、対向流パス110のチューブ102が対向流130のチューブ102に接続される。 The paths 110 to 150 may be connected vertically across layers as long as the refrigerant flows in opposite directions or in parallel. As an example, tube 102 of counterflow path 110 is connected to tube 102 of counterflow 130.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.
 本明細書に開示された車載用熱交換器の技術的特徴を以下の通り示す。
(項目1)
板状であると共に平行に配置された複数のプレートフィン(101)と、前記複数のプレートフィンを貫通すると共に冷媒が流れる複数のチューブ(102)と、を有する熱交換部(108)を含み、
 前記熱交換部に前記冷媒を流す冷媒流路をパス(110~150)と定義すると、前記複数のチューブは少なくとも1つのパスを構成し、
 前記少なくとも1つのパスのうちの冷媒流れ最下流に位置する最下流チューブ(121、141)が、前記複数のプレートフィンの面方向に平行な空気流れ方向において、前記熱交換部のうちの空気流れ最下流側に配置される、車載用熱交換器。
(項目2)
 前記複数のチューブは、複数のパスを構成し、
 前記複数のパスのうちの少なくとも1つのパスは、前記最下流チューブが前記空気流れ方向において前記熱交換部のうちの空気流れ最下流に配置されると共に、前記空気流れ方向における前記冷媒の移動の方向を示す冷媒移動方向と前記空気流れ方向とが並行流となる並行流パス(120、140)を構成する、項目1に記載の車載用熱交換器。
(項目3)
 前記複数のパスは、前記熱交換部のうちの冷媒流れ最上流に位置する最上流チューブ(112、132、152)が前記空気流れ方向において前記熱交換部のうちの前記空気流れ最下流に配置されると共に、前記冷媒移動方向と前記空気流れ方向とが対向流となる対向流パス(110、130、150)を含む、項目2に記載の車載用熱交換器。
(項目4)
 前記対向流パスの最上流チューブ及び前記並行流パスの最下流チューブは、前記熱交換部のうちの前記空気流れ最下流において、前記複数のチューブに前記冷媒が流れる冷媒流れ方向及び前記空気流れ方向に垂直な垂直方向に千鳥配置される、項目3に記載の車載用熱交換器。
(項目5)
 前記複数のパスは、前記熱交換部のうちの冷媒流れ最上流に位置する最上流チューブ(112、132、152)が前記空気流れ方向において前記熱交換部のうちの前記空気流れ最下流に配置されると共に、前記冷媒移動方向と前記空気流れ方向とが対向流となる対向流パス(110、130、150)を含み、
 前記対向流パスの数は、前記並行流パスの数よりも多い、項目3または4に記載の車載用熱交換器。
(項目6)
 前記複数のパスは、前記熱交換部のうちの冷媒流れ最上流に位置する最上流チューブ(112、132、152)が前記空気流れ方向において前記熱交換部のうちの前記空気流れ最下流に配置されると共に、前記冷媒移動方向と前記空気流れ方向とが対向流となる対向流パス(110、130、150)を含み、
 前記対向流パスのうちの冷媒流れ最下流に位置する最下流チューブ(111、131、151)及び前記並行流パスのうちの冷媒流れ最上流に位置する最上流チューブ(122、142)は、前記熱交換部のうちの空気流れ最上流において、前記冷媒流れ方向及び前記空気流れ方向に垂直な垂直方向に千鳥配置される、項目3ないし5のいずれか1つに記載の車載用熱交換器。
The technical features of the on-vehicle heat exchanger disclosed in this specification are shown below.
(Item 1)
A heat exchange section (108) having a plurality of plate fins (101) that are plate-shaped and arranged in parallel, and a plurality of tubes (102) that pass through the plurality of plate fins and through which a refrigerant flows;
If a refrigerant flow path through which the refrigerant flows through the heat exchange section is defined as a path (110 to 150), the plurality of tubes constitute at least one path,
The most downstream tube (121, 141) located at the most downstream position in the refrigerant flow of the at least one path controls the air flow in the heat exchange section in the air flow direction parallel to the surface direction of the plurality of plate fins. An on-vehicle heat exchanger placed on the most downstream side.
(Item 2)
the plurality of tubes constitute a plurality of paths,
In at least one of the plurality of paths, the most downstream tube is disposed at the most downstream position of the heat exchange section in the air flow direction, and the movement of the refrigerant in the air flow direction is controlled. The in-vehicle heat exchanger according to item 1, wherein the refrigerant movement direction and the air flow direction constitute parallel flow paths (120, 140).
(Item 3)
In the plurality of paths, the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction. The on-vehicle heat exchanger according to item 2, further comprising counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows.
(Item 4)
The most upstream tube of the counterflow path and the most downstream tube of the parallel flow path are arranged in the refrigerant flow direction and the air flow direction in which the refrigerant flows through the plurality of tubes in the air flow most downstream of the heat exchange section. The on-vehicle heat exchanger according to item 3, which is arranged in a staggered vertical direction perpendicular to .
(Item 5)
In the plurality of paths, the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction. and includes counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows,
5. The vehicle heat exchanger according to item 3 or 4, wherein the number of countercurrent paths is greater than the number of parallel flow paths.
(Item 6)
In the plurality of paths, the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction. and includes counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows,
The most downstream tube (111, 131, 151) located at the most downstream position of the refrigerant flow among the counterflow paths and the most upstream tube (122, 142) located at the most upstream position of the refrigerant flow of the parallel flow path, The on-vehicle heat exchanger according to any one of items 3 to 5, which is arranged in a staggered manner in a vertical direction perpendicular to the refrigerant flow direction and the air flow direction in the most upstream air flow direction of the heat exchange section.

Claims (6)

  1.  板状であると共に平行に配置された複数のプレートフィン(101)と、前記複数のプレートフィンを貫通すると共に冷媒が流れる複数のチューブ(102)と、を有する熱交換部(108)を含み、
     前記熱交換部に前記冷媒を流す冷媒流路をパス(110~150)と定義すると、前記複数のチューブは少なくとも1つのパスを構成し、
     前記少なくとも1つのパスのうちの冷媒流れ最下流に位置する最下流チューブ(121、141)が、前記複数のプレートフィンの面方向に平行な空気流れ方向において、前記熱交換部のうちの空気流れ最下流側に配置される、車載用熱交換器。
    A heat exchange section (108) having a plurality of plate fins (101) that are plate-shaped and arranged in parallel, and a plurality of tubes (102) that pass through the plurality of plate fins and through which a refrigerant flows;
    If a refrigerant flow path through which the refrigerant flows through the heat exchange section is defined as a path (110 to 150), the plurality of tubes constitute at least one path,
    The most downstream tube (121, 141) located at the most downstream position in the refrigerant flow of the at least one path controls the air flow in the heat exchange section in the air flow direction parallel to the surface direction of the plurality of plate fins. An on-vehicle heat exchanger placed on the most downstream side.
  2.  前記複数のチューブは、複数のパスを構成し、
     前記複数のパスのうちの少なくとも1つのパスは、前記最下流チューブが前記空気流れ方向において前記熱交換部のうちの空気流れ最下流に配置されると共に、前記空気流れ方向における前記冷媒の移動の方向を示す冷媒移動方向と前記空気流れ方向とが並行流となる並行流パス(120、140)を構成する、請求項1に記載の車載用熱交換器。
    the plurality of tubes constitute a plurality of paths,
    In at least one of the plurality of paths, the most downstream tube is disposed at the most downstream position of the heat exchange section in the air flow direction, and the movement of the refrigerant in the air flow direction is controlled. The on-vehicle heat exchanger according to claim 1, wherein the refrigerant movement direction and the air flow direction constitute parallel flow paths (120, 140).
  3.  前記複数のパスは、前記熱交換部のうちの冷媒流れ最上流に位置する最上流チューブ(112、132、152)が前記空気流れ方向において前記熱交換部のうちの前記空気流れ最下流に配置されると共に、前記冷媒移動方向と前記空気流れ方向とが対向流となる対向流パス(110、130、150)を含む、請求項2に記載の車載用熱交換器。 In the plurality of paths, the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction. The on-vehicle heat exchanger according to claim 2, further comprising counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows.
  4.  前記対向流パスの最上流チューブ及び前記並行流パスの最下流チューブは、前記熱交換部のうちの前記空気流れ最下流において、前記複数のチューブに前記冷媒が流れる冷媒流れ方向及び前記空気流れ方向に垂直な垂直方向に千鳥配置される、請求項3に記載の車載用熱交換器。 The most upstream tube of the counterflow path and the most downstream tube of the parallel flow path are arranged in the refrigerant flow direction and the air flow direction in which the refrigerant flows through the plurality of tubes in the air flow most downstream of the heat exchange section. The on-vehicle heat exchanger according to claim 3, which is arranged in a staggered manner in a vertical direction perpendicular to .
  5.  前記複数のパスは、前記熱交換部のうちの冷媒流れ最上流に位置する最上流チューブ(112、132、152)が前記空気流れ方向において前記熱交換部のうちの前記空気流れ最下流に配置されると共に、前記冷媒移動方向と前記空気流れ方向とが対向流となる対向流パス(110、130、150)を含み、
     前記対向流パスの数は、前記並行流パスの数よりも多い、請求項3または4に記載の車載用熱交換器。
    In the plurality of paths, the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction. and includes counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows,
    The on-vehicle heat exchanger according to claim 3 or 4, wherein the number of counterflow paths is greater than the number of parallel flow paths.
  6.  前記複数のパスは、前記熱交換部のうちの冷媒流れ最上流に位置する最上流チューブ(112、132、152)が前記空気流れ方向において前記熱交換部のうちの前記空気流れ最下流に配置されると共に、前記冷媒移動方向と前記空気流れ方向とが対向流となる対向流パス(110、130、150)を含み、
     前記対向流パスのうちの冷媒流れ最下流に位置する最下流チューブ(111、131、151)及び前記並行流パスのうちの冷媒流れ最上流に位置する最上流チューブ(122、142)は、前記熱交換部のうちの空気流れ最上流において、前記冷媒流れ方向及び前記空気流れ方向に垂直な垂直方向に千鳥配置される、
    請求項3または4に記載の車載用熱交換器。
    In the plurality of paths, the most upstream tube (112, 132, 152) located at the most upstream position of the refrigerant flow in the heat exchange section is arranged at the most downstream position of the air flow in the heat exchange section in the air flow direction. and includes counterflow paths (110, 130, 150) in which the refrigerant movement direction and the air flow direction are opposite flows,
    The most downstream tube (111, 131, 151) located at the most downstream position of the refrigerant flow among the counterflow paths and the most upstream tube (122, 142) located at the most upstream position of the refrigerant flow of the parallel flow path, Arranged in a staggered manner in a vertical direction perpendicular to the refrigerant flow direction and the air flow direction at the most upstream side of the air flow in the heat exchange section.
    The vehicle heat exchanger according to claim 3 or 4.
PCT/JP2023/019157 2022-05-31 2023-05-23 Vehicle-mounted heat exchanger WO2023234121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022088212 2022-05-31
JP2022-088212 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234121A1 true WO2023234121A1 (en) 2023-12-07

Family

ID=89024795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019157 WO2023234121A1 (en) 2022-05-31 2023-05-23 Vehicle-mounted heat exchanger

Country Status (1)

Country Link
WO (1) WO2023234121A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159267A (en) * 2012-02-07 2013-08-19 Keihin Thermal Technology Corp Vehicular air conditioner
CN203533988U (en) * 2013-04-12 2014-04-09 上海加冷松芝汽车空调股份有限公司 Passenger car air conditioner parallel flow condenser, passenger car air conditioner parallel flow evaporator and collecting pipe used for passenger car air conditioner parallel flow condenser and passenger car air conditioner parallel flow evaporator
WO2017221400A1 (en) * 2016-06-24 2017-12-28 三菱電機株式会社 Refrigerating cycle device and outdoor heat exchanger used in same
WO2018029784A1 (en) * 2016-08-09 2018-02-15 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159267A (en) * 2012-02-07 2013-08-19 Keihin Thermal Technology Corp Vehicular air conditioner
CN203533988U (en) * 2013-04-12 2014-04-09 上海加冷松芝汽车空调股份有限公司 Passenger car air conditioner parallel flow condenser, passenger car air conditioner parallel flow evaporator and collecting pipe used for passenger car air conditioner parallel flow condenser and passenger car air conditioner parallel flow evaporator
WO2017221400A1 (en) * 2016-06-24 2017-12-28 三菱電機株式会社 Refrigerating cycle device and outdoor heat exchanger used in same
WO2018029784A1 (en) * 2016-08-09 2018-02-15 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger

Similar Documents

Publication Publication Date Title
EP1780492B1 (en) Refrigeration unit
JP5868088B2 (en) Cooling unit for vehicle air conditioner
CN102200365B (en) Refrigerator
JPH034836B2 (en)
JP2008202823A (en) Refrigerator
US6857288B2 (en) Heat exchanger for refrigerator
WO2021241619A1 (en) Heat exchanger and refrigerator
US3267692A (en) Staggered finned evaporator structure
JP3440157B2 (en) Tunnel freezer for food freezing
WO2023234121A1 (en) Vehicle-mounted heat exchanger
JP4618529B2 (en) Ice thermal storage air conditioner
CN212378320U (en) Refrigerator with a door
EP3822570B1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JPH09159311A (en) Heat exchanger for refrigerator
TWI721326B (en) Heat exchanger for refrigerating device and refrigerating device
WO2012003703A1 (en) Heat exchange equipment and cooling system
JP2016003831A (en) refrigerator
JPH0842959A (en) Refrigerator and evaporator used therefor
CN106403388A (en) Micro-channel heat exchanger, refrigerator and air-cooled refrigerator
JP6590957B2 (en) Refrigeration equipment
JP3425080B2 (en) Harvest type ice making equipment
CN220206106U (en) Evaporator, refrigerating device and refrigerating equipment
JP3686463B2 (en) refrigerator
CN107560239A (en) Heat exchanger, dehumidifier and refrigeration plant
JP2004108671A (en) Evaporator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815880

Country of ref document: EP

Kind code of ref document: A1