JP3433172B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell

Info

Publication number
JP3433172B2
JP3433172B2 JP2000289080A JP2000289080A JP3433172B2 JP 3433172 B2 JP3433172 B2 JP 3433172B2 JP 2000289080 A JP2000289080 A JP 2000289080A JP 2000289080 A JP2000289080 A JP 2000289080A JP 3433172 B2 JP3433172 B2 JP 3433172B2
Authority
JP
Japan
Prior art keywords
fuel electrode
electrode
air electrode
carbon black
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000289080A
Other languages
Japanese (ja)
Other versions
JP2002100370A (en
Inventor
薫 福田
敬祐 安藤
信広 齋藤
昌昭 七海
順二 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000289080A priority Critical patent/JP3433172B2/en
Priority to US09/956,828 priority patent/US7022426B2/en
Priority to CA002357590A priority patent/CA2357590C/en
Priority to DE10146506A priority patent/DE10146506B4/en
Publication of JP2002100370A publication Critical patent/JP2002100370A/en
Application granted granted Critical
Publication of JP3433172B2 publication Critical patent/JP3433172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は固体高分子型燃料電
池,特に,芳香族炭化水素系高分子イオン交換成分を有
する電解質膜と,その電解質膜を挟み,且つ芳香族炭化
水素系高分子イオン交換成分を含む空気極および燃料極
とを備え,燃料極側からのみ加湿するようにしたものに
関する。 【0002】 【従来の技術】従来,前記空気極および燃料極として
は,それら両極にプロトン伝導性を付与すると共にバイ
ンダとして機能する高分子イオン交換成分と,カーボン
ブラック粒子の表面に触媒金属を担持させた複数の触媒
粒子と,PTFE(ポリテトラフルオロエチレン)粒子
とより構成されたものが知られている。このPTFE粒
子は撥水性を有し,空気極および燃料極の保水性を調整
する機能を有する。 【0003】また電解質膜を湿潤状態に保持して,その
プロトン伝導性を確保すべく,従来は空気および水素
を,それらに加湿処理を施してから空気極および燃料極
にそれぞれ供給する,といった手段を採用している。 【0004】 【発明が解決しようとする課題】しかしながら空気極お
よび燃料極の構成成分としてPTFE粒子を用いる,と
いうことは,発電性能の一層の向上を図るべく,空気極
および燃料極の厚さを減じて,プロトン伝導性を高める
と共に抵抗過電圧を低く抑える,といった要件を満たす
上で障害となっていた。 【0005】また従来の加湿手段によると,空気供給管
路および水素供給管路にそれぞれ,面倒なシール作業を
行って加湿器を装置しなければならず,設備コストの上
昇および構造の煩雑化を招く,という問題があった。 【0006】 【課題を解決するための手段】本発明は,空気極および
燃料極の厚さを減じて発電性能の一層の向上を図ること
ができ,また空気極および燃料極として特定のものを備
えることによって燃料極側からの加湿のみで運転するこ
とが可能な前記固体高分子型燃料電池を提供することを
目的とする。 【0007】前記目的を達成するため本発明によれば,
芳香族炭化水素系高分子イオン交換成分を有する電解質
膜と,その電解質膜を挟む空気極および燃料極とを備
え,前記空気極および燃料極は,それぞれ,カーボンブ
ラック粒子の表面に触媒金属を担持させた複数の触媒粒
子および高分子イオン交換成分からなり,その高分子イ
オン交換成分は,前記芳香族炭化水素系高分子イオン交
換成分と同じ芳香族炭化水素系高分子イオン交換成分お
よび異なる芳香族炭化水素系高分子イオン交換成分の一
方であり,前記燃料極において,前記カーボンブラック
粒子は,60℃の飽和水蒸気圧下における水吸着量Aが
A≦80cc/gである,といった撥水性を持ち,且つ
前記高分子イオン交換成分の配合重量をWpとし,また
前記カーボンブラック粒子の配合重量をWcとしたと
き,両配合重量Wp,Wcの比Wp/Wcが0.2≦W
p/Wc≦0.8であり,前記空気極において,前記カ
ーボンブラック粒子は,60℃の飽和水蒸気圧下におけ
る水吸着量AがA≧150cc/gである,といった親
水性を持ち,且つ前記高分子イオン交換成分の配合重量
をWpとし,また前記カーボンブラック粒子の配合重量
をWcとしたとき,両配合重量Wp,Wcの比Wp/W
cが0.6≦Wp/Wc≦1.25であり,前記燃料極
側からのみ加湿するようにした固体高分子型燃料電池が
提供される。 【0008】前記のように構成すると,撥水性カーボン
ブラック粒子および親水性カーボンブラック粒子に,そ
れぞれ空気極および燃料極の保水性を調整する機能を持
たせて,PTFE粒子の使用を止めることが可能であ
る。これは空気極および燃料極の厚さを減じる上で有効
である。 【0009】また空気極および燃料極における前記配合
重量Wp,Wcの比Wp/Wcを前記のように設定する
と,PTFE粒子を含まないこともあって,空気極およ
び燃料極の厚さを減少させて,プロトン伝導性を高める
と共に抵抗過電圧の上昇を抑制して発電性能を向上させ
ることが可能である。 【0010】ただし,燃料極において,比Wp/Wcが
Wp/Wc<0.2では燃料極の厚さは一層減少するが
触媒粒子の被覆率が悪化して発電性能が低下する。一
方,Wp/Wc>0.8では燃料極の厚さ増で加湿水の
流通が悪くなる。空気極において,比Wp/WcがWp
/Wc<0.6では水の保有性が悪化し,一方,Wp/
Wc>1.25では高分子イオン交換成分の分散度が悪
化するため空気極の厚さが増加する。 【0011】さらに,加湿器は水素供給管路側にのみ装
置すればよいから,設備コストを低減し,また構造の簡
素化を図ることができる。 【0012】この場合,燃料極側から加湿を行うと,そ
の加湿水は燃料極のカーボンブラック粒子が撥水性であ
ることから電解質膜にスムーズに流入し,また空気極の
生成水の電解質膜への逆拡散も生じるので電解質膜が湿
潤状態となる。一方,空気極のカーボンブラック粒子が
親水性であることから,生成水の一部および電解質膜中
から空気極に流入した水は,そこに保有される。この空
気極の水の保有と,燃料極への加湿とにより電解質膜が
湿潤状態に保持される。空気極および燃料極において,
過剰の水は外部に排出される。 【0013】ただし,燃料極において,カーボンブラッ
ク粒子の前記水吸着量AがA>80cc/gではその撥
水性が低下して加湿水の流通が悪化し,一方,空気極に
おいて,カーボンブラック粒子の前記水吸着量AがA<
150cc/gではその親水性が低下して水の保有が不
十分となる。 【0014】 【発明の実施の形態】図1において,固体高分子型燃料
電池(セル)1は,電解質膜2と,その電解質膜2を挟
んでその両側にそれぞれ密着する空気極3および燃料極
4と,それら両極3,4にそれぞれ密着する一対の拡散
層5,6と,それら両拡散層5,6に密着する一対のセ
パレータ7,8とよりなる。この場合,燃料極4側から
のみ加湿が行われる。電解質膜−電極集成体9には,実
施例では,電解質膜2,空気極3,燃料極4および両拡
散層5,6が含まれる。 【0015】電解質膜2は,プロトン伝導性を有する芳
香族炭化水素系高分子イオン交換成分より構成されてい
る。空気極3および燃料極4は,それぞれ,カーボンブ
ラック粒子の表面に複数の触媒金属としてのPt粒子を
担持させた複数の触媒粒子ならびにプロトン伝導性およ
びバインダとしての機能を有し,且つ前記と同じまたは
異なる芳香族炭化水素系高分子イオン交換成分からな
り,第三の成分であるPTFE粒子を含まない。 【0016】各拡散層5,6は多孔質のカーボンペー
パ,カーボンプレート等よりなり,また各セパレータ
7,8は,同一の形態を有するように黒鉛化炭素より構
成され,空気極3側のセパレータ7に存する複数の溝1
0に空気が,また燃料極4側のセパレータ8に在って前
記溝10と交差する関係の複数の溝11に水素がそれぞ
れ供給される。 【0017】芳香族炭化水素系高分子イオン交換成分
は,無フッ素であって溶剤に可溶であるといった特性を
有する。この種の高分子イオン交換成分としては,表1
に挙げた各種の,芳香族炭化水素系高分子のスルホン化
物が用いられる。 【0018】 【表1】 【0019】溶剤としては,表2に挙げた各種極性溶剤
が用いられる。 【0020】 【表2】 【0021】加湿側である燃料極4において,そのカー
ボンブラック粒子は.60℃の飽和水蒸気圧下における
水吸着量AがA≦80cc/gである,といった撥水性
を持つ。また燃料極4において,芳香族炭化水素系高分
子イオン交換成分の配合重量をWpとし,またカーボン
ブラック粒子の配合重量をWcとしたとき,両配合重量
Wp,Wcの比Wp/Wcは0.2≦Wp/Wc≦0.
8に設定される。 【0022】一方,空気極3において,そのカーボンブ
ラック粒子は,60℃の飽和水蒸気圧下における水吸着
量AがA≧150cc/gである,といった親水性を持
つ。また空気極3において,芳香族炭化水素系高分子イ
オン交換成分の配合重量をWpとし,またカーボンブラ
ック粒子の配合重量をWcとしたとき,両配合重量W
p,Wcの比Wp/Wcは0.6≦Wp/Wc≦1.2
5に設定される。 【0023】前記のように構成すると,撥水性カーボン
ブラック粒子および親水性カーボンブラック粒子に,そ
れぞれ空気極3および燃料極4の保水性を調整する機能
を持たせて,PTFE粒子の使用を止めることが可能で
ある。これは空気極3および燃料極4の厚さを減じる上
で有効である。 【0024】また空気極3および燃料極4における前記
配合重量Wp,Wcの比Wp/Wcを前記のように設定
すると,PTFE粒子を含まないこともあって,空気極
3および燃料極4の厚さを減少させて,プロトン伝導性
を高めると共に抵抗過電圧の上昇を抑制して発電性能を
向上させることが可能である。 【0025】さらに,加湿器は水素供給管路側にのみ装
置すればよいから,設備コストを低減し,また構造の簡
素化を図ることができる。 【0026】この場合,燃料極4側から加湿を行うと,
その加湿水は燃料極4のカーボンブラック粒子が撥水性
であることから電解質膜2にスムーズに流入し,また空
気極3の生成水の電解質膜2への逆拡散も生じるので電
解質膜2が湿潤状態となる。一方,空気極3のカーボン
ブラック粒子が親水性であることから,生成水の一部お
よび電解質膜2中から空気極3に流入した水は,そこに
保有される。この空気極3の水の保有と,燃料極4への
加湿とにより電解質膜2が湿潤状態に保持される。空気
極3および燃料極4において,過剰の水は外部に排出さ
れる。 【0027】以下,具体例について説明する。 I−(1) 燃料極の製造 60℃の飽和水蒸気圧下における水吸着量AがA=72
cc/gである撥水性カーボンブラック粒子(商品名:
Vulcan XC−72)にPt粒子を担持させて燃
料極用触媒粒子を調製した。触媒粒子におけるPt粒子
の含有量は50wt%である。 〔例−I〕芳香族炭化水素系高分子イオン交換成分とし
て,表1に例1として挙げたPEEKスルホン化物を用
意し,このPEEKスルホン化物を表2のNMPに還流
溶解した。この溶液におけるPEEKスルホン化物の含
有量は6wt%である。このPEEKスルホン化物含有
溶液に,PEEKスルホン化物の配合重量Wpとカーボ
ンブラック粒子の配合重量Wcとの比Wp/WcがWp
/Wc=0.2となるように触媒粒子を混合し,次いで
ボールミルを用いて触媒粒子の分散を図り,燃料極用ス
ラリを調製した。このスラリを,Pt量が0.5mg/cm
2 となるように複数の多孔質カーボンペーパの一面にそ
れぞれ塗布し,乾燥して,拡散層6を持つ燃料極4を得
た。この燃料極4を例1とする。 〔例−II〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=0.4に設定した,という点を除き,例−I
と同様の方法を実施して拡散層6を持つ燃料極4を得
た。この燃料極4を例2とする。 〔例−III 〕PEEKスルホン化物の配合重量Wpとカ
ーボンブラック粒子の配合重量Wcとの比Wp/Wcを
Wp/Wc=0.6に設定した,という点を除き,例−
Iと同様の方法を実施して拡散層6を持つ燃料極4を得
た。この燃料極4を例3とする。 〔例−IV〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=0.8に設定した,という点を除き,例−I
と同様の方法を実施して拡散層6を持つ燃料極4を得
た。この燃料極4を例4とする。 〔例−V〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=1.25に設定した,という点を除き,例−
Iと同様の方法を実施して拡散層6を持つ燃料極4を得
た。この燃料極4を例5とする。 〔例−VI〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=2.0に設定した,という点を除き,例−I
と同様の方法を実施して拡散層6を持つ燃料極4を得
た。この燃料極4を例6とする。 I−(2)空気極の製造 60℃の飽和水蒸気圧下における水吸着量AがA=37
0cc/gである親水性カーボンブラック粒子(商品
名:ケッチェンブラックEC)にPt粒子を担持させて
空気極用触媒粒子を調製した。触媒粒子におけるPt粒
子の含有量は50wt%である。 〔例−I〕芳香族炭化水素系高分子イオン交換成分とし
て,表1に例Iとして挙げたPEEKスルホン化物を用
意し,このPEEKスルホン化物を表2のNMPに還流
溶解した。この溶液におけるPEEKスルホン化物の含
有量は6wt%である。このPEEKスルホン化物含有
溶液に,PEEKスルホン化物の配合重量Wpとカーボ
ンブラック粒子の配合重量Wcとの比Wp/WcがWp
/Wc=0.4となるように触媒粒子を混合し,次いで
ボールミルを用いて触媒粒子の分散を図り,空気極用ス
ラリを調製した。このスラリを,Pt量が0.5mg/cm
2 となるように複数の多孔質カーボンペーパの一面にそ
れぞれ塗布し,乾燥して,拡散層5を持つ空気極3を得
た。この空気極3を例(1)とする。 〔例−II〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=0.6に設定した,という点を除き,例−I
と同様の方法を実施して拡散層5を持つ空気極3を得
た。この空気極3を例(2)とする。 〔例−III 〕PEEKスルホン化物の配合重量Wpとカ
ーボンブラック粒子の配合重量Wcとの比Wp/Wcを
Wp/Wc=0.8に設定した,という点を除き,例−
Iと同様の方法を実施して拡散層5を持つ空気極3を得
た。この空気極3を例(3)とする。 〔例−IV〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=1.25に設定した,という点を除き,例−
Iと同様の方法を実施して拡散層5を持つ空気極3を得
た。この空気極3を例(4)とする。 〔例−V〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=1.75に設定した,という点を除き,例−
Iと同様の方法を実施して拡散層5を持つ空気極3を得
た。この空気極3を例(5)とする。 II.空気極および燃料極に関する各種考察 表3は,燃料極4の例1〜6および空気極3の例(1)
〜(5)に関するPEEKスルホン化物の配合重量Wp
およびカーボンブラック粒子の配合重量Wcの比Wp/
Wcと,保水性との関係を示す。この保水性は,ガス吸
着装置による60℃飽和水蒸気圧下の水吸着量から算出
した。 【0028】 【表3】 【0029】図2は,表3に基づいて両配合重量の比W
p/Wcと,空気極および燃料極の保水性との関係をグ
ラフ化したものである。図中,例1〜6は燃料極に該当
し,また例(1)〜(5)は空気極に該当する。このこ
とは,以後の図面において同じである。図2より,両配
合重量の比Wp/Wcが同一である場合,撥水性カーボ
ン粒子を用いた燃料極は,親水性カーボン粒子を用いた
空気極に比べて保水性が低いことが判る。また空気極お
よび燃料極において,両配合重量の比Wp/Wcが増加
すると保水性も増加する,といった傾向がみられる。 【0030】表4は,燃料極4の例1〜6および空気極
3の例(1)〜(5)に関する両配合重量の比Wp/W
cと,空気極3および燃料極4の厚さとの関係を示す。 【0031】 【表4】【0032】図3は,表4に基づいて両配合重量の比W
p/Wcと,空気極および燃料極の厚さとの関係をグラ
フ化したものである。図3より,比Wp/Wcの増加に
伴い空気極および燃料極の厚さが増すことが判る。 【0033】表5は,燃料極4の例1〜6および空気極
3の例(1)〜(5)に関する両配合重量の比Wp/W
cと触媒粒子の被覆率Ccとの関係を示す。 【0034】 【表5】 【0035】触媒粒子の被覆率Ccは,空気極および燃
料極の平面の面積をAeとし,また空気極および燃料極
の平面に露出している複数の触媒粒子の面積の和をAc
としたとき,Cc={(Ae−Ac)/Ae}×100
(%)として求められた。 【0036】図4は,表5に基づいて両配合重量の比W
p/Wcと触媒粒子の被覆率Ccとの関係をグラフ化し
たものである。図4より,比Wp/Wcの増加に伴い触
媒粒子の被覆率Ccが増すことが判る。 【0037】表6は,燃料極4の例1〜6および空気極
3の例(1)〜(5)に関する両配合重量の比Wp/W
cと触媒粒子の分散度Dとの関係を示す。 【0038】 【表6】【0039】触媒粒子の分散度Dは次のような方法によ
って求められた。先ず,空気極3(または燃料極4)の
製造時における触媒粒子およびPEEKスルホン化物の
配合量から触媒粒子中の理論Pt濃度TpおよびPEE
Kスルホン化物中の理論S(イオウ)濃度Tsを算出
し,次いで,それら理論値から理論値比Ts/Tpを求
めた。また,空気極3等の表面をEPMAにて観察し,
触媒粒子中の実測Pt濃度ApおよびPEEKスルホン
化物中の実測S濃度Asを面分析により求め,次いで,
それら実測値から実測値比As/Apを求めた。 【0040】その後,分散度Dを, D=[{(Ts/Tp)−(As/Ap)}/(Ts/
Tp)]×100(%) の式に則って求めた。 【0041】図5は,表6に基づいて両配合重量の比W
p/Wcと触媒粒子の分散度Dとの関係をグラフ化した
ものである。図5より,比Wp/Wcの増加に伴い触媒
粒子の分散度Dが増すことが判る。 【0042】表7は,燃料極4の例1〜6および空気極
3の例(1)〜(5)に関する触媒粒子の分散度Dと空
気極3および燃料極4の厚さとの関係を示す。 【0043】 【表7】 【0044】図6は,表7に基づいて触媒粒子の分散度
Dと,空気極および燃料極の厚さとの関係をグラフ化し
たものである。図6より,触媒粒子の分散度Dの増加に
伴い空気極および燃料極の厚さが増すことが判る。 III .燃料電池の発電性能 燃料極4および空気極3の製造で用いられたPEEKス
ルホン化物と同様のものを使用して厚さ50μmの電解
質膜2を成形した。また燃料極4の例1〜6と,空気極
3の例(1)〜(5)を用意し,燃料極4の各例1〜6
が空気極3の例(1)〜(5)と総当りとなるような組
合せを行う,つまり,例1について言えば,例1と例
(1),例1と例(2)……例1と例(5),といった
組合せを行って30組の電極対を得た。各電極対,した
がって一組の空気極3および燃料極4により電解質膜2
を挟み,140℃,1.5MPa,1分間の条件でホッ
トプレスを行って,電解質膜−電極集成体9を得た。各
電解質膜−電極集成体9を用いて固体高分子型燃料電池
1を組立て,燃料極4側からのみ加湿する,という条件
下で発電を行って電流密度と端子電圧との関係を測定し
た。この場合,水の拡散による端子電圧への影響が大で
あることから,各電池の端子電圧の比較値として高電流
密度側である0.8A/cm2 における端子電圧を用い
た。 【0045】表8は,燃料極4の例1〜6および空気極
4の例(1)〜(5)における両配合重量の比Wp/W
cと,各電池における空気極および燃料極の組合せと,
0.8A/cm2 における端子電圧とを示す。 【0046】 【表8】 【0047】図7は,表8に基づいて空気極3および燃
料極4の組合せと,端子電圧との関係をグラフ化したも
のである。表8,図7から明らかなように,燃料極4の
例1〜4および空気極3の例(2)〜(4)間において
組合せを行うと,燃料極4側からのみ加湿する,という
条件下で固体高分子型燃料電池1を運転した場合,その
発電性能を向上させることができる。 【0048】比較のため,燃料極4の例3と空気極3の
例(3)との組合せを行った燃料電池1において,空気
極3側からのみ加湿する,という条件下で発電を行って
電流密度と端子電圧との関係を測定したところ,電流密
度0.8A/cm2 における端子電圧は0.613Vであ
ることが判明した。この端子電圧は,表8における燃料
極の例3と空気極の例(3)とを組合せた場合の端子電
圧0.691Vに比べて約11%低いことが明らかであ
る。 【0049】この事実から,燃料極4の例1〜4と空気
極3の例(2)〜(4)との組合せを行った燃料電池1
において,燃料極4側からのみ加湿を行うことの意義が
明らかである。 【0050】空気極3および燃料極4において,両配合
重量の比Wp/Wcをそれぞれ前記のように設定する
と,表4より燃料極4の厚さtは,例1〜4のごとく,
3μm≦t≦7μmになると共に空気極3の厚さtは,
例(2)〜(4)のごとく,6μm≦t≦8μmとな
り,また表5より燃料極4における触媒粒子の被覆率C
cは,例1〜4のごとく,72%≦Cc≦97%になる
と共に空気極3における触媒粒子の被覆率Ccは,例
(2)〜(4)のごとく,95%≦Cc≦98%とな
り,さらに表6より燃料極4における触媒粒子の分散度
Dは,例1〜4のごとく,2%≦D≦7%になると共に
空気極3における触媒粒子の分散度Dは,例(2)〜
(4)のごとく,5%≦D≦8%となる。 【0051】 【発明の効果】本発明によれば前記のように構成するこ
とによって,燃料極側からの加湿のみで運転しても高い
発電性能を発揮することが可能な,安価で,且つ構造の
簡素な固体高分子型燃料電池を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer fuel cell, and more particularly, to an electrolyte membrane having an aromatic hydrocarbon polymer ion exchange component and an electrolyte membrane sandwiching the electrolyte membrane. And aromatic carbonization
The hydrogen-based polymer ion-exchange component and a including air electrode and the fuel electrode, about that so as to humidify only from the fuel electrode side. Conventionally, as the air electrode and the fuel electrode, a polymer ion exchange component which imparts proton conductivity to both electrodes and functions as a binder, and a catalyst metal supported on the surface of carbon black particles What consists of a plurality of catalyst particles and PTFE (polytetrafluoroethylene) particles is known. The PTFE particles have water repellency and have a function of adjusting the water retention of the air electrode and the fuel electrode. In order to maintain the proton conductivity of the electrolyte membrane while maintaining the electrolyte membrane in a wet state, conventionally, air and hydrogen are humidified and then supplied to the air electrode and the fuel electrode, respectively. Is adopted. [0004] However, the use of PTFE particles as components of the air electrode and the fuel electrode means that the thickness of the air electrode and the fuel electrode must be reduced in order to further improve the power generation performance. This has been an obstacle in meeting the requirements of increasing proton conductivity and reducing resistance overvoltage. Further, according to the conventional humidifying means, the humidifier must be installed by performing a troublesome sealing operation on each of the air supply line and the hydrogen supply line, so that the equipment cost is increased and the structure is complicated. There was a problem of inviting. According to the present invention, the power generation performance can be further improved by reducing the thickness of the air electrode and the fuel electrode. It is an object of the present invention to provide the polymer electrolyte fuel cell which can be operated only by humidification from the fuel electrode side. [0007] To achieve the above object, according to the present invention,
An electrolyte membrane having an aromatic hydrocarbon-based polymer ion-exchange component, and an air electrode and a fuel electrode sandwiching the electrolyte membrane, wherein the air electrode and the fuel electrode each carry a catalytic metal on the surface of carbon black particles a plurality of catalyst particles and polymer ion-exchange component is, the polymer Lee
The on-exchange component is the aromatic hydrocarbon polymer ion exchange.
The same aromatic hydrocarbon polymer ion exchange component as the exchange component
And different aromatic hydrocarbon polymer ion exchange components
In the fuel electrode, the carbon black particles have water repellency such that the water adsorption amount A under a saturated steam pressure of 60 ° C. is A ≦ 80 cc / g, and the carbon black particles contain the polymer ion exchange component. When the weight is Wp and the blending weight of the carbon black particles is Wc, the ratio Wp / Wc of the blending weights Wp and Wc is 0.2 ≦ W.
p / Wc ≦ 0.8, and at the air electrode, the carbon black particles have a hydrophilic property such that the water adsorption amount A under a saturated steam pressure of 60 ° C. is A ≧ 150 cc / g; When the blending weight of the molecular ion exchange component is Wp and the blending weight of the carbon black particles is Wc, the ratio Wp / W of the blending weights Wp and Wc is Wp / W.
c is 0.6 ≦ Wp / Wc ≦ 1.25, and a polymer electrolyte fuel cell is provided in which humidification is performed only from the fuel electrode side. [0008] With the above configuration, it is possible to stop the use of PTFE particles by giving the water-repellent carbon black particles and the hydrophilic carbon black particles the function of adjusting the water retention of the air electrode and the fuel electrode, respectively. It is. This is effective in reducing the thickness of the cathode and anode. When the ratio Wp / Wc of the blending weights Wp and Wc at the air electrode and the fuel electrode is set as described above, the thickness of the air electrode and the fuel electrode is reduced because the PTFE particles are not included. As a result, it is possible to increase proton conductivity and suppress an increase in resistance overvoltage, thereby improving power generation performance. However, when the ratio Wp / Wc of the fuel electrode is Wp / Wc <0.2, the thickness of the fuel electrode further decreases, but the coverage of the catalyst particles deteriorates, and the power generation performance decreases. On the other hand, when Wp / Wc> 0.8, the flow of the humidifying water becomes worse due to an increase in the thickness of the fuel electrode. At the air electrode, the ratio Wp / Wc is Wp
When /Wc<0.6, water retention deteriorates, while Wp /
When Wc> 1.25, the degree of dispersion of the polymer ion-exchange component deteriorates, so that the thickness of the air electrode increases. Further, since the humidifier need only be provided on the side of the hydrogen supply pipe, the equipment cost can be reduced and the structure can be simplified. In this case, when humidification is performed from the fuel electrode side, the humidified water smoothly flows into the electrolyte membrane because the carbon black particles of the fuel electrode are water repellent, and flows into the electrolyte membrane of the generated water of the air electrode. Is also generated, so that the electrolyte membrane is in a wet state. On the other hand, since the carbon black particles in the air electrode are hydrophilic, a part of the generated water and the water flowing into the air electrode from the electrolyte membrane are retained therein. The electrolyte membrane is kept in a wet state by the water in the air electrode and the humidification of the fuel electrode. At the cathode and anode,
Excess water is discharged to the outside. However, at the fuel electrode, when the water adsorbed amount A of the carbon black particles is A> 80 cc / g, the water repellency is reduced and the flow of the humidified water is deteriorated. The water adsorption amount A is A <
At 150 cc / g, the hydrophilicity decreases and the water retention becomes insufficient. FIG. 1 shows a polymer electrolyte fuel cell (cell) 1 having an electrolyte membrane 2 and an air electrode 3 and a fuel electrode which are in close contact with both sides of the electrolyte membrane 2 respectively. 4 and a pair of diffusion layers 5 and 6 that are in close contact with both electrodes 3 and 4, respectively, and a pair of separators 7 and 8 that are in close contact with both diffusion layers 5 and 6. In this case, humidification is performed only from the fuel electrode 4 side. In the embodiment, the electrolyte membrane-electrode assembly 9 includes the electrolyte membrane 2, the air electrode 3, the fuel electrode 4, and both diffusion layers 5 and 6. [0015] The electrolyte membrane 2 is constituted by Kaoru <br/> aromatic hydrocarbon-based polymer ion-exchange components that have a proton conductivity. Air electrode 3 and the fuel electrode 4, respectively, has a function as a plurality of catalyst particles and the proton conductivity and a binder obtained by supporting Pt particles as multiple catalytic metal on the surface of carbon black particles, and the same as the or it consists <br/> different that Kaoru aromatic hydrocarbon-based polymer ion-exchange components, not including PTFE particles is the third component. Each of the diffusion layers 5 and 6 is made of a porous carbon paper or a carbon plate, and each of the separators 7 and 8 is made of graphitized carbon so as to have the same form. 7 multiple grooves 1
0 is supplied with air, and hydrogen is supplied to a plurality of grooves 11 which are present in the separator 8 on the side of the fuel electrode 4 and intersect with the grooves 10. The aromatic hydrocarbon-based polymer ion-exchange component has the property of being fluorine-free and soluble in a solvent. Table 1 shows this type of polymer ion exchange component.
Various sulfonated aromatic hydrocarbon polymers are used. [Table 1] As the solvent, various polar solvents listed in Table 2 are used. [Table 2] At the fuel electrode 4 on the humidifying side, the carbon black particles are. It has water repellency such that the water adsorption amount A under a saturated steam pressure of 60 ° C. is A ≦ 80 cc / g. In the fuel electrode 4, when the blending weight of the aromatic hydrocarbon polymer ion exchange component is Wp and the blending weight of the carbon black particles is Wc, the ratio Wp / Wc of the blending weights Wp and Wc is 0.1. 2 ≦ Wp / Wc ≦ 0.
8 is set. On the other hand, in the air electrode 3, the carbon black particles have a hydrophilic property such that the water adsorption amount A under a saturated steam pressure of 60 ° C. is A ≧ 150 cc / g. In the air electrode 3, when the compounding weight of the aromatic hydrocarbon polymer ion-exchange component is Wp and the compounding weight of the carbon black particles is Wc, both compounding weights W
The ratio Wp / Wc of p and Wc is 0.6 ≦ Wp / Wc ≦ 1.2
Set to 5. With the above structure, the water-repellent carbon black particles and the hydrophilic carbon black particles have the function of adjusting the water retention of the air electrode 3 and the fuel electrode 4, respectively, so that the use of the PTFE particles is stopped. Is possible. This is effective in reducing the thickness of the cathode 3 and the anode 4. When the ratio Wp / Wc of the blending weights Wp and Wc in the air electrode 3 and the fuel electrode 4 is set as described above, the thickness of the air electrode 3 and the fuel electrode 4 may be reduced because the PTFE particles may not be contained. In addition, it is possible to increase the proton conductivity and reduce the rise of the resistance overvoltage to improve the power generation performance. Further, since the humidifier need only be provided on the side of the hydrogen supply pipe, the equipment cost can be reduced and the structure can be simplified. In this case, when humidification is performed from the fuel electrode 4 side,
The humidified water flows smoothly into the electrolyte membrane 2 because the carbon black particles of the fuel electrode 4 are water repellent, and the generated water of the air electrode 3 also reversely diffuses into the electrolyte membrane 2, so that the electrolyte membrane 2 becomes wet. State. On the other hand, since the carbon black particles of the air electrode 3 are hydrophilic, a part of the generated water and the water flowing from the electrolyte membrane 2 into the air electrode 3 are retained therein. The electrolyte membrane 2 is kept in a wet state by the water in the air electrode 3 and the humidification of the fuel electrode 4. At the air electrode 3 and the fuel electrode 4, excess water is discharged to the outside. Hereinafter, a specific example will be described. I- (1) Manufacture of fuel electrode Water adsorption amount A under saturated steam pressure at 60 ° C. is A = 72.
cc / g of water-repellent carbon black particles (trade name:
Vulcan XC-72) supported Pt particles to prepare fuel electrode catalyst particles. The content of Pt particles in the catalyst particles is 50% by weight. [Example-I] As the aromatic hydrocarbon polymer ion exchange component, the PEEK sulfonate listed in Example 1 in Table 1 was prepared, and this PEEK sulfonate was dissolved under reflux in NMP in Table 2. The content of the PEEK sulfonate in this solution is 6% by weight. In this PEEK sulfonate-containing solution, the ratio Wp / Wc of the blend weight Wp of the PEEK sulfonate to the blend weight Wc of the carbon black particles is Wp.
The catalyst particles were mixed so that /Wc=0.2, and then the catalyst particles were dispersed using a ball mill to prepare a fuel electrode slurry. This slurry was prepared with a Pt content of 0.5 mg / cm
The fuel electrode 4 having a diffusion layer 6 was obtained by applying the mixture to one surface of a plurality of porous carbon papers and drying the mixture. This fuel electrode 4 is referred to as Example 1. [Example-II] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-I except that p / Wc = 0.4 was set.
The fuel electrode 4 having the diffusion layer 6 was obtained in the same manner as described above. This fuel electrode 4 is referred to as Example 2. [Example-III] Except that the ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated compound to the blending weight Wc of the carbon black particles was set to Wp / Wc = 0.6.
Fuel electrode 4 having diffusion layer 6 was obtained in the same manner as in I. This fuel electrode 4 is referred to as Example 3. [Example-IV] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-I except that p / Wc = 0.8 was set.
The fuel electrode 4 having the diffusion layer 6 was obtained in the same manner as described above. This fuel electrode 4 is referred to as Example 4. [Example-V] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-except that p / Wc was set to 1.25
Fuel electrode 4 having diffusion layer 6 was obtained in the same manner as in I. This fuel electrode 4 is referred to as Example 5. [Example-VI] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-I except that p / Wc = 2.0 was set.
The fuel electrode 4 having the diffusion layer 6 was obtained in the same manner as described above. This fuel electrode 4 is referred to as Example 6. I- (2) Manufacture of air electrode The water adsorption amount A under the saturated steam pressure of 60 ° C. is A = 37.
Pt particles were supported on hydrophilic carbon black particles (trade name: Ketjen Black EC) of 0 cc / g to prepare air electrode catalyst particles. The content of Pt particles in the catalyst particles is 50% by weight. [Example-I] As the aromatic hydrocarbon-based polymer ion-exchange component, the PEEK sulfonate listed as Example I in Table 1 was prepared, and this PEEK sulfonate was dissolved in NMP in Table 2 under reflux. The content of the PEEK sulfonate in this solution is 6% by weight. In this PEEK sulfonate-containing solution, the ratio Wp / Wc of the blend weight Wp of the PEEK sulfonate to the blend weight Wc of the carbon black particles is Wp.
The catalyst particles were mixed so that /Wc=0.4, and then dispersed using a ball mill to prepare a slurry for an air electrode. This slurry was prepared with a Pt content of 0.5 mg / cm
The air electrode 3 having a diffusion layer 5 was obtained by applying the coating material to one surface of a plurality of porous carbon papers and drying the coating. This air electrode 3 is taken as an example (1). [Example-II] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-I except that p / Wc = 0.6 was set.
The air electrode 3 having the diffusion layer 5 was obtained in the same manner as described above. This air electrode 3 is taken as an example (2). [Example-III] Except that the ratio Wp / Wc of the blending weight Wp of the PEEK sulfonate to the blending weight Wc of the carbon black particles was set to Wp / Wc = 0.8,
Air electrode 3 having diffusion layer 5 was obtained in the same manner as in I. This air electrode 3 is taken as an example (3). [Example-IV] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-except that p / Wc was set to 1.25
Air electrode 3 having diffusion layer 5 was obtained in the same manner as in I. This air electrode 3 is taken as an example (4). [Example-V] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-Except that p / Wc = 1.75 was set.
Air electrode 3 having diffusion layer 5 was obtained in the same manner as in I. This air electrode 3 is taken as an example (5). II. Table 3 shows the examples 1 to 6 of the anode 4 and the example (1) of the cathode 3
Formulation weight Wp of PEEK sulfonated product related to (5)
And the ratio of the blending weight Wc of the carbon black particles Wp /
The relationship between Wc and water retention is shown. This water retention was calculated from the amount of water adsorbed by the gas adsorber at a saturated steam pressure of 60 ° C. [Table 3] FIG. 2 is a graph showing the ratio W of both compounding weights based on Table 3.
7 is a graph showing the relationship between p / Wc and the water retention of the air electrode and the fuel electrode. In the figure, Examples 1 to 6 correspond to the fuel electrode, and Examples (1) to (5) correspond to the air electrode. This is the same in the following drawings. FIG. 2 shows that when the ratio Wp / Wc of the two compounding weights is the same, the fuel electrode using water-repellent carbon particles has lower water retention than the air electrode using hydrophilic carbon particles. Further, in the air electrode and the fuel electrode, there is a tendency that the water retention increases as the ratio Wp / Wc of the blended weight increases. Table 4 shows the ratio Wp / W of the blending weights for Examples 1 to 6 of the anode 4 and Examples (1) to (5) of the cathode 3.
The relationship between c and the thickness of the air electrode 3 and the fuel electrode 4 is shown. [Table 4] FIG. 3 is a graph showing the ratio W of both compounding weights based on Table 4.
7 is a graph showing the relationship between p / Wc and the thickness of the air electrode and the fuel electrode. FIG. 3 shows that the thicknesses of the air electrode and the fuel electrode increase as the ratio Wp / Wc increases. Table 5 shows the ratio Wp / W of the blending weights for Examples 1 to 6 of the anode 4 and Examples (1) to (5) of the cathode 3.
The relationship between c and the coverage Cc of the catalyst particles is shown. [Table 5] The coverage Cc of the catalyst particles is defined as Ae, where Ae is the plane area of the air electrode and the fuel electrode, and Ac is the sum of the areas of a plurality of catalyst particles exposed on the plane of the air electrode and the fuel electrode.
Where Cc = {(Ae−Ac) / Ae} × 100
(%). FIG. 4 is a graph showing the ratio W of both compounding weights based on Table 5.
7 is a graph showing the relationship between p / Wc and the coverage Cc of catalyst particles. FIG. 4 shows that the coverage Cc of the catalyst particles increases as the ratio Wp / Wc increases. Table 6 shows the ratio Wp / W of the blending weights for Examples 1 to 6 of the anode 4 and Examples (1) to (5) of the cathode 3.
4 shows the relationship between c and the degree of dispersion D of the catalyst particles. [Table 6] The degree of dispersion D of the catalyst particles was determined by the following method. First, the theoretical Pt concentration Tp and the PEE in the catalyst particles were determined from the blending amounts of the catalyst particles and the PEEK sulfonate during the production of the air electrode 3 (or the fuel electrode 4).
The theoretical S (sulfur) concentration Ts in the K sulfonate was calculated, and then the theoretical value ratio Ts / Tp was calculated from the theoretical values. Also, the surface of the air electrode 3 etc. was observed with EPMA,
The measured Pt concentration Ap in the catalyst particles and the measured S concentration As in the PEEK sulfonate were determined by surface analysis.
From these measured values, the measured value ratio As / Ap was determined. Thereafter, the degree of dispersion D is calculated as follows: D = [{(Ts / Tp)-(As / Ap)} / (Ts /
Tp)] × 100 (%). FIG. 5 shows the ratio W of the blending weights based on Table 6.
4 is a graph showing the relationship between p / Wc and the degree of dispersion D of catalyst particles. FIG. 5 shows that the degree of dispersion D of the catalyst particles increases as the ratio Wp / Wc increases. Table 7 shows the relationship between the degree of dispersion D of the catalyst particles and the thickness of the cathode 3 and the anode 4 for Examples 1 to 6 of the anode 4 and Examples (1) to (5) of the cathode 3. . [Table 7] FIG. 6 is a graph showing the relationship between the degree of dispersion D of the catalyst particles and the thickness of the air electrode and the fuel electrode based on Table 7. FIG. 6 shows that the thickness of the air electrode and the fuel electrode increases as the degree of dispersion D of the catalyst particles increases. III. Power Generation Performance of Fuel Cell A 50 μm thick electrolyte membrane 2 was formed using the same PEEK sulfonate used in the production of the fuel electrode 4 and the air electrode 3. Further, examples 1 to 6 of the anode 4 and examples (1) to (5) of the cathode 3 are prepared.
Performs a round robin combination with the examples (1) to (5) of the air electrode 3, that is, for example 1, example 1 and example (1), example 1 and example (2)... Example By combining 1 and Example (5), 30 electrode pairs were obtained. The electrolyte membrane 2 is formed by each electrode pair, and thus a pair of the cathode 3 and the anode 4.
And hot pressing was performed under the conditions of 140 ° C., 1.5 MPa, and 1 minute to obtain an electrolyte membrane-electrode assembly 9. The polymer electrolyte fuel cell 1 was assembled using each of the electrolyte membrane-electrode assemblies 9 and power was generated under the condition that only the fuel electrode 4 was humidified to measure the relationship between the current density and the terminal voltage. In this case, since the diffusion of water greatly affects the terminal voltage, the terminal voltage at 0.8 A / cm 2, which is the high current density side, was used as a comparison value of the terminal voltage of each battery. Table 8 shows the ratio Wp / W of the blending weights in Examples 1 to 6 of the anode 4 and Examples (1) to (5) of the cathode 4.
c, the combination of the air electrode and the fuel electrode in each battery,
And the terminal voltage at 0.8 A / cm 2 . [Table 8] FIG. 7 is a graph showing the relationship between the combination of the air electrode 3 and the fuel electrode 4 and the terminal voltage based on Table 8. As is clear from Table 8 and FIG. 7, when the combination is performed between Examples 1 to 4 of the anode 4 and Examples (2) to (4) of the cathode 3, the condition is that only the anode 4 humidifies. When the polymer electrolyte fuel cell 1 is operated below, its power generation performance can be improved. For comparison, in the fuel cell 1 in which Example 3 of the fuel electrode 4 and Example (3) of the air electrode 3 were combined, power generation was performed under the condition that humidification was performed only from the air electrode 3 side. When the relationship between the current density and the terminal voltage was measured, it was found that the terminal voltage at a current density of 0.8 A / cm 2 was 0.613 V. It is clear that this terminal voltage is about 11% lower than the terminal voltage of 0.691 V when the fuel electrode example 3 and the air electrode example (3) in Table 8 are combined. Based on this fact, the fuel cell 1 in which Examples 1-4 of the anode 4 and Examples (2)-(4) of the cathode 3 are combined
It is clear that the humidification is performed only from the fuel electrode 4 side. When the ratio Wp / Wc of the blended weights of the air electrode 3 and the fuel electrode 4 is set as described above, the thickness t of the fuel electrode 4 is shown in Table 4 as shown in Examples 1-4.
3 μm ≦ t ≦ 7 μm and the thickness t of the air electrode 3 is
As shown in Examples (2) to (4), 6 μm ≦ t ≦ 8 μm, and Table 5 shows that the coverage C of the catalyst particles on the fuel electrode 4 is shown in Table 5.
c is 72% ≦ Cc ≦ 97% as in Examples 1 to 4, and the coverage Cc of the catalyst particles on the air electrode 3 is 95% ≦ Cc ≦ 98% as in Examples (2) to (4). Further, from Table 6, the dispersion degree D of the catalyst particles at the fuel electrode 4 is 2% ≦ D ≦ 7% as in Examples 1 to 4, and the dispersion degree D of the catalyst particles at the air electrode 3 is as shown in Example (2). ) ~
As in (4), 5% ≦ D ≦ 8%. According to the present invention, according to the present invention, an inexpensive and inexpensive structure capable of exhibiting high power generation performance even when operated only by humidification from the fuel electrode side. , A simple polymer electrolyte fuel cell can be provided.

【図面の簡単な説明】 【図1】固体高分子型燃料電池の概略側面図である。 【図2】両配合重量の比Wp/Wcと,空気極および燃
料極の保水性との関係を示すグラフである。 【図3】両配合重量の比Wp/Wcと,空気極および燃
料極の厚さとの関係を示すグラフである。 【図4】両配合重量の比Wp/Wcと,触媒粒子の被覆
率Ccとの関係を示すグラフである。 【図5】両配合重量の比Wp/Wcと,触媒粒子の分散
度Dとの関係を示すグラフである。 【図6】触媒粒子の分散度Dと,空気極および燃料極の
厚さとの関係を示すグラフである。 【図7】空気極および燃料極の組合せと,端子電圧との
関係を示すグラフである。 【符号の説明】 1 固体高分子型燃料電池 2 電解質膜 3 空気極 4 燃料極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view of a polymer electrolyte fuel cell. FIG. 2 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and water retention of an air electrode and a fuel electrode. FIG. 3 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and thicknesses of an air electrode and a fuel electrode. FIG. 4 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and a coverage Cc of catalyst particles. FIG. 5 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and a degree of dispersion D of catalyst particles. FIG. 6 is a graph showing the relationship between the degree of dispersion D of catalyst particles and the thickness of an air electrode and a fuel electrode. FIG. 7 is a graph showing a relationship between a combination of an air electrode and a fuel electrode and a terminal voltage. [Description of Signs] 1 solid polymer fuel cell 2 electrolyte membrane 3 air electrode 4 fuel electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七海 昌昭 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 松尾 順二 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (56)参考文献 特開2001−185162(JP,A) 特開2001−266901(JP,A) 特開 平7−134995(JP,A) 特開2001−160406(JP,A) 特開 平11−339815(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/98 H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaaki Nanami 1-4-1, Chuo, Wako-shi, Saitama Pref. Inside of Honda R & D Co., Ltd. (72) Inventor Junji Matsuo 1-4-1, Chuo, Wako-shi, Saitama In Honda R & D Co., Ltd. (56) References JP-A-2001-185162 (JP, A) JP-A-2001-266901 (JP, A) JP-A-7-134995 (JP, A) JP-A 2001-160406 (JP, A) A) JP-A-11-339815 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86-4/98 H01M 8/00-8/24

Claims (1)

(57)【特許請求の範囲】 【請求項1】 芳香族炭化水素系高分子イオン交換成分
を有する電解質膜(2)と,その電解質膜(2)を挟む
空気極(3)および燃料極(4)とを備え, 前記空気極(3)および燃料極(4)は,それぞれ,カ
ーボンブラック粒子の表面に触媒金属を担持させた複数
の触媒粒子および高分子イオン交換成分からなり,その
高分子イオン交換成分は,前記芳香族炭化水素系高分子
イオン交換成分と同じ芳香族炭化水素系高分子イオン交
換成分および異なる芳香族炭化水素系高分子イオン交換
成分の一方であり, 前記燃料極(4)において,前記カーボンブラック粒子
は,60℃の飽和水蒸気圧下における水吸着量AがA≦
80cc/gである,といった撥水性を持ち,且つ前記
高分子イオン交換成分の配合重量をWpとし,また前記
カーボンブラック粒子の配合重量をWcとしたとき,両
配合重量Wp,Wcの比Wp/Wcが0.2≦Wp/W
c≦0.8であり, 前記空気極(3)において,前記カーボンブラック粒子
は,60℃の飽和水蒸気圧下における水吸着量AがA≧
150cc/gである,といった親水性を持ち,且つ前
記高分子イオン交換成分の配合重量をWpとし,また前
記カーボンブラック粒子の配合重量をWcとしたとき,
両配合重量Wp,Wcの比Wp/Wcが0.6≦Wp/
Wc≦1.25であり, 前記燃料極(4)側からのみ加湿するようにしたことを
特徴とする固体高分子型燃料電池。
(57) Claims 1. An electrolyte membrane (2) having an aromatic hydrocarbon-based polymer ion-exchange component, and an air electrode (3) and a fuel electrode () sandwiching the electrolyte membrane (2). 4) and wherein the air electrode (3) and the fuel electrode (4), respectively, a plurality of catalyst particles and polymer ion-exchange components obtained by supporting a catalytic metal on the surface of the carbon black particles,
The polymer ion exchange component is the aromatic hydrocarbon polymer
Aromatic hydrocarbon polymer ion exchange same as ion exchange component
Exchange components and different aromatic hydrocarbon polymer ion exchange
In the fuel electrode (4), the carbon black particles have a water adsorption amount A at a saturated steam pressure of 60 ° C. of A ≦ A.
80 cc / g, and when the blending weight of the polymer ion exchange component is Wp and the blending weight of the carbon black particles is Wc, the ratio Wp / Wc of the blending weights Wp and Wc is determined. Wc is 0.2 ≦ Wp / W
c ≦ 0.8, and in the air electrode (3), the carbon black particles have a water adsorption amount A at a saturated steam pressure of 60 ° C. A ≧ A
When the compounding weight of the polymer ion exchange component is Wp and the compounding weight of the carbon black particles is Wc, the hydrophilicity is 150 cc / g.
The ratio Wp / Wc of the two compound weights Wp, Wc is 0.6 ≦ Wp /
Wc ≦ 1.25, and humidifies only from the fuel electrode (4) side.
JP2000289080A 2000-09-22 2000-09-22 Polymer electrolyte fuel cell Expired - Fee Related JP3433172B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000289080A JP3433172B2 (en) 2000-09-22 2000-09-22 Polymer electrolyte fuel cell
US09/956,828 US7022426B2 (en) 2000-09-22 2001-09-21 Solid polymer fuel cell
CA002357590A CA2357590C (en) 2000-09-22 2001-09-21 Solid polymer fuel cell
DE10146506A DE10146506B4 (en) 2000-09-22 2001-09-21 Solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000289080A JP3433172B2 (en) 2000-09-22 2000-09-22 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002100370A JP2002100370A (en) 2002-04-05
JP3433172B2 true JP3433172B2 (en) 2003-08-04

Family

ID=18772546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000289080A Expired - Fee Related JP3433172B2 (en) 2000-09-22 2000-09-22 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3433172B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119459B2 (en) * 2001-09-28 2013-01-16 新日鐵住金株式会社 Fuel cell
DE10253399A1 (en) * 2002-11-15 2004-05-27 Eramet & Comilog Chemicals S.A. Metal-coated carbon black, useful as ferromagnetic material or in e.g. medical valve applications, involve use of nickel, iron, cobalt, yttrium, copper or iridium as the metal
JP4506165B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
JP5082470B2 (en) * 2007-01-31 2012-11-28 旭硝子株式会社 Membrane electrode assembly for polymer electrolyte fuel cells
JP5417288B2 (en) * 2010-09-06 2014-02-12 トヨタ自動車株式会社 Electrode catalyst on anode side and cathode side, membrane electrode assembly and fuel cell
JP5772554B2 (en) * 2011-12-06 2015-09-02 トヨタ自動車株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2002100370A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP4233208B2 (en) Fuel cell
WO2001017047A9 (en) Polymer electrolyte type fuel cell
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JP4056550B2 (en) Fuel cell
WO2002073723A1 (en) Polymer electrolyte type fuel cell
JP2005228755A (en) Polymer electrolyte fuel cell
JP3556171B2 (en) Polymer electrolyte fuel cell and method of manufacturing the same
US20020197524A1 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
KR20170069783A (en) Catalyst slurry composition for polymer electrolyte fuel cell, membrane electrode assembly, and manufacturing methode of membrane electrode assembly
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP3433169B2 (en) Polymer electrolyte fuel cell
JP2008204664A (en) Membrane-electrode assembly for fuel cell, and fuel cell using it
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
JP3433172B2 (en) Polymer electrolyte fuel cell
US20020155340A1 (en) Membrane electrode assembly and method for producing same, and polymer electrolyte fuel cell comprising such membrane electrode assemblies
KR20060081326A (en) Electrode for fuel cell, a fuel cell, and a method for preparing the electrode for fuel cell
JP5022707B2 (en) Solid polymer electrolyte fuel cell
JP3433171B2 (en) Polymer electrolyte fuel cell
JP3962548B2 (en) Polymer electrolyte fuel cell
JP5481297B2 (en) Membrane electrode assembly and fuel cell
JP4180556B2 (en) Polymer electrolyte fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
US20110281199A1 (en) Electrode for fuel cell, method of preparing the same, membrane electrode assembly and fuel cell including the same
KR20170069590A (en) Membrane electrode assembly and fuel cell comprising the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees