JP3431944B2 - Flame retardant polyolefin resin composition - Google Patents

Flame retardant polyolefin resin composition

Info

Publication number
JP3431944B2
JP3431944B2 JP05884393A JP5884393A JP3431944B2 JP 3431944 B2 JP3431944 B2 JP 3431944B2 JP 05884393 A JP05884393 A JP 05884393A JP 5884393 A JP5884393 A JP 5884393A JP 3431944 B2 JP3431944 B2 JP 3431944B2
Authority
JP
Japan
Prior art keywords
resin composition
weight
parts
flame retardancy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05884393A
Other languages
Japanese (ja)
Other versions
JPH0625476A (en
Inventor
隆志 福田
和彦 中谷
祐二 鈴木
峻一 遠藤
玄一郎 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUHIRO CHEMICAL CO., LTD.
Tosoh Corp
Original Assignee
SUZUHIRO CHEMICAL CO., LTD.
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26399863&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3431944(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SUZUHIRO CHEMICAL CO., LTD., Tosoh Corp filed Critical SUZUHIRO CHEMICAL CO., LTD.
Priority to JP05884393A priority Critical patent/JP3431944B2/en
Publication of JPH0625476A publication Critical patent/JPH0625476A/en
Application granted granted Critical
Publication of JP3431944B2 publication Critical patent/JP3431944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、優れた難燃性能を有し
つつ、燃焼時に腐食性ガスを発生させない難燃性ポリオ
レフィン系樹脂組成物に関するものである。 【0002】 【従来の技術】電線、ケーブルの絶縁材や、電気、電子
機器のエンクロージャ、または鉄道車両、自動車用材
料、さらに建築用材料など、難燃化が義務付けられたプ
ラスチック材料が非常に多く、要求される難燃性能も高
まりつつある。これらのプラスチック材料に難燃性を付
与する技術として、従来は主にハロゲン系難燃剤を配合
する方法により対処されていた。また、他の方法として
は、水酸化マグネシウム、水酸化アルミニウムなどの水
和金属化合物を配合する方法が知られている。 【0003】しかしながら、ハロゲン系難燃剤を配合し
たものは燃焼時に発煙量が多いことや、ハロゲン化水素
などの腐食性ガスの発生が問題となっている。すなわ
ち、ハロゲン系難燃剤を含有する樹脂組成物の、燃焼時
に発生する腐食性ガスに起因する機器、装置の損傷や、
火災事故の際に避難する人々が煙のために逃げ道を失う
おそれがある。水酸化マグネシウム、水酸化アルミニウ
ムなどの水和金属化合物は、上記のような発煙が抑制さ
れ、腐食性ガスの発生がそれ自体からはないため、近
年、ハロゲン系難燃剤の代替品としての使用も増加しつ
つある。しかし、これらの水和金属化合物は、難燃性を
充分付与するには多量の配合が必要であるため、樹脂組
成物の機械的特性を著しく低下させ、樹脂組成物の比重
を増加させるという問題がある、高分子材料の特長の一
つは、軽くて強いところにあるが、水和金属化合物はこ
のような特長を大きく損なうものであり、充分満足でき
る難燃化方法とはとうてい言えない状態であった。 【0004】 【発明が解決しようとする課題】そこで、最近では赤燐
を配合する試みがなされているが、赤燐単独の配合では
得られる難燃性が不十分であるため、赤燐と、水和金属
化合物との併用で配合する試みや、赤燐と水和金属化合
物に、さらに難燃性を付与する目的で加熱膨張性黒鉛を
配合する試み等がなされている。しかし、従来の技術で
はノンハロゲン系による難燃化には水和金属化合物の配
合が不可欠であり、樹脂組成物の機械的特性の低下及び
樹脂組成物の比重の増加が余儀なくされているのが現状
である。 【0005】 【課題を解決するための手段】このような現状にあたり
本発明者らは、ポリオレフィン系樹脂組成物において、
特定の膨張性をもちかつ特定の粒子形状を有する加熱膨
張性黒鉛と、燐化合物とを配合することにより著しい難
燃効果を発揮することを見い出し、上記特許請求の範囲
に記載した本発明に至った。 【0006】本発明で用いられるポリオレフィン系樹脂
としては、低密度ポリエチレン、直鎖状低密度ポリエチ
レン、高密度ポリエチレン、ポリプロピレン、ポリブテ
ン−1、ポリイソブチレン、ポリ4−メチル−1−ペン
テンなどのオレフィンモノマーの単独重合体や、エチレ
ン−アクリル酸、エチレン−アクリル酸エチル、エチレ
ン−アクリル酸メチル、エチレン−アクリルアミド、エ
チレン−メタクリル酸、エチレン−メタクリル酸メチ
ル、エチレン−メタクリル酸グリシジル、エチレン−無
水マレイン酸、及びエチレン−酢酸ビニル共重合体、エ
チレン−プロピレン共重合体、エチレン−プロピレン−
ジエン化合物共重合体、アイオノマー樹脂などのオレフ
ィンモノマーを含む共重合体、あるいはこれらの2種類
以上の混合物を挙げることができる。 【0007】 【0008】本発明で用いられる燐化合物として以下に
例示するが、ここで言う燐酸とは燐酸、亜燐酸、次亜燐
酸のすべてを含むものである。本発明で用いられる燐化
合物としては、トリフェニルホスフェート、オクチルジ
フェニルホスフェート、トリオクチルホスフェート、ト
リクレジルホスフェート、ジブチルハイドロジエンホス
フェートなどの燐酸エステル類や、燐酸ナトリウム、燐
酸カリウム、燐酸マグネシウム、燐酸カルシウム、燐酸
亜鉛、燐酸アルミニウムなどの燐酸の金属塩類、及びそ
れら金属塩類の水和物、燐酸アンモニウム、ポリ燐酸ア
ンモニウム、エチレンジアミンの燐酸塩、ジエチレント
リアミンの燐酸塩などの燐酸とアンモニア又はアミン類
との塩、及びそれらの縮合物、グアニジンの燐酸塩、ホ
スフィン及びホスフィンオキサイド、メラミン変性ポリ
燐酸アンモニウムさらに、これら燐化合物の2種類以上
の混合物が挙げられる。該燐化合物の配合量は、燐酸エ
ステル類、燐酸とアンモニア又はアミン類との塩、及び
それらの縮合物の場合、ポリオレフィン樹脂100重量
部に対し1〜30重量部の配合であることが好ましい。
1重量部未満では難燃化効果が不十分であり、30重量
部を越えると樹脂組成物の吸湿性が高くなるためであ
る。燐化合物が燐酸金属塩類及び/又はそれら金属塩類
の水和物の場合は、ポリオレフィン樹脂100重量部に
対し1〜150重量部の配合であることが好ましい。1
重量部未満では難燃化効果が不十分であり、150重量
部を越えると樹脂組成物の機械的特性が大きく損なわれ
るからである。また、該燐化合物のうち、樹脂混練温度
以上の融点をもつものは、樹脂への分散性及び樹脂組成
物の機械的特性への影響に鑑み、2μm以下の粒径をも
つものが好ましい。また、シランカップリング剤、チタ
ネートカップリング剤、脂肪酸等によって表面処理され
たものを用いることが好ましい。 【0009】本発明に用いられる加熱膨張性黒鉛は、急
速に加熱(800〜1000℃)したときにC軸方向
(黒鉛のへき開面に直角方向)に対して100倍以上の
膨張性をもつことが必要である。100倍以上の膨張性
をもたないものは、100倍以上の膨張性をもつものと
比べて難燃性が非常に小さいからである。本発明で言う
膨張性とは加熱後の比容積(ml/g)と室温での比容
積との差を意味するものである。膨張性の測定方法を具
体的に示す。電気炉内で予め1000℃に加熱した石英
ビーカーに加熱膨張性黒鉛を2g投入し、すばやく10
00℃に加熱した電気炉内に石英ビーカーを10秒間入
れた後炉外に取り出し、室温になるまで放冷する。その
後膨張した黒鉛の100mlの重量を計量し、ゆるみ見
掛け比重(g/ml)を測定し、比容積=1/ゆるみ見
掛け比重、とした。次に、加熱していない室温での加熱
膨張性黒鉛の比容積を同様の方法で求め、膨張性=加熱
後の比容積−室温での比容積、として求めた。膨張前後
の加熱膨張性黒鉛を電子顕微鏡で観察したところ、A軸
方向、B軸方向にはほとんど膨張しておらず、C軸方向
にのみ膨張が認められたことから、加熱後の比容積と室
温での比容積との差をC軸方向に対する膨張性と定義し
た。粒径は分級により80メッシュオンのものが80%
以上であることが必要であり、80%以上99%以下で
あることが好ましい。80メッシュオンのものが80%
未満であると難燃性が不十分であり、99%を越える
と、火炎にさらされた時の樹脂組成物の形状保持性能が
若干落ちる傾向があり、あまり好ましくない。加熱膨張
性黒鉛の好ましい例としては、鱗片状黒鉛を酸化処理し
たものが挙げられる。酸化処理の好ましい例としては、
硫酸中での電解酸化、燐酸と硝酸、硫酸と硝酸、過塩素
酸の混酸等の酸化処理がある。該加熱膨張性黒鉛の配合
量は、ポリオレフィン100重量部に対し1〜30重量
部の配合であることが必要である。1重量部未満では難
燃化効果は不十分であり、30重量部を越えると樹脂組
成物の機械的特性が大きく損なわれるからである。 【0010】本発明の樹脂組成物には、本発明の効果を
損なわない範囲で他の難燃剤を併用することが可能であ
る。また、必要に応じて、無機充填剤、着色剤、酸化防
止剤、等の種々の添加剤の配合が可能である。 【0011】 【実施例】以下、具体例を示して本発明の効果を明確に
するが、本発明はこれらの実施例に限定されるものでは
ない。 【0012】実施例1,2 エチレン−酢酸ビニル共重合体(東ソー(株)製:ウル
トラセン630)100重量部に、トリフェニルホスフ
ェート(アクゾジャパン(株)製:TPP)と、加熱膨
張性黒鉛(中央化成(株)製:80メッシュオン96
%、1000℃での膨張性210倍)をそれぞれ表1に
記載の量だけ配合し、押出し機によって難燃性樹脂組成
物を調製した。得られた樹脂組成物を射出成形し、試験
片を作成した。機械的特性は、JIS K 7113試験
法に準拠し、引張破壊強さと伸びによって評価した。ま
た、燃焼試験は、JIS K 7201試験法に準拠した
酸素指数と、UL−94燃焼試験によって評価した。結
果を表1に示す。 【0013】 【0014】実施例3,4 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に、ポリリン酸アンモニウム(燐化学工業(株)
製:PA−6)と、実施例1で用いた加熱膨張性黒鉛を
それぞれ表に記載の量だけ配合し、押出し機によって
難燃性樹脂組成物を調製した。得られた樹脂組成物の難
燃性を実施例1と同様の方法で評価した。結果を表
示す。 【0015】実施例5,6 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に、リン酸グアニジン(三和ケミカル(株)製:
アピノン−301)と、実施例1で用いた加熱膨張性黒
鉛をそれぞれ表に記載の量だけ配合し、押出し機によ
って難燃性樹脂組成物を調製した。得られた樹脂組成物
の難燃性を実施例1と同様の方法で評価した。結果を表
に示す。 【0016】比較例1 実施例1で用いたエチレン−酢酸ビニル共重合体の機械
的特性と難燃性を実施例1と同様の方法で評価した。結
果を表に示す。 【0017】 【0018】比較例 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部、加熱膨張性黒鉛15重量部を配合し、樹脂組成
物を調製した。得られた樹脂組成物の機械的特性と難燃
性を実施例1と同様の方法で評価した。結果を表に示
す。 【0019】 【0020】 【0021】 【0022】 【0023】比較例 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、水酸化マグネシウム(協和化学工業
(株)製:キスマ5A)100重量部と、実施例1で用
いた加熱膨張性黒鉛15重量部を配合し、樹脂組成物を
調製した。得られた樹脂組成物の機械的特性と難燃性を
実施例1と同様の方法で評価した。結果を表に示す。 【0024】比較例 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例で用いたトリフェニルホスフェ
ート10重量部を配合し、樹脂組成物を調製した。得ら
れた樹脂組成物の難燃性を実施例1と同様の方法で評価
した。結果を表に示す。 【0025】比較例 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例で用いたポリリン酸アンモニウ
ム20重量部を配合し、樹脂組成物を調製した。得られ
た樹脂組成物の難燃性を実施例1と同様の方法で評価し
た。結果を表に示す。 【0026】比較例 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例で用いたリン酸グアニジン20
重量部を配合し、樹脂組成物を調製した。得られた樹脂
組成物の難燃性を実施例1と同様の方法で評価した。結
果を表に示す。 【0027】比較例 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例と同様にして樹脂組成物を
調整し、難燃性を評価した。結果を表に示す。 【0028】比較例 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例と同様にして樹脂組成物を調整
し、難燃性を評価した。結果を表に示す。 【0029】比較例 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例と同様にして樹脂組成物を
調整し、難燃性を評価した。結果を表に示す。 【0030】比較例10 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例と同様にして樹脂組成物を調整
し、難燃性を評価した。結果を表に示す。 【0031】比較例11 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例と同様にして樹脂組成物を
調整し、難燃性を評価した。結果を表に示す。 【0032】比較例12 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例と同様にして樹脂組成物を調整
し、難燃性を評価した。結果を表に示す。 【0033】 【0034】 【表1】 【0035】 【表2】【0036】 【表3】【0037】表1に示されるように、本発明の難燃化E
VA組成物は、UL−94燃焼試験で極めて優れた難燃
性を示し、しかも表3の比較例1のEVAと比べ比重の
増加が小さく、EVAの物性をそれほど低下させていな
いことが分かる。 【0038】一方、表の比較例2に示すように、同程
度の量の加熱膨張性黒鉛を単独で用いたものは、UL−
94燃焼試験で十分な難燃性が得られないことが分か
。比較例には水酸化マグネシウムを用いた樹脂組成
物の試験結果を示したが、十分な難燃化は達成されるも
のの、比重の増加が大きく、伸びの低下もあわせEVA
の特性を大きく損なうものであることが分かる。また、
の比較例に示すように、燐化合物を単独で用
いたものは、十分な難燃性が得られておらず、さらに、
比較例12には80メッシュオン含有率が80%に
満たない加熱膨張性黒鉛や、膨張性が100倍に満たな
い加熱膨張性黒鉛を用いた結果を示すがいずれも十分な
難燃化が達成されないことが分かる。 【0039】実施例12 低密度ポリエチレン(東ソー(株)製:ペトロセン20
3)100重量部に、実施例1〜6で用いた燐化合物と
加熱膨張性黒鉛を表4に記載の量だけ配合し、押出し機
によって難燃性樹脂組成物を調製した。得られた樹脂組
成物の難燃性を実施例1と同様の方法で評価した。結果
を表4に示す。 【0040】 【0041】比較例13 実施例で用いた低密度ポリエチレンの機械的特性と難
燃性を実施例1と同様の方法で評価した。結果を表
示す。 【0042】 【0043】比較例14 実施例で用いた低密度ポリエチレン100重量部、加
熱膨張性黒鉛15重量部を配合し、樹脂組成物を調製し
た。得られた樹脂組成物の機械的特性と難燃性を実施例
1と同様の方法で評価した。結果を表に示す。 【0044】 【0045】 【0046】 【0047】 【0048】 【0049】比較例15 実施例で用いた低密度ポリエチレン100重量部に対
し、比較例で用いた水酸化マグネシウム100重量部
と、実施例1で用いた加熱膨張性黒鉛15重量部を配合
し、樹脂組成物を調製した。得られた樹脂組成物の機械
的特性と難燃性を実施例1と同様の方法で評価した。結
果を表に示す。 【0050】比較例1624 ポリオレフィンとして実施例で用いた低密度ポリエチ
レンを用い、燐化合物、加熱膨張性黒鉛を単独で配合し
たものや、燐化合物と80メッシュオン含有率の低い加
熱膨張性黒鉛を配合したもの、燐化合物と1000℃で
の膨張性が低い加熱膨張性黒鉛を配合した樹脂組成物の
難燃性を評価した。結果を表に示す。 【0051】 【0052】 【表4】【0053】 【表5】【0054】 【表6】【0055】表に示されるように、本発明の難燃化L
DPE組成物は、EVAの場合と同様に、比重の増加が
小さく、かつ極めて優れた難燃性を示すことが分かる。 【0056】また、表,表の結果に示されているよ
うに、本発明の樹脂組成物によらなければ、難燃性と低
比重の両方を満足させる樹脂組成物を得ることは不可能
であることが分かる。 【0057】実施例1318 ポリプロピレン(東ソー(株)製:J7030B)10
0重量部に、実施例1〜6で用いた燐化合物と加熱膨張
性黒鉛を表7に記載の量だけ配合し、押出し機によって
難燃性樹脂組成物を調製した。得られた樹脂組成物の難
燃性を実施例1と同様の方法で評価した。結果を表7に
示す。 【0058】 【0059】比較例25 実施例13で用いたポリプロピレンの機械的特性と難燃
性を実施例1と同様の方法で評価した。結果を表に示
す。 【0060】 【0061】比較例26 実施例13で用いたポリプロピレン100重量部、加熱
膨張性黒鉛21重量部を配合し、樹脂組成物を調製し
た。得られた樹脂組成物の機械的特性と難燃性を実施例
1と同様の方法で評価した。結果を表に示す。 【0062】 【0063】 【0064】 【0065】 【0066】 【0067】比較例27 実施例13で用いたポリプロピレン100重量部に対
し、比較例で用いた水酸化マグネシウム100重量部
と、実施例1で用いた加熱膨張性黒鉛15重量部を配合
し、樹脂組成物を調製した。得られた樹脂組成物の機械
的特性と難燃性を実施例1と同様の方法で評価した。結
果を表に示す。 【0068】比較例2836 ポリオレフィンとして実施例13で用いたポリプロピレ
ンを用い、燐化合物、加熱膨張性黒鉛を単独で配合した
ものや、燐化合物と80メッシュオン含有率が80%に
満たない加熱膨張性黒鉛を配合したもの、燐化合物と膨
張性が100倍に満たない加熱膨張性黒鉛を配合した樹
脂組成物の難燃性を評価した。結果を表に示す。 【0069】 【0070】 【表7】 【0071】 【表8】 【0072】 【表9】【0073】表7に示されるように、本発明の難燃化P
P樹脂組成物は、EVAの場合と同様に、比重の増加が
小さく、かつ極めて優れた難燃性を示すことが分かる。
また、表,表の結果に示されているように、本発明
の樹脂組成物によらなければ、難燃性と低比重の両方を
満足させる樹脂組成物を得ることは不可能であることが
分かる。 【0074】 【発明の効果】以上本発明の難燃性樹脂組成物は、機械
的特性を保ちながら優れた難燃性を発揮し、かつ軽量化
されており、さらに、ハロゲンを含まないため燃焼時の
腐食性ガスの発生がなく、燃焼時の発煙量が抑えられ、
極めて安全性に優れている。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame-retardant polyolefin resin composition which has excellent flame-retardant performance and does not generate corrosive gas during combustion. is there. [0002] A large number of plastic materials which are required to be flame-retardant, such as insulating materials for electric wires and cables, enclosures for electric and electronic equipment, materials for railway vehicles, automobiles, and materials for construction. However, the required flame retardant performance is also increasing. Conventionally, as a technique for imparting flame retardancy to these plastic materials, a method of blending a halogen-based flame retardant has been mainly used. As another method, a method of blending a hydrated metal compound such as magnesium hydroxide or aluminum hydroxide is known. However, those containing a halogen-based flame retardant are problematic in that they emit a large amount of smoke during combustion and generate corrosive gases such as hydrogen halide. That is, a resin composition containing a halogen-based flame retardant, damage to equipment and devices caused by corrosive gas generated during combustion,
People evacuating in the event of a fire may lose their way out due to smoke. In recent years, hydrated metal compounds such as magnesium hydroxide and aluminum hydroxide have been used as substitutes for halogen-based flame retardants in recent years, because smoke emission as described above is suppressed and corrosive gas is not generated by itself. Increasing. However, since these hydrated metal compounds require a large amount of compounding to sufficiently impart flame retardancy, the mechanical properties of the resin composition are significantly reduced, and the specific gravity of the resin composition is increased. One of the features of polymer materials is that they are light and strong.However, hydrated metal compounds greatly impair such features, making it a state that cannot be said to be a satisfactory flame retardant method. Met. [0004] In recent years, attempts have been made to blend red phosphorus. However, since the flame retardancy obtained by blending red phosphorus alone is insufficient, red phosphorus and Attempts have been made to mix them together with a hydrated metal compound, and to mix heat-expandable graphite with red phosphorus and a hydrated metal compound for the purpose of further imparting flame retardancy. However, in the conventional technology, the blending of a hydrated metal compound is indispensable for flame retardancy by a non-halogen system, and the mechanical properties of the resin composition are reduced and the specific gravity of the resin composition is increased. It is. [0005] Under such circumstances, the present inventors have developed a polyolefin-based resin composition.
And heating expandable graphite having a waxy and specific particle shape particular expandable, issued Mii to exert a significant flame retardant effect by blending a phosphorus compound, the present invention described in the scope of the appended claims Reached. The polyolefin resin used in the present invention includes olefin monomers such as low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, polybutene-1, polyisobutylene and poly-4-methyl-1-pentene. Homopolymers, ethylene-acrylic acid, ethylene-ethyl acrylate, ethylene-methyl acrylate, ethylene-acrylamide, ethylene-methacrylic acid, ethylene-methyl methacrylate, ethylene-glycidyl methacrylate, ethylene-maleic anhydride, And ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-propylene-
Examples thereof include a diene compound copolymer, a copolymer containing an olefin monomer such as an ionomer resin, or a mixture of two or more of these. The phosphorus compounds used in the present invention are exemplified below. The term “phosphoric acid” as used herein includes all of phosphoric acid, phosphorous acid and hypophosphorous acid. Examples of the phosphorus compound used in the present invention include triphenyl phosphate, octyl diphenyl phosphate, trioctyl phosphate, tricresyl phosphate, phosphate esters such as dibutyl hydrogen diene phosphate, and sodium phosphate, potassium phosphate, magnesium phosphate, calcium phosphate, Metal salts of phosphoric acid such as zinc phosphate and aluminum phosphate, and hydrates of those metal salts, ammonium phosphate, ammonium polyphosphate, phosphates of ethylenediamine, salts of phosphoric acid such as diethylenetriamine phosphate and salts of ammonia or amines, and Examples thereof include condensates thereof, guanidine phosphate, phosphine and phosphine oxide, melamine-modified ammonium polyphosphate, and a mixture of two or more of these phosphorus compounds. In the case of a phosphoric acid ester, a salt of phosphoric acid and ammonia or an amine, or a condensate thereof, the amount of the phosphorus compound is preferably 1 to 30 parts by weight based on 100 parts by weight of the polyolefin resin.
If the amount is less than 1 part by weight, the flame retarding effect is insufficient, and if it exceeds 30 parts by weight, the hygroscopicity of the resin composition becomes high. When the phosphorus compound is a metal phosphate and / or a hydrate of the metal salt, the amount of the phosphorus compound is preferably 1 to 150 parts by weight based on 100 parts by weight of the polyolefin resin. 1
If the amount is less than part by weight, the flame retarding effect is insufficient, and if it exceeds 150 parts by weight, the mechanical properties of the resin composition are greatly impaired. Further, among the phosphorus compounds, those having a melting point equal to or higher than the resin kneading temperature preferably have a particle diameter of 2 μm or less in view of the dispersibility in the resin and the effect on the mechanical properties of the resin composition. Further, it is preferable to use one that has been surface-treated with a silane coupling agent, a titanate coupling agent, a fatty acid, or the like. [0009] The heat-expandable graphite used in the present invention has an expandability of 100 times or more in the C-axis direction (direction perpendicular to the cleavage plane of graphite) when rapidly heated (800 to 1000 ° C). is necessary. This is because those having no expansion property of 100 times or more have much lower flame retardancy than those having expansion properties of 100 times or more. The expandability in the present invention means the difference between the specific volume (ml / g) after heating and the specific volume at room temperature. A method for measuring the swelling property will be specifically described. In a quartz beaker heated to 1000 ° C. in advance in an electric furnace, 2 g of the heat-expandable graphite is charged, and quickly added to 10 g.
A quartz beaker is placed in an electric furnace heated to 00 ° C. for 10 seconds, taken out of the furnace, and allowed to cool to room temperature. Thereafter, the weight of the expanded graphite (100 ml) was weighed, the loose apparent specific gravity (g / ml) was measured, and the specific volume was set to 1 / the loose apparent specific gravity. Next, the specific volume of the heat-expandable graphite at room temperature, which was not heated, was determined by the same method, and the expandability was determined as the specific volume after heating minus the specific volume at room temperature. When the heat-expandable graphite before and after expansion was observed with an electron microscope, it hardly expanded in the A-axis direction and the B-axis direction, and expansion was observed only in the C-axis direction. The difference from the specific volume at room temperature was defined as the expandability in the C-axis direction. 80% mesh size 80% by classification
It is necessary to be at least 80% and at most 99%. 80% mesh 80%
If it is less than 100%, the flame retardancy is insufficient, and if it exceeds 99%, the shape retention performance of the resin composition when exposed to a flame tends to slightly decrease, which is not preferred. Preferred examples of the heat-expandable graphite include those obtained by oxidizing flaky graphite. Preferred examples of the oxidation treatment include:
There are oxidation treatments such as electrolytic oxidation in sulfuric acid, and mixed acid of phosphoric acid and nitric acid, sulfuric acid and nitric acid, and perchloric acid. The compounding amount of the heat-expandable graphite must be 1 to 30 parts by weight based on 100 parts by weight of the polyolefin. If the amount is less than 1 part by weight, the flame retarding effect is insufficient, and if it exceeds 30 parts by weight, the mechanical properties of the resin composition are greatly impaired. Other flame retardants can be used in combination with the resin composition of the present invention as long as the effects of the present invention are not impaired. In addition, various additives such as an inorganic filler, a colorant, an antioxidant, and the like can be added as needed. EXAMPLES Hereinafter, the effects of the present invention will be clarified by showing specific examples, but the present invention is not limited to these examples. [0012] Example 1, 2 ethylene - vinyl acetate copolymer (manufactured by Tosoh Corporation: Ultrathene 630) in 100 parts by weight, triphenylphosphine
(Manufactured by Akzo Japan K.K .: TPP) and heat-expandable graphite (Chuo Kasei K.K .: 80 mesh on 96)
%, Expandability at 1000 ° C .: 210 times) in the amounts shown in Table 1, respectively, and a flame-retardant resin composition was prepared by an extruder. The obtained resin composition was injection molded to prepare a test piece. Mechanical properties were evaluated based on tensile breaking strength and elongation according to JIS K 7113 test method. Moreover, the combustion test evaluated the oxygen index based on the JIS K7201 test method, and the UL-94 combustion test. Table 1 shows the results. Examples 3 and 4 Ethylene-vinyl acetate copolymer 100 used in Example 1
In parts by weight, ammonium polyphosphate (Rin Chemical Industry Co., Ltd.)
(PA-6) and the heat-expandable graphite used in Example 1 were mixed in the amounts shown in Table 1 , respectively, and a flame-retardant resin composition was prepared with an extruder. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. Table 1 shows the results. Examples 5 and 6 Ethylene-vinyl acetate copolymer 100 used in Example 1
In parts by weight, guanidine phosphate (manufactured by Sanwa Chemical Co., Ltd.):
Apinon-301) and the heat-expandable graphite used in Example 1 were mixed in the amounts shown in Table 1 , respectively, and a flame-retardant resin composition was prepared using an extruder. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. Table of results
It is shown in FIG. Comparative Example 1 The mechanical properties and flame retardancy of the ethylene-vinyl acetate copolymer used in Example 1 were evaluated in the same manner as in Example 1. Table 2 shows the results. Comparative Example 2 Ethylene-vinyl acetate copolymer 100 used in Example 1
By weight, 15 parts by weight of heat-expandable graphite were blended to prepare a resin composition. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. Table 2 shows the results. Comparative Example 3 Ethylene-vinyl acetate copolymer 100 used in Example 1
Parts by weight of magnesium hydroxide (Kyowa Chemical Industry
100 parts by weight of Kisuma 5A (produced by K.K.) and 15 parts by weight of the heat-expandable graphite used in Example 1 were blended to prepare a resin composition. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. Table 2 shows the results. Comparative Example 4 Ethylene-vinyl acetate copolymer 100 used in Example 1
The resin composition was prepared by blending 10 parts by weight of the triphenyl phosphate used in Example 1 with respect to parts by weight. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. Table 3 shows the results. Comparative Example 5 Ethylene-vinyl acetate copolymer 100 used in Example 1
20 parts by weight of the ammonium polyphosphate used in Example 3 was blended with respect to parts by weight to prepare a resin composition. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. Table 3 shows the results. Comparative Example 6 Ethylene-vinyl acetate copolymer 100 used in Example 1
The guanidine phosphate 20 used in Example 5 was used with respect to parts by weight.
By weight, the resin composition was prepared. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. Table 3 shows the results. Comparative Example 7 As the heat-expandable graphite, 80 mesh-on content: 70
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
The resin composition was prepared in the same manner as in Example 2 except that the resin composition was used, and the flame retardancy was evaluated. Table 3 shows the results. Comparative Example 8 As heat-expandable graphite, 80 mesh-on content: 97
%, Swelling 70 times at 1000 ° C (manufactured by Chuo Chemical Co., Ltd.)
A resin composition was prepared in the same manner as in Example 2 except that the resin composition was used, and the flame retardancy was evaluated. Table 3 shows the results. Comparative Example 9 As heat-expandable graphite, 80 mesh-on content: 70
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
The resin composition was prepared in the same manner as in Example 4 except that the resin composition was used, and the flame retardancy was evaluated. Table 3 shows the results. Comparative Example 10 As heat-expandable graphite, 80 mesh-on content: 97
%, Swelling 70 times at 1000 ° C (manufactured by Chuo Kasei Co., Ltd.)
A resin composition was prepared in the same manner as in Example 4 except that the resin composition was used, and the flame retardancy was evaluated. Table 3 shows the results. Comparative Example 11 The heat-expandable graphite was 80 mesh-on content of 70
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
The resin composition was adjusted in the same manner as in Example 5 except that the resin composition was used, and the flame retardancy was evaluated. Table 3 shows the results. Comparative Example 12 As heat-expandable graphite, 80 mesh-on content: 97
%, Swelling 70 times at 1000 ° C (manufactured by Chuo Kasei Co., Ltd.)
A resin composition was prepared in the same manner as in Example 5 except that the resin composition was used, and the flame retardancy was evaluated. Table 3 shows the results. [Table 1] [Table 2] [Table 3] As shown in Table 1, the flame retardant E of the present invention was used.
The VA composition exhibited extremely excellent flame retardancy in a UL-94 combustion test, and showed a small increase in specific gravity as compared with the EVA of Comparative Example 1 in Table 3, indicating that the physical properties of the EVA were not significantly reduced. On the other hand, as shown in Comparative Example 2 of Table 2, that using a pressurized heat expandable graphite comparable amount alone, UL-
It turns out that sufficient flame retardancy cannot be obtained in the 94 combustion test . Although the specific Comparative Examples 3 shows the test results of the resin composition using magnesium hydroxide, although sufficient flame retardancy is achieved, greatly increase the specific gravity, EVA also to decrease the elongation
It can be seen that the characteristic is greatly impaired. Also,
As shown in Comparative Examples 4 to 6 in Table 3 , those using the phosphorus compound alone did not have sufficient flame retardancy, and furthermore,
Comparative Examples 7 to 12 show the results of using heat-expandable graphite having an 80 mesh-on content of less than 80% and heat-expandable graphite having an expandability of less than 100 times. Is not achieved. Examples 7 to 12 Low-density polyethylene (manufactured by Tosoh Corporation: Petrocene 20)
3) 100 parts by weight of the phosphorus compound used in Examples 1 to 6
An extruder was prepared by blending the heat-expandable graphite in the amount shown in Table 4.
Thus, a flame-retardant resin composition was prepared. Obtained resin set
The flame retardancy of the product was evaluated in the same manner as in Example 1. result
Are shown in Table 4. Comparative Example 13 The mechanical properties and flame retardancy of the low-density polyethylene used in Example 7 were evaluated in the same manner as in Example 1. Table 5 shows the results. Comparative Example 14 A resin composition was prepared by blending 100 parts by weight of the low-density polyethylene used in Example 7 and 15 parts by weight of heat-expandable graphite. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. Table 5 shows the results. Comparative Example 15 100 parts by weight of the magnesium hydroxide used in Comparative Example 3 was added to 100 parts by weight of the low-density polyethylene used in Example 7 . A resin composition was prepared by blending 15 parts by weight of the heat-expandable graphite used in Example 1. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. Table 5 shows the results. Comparative Examples 16 to 24 The low-density polyethylene used in Example 7 was used as the polyolefin, and the phosphorus compound and the heat-expandable graphite were blended alone, or the phosphorus compound and the heat-expandability having a low content of 80 mesh-on. The flame retardancy of a resin composition containing graphite and a phosphorus compound and a resin composition containing heat-expandable graphite having low expandability at 1000 ° C. were evaluated. Table 6 shows the results. [Table 4] [Table 5] [Table 6] As shown in Table 4 , the flame retardant L of the present invention
It can be seen that the DPE composition has a small increase in specific gravity and exhibits extremely excellent flame retardancy, as in the case of EVA. Further, as shown in the results of Tables 5 and 6 , it is impossible to obtain a resin composition satisfying both flame retardancy and low specific gravity unless the resin composition of the present invention is used. It turns out that it is possible. Examples 13 to 18 Polypropylene (J7030B, manufactured by Tosoh Corporation) 10
0 parts by weight of the phosphorus compound used in Examples 1 to 6 and heat expansion
Of the graphite in the amount shown in Table 7 and extruder
A flame-retardant resin composition was prepared. Difficulties of the obtained resin composition
Flammability was evaluated in the same manner as in Example 1. Table 7 shows the results
Show. Comparative Example 25 The mechanical properties and flame retardancy of the polypropylene used in Example 13 were evaluated in the same manner as in Example 1. Table 8 shows the results. Comparative Example 26 A resin composition was prepared by blending 100 parts by weight of the polypropylene used in Example 13 and 21 parts by weight of heat-expandable graphite. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. Table 8 shows the results. Comparative Example 27 100 parts by weight of the polypropylene used in Example 13 and 100 parts by weight of the magnesium hydroxide used in Comparative Example 3 15 parts by weight of the heat-expandable graphite used in 1 were blended to prepare a resin composition. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. Table 8 shows the results. Comparative Examples 28 to 36 The polypropylene used in Example 13 was used as the polyolefin, and the phosphorus compound and the heat-expandable graphite were blended alone, or the heating was performed when the phosphorus compound and the 80 mesh-on content were less than 80%. The flame retardancy of a resin composition containing expandable graphite and a resin composition containing a phosphorus compound and heat-expandable graphite having an expandability of less than 100 times was evaluated. Table 9 shows the results. [Table 7] [Table 8] [Table 9] As shown in Table 7 , the flame retardant P of the present invention
It can be seen that the P resin composition has a small increase in specific gravity and exhibits extremely excellent flame retardancy, as in the case of EVA.
Further, as shown in the results of Tables 8 and 9 , it is impossible to obtain a resin composition that satisfies both flame retardancy and low specific gravity without using the resin composition of the present invention. You can see that. As described above, the flame-retardant resin composition of the present invention exhibits excellent flame-retardant properties while maintaining mechanical properties, is light in weight, and contains no halogen. No corrosive gas is generated at the time, the amount of smoke generated during combustion is suppressed,
Extremely safe.

フロントページの続き (72)発明者 遠藤 峻一 茨城県筑波郡伊奈町大字狸穴1063番91 (72)発明者 落合 玄一郎 東京都足立区江北3丁目41番8号 (56)参考文献 特開 平3−41161(JP,A) 特開 昭55−5979(JP,A) 特開 昭58−67737(JP,A) 特開 昭60−101129(JP,A) 増補新版 ポリマーの難燃化 −その 化学と実際技術−,株式会社 大成社, 1992年 4月10日,62−69 (58)調査した分野(Int.Cl.7,DB名) C08L 23/00 - 23/36 C08K 3/00 - 13/08 Continuation of the front page (72) Inventor Shunichi Endo 1063-91, Tanukiana, Oaza, Ina-cho, Tsukuba-gun, Ibaraki Prefecture (72) Inventor Genichiro Ochiai 3-41-8, Ekita, Adachi-ku, Tokyo (56) References JP-A-3 JP-A-41161 (JP, A) JP-A-55-5979 (JP, A) JP-A-58-67737 (JP, A) JP-A-60-101129 (JP, A) Augmented new edition 62-69 (58) Field surveyed (Int. Cl. 7 , DB name) C08L 23/00-23/36 C08K 3/00-13 / 08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ポリオレフィン100重量部に対し、急
速加熱(800〜1000℃)したときの膨張性がC軸
方向に対して100倍以上であり、かつ分級による80
メッシュオンが80%以上である加熱膨張性黒鉛を1〜
30重量部と、燐化合物を含有することを特徴とする難
燃性ポリオレフィン系樹脂組成物。
(57) [Claims 1] The swelling property of 100 parts by weight of polyolefin when rapidly heated (800 to 1000 ° C.) is 100 times or more in the C-axis direction, and depends on the classification. 80
The heat-expandable graphite having a mesh-on of 80% or more is 1 to
A flame-retardant polyolefin resin composition comprising 30 parts by weight and a phosphorus compound.
JP05884393A 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition Expired - Fee Related JP3431944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05884393A JP3431944B2 (en) 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-63129 1992-03-19
JP6312992 1992-03-19
JP05884393A JP3431944B2 (en) 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPH0625476A JPH0625476A (en) 1994-02-01
JP3431944B2 true JP3431944B2 (en) 2003-07-28

Family

ID=26399863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05884393A Expired - Fee Related JP3431944B2 (en) 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition

Country Status (1)

Country Link
JP (1) JP3431944B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942561A (en) * 1995-03-03 1999-08-24 Tosoh Corporation Fire-retardant polymer composition
US5760115A (en) * 1995-03-03 1998-06-02 Tosoh Corporation Fire-retardant polymer composition
JP4627133B2 (en) * 2001-09-26 2011-02-09 電気化学工業株式会社 Resin composition and adhesive
JP4723875B2 (en) * 2005-02-21 2011-07-13 株式会社エス・ジー・シー Fireproof eaves ceiling panel with self-sealing function and manufacturing method thereof
JP4929440B2 (en) * 2005-08-26 2012-05-09 昭和電線ケーブルシステム株式会社 Flame retardant wire / cable
CN100419028C (en) * 2005-11-14 2008-09-17 南京理工大学 Polymjer base functional composite material with fire-resistant and conducting function
US7863522B2 (en) * 2006-12-20 2011-01-04 Dow Global Technologies Inc. Semi-conducting polymer compositions for the preparation of wire and cable
US8129455B2 (en) 2007-07-10 2012-03-06 Styrolution GmbH Flame retardant thermoplastic molding compositions
KR20100081319A (en) 2007-09-14 2010-07-14 바스프 에스이 Transparent, tough and rigid molding compositions based on styrene-butadiene block copolymer mixtures
US9403961B2 (en) * 2010-11-18 2016-08-02 Dow Global Technologies Llc Flame resistant flexible polyurethane foam
WO2016025597A1 (en) 2014-08-12 2016-02-18 3M Innovative Properties Company Film adhesive
EP3753960B1 (en) 2018-02-15 2023-04-05 Dow-Mitsui Polychemicals Co., Ltd. Modified resin for molded body, and golf ball
US11708439B2 (en) 2018-02-15 2023-07-25 Dow-Mitsui Polychemicals Co., Ltd. Modified resin for molded article and golf ball
KR102432742B1 (en) * 2021-06-08 2022-08-18 주식회사 세하테크 Composition for flame-retardant tube with excellent tensile strength, manufacturing method thereof, and flame-retardant tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
増補新版 ポリマーの難燃化 −その化学と実際技術−,株式会社 大成社,1992年 4月10日,62−69

Also Published As

Publication number Publication date
JPH0625476A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JP3431944B2 (en) Flame retardant polyolefin resin composition
EP0730000B1 (en) Fire-retardant polymer composition
WO2012124589A1 (en) Non-halogen flame-retardant resin composition, and insulating wire and tube in which same is used
JP3497369B2 (en) Flame retardant polyolefin resin composition
JP3431943B2 (en) Flame retardant polypropylene resin composition
JPH0512928A (en) Flame resisting electrical insulating material
JPH093256A (en) Flame retardant polyolefin-based resin composition
JPH08302209A (en) Flame retardant polymer composition
JP3495757B2 (en) Flame retardant styrenic resin composition
JPH09176404A (en) Fire-resistant resin composition
JP2681195B2 (en) Flame retardant polyolefin composition
JPH10287777A (en) Flame-retardant molded article
JPS6212005A (en) Flame resisting electric insulator compositioin
JP2630700B2 (en) Flame retardant polyolefin tube and heat shrink tube
JP2585702B2 (en) Flame-retardant resin composition, flame-retardant electric wire and flame-retardant heat-shrinkable tube using the same
JPS6253358A (en) Flame-retardant composition
JPH09216971A (en) Flame-retardant resin composition and cable
JPS61243606A (en) Flame resisting electric insulation composition
JP2923602B2 (en) Flame retardant resin composition
JP2767962B2 (en) Flame retardant insulated wire
JPS6221376B2 (en)
JPS61190811A (en) Flame resisting wire cable
JPS6227447A (en) Flame-retardant composition and flame-retardant wire and cable
JPS62174239A (en) Lowly smoking flame-retardant resin composition
JPS6334805A (en) Flame resisting electrically insulating composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees