JPH0625476A - Flame-retardant polyolefin resin composition - Google Patents

Flame-retardant polyolefin resin composition

Info

Publication number
JPH0625476A
JPH0625476A JP5058843A JP5884393A JPH0625476A JP H0625476 A JPH0625476 A JP H0625476A JP 5058843 A JP5058843 A JP 5058843A JP 5884393 A JP5884393 A JP 5884393A JP H0625476 A JPH0625476 A JP H0625476A
Authority
JP
Japan
Prior art keywords
resin composition
weight
parts
flame retardancy
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5058843A
Other languages
Japanese (ja)
Other versions
JP3431944B2 (en
Inventor
Takashi Fukuda
隆志 福田
Kazuhiko Nakatani
和彦 中谷
Yuji Suzuki
祐二 鈴木
Shunichi Endo
峻一 遠藤
Genichiro Ochiai
玄一郎 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUHIRO KAGAKU KK
Tosoh Corp
Original Assignee
SUZUHIRO KAGAKU KK
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26399863&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0625476(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SUZUHIRO KAGAKU KK, Tosoh Corp filed Critical SUZUHIRO KAGAKU KK
Priority to JP05884393A priority Critical patent/JP3431944B2/en
Publication of JPH0625476A publication Critical patent/JPH0625476A/en
Application granted granted Critical
Publication of JP3431944B2 publication Critical patent/JP3431944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To provide a polyolefin resin compsn. which has been made flame- retardant without detriment to its characteristics, i.e., low density and high strengths, and without increasing the amt. of a corrosive gas or smoke generated during burning. CONSTITUTION:This compsn. is prepd. by compounding 100 pts.wt. polyolefin with 1-20 pts.wt. red phosphorus and 1-30 pts.wt thermally expandable graphite which expands at least 100-fold in the direction of C axis when rapidly heated (80-1,000 deg.C) and contains 80-mesh-on particles in an amt. of at least 80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた難燃性能を有し
つつ、燃焼時に腐食性ガスを発生させない難燃性ポリオ
レフィン系樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame-retardant polyolefin resin composition which has excellent flame-retardant performance and does not generate corrosive gas during combustion.

【0002】[0002]

【従来の技術】電線、ケーブルの絶縁材や、電気、電子
機器のエンクロージャ、または鉄道車両、自動車用材
料、さらに建築用材料など、難燃化が義務付けられたプ
ラスチック材料が非常に多く、要求される難燃性能も高
まりつつある。これらのプラスチック材料に難燃性を付
与する技術として、従来は主にハロゲン系難燃剤を配合
する方法により対処されていた。また、他の方法として
は、水酸化マグネシウム、水酸化アルミニウムなどの水
和金属化合物を配合する方法が知られている。
2. Description of the Related Art A great deal of plastic materials are required to be flame-retardant, such as insulating materials for electric wires and cables, enclosures for electric and electronic equipment, materials for railway vehicles, automobiles, and construction materials. Flame retardant performance is also increasing. As a technique for imparting flame retardancy to these plastic materials, conventionally, a method of mainly incorporating a halogen-based flame retardant has been dealt with. Further, as another method, a method of blending a hydrated metal compound such as magnesium hydroxide or aluminum hydroxide is known.

【0003】しかしながら、ハロゲン系難燃剤を配合し
たものは燃焼時に発煙量が多いことや、ハロゲン化水素
などの腐食性ガスの発生が問題となっている。すなわ
ち、ハロゲン系難燃剤を含有する樹脂組成物の、燃焼時
に発生する腐食性ガスに起因する機器、装置の損傷や、
火災事故の際に避難する人々が煙のために逃げ道を失う
おそれがある。水酸化マグネシウム、水酸化アルミニウ
ムなどの水和金属化合物は、上記のような発煙が抑制さ
れ、腐食性ガスの発生がそれ自体からはないため、近
年、ハロゲン系難燃剤の代替品としての使用も増加しつ
つある。しかし、これらの水和金属化合物は、難燃性を
充分付与するには多量の配合が必要であるため、樹脂組
成物の機械的特性を著しく低下させ、樹脂組成物の比重
を増加させるという問題がある、高分子材料の特長の一
つは、軽くて強いところにあるが、水和金属化合物はこ
のような特長を大きく損なうものであり、充分満足でき
る難燃化方法とはとうてい言えない状態であった。
However, the one containing a halogen-based flame retardant has a problem that a large amount of smoke is generated during combustion and the generation of corrosive gas such as hydrogen halide. That is, the resin composition containing a halogen-based flame retardant, damage to the equipment and devices due to the corrosive gas generated during combustion,
People who evacuate in the event of a fire may lose their way out due to smoke. Hydrated metal compounds such as magnesium hydroxide and aluminum hydroxide suppress smoke generation as described above and do not generate corrosive gas by themselves, so in recent years, they have also been used as substitutes for halogen-based flame retardants. It is increasing. However, these hydrated metal compounds require a large amount of blending in order to impart sufficient flame retardancy, so that the mechanical properties of the resin composition are significantly reduced and the specific gravity of the resin composition is increased. However, one of the features of polymer materials is that they are light and strong, but hydrated metal compounds greatly impair these features, and it cannot be said that they are a sufficiently satisfactory flame retardant method. Met.

【0004】[0004]

【発明が解決しようとする課題】そこで、最近では赤燐
を配合する試みがなされているが、赤燐単独の配合では
得られる難燃性が不十分であるため、赤燐と、水和金属
化合物との併用で配合する試みや、赤燐と水和金属化合
物に、さらに難燃性を付与する目的で加熱膨張性黒鉛を
配合する試み等がなされている。しかし、従来の技術で
はノンハロゲン系による難燃化には水和金属化合物の配
合が不可欠であり、樹脂組成物の機械的特性の低下及び
樹脂組成物の比重の増加が余儀なくされているのが現状
である。
Therefore, attempts have recently been made to blend red phosphorus, but since the flame retardancy obtained by blending red phosphorus alone is insufficient, red phosphorus and hydrated metal Attempts have been made to blend them together with the compounds, or to blend red phosphorus and hydrated metal compounds with heat-expandable graphite for the purpose of imparting flame retardancy. However, in the conventional technology, the addition of a hydrated metal compound is indispensable for flame retardation by a non-halogen system, and it is inevitable that the mechanical properties of the resin composition are deteriorated and the specific gravity of the resin composition is increased. Is.

【0005】[0005]

【課題を解決するための手段】このような現状にあたり
本発明者らは、ポリオレフィン系樹脂組成物において、
特定の膨張性をもちかつ特定の粒子形状を有する加熱膨
張性黒鉛と、赤燐または燐化合物とを配合することによ
り著しい難燃効果を発揮することを見い出だし、上記特
許請求の範囲に記載した本発明に至った。
[Means for Solving the Problems] Under these circumstances, the present inventors have found that in a polyolefin resin composition,
It has been found that a mixture of heat-expandable graphite having a specific expandability and a specific particle shape, and red phosphorus or a phosphorus compound exerts a remarkable flame retardant effect, and is described in the above claims. The present invention has been achieved.

【0006】本発明で用いられるポリオレフィン系樹脂
としては、低密度ポリエチレン、直鎖状低密度ポリエチ
レン、高密度ポリエチレン、ポリプロピレン、ポリブテ
ン−1、ポリイソブチレン、ポリ4−メチル−1−ペン
テンなどのオレフィンモノマーの単独重合体や、エチレ
ン−アクリル酸、エチレン−アクリル酸エチル、エチレ
ン−アクリル酸メチル、エチレン−アクリルアミド、エ
チレン−メタクリル酸、エチレン−メタクリル酸メチ
ル、エチレン−メタクリル酸グリシジル、エチレン−無
水マレイン酸、及びエチレン−酢酸ビニル共重合体、エ
チレン−プロピレン共重合体、エチレン−プロピレン−
ジエン化合物共重合体、アイオノマー樹脂などのオレフ
ィンモノマーを含む共重合体、あるいはこれらの2種類
以上の混合物を挙げることができる。
The polyolefin resin used in the present invention includes olefin monomers such as low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, polybutene-1, polyisobutylene, and poly-4-methyl-1-pentene. Homopolymers, ethylene-acrylic acid, ethylene-ethyl acrylate, ethylene-methyl acrylate, ethylene-acrylamide, ethylene-methacrylic acid, ethylene-methyl methacrylate, ethylene-glycidyl methacrylate, ethylene-maleic anhydride, And ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-propylene-
Examples thereof include a diene compound copolymer, a copolymer containing an olefin monomer such as an ionomer resin, or a mixture of two or more kinds thereof.

【0007】本発明で用いられる赤燐は、樹脂への分散
性及び樹脂組成物の機械的特性への影響に鑑み、20μ
m以下の粒径をもつものが好ましい。また、フェノール
樹脂やチタネートカップリング剤等によって表面処理さ
れた赤燐も用いることができる。該赤燐の配合量は、ポ
リオレフィン樹脂100重量部に対し、1重量部未満で
は難燃化効果は不十分であり、20重量部を越えると樹
脂組成物の機械的特性が大きく損なわれるため、該赤燐
の配合量は、ポリオレフィン樹脂100重量部に対し、
1〜20重量部の配合とする必要がある。
The red phosphorus used in the present invention is 20 μm in view of the dispersibility in the resin and the influence on the mechanical properties of the resin composition.
Those having a particle size of m or less are preferable. Further, red phosphorus surface-treated with a phenol resin, a titanate coupling agent or the like can also be used. If the content of the red phosphorus is less than 1 part by weight with respect to 100 parts by weight of the polyolefin resin, the flame retarding effect is insufficient, and if it exceeds 20 parts by weight, the mechanical properties of the resin composition are significantly impaired. The content of the red phosphorus is 100 parts by weight of the polyolefin resin,
It is necessary to mix 1 to 20 parts by weight.

【0008】本発明で用いられる燐化合物として以下に
例示するが、ここで言う燐酸とは燐酸、亜燐酸、次亜燐
酸のすべてを含むものである。本発明で用いられる燐化
合物としては、トリフェニルホスフェート、オクチルジ
フェニルホスフェート、トリオクチルホスフェート、ト
リクレジルホスフェート、ジブチルハイドロジエンホス
フェートなどの燐酸エステル類や、燐酸ナトリウム、燐
酸カリウム、燐酸マグネシウム、燐酸カルシウム、燐酸
亜鉛、燐酸アルミニウムなどの燐酸の金属塩類、及びそ
れら金属塩類の水和物、燐酸アンモニウム、ポリ燐酸ア
ンモニウム、エチレンジアミンの燐酸塩、ジエチレント
リアミンの燐酸塩などの燐酸とアンモニア又はアミン類
との塩、及びそれらの縮合物、グアニジンの燐酸塩、ホ
スフィン及びホスフィンオキサイド、メラミン変性ポリ
燐酸アンモニウムさらに、これら燐化合物の2種類以上
の混合物が挙げられる。該燐化合物の配合量は、燐酸エ
ステル類、燐酸とアンモニア又はアミン類との塩、及び
それらの縮合物の場合、ポリオレフィン樹脂100重量
部に対し1〜30重量部の配合であることが好ましい。
1重量部未満では難燃化効果が不十分であり、30重量
部を越えると樹脂組成物の吸湿性が高くなるためであ
る。燐化合物が燐酸金属塩類及び/又はそれら金属塩類
の水和物の場合は、ポリオレフィン樹脂100重量部に
対し1〜150重量部の配合であることが好ましい。1
重量部未満では難燃化効果が不十分であり、150重量
部を越えると樹脂組成物の機械的特性が大きく損なわれ
るからである。また、該燐化合物のうち、樹脂混練温度
以上の融点をもつものは、樹脂への分散性及び樹脂組成
物の機械的特性への影響に鑑み、2μm以下の粒径をも
つものが好ましい。また、シランカップリング剤、チタ
ネートカップリング剤、脂肪酸等によって表面処理され
たものを用いることが好ましい。
The phosphorus compounds used in the present invention are exemplified below, but the phosphoric acid referred to here includes all of phosphoric acid, phosphorous acid and hypophosphorous acid. Examples of the phosphorus compound used in the present invention include triphenyl phosphate, octyl diphenyl phosphate, trioctyl phosphate, tricresyl phosphate, phosphate esters such as dibutyl hydrogen phosphate, sodium phosphate, potassium phosphate, magnesium phosphate, calcium phosphate, Metal salts of phosphoric acid such as zinc phosphate and aluminum phosphate, and hydrates of these metal salts, ammonium phosphate, ammonium polyphosphate, ethylenediamine phosphate, salts of phosphoric acid such as diethylenetriamine phosphate with ammonia or amines, and Examples thereof include condensates thereof, guanidine phosphates, phosphines and phosphine oxides, melamine-modified ammonium polyphosphate, and mixtures of two or more of these phosphorus compounds. In the case of phosphoric acid esters, salts of phosphoric acid with ammonia or amines, and condensates thereof, the amount of the phosphorus compound is preferably 1 to 30 parts by weight based on 100 parts by weight of the polyolefin resin.
This is because if it is less than 1 part by weight, the flame retarding effect is insufficient, and if it exceeds 30 parts by weight, the hygroscopicity of the resin composition becomes high. When the phosphorus compound is a metal salt of phosphoric acid and / or a hydrate of these metal salts, it is preferable to add 1 to 150 parts by weight to 100 parts by weight of the polyolefin resin. 1
This is because if it is less than 150 parts by weight, the flame retarding effect is insufficient, and if it exceeds 150 parts by weight, the mechanical properties of the resin composition are significantly impaired. Further, among the phosphorus compounds, those having a melting point equal to or higher than the resin kneading temperature are preferably those having a particle diameter of 2 μm or less in view of dispersibility in the resin and influence on the mechanical properties of the resin composition. Further, it is preferable to use those surface-treated with a silane coupling agent, a titanate coupling agent, a fatty acid or the like.

【0009】本発明に用いられる加熱膨張性黒鉛は、急
速に加熱(800〜1000℃)したときにC軸方向
(黒鉛のへき開面に直角方向)に対して100倍以上の
膨張性をもつことが必要である。100倍以上の膨張性
をもたないものは、100倍以上の膨張性をもつものと
比べて難燃性が非常に小さいからである。本発明で言う
膨張性とは加熱後の比容積(ml/g)と室温での比容
積との差を意味するものである。膨張性の測定方法を具
体的に示す。電気炉内で予め1000℃に加熱した石英
ビーカーに加熱膨張性黒鉛を2g投入し、すばやく10
00℃に加熱した電気炉内に石英ビーカーを10秒間入
れた後炉外に取り出し、室温になるまで放冷する。その
後膨張した黒鉛の100mlの重量を計量し、ゆるみ見
掛け比重(g/ml)を測定し、比容積=1/ゆるみ見
掛け比重、とした。次に、加熱していない室温での加熱
膨張性黒鉛の比容積を同様の方法で求め、膨張性=加熱
後の比容積−室温での比容積、として求めた。膨張前後
の加熱膨張性黒鉛を電子顕微鏡で観察したところ、A軸
方向、B軸方向にはほとんど膨張しておらず、C軸方向
にのみ膨張が認められたことから、加熱後の比容積と室
温での比容積との差をC軸方向に対する膨張性と定義し
た。粒径は分級により80メッシュオンのものが80%
以上であることが必要であり、80%以上99%以下で
あることが好ましい。80メッシュオンのものが80%
未満であると難燃性が不十分であり、99%を越える
と、火炎にさらされた時の樹脂組成物の形状保持性能が
若干落ちる傾向があり、あまり好ましくない。加熱膨張
性黒鉛の好ましい例としては、鱗片状黒鉛を酸化処理し
たものが挙げられる。酸化処理の好ましい例としては、
硫酸中での電解酸化、燐酸と硝酸、硫酸と硝酸、過塩素
酸の混酸等の酸化処理がある。該加熱膨張性黒鉛の配合
量は、ポリオレフィン100重量部に対し1〜30重量
部の配合であることが必要である。1重量部未満では難
燃化効果は不十分であり、30重量部を越えると樹脂組
成物の機械的特性が大きく損なわれるからである。
The heat-expandable graphite used in the present invention has 100 times or more expandability in the C-axis direction (direction perpendicular to the cleavage plane of graphite) when rapidly heated (800 to 1000 ° C.). is necessary. This is because those that do not have 100 times or more expandability have much less flame retardancy than those that have 100 times or more expandability. The expansivity referred to in the present invention means the difference between the specific volume after heating (ml / g) and the specific volume at room temperature. A method for measuring the expansivity will be specifically described. Put 2g of heat-expandable graphite into a quartz beaker preheated to 1000 ° C in an electric furnace and quickly
A quartz beaker is placed in an electric furnace heated to 00 ° C. for 10 seconds, then taken out of the furnace and allowed to cool to room temperature. After that, 100 ml of the expanded graphite was weighed and the loose apparent specific gravity (g / ml) was measured, and the specific volume was set to 1 / the loose apparent specific gravity. Next, the specific volume of the heat-expandable graphite at room temperature which was not heated was determined by the same method, and the expansibility = specific volume after heating−specific volume at room temperature. When observing the heat-expandable graphite before and after expansion with an electron microscope, almost no expansion was observed in the A-axis direction and the B-axis direction, and expansion was observed only in the C-axis direction. The difference from the specific volume at room temperature was defined as the expansibility in the C-axis direction. 80% of particle size is 80 mesh on due to classification
It is necessary to be above, and preferably 80% or more and 99% or less. 80% on 80 mesh
If it is less than 100%, the flame retardancy is insufficient, and if it exceeds 99%, the shape retention performance of the resin composition when exposed to a flame tends to be slightly deteriorated, which is not preferable. Preferable examples of the heat-expandable graphite include scaly graphite that has been subjected to an oxidation treatment. As a preferable example of the oxidation treatment,
There are electrolytic oxidation in sulfuric acid, oxidation treatment of mixed acid of phosphoric acid and nitric acid, sulfuric acid and nitric acid, perchloric acid, and the like. The blending amount of the heat-expandable graphite needs to be 1 to 30 parts by weight with respect to 100 parts by weight of the polyolefin. This is because if it is less than 1 part by weight, the flame retarding effect is insufficient, and if it exceeds 30 parts by weight, the mechanical properties of the resin composition are significantly impaired.

【0010】本発明の樹脂組成物には、本発明の効果を
損なわない範囲で他の難燃剤を併用することが可能であ
る。また、必要に応じて、無機充填剤、着色剤、酸化防
止剤、等の種々の添加剤の配合が可能である。
Other flame retardants can be used in combination with the resin composition of the present invention within a range that does not impair the effects of the present invention. Further, if necessary, various additives such as an inorganic filler, a colorant, an antioxidant and the like can be blended.

【0011】[0011]

【実施例】以下、具体例を示して本発明の効果を明確に
するが、本発明はこれらの実施例に限定されるものでは
ない。
EXAMPLES The effects of the present invention will be clarified below with reference to specific examples, but the present invention is not limited to these examples.

【0012】実施例1〜7 エチレン−酢酸ビニル共重合体(東ソー(株)製:ウル
トラセン630)100重量部に、赤燐(燐化学工業
(株)製:ノーバレッド120UF)と、加熱膨張性黒
鉛(中央化成(株)製:80メッシュオン96%、10
00℃での膨張性210倍)をそれぞれ表1に記載の量
だけ配合し、押出し機によって難燃性樹脂組成物を調製
した。得られた樹脂組成物を射出成形し、試験片を作成
した。機械的特性は、JIS K 7113試験法に準
拠し、引張破壊強さと伸びによって評価した。また、燃
焼試験は、JIS K 7201試験法に準拠した酸素
指数と、UL−94燃焼試験によって評価した。結果を
表1に示す。
Examples 1 to 7 100 parts by weight of an ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation: Ultracene 630) and red phosphorus (manufactured by Phosphorus Chemical Co., Ltd .: Novarred 120UF) and thermally expanded. Graphite (Chuo Kasei Co., Ltd .: 80 mesh on 96%, 10
The flame retardant resin composition was prepared by using an extruder by adding the amount of expansion at 210 ° C. 210 times) in the amounts shown in Table 1. The obtained resin composition was injection molded to prepare a test piece. Mechanical properties were evaluated by tensile fracture strength and elongation according to JIS K 7113 test method. Further, the combustion test was evaluated by an oxygen index based on JIS K 7201 test method and UL-94 combustion test. The results are shown in Table 1.

【0013】実施例8,9 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に、トリフェニルホスフェート(アクゾジャパン
(株)製:TPP)と、実施例1で用いた加熱膨張性黒
鉛をそれぞれ表2に記載の量だけ配合し、押出し機によ
って難燃性樹脂組成物を調製した。得られた樹脂組成物
の機械的特性と難燃性を実施例1と同様の方法で評価し
た。結果を表2に示す。
Examples 8 and 9 Ethylene-vinyl acetate copolymer 100 used in Example 1
Triphenyl phosphate (TPP manufactured by Akzo Japan Co., Ltd.) and the heat-expandable graphite used in Example 1 were mixed in the respective parts by weight in the amounts shown in Table 2, and the flame-retardant resin composition was extruded by an extruder. Was prepared. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0014】実施例10,11 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に、ポリリン酸アンモニウム(燐化学工業(株)
製:PA−6)と、実施例1で用いた加熱膨張性黒鉛を
それぞれ表2に記載の量だけ配合し、押出し機によって
難燃性樹脂組成物を調製した。得られた樹脂組成物の難
燃性を実施例1と同様の方法で評価した。結果を表2に
示す。
Examples 10 and 11 Ethylene-vinyl acetate copolymer 100 used in Example 1
In parts by weight, ammonium polyphosphate (Rin Kagaku Kogyo Co., Ltd.)
Manufactured: PA-6) and the heat-expandable graphite used in Example 1 were mixed in the amounts shown in Table 2, and a flame-retardant resin composition was prepared by an extruder. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0015】実施例12,13 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に、リン酸グアニジン(三和ケミカル(株)製:
アピノン−301)と、実施例1で用いた加熱膨張性黒
鉛をそれぞれ表2に記載の量だけ配合し、押出し機によ
って難燃性樹脂組成物を調製した。得られた樹脂組成物
の難燃性を実施例1と同様の方法で評価した。結果を表
2に示す。
Examples 12 and 13 Ethylene-vinyl acetate copolymer 100 used in Example 1
In parts by weight, guanidine phosphate (manufactured by Sanwa Chemical Co., Ltd .:
Appinone-301) and the heat-expandable graphite used in Example 1 were mixed in the amounts shown in Table 2, and a flame-retardant resin composition was prepared by an extruder. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0016】比較例1 実施例1で用いたエチレン−酢酸ビニル共重合体の機械
的特性と難燃性を実施例1と同様の方法で評価した。結
果を表3に示す。
Comparative Example 1 The ethylene-vinyl acetate copolymer used in Example 1 was evaluated for mechanical properties and flame retardancy in the same manner as in Example 1. The results are shown in Table 3.

【0017】比較例2 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部、赤燐15重量部を配合し、樹脂組成物を調製し
た。得られた樹脂組成物の機械的特性と難燃性を実施例
1と同様の方法で評価した。結果を表3に示す。
Comparative Example 2 Ethylene-vinyl acetate copolymer 100 used in Example 1
A resin composition was prepared by blending 15 parts by weight of red phosphorus. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 3.

【0018】比較例3 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部、加熱膨張性黒鉛15重量部を配合し、樹脂組成
物を調製した。得られた樹脂組成物の機械的特性と難燃
性を実施例1と同様の方法で評価した。結果を表3に示
す。
Comparative Example 3 Ethylene-vinyl acetate copolymer 100 used in Example 1
A resin composition was prepared by blending 15 parts by weight of heat-expandable graphite. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 3.

【0019】比較例4 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例4と同様にして機械的特性と
難燃性を評価した。結果を表3に示す。
Comparative Example 4 As the heat-expandable graphite, 80 mesh-on content 70
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
The mechanical properties and flame retardancy were evaluated in the same manner as in Example 4 except that the product manufactured by M. Co., Ltd. was used. The results are shown in Table 3.

【0020】比較例5 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例4と同様にして機械的特性と難燃
性を評価した。結果を表3に示す。
Comparative Example 5 As the heat-expandable graphite, the content of 80 mesh on 97
%, Expandability at 1000 ° C 70 times (Chuo Kasei Co., Ltd.)
Mechanical properties and flame retardancy were evaluated in the same manner as in Example 4 except that was used. The results are shown in Table 3.

【0021】比較例6 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例1で用いた赤燐25重量部、加熱
膨張性黒鉛10重量部を配合し、樹脂組成物を調製し
た。得られた樹脂組成物の機械的特性と難燃性を実施例
1と同様の方法で評価した。結果を表3に示す。
Comparative Example 6 Ethylene-vinyl acetate copolymer 100 used in Example 1
25 parts by weight of red phosphorus used in Example 1 and 10 parts by weight of heat-expandable graphite were mixed with the parts by weight to prepare a resin composition. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 3.

【0022】比較例7 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例1で用いた赤燐5重量部、加熱膨
張性黒鉛35重量部を配合し、樹脂組成物を調製した。
得られた樹脂組成物の機械的特性と難燃性を実施例1と
同様の方法で評価した。結果を表3に示す。
Comparative Example 7 Ethylene-vinyl acetate copolymer 100 used in Example 1
5 parts by weight of red phosphorus used in Example 1 and 35 parts by weight of heat-expandable graphite were mixed with the parts by weight to prepare a resin composition.
The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 3.

【0023】比較例8 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、水酸化マグネシウム(協和化学工業
(株)製:キスマ5A)100重量部と、実施例1で用
いた赤燐10重量部を配合し、樹脂組成物を調製した。
得られた樹脂組成物の機械的特性と難燃性を実施例1と
同様の方法で評価した。結果を表3に示す。 比較例9 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、比較例8で用いた水酸化マグネシウム1
00重量部と、実施例1で用いた加熱膨張性黒鉛15重
量部を配合し、樹脂組成物を調製した。得られた樹脂組
成物の機械的特性と難燃性を実施例1と同様の方法で評
価した。結果を表3に示す。
Comparative Example 8 Ethylene-vinyl acetate copolymer 100 used in Example 1
100 parts by weight of magnesium hydroxide (manufactured by Kyowa Chemical Industry Co., Ltd .: Kisuma 5A) and 10 parts by weight of red phosphorus used in Example 1 were blended with parts by weight to prepare a resin composition.
The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 3. Comparative Example 9 Ethylene-vinyl acetate copolymer 100 used in Example 1
1 part by weight of magnesium hydroxide used in Comparative Example 8
00 parts by weight and 15 parts by weight of the heat-expandable graphite used in Example 1 were blended to prepare a resin composition. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 3.

【0024】比較例10 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例8で用いたトリフェニルホスフェ
ート10重量部を配合し、樹脂組成物を調製した。得ら
れた樹脂組成物の難燃性を実施例1と同様の方法で評価
した。結果を表4に示す。
Comparative Example 10 Ethylene-vinyl acetate copolymer 100 used in Example 1
A resin composition was prepared by mixing 10 parts by weight of triphenyl phosphate used in Example 8 with parts by weight. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 4.

【0025】比較例11 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例10で用いたポリリン酸アンモニ
ウム20重量部を配合し、樹脂組成物を調製した。得ら
れた樹脂組成物の難燃性を実施例1と同様の方法で評価
した。結果を表4に示す。
Comparative Example 11 Ethylene-vinyl acetate copolymer 100 used in Example 1
20 parts by weight of ammonium polyphosphate used in Example 10 was blended with parts by weight to prepare a resin composition. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 4.

【0026】比較例12 実施例1で用いたエチレン−酢酸ビニル共重合体100
重量部に対し、実施例12で用いたリン酸グアニジン2
0重量部を配合し、樹脂組成物を調製した。得られた樹
脂組成物の難燃性を実施例1と同様の方法で評価した。
結果を表4に示す。
Comparative Example 12 Ethylene-vinyl acetate copolymer 100 used in Example 1
Guanidine phosphate 2 used in Example 12 based on parts by weight
0 part by weight was compounded to prepare a resin composition. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1.
The results are shown in Table 4.

【0027】比較例13 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例9と同様にして樹脂組成物を
調整し、難燃性を評価した。結果を表4に示す。
Comparative Example 13 As the heat-expandable graphite, 80 mesh-on content 70
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
A resin composition was prepared and flame retardancy was evaluated in the same manner as in Example 9 except for using The results are shown in Table 4.

【0028】比較例14 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例9と同様にして樹脂組成物を調整
し、難燃性を評価した。結果を表4に示す。
Comparative Example 14 As the heat-expandable graphite, the content of 80 mesh on was 97
%, Expandability at 1000 ° C 70 times (Chuo Kasei Co., Ltd.)
A resin composition was prepared and flame retardancy was evaluated in the same manner as in Example 9 except that was used. The results are shown in Table 4.

【0029】比較例15 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例11と同様にして樹脂組成物
を調整し、難燃性を評価した。結果を表4に示す。
Comparative Example 15 80 mesh-on content 70 as the heat-expandable graphite
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
A resin composition was prepared and flame retardancy was evaluated in the same manner as in Example 11 except that (Production) was used. The results are shown in Table 4.

【0030】比較例16 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例11と同様にして樹脂組成物を調
整し、難燃性を評価した。結果を表4に示す。
Comparative Example 16 As the heat-expandable graphite, 80 mesh-on content rate 97
%, Expandability at 1000 ° C 70 times (Chuo Kasei Co., Ltd.)
A resin composition was prepared and flame retardancy was evaluated in the same manner as in Example 11 except that was used. The results are shown in Table 4.

【0031】比較例17 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例12と同様にして樹脂組成物
を調整し、難燃性を評価した。結果を表4に示す。
Comparative Example 17 As the heat-expandable graphite, 80 mesh-on content 70
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
A resin composition was prepared and flame retardancy was evaluated in the same manner as in Example 12 except that the resin composition was used. The results are shown in Table 4.

【0032】比較例18 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例12と同様にして樹脂組成物を調
整し、難燃性を評価した。結果を表4に示す。
Comparative Example 18 As the heat-expandable graphite, the content of 80 mesh on was 97
%, Expandability at 1000 ° C 70 times (Chuo Kasei Co., Ltd.)
A resin composition was prepared and flame retardancy was evaluated in the same manner as in Example 12 except that was used. The results are shown in Table 4.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】表1,表2に示されるように、本発明の難
燃化EVA組成物は、UL−94燃焼試験で極めて優れ
た難燃性を示し、しかも表3の比較例1のEVAと比べ
比重の増加が小さく、EVAの物性をそれほど低下させ
ていないことが分かる。
As shown in Tables 1 and 2, the flame-retardant EVA composition of the present invention showed extremely excellent flame retardancy in the UL-94 combustion test and, in addition, the EVA of Comparative Example 1 in Table 3. It can be seen that the increase in specific gravity is small and the physical properties of EVA are not so deteriorated.

【0038】一方、表3の比較例2,3に示すように、
同程度の量の赤燐、加熱膨張性黒鉛を単独で用いたもの
は、UL−94燃焼試験で十分な難燃性が得られないこ
とが分かる。さらに、比較例4,5には80メッシュオ
ン含有率が80%に満たない加熱膨張性黒鉛や、膨張性
が100倍に満たない加熱膨張性黒鉛を用いた結果を示
すがいずれも十分な難燃化が達成されないことが分か
る。また、比較例6,7には本発明の範囲を超える量の
赤燐や加熱膨張性黒鉛を配合した結果を示すが、いずれ
も伸びの低下が著しいことが分かる。比較例8,9には
水酸化マグネシウムを用いた樹脂組成物の試験結果を示
したが、十分な難燃化は達成されるものの、比重の増加
が大きく、伸びの低下もあわせEVAの特性を大きく損
なうものであることが分かる。また、表4の比較例10
〜12に示すように、燐化合物を単独で用いたものは、
十分な難燃性が得られておらず、さらに、比較例13〜
18には80メッシュオン含有率が80%に満たない加
熱膨張性黒鉛や、膨張性が100倍に満たない加熱膨張
性黒鉛を用いた結果を示すがいずれも十分な難燃化が達
成されないことが分かる。
On the other hand, as shown in Comparative Examples 2 and 3 of Table 3,
It can be seen that sufficient flame retardancy cannot be obtained in the UL-94 combustion test when the same amounts of red phosphorus and heat-expandable graphite are used alone. Further, Comparative Examples 4 and 5 show the results of using the heat-expandable graphite having an 80-mesh-on content of less than 80% and the heat-expandable graphite having an expandability of less than 100 times. It can be seen that burning is not achieved. In addition, Comparative Examples 6 and 7 show the results of mixing red phosphorus and heat-expandable graphite in an amount exceeding the range of the present invention, and it is understood that the elongation is markedly reduced in all cases. Comparative Examples 8 and 9 show the test results of the resin compositions using magnesium hydroxide, but although sufficient flame retardancy was achieved, the increase in specific gravity was large and the decrease in elongation was also evaluated to show the characteristics of EVA. It turns out that it is a big loss. In addition, Comparative Example 10 in Table 4
As shown in ~ 12, the phosphorus compounds used alone are
Sufficient flame retardancy was not obtained, and further, Comparative Examples 13 to
No. 18 shows the results of using heat-expandable graphite having an 80 mesh-on content of less than 80% and heat-expandable graphite having an expandability of less than 100 times, but none of them shows sufficient flame retardancy. I understand.

【0039】実施例14〜20 低密度ポリエチレン(東ソー(株)製:ペトロセン20
3)100重量部に、実施例1で用いた赤燐と、加熱膨
張性黒鉛をそれぞれ表5に記載の量だけ配合し、押出し
機によって難燃性樹脂組成物を調製した。得られた樹脂
組成物を実施例1と同様の方法で評価した。結果を表5
に示す。
Examples 14 to 20 Low density polyethylene (manufactured by Tosoh Corporation: Petrosene 20)
3) 100 parts by weight of red phosphorus used in Example 1 and heat-expandable graphite were mixed in the amounts shown in Table 5, and a flame-retardant resin composition was prepared by an extruder. The obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 5.
Shown in.

【0040】実施例21〜26 ポリオレフィンとして実施例14で用いた低密度ポリエ
チレンを用い、実施例8〜13で用いた燐化合物と加熱
膨張性黒鉛を表6に記載の量だけ配合し、押出し機によ
って難燃性樹脂組成物を調製した。得られた樹脂組成物
の難燃性を実施例1と同様の方法で評価した。結果を表
6に示す。
Examples 21 to 26 The low density polyethylene used in Example 14 was used as the polyolefin, the phosphorus compound used in Examples 8 to 13 and the heat-expandable graphite were blended in the amounts shown in Table 6, and the extruder was used. To prepare a flame-retardant resin composition. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 6.

【0041】比較例19 実施例14で用いた低密度ポリエチレンの機械的特性と
難燃性を実施例1と同様の方法で評価した。結果を表7
に示す。
Comparative Example 19 The mechanical properties and flame retardancy of the low density polyethylene used in Example 14 were evaluated in the same manner as in Example 1. The results are shown in Table 7.
Shown in.

【0042】比較例20 実施例14で用いた低密度ポリエチレン100重量部、
赤燐15重量部を配合し、樹脂組成物を調製した。得ら
れた樹脂組成物の機械的特性と難燃性を実施例1と同様
の方法で評価した。結果を表7に示す。
Comparative Example 20 100 parts by weight of the low density polyethylene used in Example 14,
A resin composition was prepared by mixing 15 parts by weight of red phosphorus. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 7.

【0043】比較例21 実施例14で用いた低密度ポリエチレン100重量部、
加熱膨張性黒鉛15重量部を配合し、樹脂組成物を調製
した。得られた樹脂組成物の機械的特性と難燃性を実施
例1と同様の方法で評価した。結果を表7に示す。
Comparative Example 21 100 parts by weight of the low-density polyethylene used in Example 14,
A resin composition was prepared by mixing 15 parts by weight of heat-expandable graphite. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 7.

【0044】比較例22 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例17と同様にして機械的特性
と難燃性を評価した。結果を表7に示す。
Comparative Example 22 80 mesh-on content 70 as the heat-expandable graphite
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
The mechanical properties and flame retardancy were evaluated in the same manner as in Example 17, except that the product manufactured by Mitsui Chemical Co., Ltd. was used. The results are shown in Table 7.

【0045】比較例23 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例17と同様にして機械的特性と難
燃性を評価した。結果を表7に示す。
Comparative Example 23 As the heat-expandable graphite, the content of 80 mesh on was 97
%, Expandability at 1000 ° C 70 times (Chuo Kasei Co., Ltd.)
The mechanical properties and flame retardancy were evaluated in the same manner as in Example 17 except that was used. The results are shown in Table 7.

【0046】比較例24 実施例14で用いた低密度ポリエチレン100重量部に
対し、実施例1で用いた赤燐25重量部、加熱膨張性黒
鉛10重量部を配合し、樹脂組成物を調製した。得られ
た樹脂組成物の機械的特性と難燃性を実施例1と同様の
方法で評価した。結果を表7に示す。
Comparative Example 24 To 100 parts by weight of the low-density polyethylene used in Example 14, 25 parts by weight of red phosphorus used in Example 1 and 10 parts by weight of heat-expandable graphite were blended to prepare a resin composition. . The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 7.

【0047】比較例25 実施例14で用いた低密度ポリエチレン100重量部に
対し、実施例1で用いた赤燐5重量部、加熱膨張性黒鉛
35重量部を配合し、樹脂組成物を調製した。得られた
樹脂組成物の機械的特性と難燃性を実施例1と同様の方
法で評価した。結果を表7に示す。
Comparative Example 25 To 100 parts by weight of the low-density polyethylene used in Example 14, 5 parts by weight of red phosphorus used in Example 1 and 35 parts by weight of heat-expandable graphite were blended to prepare a resin composition. . The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 7.

【0048】比較例26 実施例14で用いた低密度ポリエチレン100重量部に
対し、比較例8で用いた水酸化マグネシウム100重量
部と、実施例1で用いた赤燐10重量部を配合し、樹脂
組成物を調製した。得られた樹脂組成物の機械的特性と
難燃性を実施例1と同様の方法で評価した。結果を表7
に示す。
Comparative Example 26 100 parts by weight of the low-density polyethylene used in Example 14 was mixed with 100 parts by weight of magnesium hydroxide used in Comparative Example 8 and 10 parts by weight of red phosphorus used in Example 1, A resin composition was prepared. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 7.
Shown in.

【0049】比較例27 実施例14で用いた低密度ポリエチレン100重量部に
対し、比較例8で用いた水酸化マグネシウム100重量
部と、実施例1で用いた加熱膨張性黒鉛15重量部を配
合し、樹脂組成物を調製した。得られた樹脂組成物の機
械的特性と難燃性を実施例1と同様の方法で評価した。
結果を表7に示す。
Comparative Example 27 100 parts by weight of the low-density polyethylene used in Example 14 was mixed with 100 parts by weight of the magnesium hydroxide used in Comparative Example 8 and 15 parts by weight of the heat-expandable graphite used in Example 1. Then, a resin composition was prepared. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1.
The results are shown in Table 7.

【0050】比較例28〜36 ポリオレフィンとして実施例14で用いた低密度ポリエ
チレンを用い、燐化合物、加熱膨張性黒鉛を単独で配合
したものや、燐化合物と80メッシュオン含有率の低い
加熱膨張性黒鉛を配合したもの、燐化合物と1000℃
での膨張性が低い加熱膨張性黒鉛を配合した樹脂組成物
の難燃性を評価した。結果を表8に示す。
Comparative Examples 28 to 36 The low-density polyethylene used in Example 14 was used as the polyolefin, and the phosphorus compound and the heat-expandable graphite were blended alone, or the phosphorus compound and the heat-expandability with a low 80 mesh-on content were used. Blended with graphite, phosphorus compound and 1000 ℃
The flame retardancy of the resin composition containing the heat-expandable graphite having low expandability was evaluated. The results are shown in Table 8.

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【表6】 [Table 6]

【0053】[0053]

【表7】 [Table 7]

【0054】[0054]

【表8】 [Table 8]

【0055】表5,表6に示されるように、本発明の難
燃化LDPE組成物は、EVAの場合と同様に、比重の
増加が小さく、かつ極めて優れた難燃性を示すことが分
かる。
As shown in Tables 5 and 6, it can be seen that the flame retardant LDPE composition of the present invention has a small increase in specific gravity and exhibits extremely excellent flame retardancy, as in the case of EVA. .

【0056】また、表7,表8の結果に示されているよ
うに、本発明の樹脂組成物によらなければ、難燃性と低
比重の両方を満足させる樹脂組成物を得ることは不可能
であることが分かる。
As shown in the results of Tables 7 and 8, it is impossible to obtain a resin composition satisfying both flame retardancy and low specific gravity unless the resin composition of the present invention is used. I see that it is possible.

【0057】実施例27〜33 ポリプロピレン(東ソー(株)製:J7030B)10
0重量部に、実施例1で用いた赤燐と加熱膨張性黒鉛を
それぞれ表9に記載の量だけ配合し、押出し機によって
難燃性樹脂組成物を調製した。得られた樹脂組成物を実
施例1と同様の方法で評価した。結果を表9に示す。
Examples 27 to 33 Polypropylene (manufactured by Tosoh Corporation: J7030B) 10
The red phosphorus used in Example 1 and the heat-expandable graphite used in Example 1 were each mixed in an amount of 0 part by weight as shown in Table 9, and a flame-retardant resin composition was prepared by an extruder. The obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 9.

【0058】実施例34〜39 ポリオレフィンとして実施例27で用いたポリプロピレ
ンを用い、実施例8〜13で用いた燐化合物と加熱膨張
性黒鉛を表10に記載の量だけ配合し、押出し機によっ
て難燃性樹脂組成物を調製した。得られた樹脂組成物の
難燃性を実施例1と同様の方法で評価した。結果を表1
0に示す。
Examples 34 to 39 The polypropylene used in Example 27 was used as the polyolefin, the phosphorus compound used in Examples 8 to 13 and the heat-expandable graphite were mixed in the amounts shown in Table 10, and the mixture was hardened by an extruder. A flammable resin composition was prepared. The flame retardancy of the obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 1.
It shows in 0.

【0059】比較例37 実施例27で用いたポリプロピレンの機械的特性と難燃
性を実施例1と同様の方法で評価した。結果を表11に
示す。
Comparative Example 37 The mechanical properties and flame retardancy of the polypropylene used in Example 27 were evaluated in the same manner as in Example 1. The results are shown in Table 11.

【0060】比較例38 実施例27で用いたポリプロピレン100重量部、赤燐
21重量部を配合し、樹脂組成物を調製した。得られた
樹脂組成物の機械的特性と難燃性を実施例1と同様の方
法で評価した。結果を表11に示す。
Comparative Example 38 100 parts by weight of the polypropylene used in Example 27 and 21 parts by weight of red phosphorus were mixed to prepare a resin composition. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 11.

【0061】比較例39 実施例27で用いたポリプロピレン100重量部、加熱
膨張性黒鉛21重量部を配合し、樹脂組成物を調製し
た。得られた樹脂組成物の機械的特性と難燃性を実施例
1と同様の方法で評価した。結果を表11に示す。
Comparative Example 39 A resin composition was prepared by mixing 100 parts by weight of the polypropylene used in Example 27 and 21 parts by weight of heat-expandable graphite. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 11.

【0062】比較例40 加熱膨張性黒鉛として、80メッシュオン含有率70
%、1000℃での膨張性180倍(中央化成(株)
製)を用いた以外は実施例31と同様にして機械的特性
と難燃性を評価した。結果を表11に示す。
Comparative Example 40 As the heat-expandable graphite, 80 mesh-on content 70
%, Expandability at 1000 ° C 180 times (Chuo Kasei Co., Ltd.)
The mechanical properties and flame retardancy were evaluated in the same manner as in Example 31 except that the product (made by Japan) was used. The results are shown in Table 11.

【0063】比較例41 加熱膨張性黒鉛として、80メッシュオン含有率97
%、1000℃での膨張性70倍(中央化成(株)製)
を用いた以外は実施例31と同様にして機械的特性と難
燃性を評価した。結果を表11に示す。
Comparative Example 41 As the heat-expandable graphite, the content of 80 mesh on was 97
%, Expandability at 1000 ° C 70 times (Chuo Kasei Co., Ltd.)
The mechanical properties and flame retardancy were evaluated in the same manner as in Example 31 except that was used. The results are shown in Table 11.

【0064】比較例42 実施例27で用いたポリプロピレン100重量部に対
し、実施例1で用いた赤燐25重量部、加熱膨張性黒鉛
10重量部を配合し、樹脂組成物を調製した。得られた
樹脂組成物の機械的特性と難燃性を実施例1と同様の方
法で評価した。結果を表11に示す。
Comparative Example 42 To 100 parts by weight of polypropylene used in Example 27, 25 parts by weight of red phosphorus used in Example 1 and 10 parts by weight of heat-expandable graphite were blended to prepare a resin composition. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 11.

【0065】比較例43 実施例27で用いたポリプロピレン100重量部に対
し、実施例1で用いた赤燐5重量部、加熱膨張性黒鉛3
5重量部を配合し、樹脂組成物を調製した。得られた樹
脂組成物の機械的特性と難燃性を実施例1と同様の方法
で評価した。結果を表11に示す。
Comparative Example 43 5 parts by weight of red phosphorus used in Example 1 and 3 parts of heat-expandable graphite were used with respect to 100 parts by weight of polypropylene used in Example 27.
A resin composition was prepared by mixing 5 parts by weight. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 11.

【0066】比較例44 実施例27で用いたポリプロピレン100重量部に対
し、比較例8で用いた水酸化マグネシウム100重量部
と、実施例1で用いた赤燐10重量部を配合し、樹脂組
成物を調製した。得られた樹脂組成物の機械的特性と難
燃性を実施例1と同様の方法で評価した。結果を表11
に示す。
Comparative Example 44 To 100 parts by weight of polypropylene used in Example 27, 100 parts by weight of magnesium hydroxide used in Comparative Example 8 and 10 parts by weight of red phosphorus used in Example 1 were blended to obtain a resin composition. The thing was prepared. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 11
Shown in.

【0067】比較例45 実施例27で用いたポリプロピレン100重量部に対
し、比較例8で用いた水酸化マグネシウム100重量部
と、実施例1で用いた加熱膨張性黒鉛15重量部を配合
し、樹脂組成物を調製した。得られた樹脂組成物の機械
的特性と難燃性を実施例1と同様の方法で評価した。結
果を表11に示す。
Comparative Example 45 100 parts by weight of the polypropylene used in Example 27 and 100 parts by weight of the magnesium hydroxide used in Comparative Example 8 and 15 parts by weight of the heat-expandable graphite used in Example 1 were blended. A resin composition was prepared. The mechanical properties and flame retardancy of the obtained resin composition were evaluated in the same manner as in Example 1. The results are shown in Table 11.

【0068】比較例46〜54 ポリオレフィンとして実施例27で用いたポリプロピレ
ンを用い、燐化合物、加熱膨張性黒鉛を単独で配合した
ものや、燐化合物と80メッシュオン含有率が80%に
満たない加熱膨張性黒鉛を配合したもの、燐化合物と膨
張性が100倍に満たない加熱膨張性黒鉛を配合した樹
脂組成物の難燃性を評価した。結果を表12に示す。
Comparative Examples 46 to 54 The polypropylene used in Example 27 was used as the polyolefin, and the phosphorus compound and the heat-expandable graphite were blended alone, or the phosphorus compound and the 80 mesh-on content were less than 80%. The flame retardancy of the resin composition containing the expandable graphite and the resin composition containing the phosphorus compound and the heat-expandable graphite having an expandability less than 100 times was evaluated. The results are shown in Table 12.

【0069】[0069]

【表9】 [Table 9]

【0070】[0070]

【表10】 [Table 10]

【0071】[0071]

【表11】 [Table 11]

【0072】[0072]

【表12】 [Table 12]

【0073】表9,表10に示されるように、本発明の
難燃化PP樹脂組成物は、EVAの場合と同様に、比重
の増加が小さく、かつ極めて優れた難燃性を示すことが
分かる。また、表11,表12の結果に示されているよ
うに、本発明の樹脂組成物によらなければ、難燃性と低
比重の両方を満足させる樹脂組成物を得ることは不可能
であることが分かる。
As shown in Tables 9 and 10, the flame-retardant PP resin composition of the present invention has a small increase in specific gravity and exhibits extremely excellent flame retardancy as in the case of EVA. I understand. Further, as shown in the results of Tables 11 and 12, it is impossible to obtain a resin composition satisfying both flame retardancy and low specific gravity unless the resin composition of the present invention is used. I understand.

【0074】[0074]

【発明の効果】以上本発明の難燃性樹脂組成物は、機械
的特性を保ちながら優れた難燃性を発揮し、かつ軽量化
されており、さらに、ハロゲンを含まないため燃焼時の
腐食性ガスの発生がなく、燃焼時の発煙量が抑えられ、
極めて安全性に優れている。
As described above, the flame-retardant resin composition of the present invention exhibits excellent flame-retardant properties while maintaining mechanical properties, and is light in weight. Furthermore, since it does not contain halogen, it does not corrode during combustion. There is no generation of volatile gas, the amount of smoke generated during combustion is suppressed,
It is extremely safe.

フロントページの続き (72)発明者 鈴木 祐二 神奈川県横浜市保土ケ谷区川島町471番地 の2 (72)発明者 遠藤 峻一 茨城県筑波郡伊奈町大字狸穴1063番91 (72)発明者 落合 玄一郎 東京都足立区江北3丁目41番8号Front page continuation (72) Inventor Yuji Suzuki, 471 Kawashima-cho, Hodogaya-ku, Yokohama-shi, Kanagawa 2 (72) Inventor Shunichi Endo 1063 91, Ina-cho, Ina-cho, Tsukuba-gun, Ibaraki Prefecture (72) Gen-ichiro Ochiai Tokyo 3-41-8 Kohoku, Adachi-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン100重量部、赤燐1〜
20重量部、急速加熱(800〜1000℃)したとき
の膨張性がC軸方向に対して100倍以上であり、かつ
分級により80メッシュオンが80%以上含む加熱膨張
性黒鉛を、1〜30重量部含有することを特徴とする難
燃性ポリオレフィン系樹脂組成物。
1. 100 parts by weight of polyolefin, 1 to 1 of red phosphorus
20 parts by weight, the expansiveness when rapidly heated (800 to 1000 ° C.) is 100 times or more with respect to the C-axis direction, and 1 to 30 of the thermally expansive graphite containing 80% or more of 80 mesh on by classification. A flame-retardant polyolefin-based resin composition, characterized by containing parts by weight.
【請求項2】 ポリオレフィン100重量部に対し、急
速加熱(800〜1000℃)したときの膨張性がC軸
方向に対して100倍以上であり、かつ分級により80
メッシュオンが80%以上含む加熱膨張性黒鉛を1〜3
0重量部と、燐化合物を含有することを特徴とする難燃
性ポリオレフィン系樹脂組成物。
2. The expansivity when rapidly heated (800 to 1000 ° C.) is 100 times or more in the C-axis direction with respect to 100 parts by weight of polyolefin, and 80 by classification.
1 to 3 of heat-expandable graphite containing 80% or more of mesh-on
A flame-retardant polyolefin-based resin composition comprising 0 part by weight and a phosphorus compound.
JP05884393A 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition Expired - Fee Related JP3431944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05884393A JP3431944B2 (en) 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-63129 1992-03-19
JP6312992 1992-03-19
JP05884393A JP3431944B2 (en) 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPH0625476A true JPH0625476A (en) 1994-02-01
JP3431944B2 JP3431944B2 (en) 2003-07-28

Family

ID=26399863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05884393A Expired - Fee Related JP3431944B2 (en) 1992-03-19 1993-03-18 Flame retardant polyolefin resin composition

Country Status (1)

Country Link
JP (1) JP3431944B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760115A (en) * 1995-03-03 1998-06-02 Tosoh Corporation Fire-retardant polymer composition
US5942561A (en) * 1995-03-03 1999-08-24 Tosoh Corporation Fire-retardant polymer composition
JP2003096115A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Resin composition and adhesive
JP2006226050A (en) * 2005-02-21 2006-08-31 Sgc:Kk Fire prevention eaves ceiling panel with self-sealing function and its manufacturing method
JP2007059336A (en) * 2005-08-26 2007-03-08 Swcc Showa Cable Systems Co Ltd Flame-resistant wire/cable
CN100419028C (en) * 2005-11-14 2008-09-17 南京理工大学 Polymjer base functional composite material with fire-resistant and conducting function
JP2010513685A (en) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductive polymer composition for preparing wires and cables
US8129455B2 (en) 2007-07-10 2012-03-06 Styrolution GmbH Flame retardant thermoplastic molding compositions
WO2012067841A3 (en) * 2010-11-18 2012-07-12 Dow Global Technologies Llc Flame resistant flexible polyurethane foam
US8575269B2 (en) 2007-09-14 2013-11-05 Styrolution GmbH Transparent, tough and rigid molding compositions based on styrene-butadiene block copolymer mixtures
WO2019159882A1 (en) 2018-02-15 2019-08-22 三井・ダウポリケミカル株式会社 Modified resin for molded body, and golf ball
WO2019159881A1 (en) 2018-02-15 2019-08-22 三井・ダウポリケミカル株式会社 Modified resin for molded body, and golf ball
EP3180393B1 (en) 2014-08-12 2021-09-29 3M Innovative Properties Company Film adhesive
KR102432742B1 (en) * 2021-06-08 2022-08-18 주식회사 세하테크 Composition for flame-retardant tube with excellent tensile strength, manufacturing method thereof, and flame-retardant tube

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942561A (en) * 1995-03-03 1999-08-24 Tosoh Corporation Fire-retardant polymer composition
US6017987A (en) * 1995-03-03 2000-01-25 Tosoh Corporation Fire-retardant polymer composition
US5760115A (en) * 1995-03-03 1998-06-02 Tosoh Corporation Fire-retardant polymer composition
JP2003096115A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Resin composition and adhesive
JP4627133B2 (en) * 2001-09-26 2011-02-09 電気化学工業株式会社 Resin composition and adhesive
JP2006226050A (en) * 2005-02-21 2006-08-31 Sgc:Kk Fire prevention eaves ceiling panel with self-sealing function and its manufacturing method
JP2007059336A (en) * 2005-08-26 2007-03-08 Swcc Showa Cable Systems Co Ltd Flame-resistant wire/cable
CN100419028C (en) * 2005-11-14 2008-09-17 南京理工大学 Polymjer base functional composite material with fire-resistant and conducting function
JP2010513685A (en) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductive polymer composition for preparing wires and cables
US8129455B2 (en) 2007-07-10 2012-03-06 Styrolution GmbH Flame retardant thermoplastic molding compositions
US8575269B2 (en) 2007-09-14 2013-11-05 Styrolution GmbH Transparent, tough and rigid molding compositions based on styrene-butadiene block copolymer mixtures
WO2012067841A3 (en) * 2010-11-18 2012-07-12 Dow Global Technologies Llc Flame resistant flexible polyurethane foam
EP3180393B1 (en) 2014-08-12 2021-09-29 3M Innovative Properties Company Film adhesive
WO2019159882A1 (en) 2018-02-15 2019-08-22 三井・ダウポリケミカル株式会社 Modified resin for molded body, and golf ball
WO2019159881A1 (en) 2018-02-15 2019-08-22 三井・ダウポリケミカル株式会社 Modified resin for molded body, and golf ball
KR20200121339A (en) 2018-02-15 2020-10-23 미츠이·다우 폴리케미칼 가부시키가이샤 Modified resin and golf ball for molded body
KR20200121340A (en) 2018-02-15 2020-10-23 미츠이·다우 폴리케미칼 가부시키가이샤 Modified resin and golf ball for molded body
US11220565B2 (en) 2018-02-15 2022-01-11 Dow-Mitsui Polychemicals Co., Ltd. Modified resin for molded article and golf ball
US11708439B2 (en) 2018-02-15 2023-07-25 Dow-Mitsui Polychemicals Co., Ltd. Modified resin for molded article and golf ball
KR102432742B1 (en) * 2021-06-08 2022-08-18 주식회사 세하테크 Composition for flame-retardant tube with excellent tensile strength, manufacturing method thereof, and flame-retardant tube

Also Published As

Publication number Publication date
JP3431944B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JP3431944B2 (en) Flame retardant polyolefin resin composition
EP0730000B1 (en) Fire-retardant polymer composition
JP2010534757A (en) Halogen-free flame retardant
CN101792602A (en) Halogen-free expansible flame-retardant thermoplastic resin composition
JP3497369B2 (en) Flame retardant polyolefin resin composition
US5654356A (en) Flame retardant polyolefin compound having low smoking and toxicity
JP2020125366A (en) Flame-retardant polyethylene resin composition
US4719045A (en) Flame retardants for polyolefins
JP3431943B2 (en) Flame retardant polypropylene resin composition
JPH093256A (en) Flame retardant polyolefin-based resin composition
JPH08302209A (en) Flame retardant polymer composition
JPH09176404A (en) Fire-resistant resin composition
JP3495757B2 (en) Flame retardant styrenic resin composition
EP0773256B1 (en) Flame-retardant resin composition
JP2007009000A (en) Polyolefin-based resin composition
JPH08113671A (en) Flame-retardant thermoplastic resin composition
JPS6253358A (en) Flame-retardant composition
JPH10287777A (en) Flame-retardant molded article
JPH08325408A (en) Flame-retardant thermoplastic resin composition
JPS62174239A (en) Lowly smoking flame-retardant resin composition
JP3373070B2 (en) Flame retardant for polyolefin resin and flame retardant polyolefin resin composition
JP3704228B2 (en) Flame retardant for polyolefin resin and flame retardant polyolefin resin composition
JP3852139B2 (en) Flame retardant comprising metal pyrophosphate and flame retardant resin composition comprising the same
JPS61190811A (en) Flame resisting wire cable
JPH11181163A (en) Flame-retardant polyolefin resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees