JP3430236B2 - Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate - Google Patents

Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate

Info

Publication number
JP3430236B2
JP3430236B2 JP33541093A JP33541093A JP3430236B2 JP 3430236 B2 JP3430236 B2 JP 3430236B2 JP 33541093 A JP33541093 A JP 33541093A JP 33541093 A JP33541093 A JP 33541093A JP 3430236 B2 JP3430236 B2 JP 3430236B2
Authority
JP
Japan
Prior art keywords
weight
coal ash
firing
artificial lightweight
lightweight aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33541093A
Other languages
Japanese (ja)
Other versions
JPH07187740A (en
Inventor
和明 浮田
信行 犬丸
光裕 石井
拓男 野尻
浩展 村井
善克 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Sumitomo Osaka Cement Co Ltd
Original Assignee
Shikoku Electric Power Co Inc
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, Sumitomo Osaka Cement Co Ltd filed Critical Shikoku Electric Power Co Inc
Priority to JP33541093A priority Critical patent/JP3430236B2/en
Publication of JPH07187740A publication Critical patent/JPH07187740A/en
Application granted granted Critical
Publication of JP3430236B2 publication Critical patent/JP3430236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、人工軽量骨材用組成物
及び人工軽量骨材の製造方法に関する。 【0002】 【従来技術とその課題】最近のエネルギー原料の多様化
による石炭の利用の増大に伴い、石炭灰の副生量が増加
している。回収された石炭灰は、未燃炭素含有量(JIS
A 6201)が5重量%以下のものはモルタル、コンクリー
ト等の混和材料として用いられる。これに対し、5重量
%を超えるものは一部がセメント用原料等に使用されて
いるだけで、その大部分は埋立てに用いられていた。と
ころが、近年では埋立用地の確保さえ極めて困難な状況
となりつつあるため、石炭灰の利用促進が資源の有効利
用と自然環境保護の点から強く要望されている。 【0003】他方、近年の建築用材料の軽量化に伴い、
軽量骨材の需要が増加している。そこで、石炭灰の利用
促進を図るため、これを原料として用いた焼結タイプの
人工軽量骨材が開発され、その一部が実用化されてい
る。しかし、上記焼結タイプのものは、見掛け比重が
1.3〜1.6程度と大きく、その低比重化に限界があ
った。 【0004】これに対し、焼結タイプの人工軽量骨材よ
りも低比重のものが製造できるとされている発泡タイプ
の人工軽量骨材もある。かかるタイプの人工軽量骨材を
焼成過程は、一般に次の二段階から構成されている。 【0005】(i)焼結過程 これは造粒物の焼結過程であり、昇温とともに造粒物中
の粒子が軟化・収縮することにより焼結が進行する。 【0006】(ii)発泡過程 焼結過程につづき、さらに昇温することにより、造粒物
の成分の溶融と酸化鉄の分解によるガス発生が起こる。
このとき、溶融物は発生したガスによって膨張するとと
もに、その表面に緻密な層を形成する。その結果、軽量
で、吸水の少ない人工軽量骨材が得られる。 【0007】しかしながら、発泡タイプの人工軽量骨材
の製造において、石炭灰を原料として用いる場合には、
石炭灰のもつ特有の性質に起因して以下のような様々な
問題が生じる。 【0008】第一に、石炭灰は本質的に加熱により軟化
し易いため、石炭灰を造粒して焼成する際、造粒物は、
軟化点に達すると自形を保持できなくなり(すなわち自
立性を失い)、容易に変形して造粒物間にある空隙を埋
めてしまう。しかも、石炭灰の粒子自身も自己収縮を起
こす。このようにして、骨材となるべき造粒物の比重は
増大し、製品の軽量化を図ることができなくなる。 【0009】第二に、石炭灰は、その生成過程におい
て、ボイラー内で高温に加熱された後に急冷されて組織
が非晶質化されており、軟化点から溶融点までの温度差
は極めて狭くなっている。そのため、石炭灰からなる造
粒物を焼成すると直ちに溶融点に到達してしまい、その
溶融物が造粒物表面を覆い、その後ガラス化して開放気
孔を塞いでしまう。しかも、上記の石炭灰粒子の自己収
縮により空隙自体も減少する。その結果、造粒物内部へ
の酸素の供給が阻まれ、造粒物内に未燃炭素が多量に残
留することとなる。即ち、未燃炭素が多量に残留すれ
ば、骨材の強熱減量が増加するだけでなく、焼成時に発
泡に寄与するFe2 3 が残留未燃炭素により還元さ
れ、造粒物が全く発泡しなくなるか又は発泡が不十分と
なる。 【0010】上記の場合において、残留未燃炭素量を減
少させる方法として、仮焼工程を設けて未燃炭素量を減
少させた後、発泡を目的とする焼成をするという2段階
の焼成を行なう方法がある(特開平4−238842号
公報)。しかし、焼成を2段階とすれば、当然ながらエ
ネルギーコスト等の点において非常に不利となり、廃棄
物たる石炭灰を原料として用いるメリットを全く生かす
ことができない。 【0011】 【発明が解決しようとする課題】従って、本発明は、石
炭灰を主原料として用い、特に軽量性に優れた人工軽量
骨材を提供することを主な目的とする。 【0012】 【課題を解決するための手段】本発明者は、上記従来技
術の問題点に鑑み、鋭意研究を重ねたところ、石炭灰よ
りも軟化・溶融し難い特定の材料を石炭灰に配合したも
のを原料として用いて人工軽量骨材を製造する場合に
は、上記問題を実質的に解消できることを見出し、本発
明を完成するに至った。 【0013】即ち、本発明は、下記第1項の組成物と第
2項の製造方法に係るものである。 1.(A)(a)結晶粒径が5μm以上である結晶性シリカ鉱
物を50重量%以上含有し、かつSiO2 含有量が50
重量%以上である岩石を粉砕して得たものであって、か
つ (b)その粉砕物の50〜95重量%が粒径10〜25
0μmの粉末である粉状物5〜95重量%及び (B) 最大粒子径が200μm以下の石炭灰95〜5重
量% からなることを特徴とする人工軽量骨材用組成物。 【0014】2.(A)(a)結晶粒径が5μm以上である結
晶性シリカ鉱物を50重量%以上含有し、かつSiO2
含有量が50重量%以上である岩石を粉砕して得たもの
であって、かつ (b)その粉砕物の50〜95重量%が粒
径10〜250μmの粉末である粉状物5〜95重量%
及び (B) 最大粒子径が200μm以下の石炭灰95〜5重
量% を混合することにより造粒し、次いで焼成することを特
徴とする人工軽量骨材の製造方法。 【0015】以下、本発明について詳細に説明する。 【0016】本発明の組成物は、(A)(a)結晶粒径が5μ
m以上である結晶性シリカ鉱物を50重量%以上含有
し、かつSiO2 含有量が50重量%以上である岩石を
粉砕して得たものであって、かつ (b)その粉砕物の50
〜95重量%が粒径10〜250μmの粉末である粉状
物5〜95重量%及び(B) 最大粒子径が200μm以下
の石炭灰95〜5重量%からなるものである。 【0017】結晶性シリカ鉱物は、結晶粒径が5μm以
上のものであればいずれの鉱物も使用でき、このような
特徴をもつ天然鉱物としては例えば長石、石英、雲母等
の鉱物が挙げられる。 【0018】上記結晶性シリカ鉱物を50重量%以上含
有し、かつSiO2 含有量が50重量%以上である岩石
としては、その種類は特に限定されないが、例えば頁
岩、粘板岩、砂岩、珪石、花崗岩等が好ましい。 【0019】上記岩石の粉砕物としては、本発明では特
に粒径10〜250μmの粉体が粉砕物中50〜95重
量%を占める粉状物を用いる。さらに、粉体の粒径は造
粒物の直径の1/10程度を超えるような粗大粒子は存
在しないことが好ましい。 【0020】粗粒分が多くなる結果、上記粒径範囲の粉
体が50重量%未満となる場合には、造粒時の粉体の凝
集力が低くなって成形性が悪くなるため、焼成前の造粒
物の強度が低下し、焼成まで粒形を保持できなくなる。
微粉分が多くなる結果、上記粒径範囲の粉体が50重量
%を超える場合には、造粒物内部の空隙が減少するとと
もに焼成時に収縮軟化し易くなり、内部への酸素供給が
阻害されるため、焼成物中に未燃炭素が残留して強熱減
量が大きくなり、しかも軟化に対する抵抗性が低下して
焼成物の自立性が損なわれることとなる。また、上記粒
径範囲の粉体が95重量%を超える場合には、微粉の量
が相対的に少なくなり造粒時の粉体の凝集力が低くなる
ため、粒の成形性が悪く、焼成前の造粒物の強度が低く
なる。なお、これら粒度の調整は、粉砕法等の常法に従
えば良い。 【0021】一方、石炭灰としては、最大粒子径が20
0μm以下のものを用いる。200μmを超える場合に
は、焼結性が低下するので好ましくない。なお、粒度の
下限は特に制限されないが通常0.5μm程度までで良
い。この粒度の調製法としては、ふるい分け法、風力分
級法、粉砕法等の常法によって行うことができるが、実
施の容易さから粉砕法によるのが適当である。なお、本
発明においては、石炭灰の性状等は制限されず、あらゆ
る石炭灰を使用することができる。 【0022】本発明組成物における上記粉状物と石炭灰
との配合割合は、通常粉状物が5〜95重量%、石炭灰
が95〜5重量%の割合とする。粉状物の配合量が5重
量%未満の場合は造粒物の焼成時における軟化収縮の抑
制が不十分となり、95重量%を超える場合は焼結性が
低下するだけでなく、発泡も不十分となるので好ましく
ない。また、本発明の組成物中には、Fe2 3 が4〜
10重量%含有されていることがより好ましい。Fe2
3 は、焼成時において、上記粉状物と石炭灰との混合
により得られる造粒物の発泡に寄与する。即ち、この発
泡は、焼成温度にてマトリックスである石炭灰の一部が
溶融状態となり、適当な粘性を保持したままで原料成分
中のFe2 3 から解離したO2 ガスの発生によるもの
である。上記Fe2 3 含有量が4重量%未満の場合に
は、上記の効果が十分得られない。10重量%を超える
と、過度に軟化し、未燃炭素が残留し易くなるだけでな
く、著しく発泡し易くなり、比重の制御が困難となるの
で好ましくない。Fe2 3 は、岩石中に含まれるFe
2 3 のほか、例えば製鉄所で発生する高炉集塵ダスト
等を供給源として用いることができる。また、焼成時の
造粒物の融着をより効果的に抑制するためにシリカ純度
が高い珪石等の微粉末の吹き付けを併用しても良い。 【0023】本発明の製造方法では、上記粉状物と石炭
灰とを混合して造粒物を得、次いで焼成する。造粒方法
としては、押し出し造粒法、転動造粒法等の公知の造粒
法が採用できるが、特に大量処理が可能なことから転動
造粒法が好ましい。例えば、皿型造粒機(パン型ペレタ
イザー)を用い、転動する皿に粉体と水を供給すること
により行うことができる。この場合、粉体の凝集を良好
にし、造粒物の強度を高めるためにパルプ廃液等をバイ
ンダーとして用いることもできる。粒径においては、JI
S A 5002(構造用軽量コンクリート骨材)の規定値に合
致するように運転上で粒度調整すれば良い。 【0024】また、得られた造粒物の焼成条件は、原料
の組成、所望の骨材の物性、骨材の用途等によって適宜
設定すれば良く、通常は1000〜1450℃程度で5
〜30分、好ましくは1100〜1300℃程度で10
〜20分程度とし、焼成雰囲気は酸化雰囲気とする。 【0025】上記焼成工程においては、焼成時間と保持
時間によって焼成物の状態が変わり、この工程は焼結過
程と発泡過程に分けることができる。焼結過程ではマト
リックスの石炭灰が軟化から半溶融の状態にある。この
段階では昇温とともに造粒物の焼結が進み、多少の密度
増加が起こるが、配合した岩石粒の作用により著しい収
縮は抑えられ、多孔性も失われない。その結果、石炭灰
中の未燃炭素の酸化も十分進行する。さらに昇温する
と、次の発泡過程に移行するが、この過程ではマトリッ
クスは半溶融から溶融状態にある。この過程において、
酸化鉄の分解により生じたO2 ガスによって造粒物が発
泡し、内部に気泡を残し、溶融した石炭灰のガラス状物
が表面を覆って緻密に膜を形成する。 【0026】このようにして、軽量性に優れ、強熱減量
及び吸水の少ない人工軽量骨材を得ることができる。 【0027】 【作用】本発明では、石炭灰よりも軟化・溶融し難い材
料として特定岩石の粉状物を石炭灰に配合する。この場
合、上記粉状物は、焼成時において造粒物の骨格とな
り、軟化・収縮を抑制できる結果、酸素は造粒物内部に
ある炭素と十分反応することができる。これにより同時
にFe2 3 の還元化も防止できる結果、造粒物の発泡
にFe2 3 が寄与でき、焼成時における造粒物の自立
性を高めて造粒物相互の融着を抑制乃至防止することも
できる。 【0028】すなわち、石炭灰は、造粒時にはバインダ
ー的な役割を果たし、焼成時には焼成物の骨格となる材
料粉末相互の接着材としての役割とFe2 3 による発
泡材としての役割を果たすものである。 【0029】 【発明の効果】本発明の人工軽量骨材は、石炭灰に対し
て特定の岩石を配合して製造するので、石炭灰の軟化・
収縮が抑制乃至防止される結果、優れた軽量性を発揮す
ることができる。しかも、残留未燃炭素が実質的に存在
しないので、強熱減量の大幅な低減化が図れ、良好な安
定性を発揮することもできる。 【0030】さらに、本発明の人工軽量骨材において
は、石炭利用の副生成物である石炭灰と、結晶性シリカ
鉱物を多量に含む故に従来十分活用されていなかった岩
石とを原料としているため、これらの材料の有効利用に
大いに寄与することができる。また、本発明では、未燃
炭素含有量の多少に関係なく、あらゆる性状の石炭灰を
原料として利用することもできる。 【0031】このような優れた特性を有する本発明の人
工軽量骨材は、さまざまな用途に適用することができ、
特に高層建築物に用いられる軽量PC板等の用途に有用
である。 【0032】 【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明確にする。 【0033】実施例1および比較例1 石炭灰への混合材として砂岩を用いて、表1に示す原料
配合(原料配合No3〜6)で造粒物(原料中の残留未
燃炭素量約6%)を調製し、混合材が焼結性状に与える
影響を調べた。また、比較例1として、砂岩を配合しな
い原料配合No1及び2も用いて上記効果を調べた。 【0034】本発明である原料配合No3〜6を用いた
結果(実施例1)を表2に示し、比較のための原料配合
No1及び2を用いた結果(比較例1)を表3にそれぞ
れ示す。 【0035】 【表1】 【0036】 【表2】 【0037】 【表3】 【0038】表3からもわかるように、比較例1に係る
焼成No13〜18は強熱減量が大きく、焼成物の自立
性が不十分なものもあった。特に、焼成No13〜16
は、強熱減量がJIS A 5002(構造用コンクリート骨材)
の規格値である1%を超えていることが確認された。 【0039】これに対し、実施例1として砂岩を配合し
た原料配合No3〜6については、900℃で20分間
保持する仮焼段階を設定した焼成No1〜4とともに、
焼成No5〜12も強熱減量は小さく、焼成物の自立性
も良好であった。このことから、砂岩の配合により焼成
物の軟化・収縮が抑制されることがわかる。 【0040】実施例2ならびに比較例2及び3 実施例2として、表4に示す平均粒子径の石炭灰(残留
未燃炭素量約12%)と所定の粒度に粉砕した砂岩の等
量混合物を用いて造粒した後、1250℃で焼成して骨
材を製造した。その結果を表4に示す。なお、いずれの
造粒物もFe23 を5重量%含んでいた。 【0041】比較例2として、表5に示す平均粒子径の
石炭灰(残留未燃炭素量約6%)単独で造粒した後、1
250℃で焼成して骨材を製造した。その結果も表5に
示す。また、比較例3として、本発明の粒度範囲外に調
製した砂岩と石炭灰との等量混合物を用いて造粒した
後、1250℃で焼成して骨材を製造した。その結果を
表6に示す。 【0042】 【表4】 【0043】表4に示すように、砂岩を配合したものは
焼成時間の経過とともに強熱減量が次第に減少していく
ことがわかる。また、比重については、5分焼成では石
炭灰の軟化によって焼成物が収縮するために増大するも
のの、軟化し難い砂岩の存在により内部空隙を確保でき
る結果、酸素が十分内部まで供給されるので残留未燃炭
素が燃焼し、強熱減量は小さくなっていることがわか
る。さらに、15分焼成では残留未燃炭素の影響がなく
なり、良好な発泡性を示し、その比重が非常に小さくな
っていることがわかる。 【0044】 【表5】 【0045】表5から明らかなように、石炭灰の単独使
用の場合は、粒子が細かくなるにつれて吸水率が減少し
ているが、これは微粉になるほど造粒物の表面の開放気
孔が塞がれることによって水分が浸透しなくなったこと
を示している。また、微粉化により焼成時の収縮が大き
くなり、内部気孔の減少及び表面のガラス化により、造
粒物の内部への酸素の供給が阻害されるために多くの残
留未燃炭素が存在する結果、強熱減量も増加した。一
方、強熱減量を小さくするために焼成時間を長くすると
焼成物が溶融してしまう。溶融しない場合であっても、
残留未燃炭素が発泡を阻害するために比重が大きくな
り、軽量化することはできなかった。 【0046】 【表6】【0047】表6からわかるように、粉砕した砂岩の粒
度が細かすぎる場合は、結晶質材料が有する軟化し難い
という特長が発揮されず、石炭灰の焼成温度域の狭さが
優勢となり、焼結後直ちに粒全体が溶融し、造粒物相互
の融着が起こった。他方、粒度を粗くしすぎる場合は、
焼結から発泡までに時間がかかり、エネルギーコストが
過大となるばかりでなく、造粒時の成形性が悪くなる等
の弊害が生じることがわかる。 【0048】実施例3 表7に示すように粒度が異なる石炭灰と砂岩を用い、両
者の混合率(%)を変えたものを造粒した後、1250
℃で焼成した。その結果を表7に示す。 【0049】 【表7】 【0050】表7から明らかなように、砂岩の混合率が
多いと焼成時の軟化収縮の抑制作用が大きくなるだけで
なく、造粒物の残留未燃炭素濃度が希釈されるために強
熱減量が減少し易くなる。 【0051】また、砂岩の粒度は粗いほうが焼成時の軟
化・収縮を抑制し易く、造粒物の粒子間空隙を保持し易
い。その結果、内部に酸素が供給され易くなり、強熱減
量の減少が速くなっていることがわかる。すなわち、本
発明の混合率の範囲における砂岩の混合によって、安定
した発泡状態が得られることがわかる。 【0052】実施例4 表8に示す化学成分等の混合材を用い、表9に示すよう
に混合材の岩種を代えて所定の粒度に粉砕し、石炭灰と
混合して焼成した。この場合、粘板岩及び砂岩は125
0℃、珪石及び標準砂は1300℃でそれぞれ焼成し
た。なお、表8中、標準砂については結晶粒径等の確認
が困難なために化学成分のみを記す。 【0053】 【表8】【0054】 【表9】 【0055】表9からわかるように、SiO2 純度が高
く結晶性シリカ鉱物を多く含み、かつ膨張性でないため
に人工軽量骨材原料として従来用いられなかった岩石を
多量に配合しても、混合材と石炭灰が本発明範囲の粒度
であれば残留未燃炭素を焼成時に十分消費することがで
きる。これにより、焼成物の強熱減量を減少させるとと
もにFe2 3 の状態を維持できることから、石炭灰が
結合材と発泡材の両方の役目を果たし、その軽量化に寄
与していることがわかる。 【0056】実施例5 表10に示す砂岩をそれぞれ用いることにより、結晶性
シリカ鉱物の効果について調べた。その結果を表10に
示す。なお、砂岩と石炭灰を等量混合したものはFe2
3 の含有量を5重量%に調整した後、造粒し、800
℃から1000℃まで20分、1000℃から1250
℃まで10分で昇温し、1250℃で15分保持して焼
成した。得られた焼成物の評価を表10に示す。 【0057】 【表10】 【0058】表10から明らかなように、組成の異なる
砂岩を用いても、所定のSiO2 含有量で結晶質シリカ
鉱物含有量のものを目的とする粒度に調製して使用すれ
ば、良質の人工軽量骨材が得られることがわかる。 【0059】実施例6 Fe2 3 の含有量の影響を調べるため、表11に示す
ように砂岩と石炭灰の等量混合物(原料No1)をベー
スとし、これにFe2 3 を添加して成分を調整するこ
とにより原料No2〜6からなる造粒物を調製した。こ
れらの造粒物を下記に示す条件でそれぞれ焼成し、得ら
れた焼成物の評価を行った。その結果を表12に示す。 【0060】[焼成条件] 1250℃焼成: 800→1000℃/ 20分、1000→1250℃/ 10
分、1250℃/ 15分保持 1300℃焼成: 800→1000℃/ 20分、1000→1300℃/ 10
分、1300℃/ 15分保持 1350℃焼成: 800→1000℃/ 20分、1000→1350℃/ 10
分、1350℃/ 15分保持 【0061】 【表11】 【0062】 【表12】 【0063】ここで、比較例である原料No1では、1
350℃焼成でもマトリックスである石炭灰が溶融段階
に至っておらず、未だ焼結段階にあり、表面気孔が多い
ために吸水率が高い。また、収縮する過程にあるため、
比重が大となり、その結果圧潰強度も高くなってるいる
ことがわかる。 【0064】これに対し、実施例である原料No2〜6
では、1300℃焼成でもFe2 3 量が増加すると焼
結が早くなることから、収縮により比重が増加し、さら
に添加量が多くなると発泡し易くなるため、比重が小さ
くなる。一方、圧潰強度は、比重の値に比例した動きを
示す。さらに、吸水率は、焼結が進行し易くなるため、
その添加量に比例して減少することがわかる。 【0065】また、焼成温度は1350℃になると、焼
結段階の終了がより早くなるため、この時点では既に焼
結は終了しており、Fe2 3 量に反比例して比重、吸
水率及び圧潰強度が減少していることがわかる。以上の
ことから、Fe2 3 が焼成物における発泡に寄与して
いることがわかる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a composition for artificial lightweight aggregate.
And a method for producing an artificial lightweight aggregate. [0002] [Prior art and its problems] Recent diversification of energy raw materials
Coal ash by-products increased due to increased coal use
are doing. The recovered coal ash has an unburned carbon content (JIS
A 6201) is less than 5% by weight for mortar and concrete
It is used as an admixture material such as 5 weight
% Is used as a raw material for cement etc.
Most of it was used for landfill. When
In recent years, it has been extremely difficult to secure landfill sites in recent years
And the promotion of coal ash utilization is
It is strongly demanded from the point of view of business and natural environment protection. On the other hand, with the recent weight reduction of building materials,
The demand for lightweight aggregates is increasing. Therefore, the use of coal ash
In order to promote this, a sintered type
Artificial lightweight aggregates have been developed and some of them have been
You. However, the above sintered type has an apparent specific gravity
It is as large as 1.3 to 1.6, and there is a limit to its lower specific gravity.
Was. On the other hand, a sintered type artificial lightweight aggregate is used.
Foam type that can produce low specific gravity
There are also artificial lightweight aggregates. This type of artificial lightweight aggregate
The firing process generally comprises the following two steps. (I) Sintering process This is the sintering process of the granulated material,
The sintering proceeds due to the softening / shrinking of the particles. (Ii) Foaming process Following the sintering process, by further raising the temperature,
Gas is generated due to the melting of the components and decomposition of the iron oxide.
At this time, the melt expands due to the generated gas.
In addition, a dense layer is formed on the surface. As a result, lightweight
Thus, an artificial lightweight aggregate with little water absorption can be obtained. However, a foam-type artificial lightweight aggregate
When coal ash is used as a raw material in the production of
Due to the unique properties of coal ash, various
Problems arise. First, coal ash is essentially softened by heating
When coal ash is granulated and fired, the granulated material is
When the softening point is reached, the shape cannot be maintained (ie
Loss of standing), easily deform and fill the voids between the granules
I will do it. Moreover, the coal ash particles themselves also self-shrink.
Rub Thus, the specific gravity of the granulated material to be used as the aggregate is
And the weight of the product cannot be reduced. Secondly, coal ash is generated during its production process.
Is heated to a high temperature in the boiler and then rapidly cooled.
Is amorphous, and the temperature difference from the softening point to the melting point
Is extremely narrow. For this reason, coal ash
As soon as the granules are fired, they reach the melting point,
The melt covers the surface of the granulated material, then vitrifies and opens
Blocks the hole. Moreover, the self-collection of coal ash particles
The space itself is reduced by the shrinkage. As a result, into the granulated material
Supply of oxygen is interrupted, and a large amount of unburned carbon remains in the granulated product.
Will stay. That is, a large amount of unburned carbon remains
Not only increases the ignition loss of the aggregate, but also
Fe that contributes to foamTwoOThreeReduced by residual unburned carbon
If the granulated material does not foam at all or is insufficiently foamed
Become. In the above case, the amount of residual unburned carbon is reduced.
As a method to reduce the amount, reduce the amount of unburned carbon by providing a calcining process.
After reducing the amount, baking for the purpose of foaming is two steps
(Japanese Unexamined Patent Publication No. 4-238842)
Gazette). However, if firing is performed in two stages,
It is very disadvantageous in terms of energy cost etc.
Take full advantage of using coal ash as raw material
Can not do. [0011] SUMMARY OF THE INVENTION Accordingly, the present invention
Artificial light weight with charcoal ash as the main raw material, especially light weight
Its main purpose is to provide aggregate. [0012] Means for Solving the Problems The present inventor has proposed the above-mentioned prior art.
In view of the problems of the art, we conducted intensive research and found that coal ash
A specific material that is difficult to soften and melt is mixed with coal ash.
When manufacturing artificial lightweight aggregates using
Found that the above problem could be substantially solved and
Ming has been completed. That is, the present invention relates to the composition of the following item 1 and
It relates to the production method of item 2. 1. (A) (a) a crystalline silica ore having a crystal grain size of 5 μm or more
Containing at least 50% by weight of SiO2TwoContent is 50
It is obtained by crushing rocks that are more than
(B) 50 to 95% by weight of the pulverized product has a particle size of 10 to 25.
5 to 95% by weight of a powder which is 0 μm powder; (B) 95 to 5 layers of coal ash having a maximum particle size of 200 μm or less
amount% A composition for an artificial lightweight aggregate, comprising: 2. (A) (a) A crystal grain size of 5 μm or more
Containing at least 50% by weight of crystalline silica mineralTwo
Rocks with a content of 50% by weight or more obtained by crushing
And (b) 50-95% by weight of the pulverized material is granulated
5 to 95% by weight of a powdery substance which is a powder having a diameter of 10 to 250 μm
as well as (B) 95 to 5 layers of coal ash having a maximum particle size of 200 μm or less
amount% Is granulated by mixing and then firing.
Manufacturing method of artificial lightweight aggregate. Hereinafter, the present invention will be described in detail. The composition of the present invention comprises (A) (a) having a crystal grain size of 5 μm.
containing at least 50% by weight of crystalline silica mineral
And SiOTwoRocks with a content of more than 50% by weight
(B) 50 of the pulverized material.
~ 95% by weight of powder having a particle size of 10 ~ 250μm
5 to 95% by weight and (B) the maximum particle diameter is 200 μm or less
Of coal ash of 95 to 5% by weight. The crystalline silica mineral has a crystal grain size of 5 μm or less.
Any of the above can be used.
Natural minerals with characteristics include, for example, feldspar, quartz, mica, etc.
Minerals. Contains at least 50% by weight of the above crystalline silica mineral.
Having and SiOTwoRock having a content of 50% by weight or more
The type is not particularly limited, for example, page
Rock, slate, sandstone, quartzite, granite and the like are preferred. In the present invention, the above-mentioned crushed rocks are
Powder having a particle size of 10 to 250 μm
A powdery substance occupying% by volume is used. Furthermore, the particle size of the powder
Coarse particles exceeding about 1/10 of the diameter of the grain are not present.
Preferably not present. As a result of an increase in coarse particles, powder having the above-mentioned particle size range is obtained.
If the weight of the powder is less than 50% by weight,
Granulation before firing
The strength of the product is reduced, and the particle shape cannot be maintained until firing.
As a result of increasing the fine powder content, the powder having the above-mentioned particle size range becomes 50 wt.
%, The voids inside the granulated material decrease.
In addition, it becomes easy to shrink and soften during firing, and oxygen supply to the inside
Unburned carbon remains in the fired product due to inhibition
The amount increases and the resistance to softening decreases
The independence of the fired product will be impaired. Also, the above grain
If the powder in the diameter range exceeds 95% by weight, the amount of fine powder
And the cohesion of the powder during granulation is reduced.
Therefore, the formability of the granules is poor, and the strength of the granulated material before firing is low.
Become. Adjustment of these particle sizes is in accordance with a conventional method such as a pulverization method.
Good. On the other hand, as coal ash, the maximum particle size is 20
One having a thickness of 0 μm or less is used. If it exceeds 200μm
Is not preferred because the sinterability decreases. Note that the particle size
The lower limit is not particularly limited, but is usually up to about 0.5 μm.
No. Methods for preparing this particle size include sieving and wind
Can be carried out by a standard method such as a grading method or a pulverizing method.
The pulverization method is suitable from the viewpoint of ease of application. The book
In the invention, the properties and the like of coal ash are not limited.
Coal ash can be used. The above-mentioned powdery substance and coal ash in the composition of the present invention
The mixing ratio is usually 5 to 95% by weight of powdery material, coal ash
Is 95 to 5% by weight. 5 layers of powdered material
If the amount is less than%, suppression of softening shrinkage during firing of the granulated material
Control becomes insufficient, and if it exceeds 95% by weight,
Not only lower, but also insufficient foaming
Absent. In the composition of the present invention, FeTwoOThreeIs 4 ~
More preferably, the content is 10% by weight. FeTwo
OThreeIs the mixing of the powdery substance and coal ash during firing.
Contributes to the foaming of the granules obtained. That is,
At the firing temperature, some of the coal ash, which is the matrix,
Raw material components in a molten state while maintaining appropriate viscosity
Fe insideTwoOThreeO dissociated fromTwoDue to gas generation
It is. The above FeTwoOThreeWhen the content is less than 4% by weight
Cannot obtain the above effects sufficiently. More than 10% by weight
Not only softens too much and unburnt carbon tends to remain.
And it is very easy to foam, making it difficult to control the specific gravity.
Is not preferred. FeTwoOThreeIs Fe contained in the rock
TwoOThreeBesides, for example, blast furnace dust generated at steelworks
Can be used as a supply source. Also, when firing
Silica purity for more effective suppression of agglomeration of granules
Spraying of fine powder such as silica stone having a high content may be used together. In the production method of the present invention, the above-mentioned powdery substance and coal
The granules are obtained by mixing with ash and then calcined. Granulation method
Known granulation such as extrusion granulation, tumbling granulation, etc.
Method can be adopted, but rolling is possible especially because large-scale processing is possible.
Granulation is preferred. For example, dish-type granulator (bread-type pelletizer)
To supply powder and water to the rolling plate
Can be performed. In this case, good powder cohesion
Pulp waste liquid etc. to increase the strength of the granulated material.
Can also be used as an underlayer. In terms of particle size, JI
S A 5002 (Lightweight concrete aggregate for structure)
What is necessary is just to adjust the particle size during operation so as to match. The firing conditions for the obtained granules are as follows:
Depending on the composition of the desired aggregate, the desired physical properties of the aggregate, the intended use of the aggregate, etc.
The temperature may be set at about 1000 to 1450 ° C.
~ 30 minutes, preferably at about 1100-1300 ° C
It takes about 20 minutes and the firing atmosphere is an oxidizing atmosphere. In the firing step, firing time and holding
The state of the fired material changes with time, and this process
Process and foaming process. During the sintering process
Rix coal ash is in a semi-molten state after softening. this
In the stage, the sintering of the granules proceeds with the temperature rise,
Although the increase occurs, remarkable
Shrinkage is suppressed and porosity is not lost. As a result, coal ash
Oxidation of the unburned carbon inside proceeds sufficiently. Raise the temperature further
The process proceeds to the next foaming process.
The powder is in a semi-molten to molten state. In this process,
O generated by decomposition of iron oxideTwoGranulated matter is generated by gas
A glassy substance of coal ash that foams, leaving bubbles inside
Covers the surface and forms a dense film. In this way, it is excellent in lightness and has a loss on ignition.
And an artificial lightweight aggregate with little water absorption can be obtained. [0027] According to the present invention, a material that is harder to soften and melt than coal ash
As a material, powder of specific rock is mixed with coal ash. This place
In this case, the powdery material becomes a skeleton of the granulated material during firing.
As a result, softening and shrinkage can be suppressed, so that oxygen is
Can react well with some carbon. This allows simultaneous
To FeTwoOThreeCan also prevent the reduction of granules
To FeTwoOThreeCan contribute to the independence of the granules during firing.
It is also possible to increase or reduce the fusion of the granules
it can. That is, coal ash is used as a binder during granulation.
Material that serves as a skeleton of the fired material during firing
Of Fe powder as an adhesive between Fe and FeTwoOThreeDeparture by
It plays a role as a foam material. [0029] As described above, the artificial lightweight aggregate of the present invention is effective against coal ash.
Is manufactured by blending specific rocks.
As a result of suppression or prevention of shrinkage, it exhibits excellent lightness
Can be In addition, there is substantial residual unburned carbon
Not greatly reduced ignition loss.
It can also demonstrate qualitative properties. Further, in the artificial lightweight aggregate of the present invention,
Is coal ash, a by-product of coal utilization, and crystalline silica
Rocks that have not been fully utilized in the past due to their high mineral content
Because stone and raw materials are used, the effective use of these materials
Can greatly contribute. In the present invention,
Coal ash of all properties, regardless of carbon content
It can also be used as a raw material. The person of the present invention having such excellent characteristics
Lightweight aggregate can be applied to various uses,
Particularly useful for applications such as lightweight PC boards used in high-rise buildings
It is. [0032] The following examples and comparative examples show the present invention.
Clarify the features. Example 1 and Comparative Example 1 Using sandstone as a mixed material for coal ash, the raw materials shown in Table 1
Granulated material (raw material mixture No. 3-6)
Carbon content about 6%), and the mixture gives sintering properties
The effects were investigated. As Comparative Example 1, no sandstone was blended.
The above effects were also examined using the raw material formulations Nos. 1 and 2. Using the raw material formulations Nos. 3 to 6 of the present invention,
The results (Example 1) are shown in Table 2, and the raw material formulations for comparison are shown.
Table 3 shows the results obtained using Nos. 1 and 2 (Comparative Example 1).
Shown. [0035] [Table 1] [0036] [Table 2] [0037] [Table 3] As can be seen from Table 3, Comparative Example 1
Firing Nos. 13 to 18 have a large loss on ignition, and the fired product is self-supporting
Some of them were inadequate. In particular, firing Nos. 13 to 16
Has a loss on ignition of JIS A 5002 (concrete aggregate for structure)
It was confirmed that the value exceeded the standard value of 1%. On the other hand, in Example 1, sandstone was blended.
For raw material formulation Nos. 3-6, 900 ° C for 20 minutes
Along with firing Nos. 1 to 4 which set the calcining stage to be held,
Firing Nos. 5 to 12 also have a small loss on ignition and are independent of the fired product.
Was also good. From this, it is fired by mixing sandstone
It can be seen that the softening / shrinkage of the object is suppressed. Example 2 and Comparative Examples 2 and 3 As Example 2, coal ash having an average particle diameter shown in Table 4 (residual
About 12% of unburned carbon) and sandstone crushed to the specified particle size
After granulating with the mixture, baking at 1250 ° C
Lumber was manufactured. Table 4 shows the results. In addition, any
Granulated material is also FeTwoOThreeWas contained at 5% by weight. As Comparative Example 2, the average particle size shown in Table 5 was
After granulating with coal ash (residual unburned carbon amount about 6%) alone, 1
It was fired at 250 ° C. to produce an aggregate. Table 5 also shows the results
Show. Further, as Comparative Example 3, the particle size was adjusted out of the particle size range of the present invention.
Granulated using an equal mixture of sandstone and coal ash
Then, it was fired at 1250 ° C. to produce an aggregate. The result
It is shown in Table 6. [0042] [Table 4] As shown in Table 4, those containing sandstone
Ignition loss gradually decreases over time of firing
You can see that. For specific gravity, 5 minutes firing
Increased due to shrinkage of calcined material due to softening of coal ash
However, due to the presence of hard-to-soften sandstone, internal voids can be secured.
As a result, sufficient unburned coal is
It can be seen that the element burns and the loss on ignition decreases.
You. In addition, there is no effect of residual unburned carbon by firing for 15 minutes.
It shows good foaming properties and its specific gravity is very small.
You can see that it is. [0044] [Table 5] As is evident from Table 5, the single use of coal ash
Water absorption decreases as the particles become finer.
However, the finer the powder, the more open the surface of the granulated material.
Water is no longer penetrated by closing the holes
Is shown. In addition, shrinkage during firing is large due to pulverization.
And reduced internal porosity and vitrified surface
Since the supply of oxygen to the inside of the granules is impeded,
Ignition loss also increased as a result of the presence of unburned carbon. one
On the other hand, if the firing time is increased to reduce the ignition loss,
The fired product will melt. Even if it does not melt,
Specific gravity increases due to residual unburned carbon inhibiting foaming
And could not be reduced in weight. [0046] [Table 6]As can be seen from Table 6, crushed sandstone grains
If the degree is too small, it is difficult to soften the crystalline material
That the coal ash firing temperature range is narrow.
Dominant, immediately after sintering, the entire grain melts,
Fusion occurred. On the other hand, if the particle size is too coarse,
It takes time from sintering to foaming, and energy costs
Not only becomes excessive, but also deteriorates moldability during granulation, etc.
It can be seen that the adverse effect of the above occurs. Embodiment 3 As shown in Table 7, coal ash and sandstone with different particle sizes were used.
After granulating the mixture with different mixing ratio (%), 1250
Fired at ℃. Table 7 shows the results. [0049] [Table 7] As is clear from Table 7, the mixing ratio of sandstone is
If the amount is too large, only the effect of suppressing softening shrinkage during firing increases.
No, because the residual unburned carbon concentration of the granulated product is diluted.
Heat loss is easily reduced. The coarser the grain size of the sandstone, the softer it is during firing.
It is easy to suppress granulation and shrinkage, and it is easy to maintain the gap between particles of the granulated material
No. As a result, oxygen is easily supplied to the inside,
It can be seen that the amount decrease is faster. That is, the book
Stable by mixing sandstone within the range of the inventive mixing ratio
It can be seen that an expanded foam state is obtained. Embodiment 4 As shown in Table 9, a mixture of the chemical components shown in Table 8 was used.
Replace the rock type of the mixed material with pulverized particles to a predetermined particle size,
Mix and fire. In this case, slate and sandstone are 125
0 ℃, silica and standard sand are fired at 1300 ℃ respectively
Was. In Table 8, for standard sand, check the crystal grain size, etc.
Due to the difficulty, only the chemical components are described. [0053] [Table 8][0054] [Table 9] As can be seen from Table 9, SiOTwoHigh purity
High in crystalline silica minerals and not expandable
Rocks that have not been used as a material for artificial lightweight aggregate
Even if blended in large amounts, the mixed material and coal ash have a particle size within the range of the present invention.
In this case, the residual unburned carbon can be sufficiently consumed during firing.
Wear. As a result, when the ignition loss of the fired material is reduced,
FeTwoOThreeCoal ash
It acts as both a binder and a foam, helping to reduce its weight.
You can see that it is giving. Embodiment 5 By using each of the sandstones shown in Table 10,
The effect of silica mineral was investigated. Table 10 shows the results.
Show. A mixture of sandstone and coal ash in the same amount is FeTwo
OThreeWas adjusted to 5% by weight, and then granulated,
20 minutes from 1000 ° C to 1000 ° C, 1250 to 1000 ° C
To 10 ° C in 10 minutes, and held at 1250 ° C for 15 minutes for baking.
Done. Table 10 shows the evaluation of the obtained fired product. [0057] [Table 10] As is apparent from Table 10, the compositions differed.
Even if sandstone is used, the specified SiOTwoCrystalline silica by content
Use it after adjusting the mineral content to the desired particle size.
It can be seen that a good quality artificial lightweight aggregate can be obtained. Embodiment 6 FeTwoOThreeTable 11 shows the effect of the content of
Of an equal mixture of sandstone and coal ash (raw material No. 1)
And FeTwoOThreeTo adjust the ingredients
Thus, a granulated product composed of raw materials Nos. 2 to 6 was prepared. This
Each of these granules was fired under the following conditions to obtain
The fired product obtained was evaluated. Table 12 shows the results. [Firing conditions] 1250 ℃ firing: 800 → 1000 ℃ / 20min, 1000 → 1250 ℃ / 10
Min, 1250 ° C / 15 min hold 1300 ℃ firing: 800 → 1000 ℃ / 20min, 1000 → 1300 ℃ / 10
Min, 1300 ℃ / 15min 1350 ℃ firing: 800 → 1000 ℃ / 20min, 1000 → 1350 ℃ / 10
Min, 1350 ℃ / 15min [0061] [Table 11] [0062] [Table 12] Here, in raw material No. 1 as a comparative example, 1
Even at 350 ° C firing, the matrix coal ash is in the melting stage
And still in the sintering stage, with many surface porosity
Because of high water absorption. Also, because it is in the process of contracting,
Specific gravity has increased, resulting in higher crush strength
You can see that. On the other hand, the raw materials Nos.
Then, even at 1300 ° C firing, FeTwoO ThreeYaki when the amount increases
Since the setting is faster, the specific gravity increases due to shrinkage,
When the amount added is too large, foaming tends to occur, so the specific gravity is small.
It becomes. On the other hand, the crushing strength moves in proportion to the value of specific gravity.
Show. Furthermore, the water absorption rate is such that sintering is easy to proceed,
It can be seen that the amount decreases in proportion to the amount added. When the firing temperature reaches 1350 ° C.,
Since the sintering phase ends sooner,
The conclusion is over and FeTwoOThreeSpecific gravity and absorption are inversely proportional to the amount
It can be seen that the water content and the crushing strength are reduced. More than
Therefore, FeTwoOThreeContributes to foaming in fired products
You can see that there is.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 犬丸 信行 大阪府寝屋川市打上221番地の2 北1 番館−508号 (72)発明者 石井 光裕 香川県綾歌郡綾上町山田下2239番1号 (72)発明者 野尻 拓男 大阪府大阪市住吉区山之内4丁目16番22 号 (72)発明者 村井 浩展 香川県仲多度郡多度津町三井698番5号 (72)発明者 西野 善克 大阪府大阪狭山市池尻中1丁目27番19号 (56)参考文献 特開 平3−88749(JP,A) 特開 平4−119952(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 18/08 C04B 14/04 C04B 14/02 C04B 18/10 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Nobuyuki Inumaru 2-21 Kita-bankan-508 No. 221, Uchiage, Neyagawa-shi, Osaka (72) Inventor Mitsuhiro Ishii 22239-1, Yamadashita, Ayaue-cho, Aya-gun, Kagawa Pref. Inventor Takuo Nojiri 4-16-22 Yamanouchi, Sumiyoshi-ku, Osaka-shi, Osaka (72) Inventor Hironobu Murai 698-5, Mitsui, Tadotsu-cho, Nakatado-gun, Kagawa Prefecture (72) Inventor Yoshikatsu Nishino Osaka-Sayama, Osaka 1-27-19, Ikejirinaka (56) References JP-A-3-88749 (JP, A) JP-A-4-119952 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) C04B 18/08 C04B 14/04 C04B 14/02 C04B 18/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】(A)(a)結晶粒径が5μm以上である
結晶性シリカ鉱物を50重量%以上含有し、かつSiO
2含有量が50重量%以上である砂岩及び/又は珪石
粉砕して得たものであって、かつ(b)その粉砕物の5
0〜95重量%が粒径10〜250μmの粉末である粉
状物5〜95重量%及び (B)最大粒子径が200μm以下の石炭灰95〜5重
量%からなり、Fe 2 3 の含有量が4〜10重量%であ
る人工軽量骨材用組成物を混合することにより造粒し、
次いで1100〜1300℃で焼成することを特徴とす
る人工軽量骨材の製造方法。
(57) [Claim 1] (A) (a) 50% by weight or more of a crystalline silica mineral having a crystal grain size of 5 μm or more and SiO 2
(2 ) A powder obtained by pulverizing sandstone and / or quartzite having a content of 50% by weight or more, and (b) 5
0 to 95% by weight is a powder having a particle size of 10 to 250 μm, and 5 to 95% by weight; and (B) 95 to 5% by weight of coal ash having a maximum particle size of 200 μm or less , containing Fe 2 O 3 . The amount is 4-10% by weight
Granulated by mixing the composition for artificial lightweight aggregates ,
Subsequently, the method is fired at 1100 to 1300 ° C., and a method for producing an artificial lightweight aggregate.
JP33541093A 1993-12-28 1993-12-28 Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate Expired - Fee Related JP3430236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33541093A JP3430236B2 (en) 1993-12-28 1993-12-28 Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33541093A JP3430236B2 (en) 1993-12-28 1993-12-28 Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate

Publications (2)

Publication Number Publication Date
JPH07187740A JPH07187740A (en) 1995-07-25
JP3430236B2 true JP3430236B2 (en) 2003-07-28

Family

ID=18288239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33541093A Expired - Fee Related JP3430236B2 (en) 1993-12-28 1993-12-28 Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate

Country Status (1)

Country Link
JP (1) JP3430236B2 (en)

Also Published As

Publication number Publication date
JPH07187740A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
KR101904172B1 (en) High Early Cement Composition for Road Pavement and Pavement Method Using Thereof
KR20200042246A (en) Manufacturing Method of Pannel Using Foaming Ceramic Ball and Pannel Using Foaming Ceramic Ball thereby
JP3430236B2 (en) Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate
GB2441999A (en) A concrete building block containing crushed glass
JPH11246253A (en) Lightweight concrete
JP2500244B2 (en) Manufacturing method of lightweight and high strength building materials
JP3267152B2 (en) Manufacturing method of coal ash lightweight aggregate
JPS6245187B2 (en)
JP3368365B2 (en) Composition for artificial lightweight aggregate and method for producing artificial lightweight aggregate
JPH1143336A (en) Production of raw materials for foamed glass
JP4662336B2 (en) Soil block with both water retention and water permeability
JPH1121161A (en) Production of formed lightweight tile having freezing damage resistance
JPH11343128A (en) Glass expanded body and its production
JP2003145518A (en) Method for manufacturing chinese yellow panel for interior finish material of building
JP2002255612A (en) Admixture for artificial aggregate raw material and artificial aggregate containing the same admixture
JP3222352B2 (en) Multilayer inorganic foam and method for producing the same
JP2554975B2 (en) Fine spherical inorganic foam having thick skin and method for producing the same
JP4275381B2 (en) Tile manufacturing method using molten slag
JP3343383B2 (en) Method for producing inorganic lightweight fired body
JPH0717757A (en) Production of sintered compact using incineration ash
JP2005213060A (en) Method of manufacturing artificial lightweight aggregate
JP2001039780A (en) Production of water permeable ceramic block
JPH11147752A (en) Baked high-strength construction material
JPS59141433A (en) Production of light-weight ceramic building material
JP2000272942A (en) Production of artificial lightweight aggregate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees