JP3419495B2 - Composite ceramics - Google Patents
Composite ceramicsInfo
- Publication number
- JP3419495B2 JP3419495B2 JP10905193A JP10905193A JP3419495B2 JP 3419495 B2 JP3419495 B2 JP 3419495B2 JP 10905193 A JP10905193 A JP 10905193A JP 10905193 A JP10905193 A JP 10905193A JP 3419495 B2 JP3419495 B2 JP 3419495B2
- Authority
- JP
- Japan
- Prior art keywords
- thermal shock
- resistance
- boron nitride
- nitride
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 32
- 239000002131 composite material Substances 0.000 title claims description 26
- 230000035939 shock Effects 0.000 claims description 32
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 21
- 229910052582 BN Inorganic materials 0.000 claims description 20
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 12
- 238000005452 bending Methods 0.000 claims description 11
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 5
- 229910003440 dysprosium oxide Inorganic materials 0.000 claims description 4
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical group O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- VXPLXMJHHKHSOA-UHFFFAOYSA-N propham Chemical compound CC(C)OC(=O)NC1=CC=CC=C1 VXPLXMJHHKHSOA-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は新規な複合セラミックス
に関し、特に耐熱衝撃性が必要とされる部分に用いる構
造材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel composite ceramic, and more particularly to a structural material used in a portion where thermal shock resistance is required.
【0002】[0002]
【従来の技術】従来より耐熱衝撃性に優れたセラミック
スとしては、コーディエライト、チタン酸アルミニウム
等が一般的である。コーディエライトとは、MgO−A
l2O3−SiO2系からなるセラミックスのことであ
る。(特公昭54−1564号公報)これらは耐熱衝撃
温度差としては充分であるが、機会的強度に劣るため耐
熱衝撃性が必要とされる部分に用いる場合、利用分野が
限定される。他に耐熱衝撃性に優れたセラミックスとし
ては窒化ホウ素(BN)や窒化ケイ素(Si3N4)焼結
体が知られている。しかし、前者は耐熱衝撃性に優れる
が機械的強度及び耐摩耗性に劣り、後者は耐摩耗性に優
れるが耐熱衝撃性に劣るという欠点を有していた。2. Description of the Related Art Cordierite, aluminum titanate and the like have been generally used as ceramics having excellent thermal shock resistance. Cordierite is MgO-A
It is a ceramic made of l 2 O 3 —SiO 2 system. (Japanese Examined Patent Publication No. 54-1564) These are sufficient as the thermal shock resistance temperature difference, but since they are inferior in opportunistic strength, when used in a portion where thermal shock resistance is required, the field of use is limited. In addition, boron nitride (BN) and silicon nitride (Si 3 N 4 ) sintered bodies are known as ceramics having excellent thermal shock resistance. However, the former has a drawback that it is excellent in thermal shock resistance but inferior in mechanical strength and abrasion resistance, and the latter is excellent in abrasion resistance but inferior in thermal shock resistance.
【0003】このためBNとSi3N4を複合化させて両
者の欠点を補う努力がなされている。例えば、窒化ホウ
素と窒化珪素からなる複合セラミックス(特開昭56−
120575号公報)、βーサイアロンと窒化ホウ素か
らなる複合セラミックス(特開昭60−145963号
公報)、βーサイアロンと電融アルミナと窒化ホウ素か
らなる複合セラミックス(特開平2−255247号公
報)、βーサイアロンと酸化ジルコニウムと窒化ホウ素
からなる複合セラミックス(特開平2−255248号
公報)等が提案されている。しかし、Si3N4には溶鋼
と接触すると化学的に反応し溶損するという欠点があ
る。For this reason, efforts are being made to compound BN and Si 3 N 4 to compensate for their defects. For example, composite ceramics composed of boron nitride and silicon nitride (Japanese Patent Laid-Open No. 56-
120575), a composite ceramic composed of β-sialon and boron nitride (JP-A-60-145963), a composite ceramic composed of β-sialon, fused alumina and boron nitride (JP-A-2-255247), β-sialon. And composite ceramics composed of zirconium oxide and boron nitride (Japanese Patent Laid-Open No. 2-255248) have been proposed. However, Si 3 N 4 has a drawback that it chemically reacts with molten steel and melts when it comes into contact with molten steel.
【0004】そこで、溶融金属に対し化学的に安定な窒
化アルミニウム(AlN)と窒化ホウ素とを複合化し耐
溶損性を改良したセラミックスが提案されている。例え
ば、窒化ホウ素と窒化アルミニウムと窒化ケイ素からな
る複合セラミックス(特開昭56−129666号公
報、特開昭60−51669号公報)である。しかしな
がらこれらも10wt%以上の窒化珪素を含んでいるた
め、充分な耐溶損性は得られていない。そこで最近で
は、窒化ケイ素を含まず窒化ホウ素と窒化アルミニウム
からなる複合セラミックスも提案されている。例えば、
窒化ホウ素と窒化アルミニウムとY2O3からなる複合セ
ラミックス(特開平1−246178号公報)、窒化ホ
ウ素と窒化アルミニウムとCa化合物からなる複合セラ
ミックス(特開平1−261279号公報)、窒化ホウ
素と窒化アルミニウムとCaO、Y2O3からなる複合セ
ラミックス(特開平1−261279号公報)、窒化ア
ルミニウムと窒化ホウ素と3CaO・Al2O3からなる
複合セラミックス(特開平3−252367号公報)な
どがある。窒化アルミニウムは高熱伝導性材料として知
られているように、構造材料としての特性の内、耐摩耗
性には優れるが機械的強度が劣り、かつ耐熱衝撃性が劣
る。そのためこれらの複合セラミックスは耐溶損性は改
善されるが機械的強度が低下し、特に熱衝撃後の機械的
強度に問題が生じる。また、このように種々のセラミッ
クスが耐熱衝撃性に優れるセラミックスとして開示され
ているが、熱衝撃後の機械的強度である曲げ強さに関す
る記載はない。Therefore, a ceramic has been proposed in which aluminum nitride (AlN), which is chemically stable with respect to molten metal, and boron nitride are combined to improve the erosion resistance. For example, there is a composite ceramic composed of boron nitride, aluminum nitride and silicon nitride (Japanese Patent Laid-Open Nos. 56-129666 and 60-51669). However, since these also contain 10 wt% or more of silicon nitride, sufficient melting resistance is not obtained. Therefore, recently, a composite ceramic made of boron nitride and aluminum nitride that does not contain silicon nitride has been proposed. For example,
Composite ceramics composed of boron nitride, aluminum nitride and Y 2 O 3 (JP-A-1-246178), composite ceramics composed of boron nitride, aluminum nitride and a Ca compound (JP-A 1-261279), boron nitride and nitride There are composite ceramics composed of aluminum and CaO, Y 2 O 3 (JP-A-1-261279), composite ceramics composed of aluminum nitride and boron nitride and 3CaO.Al 2 O 3 (JP-A-3-252367), and the like. . As known as a high thermal conductivity material, aluminum nitride has excellent wear resistance but poor mechanical strength and poor thermal shock resistance among the properties of a structural material. Therefore, these composite ceramics are improved in melting resistance but are reduced in mechanical strength, and in particular have a problem in mechanical strength after thermal shock. In addition, although various ceramics are disclosed as ceramics excellent in thermal shock resistance as described above, there is no description about bending strength which is mechanical strength after thermal shock.
【0005】[0005]
【発明が解決しようとする課題】本発明は窒化アルミニ
ウムと窒化ホウ素からなる複合セラミックスにおいて、
耐溶損性に優れ、かつ耐熱衝撃性に優れる、具体的には
熱衝撃が加えられた後も高い曲げ強度を有する複合セラ
ミックスを提供することを目的とするものである。DISCLOSURE OF THE INVENTION The present invention provides a composite ceramic comprising aluminum nitride and boron nitride,
It is an object of the present invention to provide a composite ceramic which is excellent in melting resistance and thermal shock resistance, and specifically has high bending strength even after thermal shock is applied.
【0006】[0006]
【課題を解決するための手段】本発明は、耐熱衝撃性に
優れ、具体的には熱衝撃が加えられた後も高い曲げ強度
を有する複合セラミックスとするために、窒化アルミニ
ウムが35〜80wt%、窒化ホウ素が2〜30wt
%、酸化マグネシウムが0.5〜25wt%、Yを含む
希土類酸化物の一種または2種以上が0.5〜20wt
%からなる構成とした。また、前記複合セラミックスの
内の希土類酸化物が酸化ディスプロシウムであることが
特に好ましい。前記複合セラミックスの耐熱衝撃性とし
て、温度差1000℃の熱衝撃後においても曲げ強さが
15MPa以上を得ることができる。そのためには、非
酸化性雰囲気中において1600℃〜2100℃で焼結
することが好ましい。According to the present invention, aluminum nitride is contained in an amount of 35 to 80 wt% in order to obtain a composite ceramic having excellent thermal shock resistance, specifically, high bending strength even after being subjected to thermal shock. , 2-30 wt% boron nitride
%, 0.5 to 25 wt% of magnesium oxide, 0.5 to 20 wt% of one or more rare earth oxides containing Y.
The composition is made up of%. Further, it is particularly preferable that the rare earth oxide in the composite ceramic is dysprosium oxide. As the thermal shock resistance of the composite ceramics, a bending strength of 15 MPa or more can be obtained even after thermal shock with a temperature difference of 1000 ° C. For that purpose, it is preferable to sinter at 1600 ° C to 2100 ° C in a non-oxidizing atmosphere.
【0007】[0007]
【作用】本発明において、窒化アルミニウムは耐摩耗性
および耐溶損性の向上効果を有する。窒化アルミニウム
が35wt%より少ないと耐摩耗性および耐溶損性向上
効果が充分でなく、また80wt%を越えると充分な耐
熱衝撃性が得られない。したがって、35〜80wt%
とする。In the present invention, aluminum nitride has the effect of improving wear resistance and melting resistance. If the amount of aluminum nitride is less than 35 wt%, the effect of improving wear resistance and melting resistance is insufficient, and if it exceeds 80 wt%, sufficient thermal shock resistance cannot be obtained. Therefore, 35-80 wt%
And
【0008】窒化ホウ素は耐熱衝撃性向上のために添加
される。しかし、2wt%より少ないと充分な耐熱衝撃
性が得られず、また45wt%より多いと温度差100
0℃の熱衝撃後の曲げ強さが15MPaより小さくな
り、構造部材としての使用が限定される。したがって、
窒化ホウ素は2〜45wt%とする。なお、窒化ホウ素
は、炭化ホウ素として添加し、窒素中雰囲気などの焼結
によって窒化ホウ素としてもよい。Boron nitride is added to improve thermal shock resistance. However, if it is less than 2 wt%, sufficient thermal shock resistance cannot be obtained, and if it is more than 45 wt%, the temperature difference is 100.
Bending strength after thermal shock of 0 ° C. is less than 15 MPa, which limits its use as a structural member. Therefore,
Boron nitride is 2 to 45 wt%. It should be noted that boron nitride may be added as boron carbide, and may be boron nitride by sintering in an atmosphere such as nitrogen.
【0009】酸化マグネシウムは耐溶損性向上のためと
耐熱衝撃性及び緻密化を助けるために添加される。酸化
マグネシウムが0.5wt%より少ないと耐溶損性の向
上及び緻密化に効果がなく、また25wt%より多いと
耐熱衝撃性が低下する。したがって、0.5〜25wt
%とする。Magnesium oxide is added for the purpose of improving the melting resistance and for supporting thermal shock resistance and densification. If the amount of magnesium oxide is less than 0.5 wt%, there is no effect on the improvement of erosion resistance and densification, and if it is more than 25 wt%, the thermal shock resistance decreases. Therefore, 0.5 to 25 wt
%.
【0010】Yを含む希土類酸化物は焼結助剤である。
Yを含む希土類酸化物が0.5wt%より少ないと焼結
助剤としての効果が得られない。20wt%より多いと
耐熱衝撃性に問題が生じる。したがって、Yを含む希土
類酸化物の1種または2種以上で0.5〜20wt%と
する。なお、緻密化を促進させ、より耐溶損性を向上さ
せるためには酸化ディスプロシウムを使用することがよ
り好ましい。以上の構成からなる複合セラミックスは、
温度差1000℃の熱衝撃を加えられた後の曲げ強さが
15MPa以上の耐熱衝撃性を有し、熱衝撃を受ける構
造部材としての使用が可能である。The rare earth oxide containing Y is a sintering aid.
If the content of rare earth oxide containing Y is less than 0.5 wt%, the effect as a sintering aid cannot be obtained. If it exceeds 20% by weight, a problem occurs in thermal shock resistance. Therefore, the content of one or more rare earth oxides containing Y is set to 0.5 to 20 wt%. In addition, it is more preferable to use dysprosium oxide in order to promote the densification and further improve the melting resistance. The composite ceramics having the above structure is
It has a thermal shock resistance of 15 MPa or more in bending strength after being subjected to a thermal shock with a temperature difference of 1000 ° C., and can be used as a structural member that receives a thermal shock.
【0011】[0011]
【実施例】本発明を実施例をあげてさらに具体的に説明
する。窒化アルミニウムを35〜80wt%、窒化ホウ
素が2〜15wt%、酸化マグネシウムが0.5〜25
wt%、Yを含む希土類酸化物が0.5〜20wt%の
範囲内において配合した原料粉末を、エタノールを分散
媒としてボールミルで混合し、得られた混合粉を成形
後、焼結した。焼結は窒素雰囲気中、1800℃の温度
にて1時間保持することによって行った。各焼結体の組
成を表1〜4に示す。得られた焼結体から曲げ試験片を
作製した。熱衝撃後の曲げ強さは、曲げ試験片を100
0℃に加熱後、0℃の水中に投下急冷した後に測定し
た。比較のために前記範囲外の組成による焼結体を作製
し同様に評価した。曲げ強さの試験方法はJIS R
1601に記載されている方法に基づいて4点曲げにて
測定した。以上の結果を表1〜4にあわせて示す。表1
〜4から、本発明の複合セラミックスは温度差1000
℃の熱衝撃が加えられた後も曲げ強さが15MPa以上
であることがわかる。また、希土類酸化物として酸化デ
ィスプロシウムを用いた場合特に高い耐熱衝撃性が得ら
れることがわかる。EXAMPLES The present invention will be described more specifically with reference to examples. 35-80 wt% aluminum nitride, 2-15 wt% boron nitride, 0.5-25 magnesium oxide
Raw material powders containing 0.5% to 20% by weight of a rare earth oxide containing Y and Y were mixed in a ball mill with ethanol as a dispersion medium, and the obtained mixed powder was molded and sintered. Sintering was performed by holding at a temperature of 1800 ° C. for 1 hour in a nitrogen atmosphere. The composition of each sintered body is shown in Tables 1 to 4. A bending test piece was prepared from the obtained sintered body. The bending strength after thermal shock is 100 for bending test pieces.
After heating to 0 ° C., it was dropped into water at 0 ° C. and rapidly cooled, and then measured. For comparison, a sintered body having a composition outside the above range was prepared and evaluated in the same manner. Bending strength test method is JIS R
It was measured by 4-point bending based on the method described in 1601. The above results are also shown in Tables 1 to 4. Table 1
4 to 4, the composite ceramic of the present invention has a temperature difference of 1000.
It can be seen that the flexural strength is 15 MPa or more even after the thermal shock of ° C is applied. It is also found that particularly high thermal shock resistance is obtained when dysprosium oxide is used as the rare earth oxide.
【0012】さらに、得られた焼結体の耐酸化性、耐溶
融鉄性を評価した。評価方法は、耐酸化性の場合、焼結
体を1400℃×20h、大気中にて熱処理した時の焼
結体表面積に対する酸化増量(mg/cm2)とした。
耐溶融鉄性の場合、5×5×5mmに切り出したSS4
1を焼結体の上に置き、1500℃×1h、真空中の条
件にて熱処理し、焼結体上に広がったSS41の形状を
高さ/幅で整理した。この値が大きいほど溶融鉄が濡れ
にくく耐溶融鉄性が高いことを示す。以上の結果を表5
に示す。表5から本発明の複合セラミックスは耐酸化
性、耐溶融鉄性にも優れることが明かとなった。Further, the oxidation resistance and molten iron resistance of the obtained sintered body were evaluated. In the case of oxidation resistance, the evaluation method was an increase in oxidation (mg / cm 2 ) with respect to the surface area of the sintered body when the sintered body was heat-treated in the atmosphere at 1400 ° C. for 20 hours.
In the case of molten iron resistance, SS4 cut into 5 x 5 x 5 mm
1 was placed on the sintered body and heat-treated under the conditions of 1500 ° C. × 1 h in a vacuum, and the shape of SS41 spread on the sintered body was arranged by height / width. The larger this value is, the harder the molten iron gets wet, and the higher the molten iron resistance is. The above results are shown in Table 5.
Shown in. From Table 5, it was revealed that the composite ceramics of the present invention are excellent in oxidation resistance and molten iron resistance.
【表1】 [Table 1]
【表2】 [Table 2]
【表3】 [Table 3]
【表4】 [Table 4]
【表5】 [Table 5]
【0013】[0013]
【発明の効果】以上説明のように、本発明複合セラミッ
クスは、耐溶損性に優れ、かつ耐熱衝撃性にも優れる。As described above, the composite ceramics of the present invention are excellent in melting resistance and thermal shock resistance.
Claims (3)
窒化ホウ素が2〜45wt%、酸化マグネシウムが0.
5〜25wt%、Yを含む希土類元素の酸化物が一種ま
たは2種以上が0.5〜20wt%からなるこを特徴と
する複合セラミックス。1. Aluminum nitride 35 to 80 wt%,
Boron nitride is 2 to 45 wt% and magnesium oxide is 0.
Composite ceramics, characterized in that 5 to 25 wt% and one or more oxides of rare earth elements including Y are 0.5 to 20 wt%.
ムである請求項1記載の複合セラミックス。2. The composite ceramic according to claim 1, wherein the rare earth oxide is dysprosium oxide.
℃の熱衝撃において、曲げ強さが15MPa以上である
請求項1または2に記載の複合セラミックス。3. The composite ceramic has a temperature difference of 1000.
The composite ceramic according to claim 1 or 2, which has a bending strength of 15 MPa or more when subjected to a thermal shock of ° C.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10905193A JP3419495B2 (en) | 1993-05-11 | 1993-05-11 | Composite ceramics |
US08/241,331 US5457075A (en) | 1993-05-11 | 1994-05-11 | Sintered ceramic composite and molten metal contact member produced therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10905193A JP3419495B2 (en) | 1993-05-11 | 1993-05-11 | Composite ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06321641A JPH06321641A (en) | 1994-11-22 |
JP3419495B2 true JP3419495B2 (en) | 2003-06-23 |
Family
ID=14500368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10905193A Expired - Fee Related JP3419495B2 (en) | 1993-05-11 | 1993-05-11 | Composite ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3419495B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100917778B1 (en) * | 2005-04-22 | 2009-09-21 | 주식회사 코미코 | High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SK286533B6 (en) * | 1998-11-19 | 2008-12-05 | Vesuvius Crucible Company | Composite pressure-sintered material |
KR100918190B1 (en) * | 2005-04-22 | 2009-09-22 | 주식회사 코미코 | High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body |
CN113929469B (en) * | 2021-11-15 | 2022-10-21 | 哈尔滨工业大学 | Anti-falling ceramic material and preparation method thereof |
-
1993
- 1993-05-11 JP JP10905193A patent/JP3419495B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100917778B1 (en) * | 2005-04-22 | 2009-09-21 | 주식회사 코미코 | High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPH06321641A (en) | 1994-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1666434B1 (en) | Highly heat conductive silicon nitride sintered body and silicon nitride structural member | |
JPH02145484A (en) | Sintered silicon nitride | |
JP3419495B2 (en) | Composite ceramics | |
JP2577899B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPS60246268A (en) | Sialon base ceramic | |
EP0170889A2 (en) | ZrB2 Composite sintered material | |
JP2855243B2 (en) | Silicon nitride sintered body with excellent wear resistance | |
JP4177493B2 (en) | Ceramic sintered body | |
JP2573230B2 (en) | Silicon nitride ceramics | |
JP3537241B2 (en) | Method for producing silicon nitride sintered body | |
CA2275468A1 (en) | Alumina-base ceramic sinter and process for producing the same | |
JP2588215B2 (en) | Ceramic sintered body | |
JP2691295B2 (en) | Silicon nitride sintered body | |
JP3031192B2 (en) | Sliding nozzle plate refractories | |
JP2673523B2 (en) | Alumina sintered body for cutting tool and its manufacturing method | |
JPH07165462A (en) | Alumina-beta-sialon-yag composite material | |
JP2851721B2 (en) | Silicon nitride sintered body for cutting tools | |
JP3449450B2 (en) | Protection tube for measuring molten metal temperature | |
JP2627797B2 (en) | Silicon nitride sintered body for cutting tool and method for producing the same | |
JPH0753266A (en) | Composite ceramics | |
JP3476312B2 (en) | Nozzle for continuous casting of zirconia-graphite | |
JPH09155415A (en) | Ceramic roller | |
JPH04342468A (en) | Refractory for continuous casting and its production | |
KR960006249B1 (en) | Process for producing an aluminium sintered product | |
JP3567001B2 (en) | Method for producing composite sintered body of silicon carbide and silicon nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |