JP3419495B2 - Composite ceramics - Google Patents

Composite ceramics

Info

Publication number
JP3419495B2
JP3419495B2 JP10905193A JP10905193A JP3419495B2 JP 3419495 B2 JP3419495 B2 JP 3419495B2 JP 10905193 A JP10905193 A JP 10905193A JP 10905193 A JP10905193 A JP 10905193A JP 3419495 B2 JP3419495 B2 JP 3419495B2
Authority
JP
Japan
Prior art keywords
thermal shock
resistance
boron nitride
nitride
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10905193A
Other languages
Japanese (ja)
Other versions
JPH06321641A (en
Inventor
英子 福島
勝彦 古城
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP10905193A priority Critical patent/JP3419495B2/en
Priority to US08/241,331 priority patent/US5457075A/en
Publication of JPH06321641A publication Critical patent/JPH06321641A/en
Application granted granted Critical
Publication of JP3419495B2 publication Critical patent/JP3419495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な複合セラミックス
に関し、特に耐熱衝撃性が必要とされる部分に用いる構
造材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel composite ceramic, and more particularly to a structural material used in a portion where thermal shock resistance is required.

【0002】[0002]

【従来の技術】従来より耐熱衝撃性に優れたセラミック
スとしては、コーディエライト、チタン酸アルミニウム
等が一般的である。コーディエライトとは、MgO−A
23−SiO2系からなるセラミックスのことであ
る。(特公昭54−1564号公報)これらは耐熱衝撃
温度差としては充分であるが、機会的強度に劣るため耐
熱衝撃性が必要とされる部分に用いる場合、利用分野が
限定される。他に耐熱衝撃性に優れたセラミックスとし
ては窒化ホウ素(BN)や窒化ケイ素(Si34)焼結
体が知られている。しかし、前者は耐熱衝撃性に優れる
が機械的強度及び耐摩耗性に劣り、後者は耐摩耗性に優
れるが耐熱衝撃性に劣るという欠点を有していた。
2. Description of the Related Art Cordierite, aluminum titanate and the like have been generally used as ceramics having excellent thermal shock resistance. Cordierite is MgO-A
It is a ceramic made of l 2 O 3 —SiO 2 system. (Japanese Examined Patent Publication No. 54-1564) These are sufficient as the thermal shock resistance temperature difference, but since they are inferior in opportunistic strength, when used in a portion where thermal shock resistance is required, the field of use is limited. In addition, boron nitride (BN) and silicon nitride (Si 3 N 4 ) sintered bodies are known as ceramics having excellent thermal shock resistance. However, the former has a drawback that it is excellent in thermal shock resistance but inferior in mechanical strength and abrasion resistance, and the latter is excellent in abrasion resistance but inferior in thermal shock resistance.

【0003】このためBNとSi34を複合化させて両
者の欠点を補う努力がなされている。例えば、窒化ホウ
素と窒化珪素からなる複合セラミックス(特開昭56−
120575号公報)、βーサイアロンと窒化ホウ素か
らなる複合セラミックス(特開昭60−145963号
公報)、βーサイアロンと電融アルミナと窒化ホウ素か
らなる複合セラミックス(特開平2−255247号公
報)、βーサイアロンと酸化ジルコニウムと窒化ホウ素
からなる複合セラミックス(特開平2−255248号
公報)等が提案されている。しかし、Si34には溶鋼
と接触すると化学的に反応し溶損するという欠点があ
る。
For this reason, efforts are being made to compound BN and Si 3 N 4 to compensate for their defects. For example, composite ceramics composed of boron nitride and silicon nitride (Japanese Patent Laid-Open No. 56-
120575), a composite ceramic composed of β-sialon and boron nitride (JP-A-60-145963), a composite ceramic composed of β-sialon, fused alumina and boron nitride (JP-A-2-255247), β-sialon. And composite ceramics composed of zirconium oxide and boron nitride (Japanese Patent Laid-Open No. 2-255248) have been proposed. However, Si 3 N 4 has a drawback that it chemically reacts with molten steel and melts when it comes into contact with molten steel.

【0004】そこで、溶融金属に対し化学的に安定な窒
化アルミニウム(AlN)と窒化ホウ素とを複合化し耐
溶損性を改良したセラミックスが提案されている。例え
ば、窒化ホウ素と窒化アルミニウムと窒化ケイ素からな
る複合セラミックス(特開昭56−129666号公
報、特開昭60−51669号公報)である。しかしな
がらこれらも10wt%以上の窒化珪素を含んでいるた
め、充分な耐溶損性は得られていない。そこで最近で
は、窒化ケイ素を含まず窒化ホウ素と窒化アルミニウム
からなる複合セラミックスも提案されている。例えば、
窒化ホウ素と窒化アルミニウムとY23からなる複合セ
ラミックス(特開平1−246178号公報)、窒化ホ
ウ素と窒化アルミニウムとCa化合物からなる複合セラ
ミックス(特開平1−261279号公報)、窒化ホウ
素と窒化アルミニウムとCaO、Y23からなる複合セ
ラミックス(特開平1−261279号公報)、窒化ア
ルミニウムと窒化ホウ素と3CaO・Al23からなる
複合セラミックス(特開平3−252367号公報)な
どがある。窒化アルミニウムは高熱伝導性材料として知
られているように、構造材料としての特性の内、耐摩耗
性には優れるが機械的強度が劣り、かつ耐熱衝撃性が劣
る。そのためこれらの複合セラミックスは耐溶損性は改
善されるが機械的強度が低下し、特に熱衝撃後の機械的
強度に問題が生じる。また、このように種々のセラミッ
クスが耐熱衝撃性に優れるセラミックスとして開示され
ているが、熱衝撃後の機械的強度である曲げ強さに関す
る記載はない。
Therefore, a ceramic has been proposed in which aluminum nitride (AlN), which is chemically stable with respect to molten metal, and boron nitride are combined to improve the erosion resistance. For example, there is a composite ceramic composed of boron nitride, aluminum nitride and silicon nitride (Japanese Patent Laid-Open Nos. 56-129666 and 60-51669). However, since these also contain 10 wt% or more of silicon nitride, sufficient melting resistance is not obtained. Therefore, recently, a composite ceramic made of boron nitride and aluminum nitride that does not contain silicon nitride has been proposed. For example,
Composite ceramics composed of boron nitride, aluminum nitride and Y 2 O 3 (JP-A-1-246178), composite ceramics composed of boron nitride, aluminum nitride and a Ca compound (JP-A 1-261279), boron nitride and nitride There are composite ceramics composed of aluminum and CaO, Y 2 O 3 (JP-A-1-261279), composite ceramics composed of aluminum nitride and boron nitride and 3CaO.Al 2 O 3 (JP-A-3-252367), and the like. . As known as a high thermal conductivity material, aluminum nitride has excellent wear resistance but poor mechanical strength and poor thermal shock resistance among the properties of a structural material. Therefore, these composite ceramics are improved in melting resistance but are reduced in mechanical strength, and in particular have a problem in mechanical strength after thermal shock. In addition, although various ceramics are disclosed as ceramics excellent in thermal shock resistance as described above, there is no description about bending strength which is mechanical strength after thermal shock.

【0005】[0005]

【発明が解決しようとする課題】本発明は窒化アルミニ
ウムと窒化ホウ素からなる複合セラミックスにおいて、
耐溶損性に優れ、かつ耐熱衝撃性に優れる、具体的には
熱衝撃が加えられた後も高い曲げ強度を有する複合セラ
ミックスを提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a composite ceramic comprising aluminum nitride and boron nitride,
It is an object of the present invention to provide a composite ceramic which is excellent in melting resistance and thermal shock resistance, and specifically has high bending strength even after thermal shock is applied.

【0006】[0006]

【課題を解決するための手段】本発明は、耐熱衝撃性に
優れ、具体的には熱衝撃が加えられた後も高い曲げ強度
を有する複合セラミックスとするために、窒化アルミニ
ウムが35〜80wt%、窒化ホウ素が2〜30wt
%、酸化マグネシウムが0.5〜25wt%、Yを含む
希土類酸化物の一種または2種以上が0.5〜20wt
%からなる構成とした。また、前記複合セラミックスの
内の希土類酸化物が酸化ディスプロシウムであることが
特に好ましい。前記複合セラミックスの耐熱衝撃性とし
て、温度差1000℃の熱衝撃後においても曲げ強さが
15MPa以上を得ることができる。そのためには、非
酸化性雰囲気中において1600℃〜2100℃で焼結
することが好ましい。
According to the present invention, aluminum nitride is contained in an amount of 35 to 80 wt% in order to obtain a composite ceramic having excellent thermal shock resistance, specifically, high bending strength even after being subjected to thermal shock. , 2-30 wt% boron nitride
%, 0.5 to 25 wt% of magnesium oxide, 0.5 to 20 wt% of one or more rare earth oxides containing Y.
The composition is made up of%. Further, it is particularly preferable that the rare earth oxide in the composite ceramic is dysprosium oxide. As the thermal shock resistance of the composite ceramics, a bending strength of 15 MPa or more can be obtained even after thermal shock with a temperature difference of 1000 ° C. For that purpose, it is preferable to sinter at 1600 ° C to 2100 ° C in a non-oxidizing atmosphere.

【0007】[0007]

【作用】本発明において、窒化アルミニウムは耐摩耗性
および耐溶損性の向上効果を有する。窒化アルミニウム
が35wt%より少ないと耐摩耗性および耐溶損性向上
効果が充分でなく、また80wt%を越えると充分な耐
熱衝撃性が得られない。したがって、35〜80wt%
とする。
In the present invention, aluminum nitride has the effect of improving wear resistance and melting resistance. If the amount of aluminum nitride is less than 35 wt%, the effect of improving wear resistance and melting resistance is insufficient, and if it exceeds 80 wt%, sufficient thermal shock resistance cannot be obtained. Therefore, 35-80 wt%
And

【0008】窒化ホウ素は耐熱衝撃性向上のために添加
される。しかし、2wt%より少ないと充分な耐熱衝撃
性が得られず、また45wt%より多いと温度差100
0℃の熱衝撃後の曲げ強さが15MPaより小さくな
り、構造部材としての使用が限定される。したがって、
窒化ホウ素は2〜45wt%とする。なお、窒化ホウ素
は、炭化ホウ素として添加し、窒素中雰囲気などの焼結
によって窒化ホウ素としてもよい。
Boron nitride is added to improve thermal shock resistance. However, if it is less than 2 wt%, sufficient thermal shock resistance cannot be obtained, and if it is more than 45 wt%, the temperature difference is 100.
Bending strength after thermal shock of 0 ° C. is less than 15 MPa, which limits its use as a structural member. Therefore,
Boron nitride is 2 to 45 wt%. It should be noted that boron nitride may be added as boron carbide, and may be boron nitride by sintering in an atmosphere such as nitrogen.

【0009】酸化マグネシウムは耐溶損性向上のためと
耐熱衝撃性及び緻密化を助けるために添加される。酸化
マグネシウムが0.5wt%より少ないと耐溶損性の向
上及び緻密化に効果がなく、また25wt%より多いと
耐熱衝撃性が低下する。したがって、0.5〜25wt
%とする。
Magnesium oxide is added for the purpose of improving the melting resistance and for supporting thermal shock resistance and densification. If the amount of magnesium oxide is less than 0.5 wt%, there is no effect on the improvement of erosion resistance and densification, and if it is more than 25 wt%, the thermal shock resistance decreases. Therefore, 0.5 to 25 wt
%.

【0010】Yを含む希土類酸化物は焼結助剤である。
Yを含む希土類酸化物が0.5wt%より少ないと焼結
助剤としての効果が得られない。20wt%より多いと
耐熱衝撃性に問題が生じる。したがって、Yを含む希土
類酸化物の1種または2種以上で0.5〜20wt%と
する。なお、緻密化を促進させ、より耐溶損性を向上さ
せるためには酸化ディスプロシウムを使用することがよ
り好ましい。以上の構成からなる複合セラミックスは、
温度差1000℃の熱衝撃を加えられた後の曲げ強さが
15MPa以上の耐熱衝撃性を有し、熱衝撃を受ける構
造部材としての使用が可能である。
The rare earth oxide containing Y is a sintering aid.
If the content of rare earth oxide containing Y is less than 0.5 wt%, the effect as a sintering aid cannot be obtained. If it exceeds 20% by weight, a problem occurs in thermal shock resistance. Therefore, the content of one or more rare earth oxides containing Y is set to 0.5 to 20 wt%. In addition, it is more preferable to use dysprosium oxide in order to promote the densification and further improve the melting resistance. The composite ceramics having the above structure is
It has a thermal shock resistance of 15 MPa or more in bending strength after being subjected to a thermal shock with a temperature difference of 1000 ° C., and can be used as a structural member that receives a thermal shock.

【0011】[0011]

【実施例】本発明を実施例をあげてさらに具体的に説明
する。窒化アルミニウムを35〜80wt%、窒化ホウ
素が2〜15wt%、酸化マグネシウムが0.5〜25
wt%、Yを含む希土類酸化物が0.5〜20wt%の
範囲内において配合した原料粉末を、エタノールを分散
媒としてボールミルで混合し、得られた混合粉を成形
後、焼結した。焼結は窒素雰囲気中、1800℃の温度
にて1時間保持することによって行った。各焼結体の組
成を表1〜4に示す。得られた焼結体から曲げ試験片を
作製した。熱衝撃後の曲げ強さは、曲げ試験片を100
0℃に加熱後、0℃の水中に投下急冷した後に測定し
た。比較のために前記範囲外の組成による焼結体を作製
し同様に評価した。曲げ強さの試験方法はJIS R
1601に記載されている方法に基づいて4点曲げにて
測定した。以上の結果を表1〜4にあわせて示す。表1
〜4から、本発明の複合セラミックスは温度差1000
℃の熱衝撃が加えられた後も曲げ強さが15MPa以上
であることがわかる。また、希土類酸化物として酸化デ
ィスプロシウムを用いた場合特に高い耐熱衝撃性が得ら
れることがわかる。
EXAMPLES The present invention will be described more specifically with reference to examples. 35-80 wt% aluminum nitride, 2-15 wt% boron nitride, 0.5-25 magnesium oxide
Raw material powders containing 0.5% to 20% by weight of a rare earth oxide containing Y and Y were mixed in a ball mill with ethanol as a dispersion medium, and the obtained mixed powder was molded and sintered. Sintering was performed by holding at a temperature of 1800 ° C. for 1 hour in a nitrogen atmosphere. The composition of each sintered body is shown in Tables 1 to 4. A bending test piece was prepared from the obtained sintered body. The bending strength after thermal shock is 100 for bending test pieces.
After heating to 0 ° C., it was dropped into water at 0 ° C. and rapidly cooled, and then measured. For comparison, a sintered body having a composition outside the above range was prepared and evaluated in the same manner. Bending strength test method is JIS R
It was measured by 4-point bending based on the method described in 1601. The above results are also shown in Tables 1 to 4. Table 1
4 to 4, the composite ceramic of the present invention has a temperature difference of 1000.
It can be seen that the flexural strength is 15 MPa or more even after the thermal shock of ° C is applied. It is also found that particularly high thermal shock resistance is obtained when dysprosium oxide is used as the rare earth oxide.

【0012】さらに、得られた焼結体の耐酸化性、耐溶
融鉄性を評価した。評価方法は、耐酸化性の場合、焼結
体を1400℃×20h、大気中にて熱処理した時の焼
結体表面積に対する酸化増量(mg/cm2)とした。
耐溶融鉄性の場合、5×5×5mmに切り出したSS4
1を焼結体の上に置き、1500℃×1h、真空中の条
件にて熱処理し、焼結体上に広がったSS41の形状を
高さ/幅で整理した。この値が大きいほど溶融鉄が濡れ
にくく耐溶融鉄性が高いことを示す。以上の結果を表5
に示す。表5から本発明の複合セラミックスは耐酸化
性、耐溶融鉄性にも優れることが明かとなった。
Further, the oxidation resistance and molten iron resistance of the obtained sintered body were evaluated. In the case of oxidation resistance, the evaluation method was an increase in oxidation (mg / cm 2 ) with respect to the surface area of the sintered body when the sintered body was heat-treated in the atmosphere at 1400 ° C. for 20 hours.
In the case of molten iron resistance, SS4 cut into 5 x 5 x 5 mm
1 was placed on the sintered body and heat-treated under the conditions of 1500 ° C. × 1 h in a vacuum, and the shape of SS41 spread on the sintered body was arranged by height / width. The larger this value is, the harder the molten iron gets wet, and the higher the molten iron resistance is. The above results are shown in Table 5.
Shown in. From Table 5, it was revealed that the composite ceramics of the present invention are excellent in oxidation resistance and molten iron resistance.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【0013】[0013]

【発明の効果】以上説明のように、本発明複合セラミッ
クスは、耐溶損性に優れ、かつ耐熱衝撃性にも優れる。
As described above, the composite ceramics of the present invention are excellent in melting resistance and thermal shock resistance.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化アルミニウムが35〜80wt%、
窒化ホウ素が2〜45wt%、酸化マグネシウムが0.
5〜25wt%、Yを含む希土類元素の酸化物が一種ま
たは2種以上が0.5〜20wt%からなるこを特徴と
する複合セラミックス。
1. Aluminum nitride 35 to 80 wt%,
Boron nitride is 2 to 45 wt% and magnesium oxide is 0.
Composite ceramics, characterized in that 5 to 25 wt% and one or more oxides of rare earth elements including Y are 0.5 to 20 wt%.
【請求項2】 前記希土類酸化物が酸化ディスプロシウ
ムである請求項1記載の複合セラミックス。
2. The composite ceramic according to claim 1, wherein the rare earth oxide is dysprosium oxide.
【請求項3】 前記複合セラミックスが温度差1000
℃の熱衝撃において、曲げ強さが15MPa以上である
請求項1または2に記載の複合セラミックス。
3. The composite ceramic has a temperature difference of 1000.
The composite ceramic according to claim 1 or 2, which has a bending strength of 15 MPa or more when subjected to a thermal shock of ° C.
JP10905193A 1993-05-11 1993-05-11 Composite ceramics Expired - Fee Related JP3419495B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10905193A JP3419495B2 (en) 1993-05-11 1993-05-11 Composite ceramics
US08/241,331 US5457075A (en) 1993-05-11 1994-05-11 Sintered ceramic composite and molten metal contact member produced therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10905193A JP3419495B2 (en) 1993-05-11 1993-05-11 Composite ceramics

Publications (2)

Publication Number Publication Date
JPH06321641A JPH06321641A (en) 1994-11-22
JP3419495B2 true JP3419495B2 (en) 2003-06-23

Family

ID=14500368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10905193A Expired - Fee Related JP3419495B2 (en) 1993-05-11 1993-05-11 Composite ceramics

Country Status (1)

Country Link
JP (1) JP3419495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917778B1 (en) * 2005-04-22 2009-09-21 주식회사 코미코 High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK286533B6 (en) * 1998-11-19 2008-12-05 Vesuvius Crucible Company Composite pressure-sintered material
KR100918190B1 (en) * 2005-04-22 2009-09-22 주식회사 코미코 High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body
CN113929469B (en) * 2021-11-15 2022-10-21 哈尔滨工业大学 Anti-falling ceramic material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917778B1 (en) * 2005-04-22 2009-09-21 주식회사 코미코 High dense sintered body of aluminium nitride, method for preparing the same and member for manufacturing semiconductor using the sintered body

Also Published As

Publication number Publication date
JPH06321641A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
EP1666434B1 (en) Highly heat conductive silicon nitride sintered body and silicon nitride structural member
JPH02145484A (en) Sintered silicon nitride
JP3419495B2 (en) Composite ceramics
JP2577899B2 (en) Silicon nitride sintered body and method for producing the same
JPS60246268A (en) Sialon base ceramic
EP0170889A2 (en) ZrB2 Composite sintered material
JP2855243B2 (en) Silicon nitride sintered body with excellent wear resistance
JP4177493B2 (en) Ceramic sintered body
JP2573230B2 (en) Silicon nitride ceramics
JP3537241B2 (en) Method for producing silicon nitride sintered body
CA2275468A1 (en) Alumina-base ceramic sinter and process for producing the same
JP2588215B2 (en) Ceramic sintered body
JP2691295B2 (en) Silicon nitride sintered body
JP3031192B2 (en) Sliding nozzle plate refractories
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JP2851721B2 (en) Silicon nitride sintered body for cutting tools
JP3449450B2 (en) Protection tube for measuring molten metal temperature
JP2627797B2 (en) Silicon nitride sintered body for cutting tool and method for producing the same
JPH0753266A (en) Composite ceramics
JP3476312B2 (en) Nozzle for continuous casting of zirconia-graphite
JPH09155415A (en) Ceramic roller
JPH04342468A (en) Refractory for continuous casting and its production
KR960006249B1 (en) Process for producing an aluminium sintered product
JP3567001B2 (en) Method for producing composite sintered body of silicon carbide and silicon nitride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees