JP3409836B2 - Operating method of hydrocarbon vapor recovery - Google Patents
Operating method of hydrocarbon vapor recoveryInfo
- Publication number
- JP3409836B2 JP3409836B2 JP07493298A JP7493298A JP3409836B2 JP 3409836 B2 JP3409836 B2 JP 3409836B2 JP 07493298 A JP07493298 A JP 07493298A JP 7493298 A JP7493298 A JP 7493298A JP 3409836 B2 JP3409836 B2 JP 3409836B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum pump
- pressure
- adsorption
- desorption
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Treating Waste Gases (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ガス状炭化水素を
含む廃棄ガス等から炭化水素をPSA法により吸収・回
収する運転方法において、設備の小型化が図れ、且つ安
全性に優れる方法に関するものである。
【0002】
【従来の技術】光化学スモッグを引き起こす原因物質の
一つであるガス状炭化水素については、米国、欧州をは
じめとする先進国はもとより、台湾、東南アジアの工業
国においても、放出濃度が法的に厳しく規制されてい
る。日本においても大気汚染防止法による指針、悪臭防
止法や各自治体の条例等で規制されており、これらの規
制は今後さらに厳しくなる方向にある。
【0003】ところで、ガス状炭化水素の固定発生源と
して特に問題視されている一つは、揮発性炭化水素類を
貯蔵タンクからローリー車、内航船に荷揚げ又は積み卸
しする油槽所等であり、この際に発生する廃棄ガスは1
0〜30%の比較的高濃度の炭化水素を含んでいる。他
の一つは、塗装施設や印刷施設等で使用する溶剤から発
生するガス状炭化水素であり、濃度は数十〜数千ppmと
比較的低い。このようなガス状炭化水素を含む廃棄ガス
の処理、回収方法として、高濃度については吸収液を用
いた吸収法及び吸着法が、低濃度については吸着法が従
来から広く用いられている。また、吸着法の吸着剤とし
ては、活性炭、ゼオライトが用いられている場合が大部
分である。
【0004】吸着法としては、装置面から固定床式及び
流動床式の方法が挙げられる。このうち、固定床式を用
いたガス状炭化水素(溶剤)を含む放散ガスを処理し、
回収する方法(装置)としては、TSA法(温度変動吸
脱着法)、PSA法(圧力変動吸脱着法)及び両者を組
み合わせたTPSA法(温度圧力変動吸脱着法)が挙げ
られ、溶剤の種類や回収の条件によりこれらを使い分け
て使用している。また、該PSA法は昇圧下で吸着、常
圧下で脱着、あるいは常圧下で吸着、減圧下で脱着を行
うもので、吸着材の吸着容量が圧力依存性をもつことを
利用して吸脱着を行うものである。また、該TPSA法
は、常温、常圧下で吸着し、高温、減圧下で脱着を行う
もので、TSA法とPSA法の特徴を備えるものであ
る。そして、上記PSA法及び上記TPSA法の場合、
例えば、脱着工程における当初の吸着塔の圧力はほぼ大
気圧であり、その後、真空ポンプにより吸着塔内のガス
を排気するにつれて減圧となり、最終的に、例えば25
Torrの所定の圧力となる。
【0005】
【発明が解決しようとする課題】しかし、真空ポンプの
排気量はその容積及び回転数に依存するため、真空ポン
プの標準状態での排気量は脱着工程開始時が最大とな
り、その後徐々に減少して脱着工程の終了時に最小とな
り、脱着工程における真空ポンプの排気量は大きく変動
する。例えば、図2中、真空ポンプの排気速度30m3/m
in、定格電力55kW、減圧弁なしの場合の従来例のよう
に、約1分間に最大排気速度30m3/minから最小排気速
度1m3/minまで変化する。このように真空ポンプの排気
量が変動すると、例えば冷却器、回収塔などの下流に設
置される設備の能力を前記真空ポンプの排気量の最大値
で設計する必要があり、大型化する傾向にあった。ま
た、真空ポンプの排気量の急激な変動は装置の安定性を
乱し、安全面の観点からも問題があった。
【0006】したがって、本発明の目的は、ガス状炭化
水素を含む廃棄ガス等から炭化水素をPSA法により吸
収・回収する運転方法において、設備の小型化が図れ、
且つ安全性に優れる方法を提供することにある。
【0007】
【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、真空ポンプの吸引側に
圧力制御弁を設けて、該真空ポンプの脱着工程における
吸引ガス量を平準化するように制御して運転すれば、真
空ポンプ装置後下流に設置される冷却器や回収塔を小型
化できると共に、安全性に優れる運転ができることを見
出し、本発明を完成するに至った。
【0008】すなわち、本発明は、吸着と脱着を交互に
行う吸着装置を用い、一方の吸着装置にガス状炭化水素
を含む廃棄ガスを通過せしめ、吸着剤にガス状炭化水素
を吸着させ、実質的にガス状炭化水素を含まない廃棄ガ
スを大気中に放出し、その間に、他方の吸着装置を脱着
装置に切り換え、吸着剤に吸着したガス状炭化水素を真
空ポンプで吸引して該吸着剤層から離脱せしめ、この離
脱したパージ排ガスからガス状炭化水素を回収する方法
において、前記真空ポンプの吸引側の圧力を制御して、
脱着工程の吸引ガス量を平準化することを特徴とする炭
化水素蒸気回収の運転方法を提供するものである。
【0009】
【発明の実施の形態】次に、本発明の実施の形態につい
て、図1に基づいて説明する。なお、図1は、本実施の
形態である廃棄ガスに含まれるガス状炭化水素回収の運
転方法を説明するフローシートであり、固定床式・PS
A法を採用する。図1中、2aは吸着塔、2bは脱着
塔、3は真空ポンプ、4は冷却器、5は回収塔、7a〜
7hは電磁弁、8は減圧弁、10は圧縮機を示す。図1
において、まず、電磁弁7e、7a、7d、7hを開、
7g、7c、7b、7fを閉の状態とする。炭化水素を
含む被処理ガスは送風機10を経て吸着塔2a(脱着工
程に切り換えた後は吸着塔2b)に送られ、吸着剤にガ
ス状炭化水素を吸着させ、実質的にガス状炭化水素を含
まない廃棄ガスを大気中に放出し(吸着工程)、その間
に、他方の吸着塔2bを脱着装置に切り換え、吸着剤に
吸着したガス状炭化水素を真空ポンプ3で吸引して該吸
着層から離脱せしめ(脱着工程)、この離脱したパージ
排ガスから冷却器4を経て回収塔5にガス状炭化水素を
回収する。次に、吸着塔2a、2bは吸着工程と脱着工
程とを交互に切り換えられる。ずなわち、電磁弁7f、
7b、7c、7gを開、7e、7a、7d、7hを閉の
状態とすることにより、前記と同様に運転する。この切
り換え時間は3〜10分が好ましい。
【0010】本実施の形態は、上記運転の脱着工程にお
いて、真空ポンプ3の吸引側の圧力を制御して、脱着工
程中の吸引ガス量を少なくとも一定の時間、平準化する
ものである。すなわち、真空ポンプ3の吸引側の配管に
設置された減圧弁8は、予め設定された真空ポンプ3の
吸引側の圧力に感応して、弁の開閉を行い吸引ガス量を
制御する。減圧弁8は、脱着工程の当初は全閉の状態で
あり、真空ポンプ3へのガス吸引量を制限することによ
り吸入側圧力を設定値に維持する。例えば、真空ポンプ
の排気速度30m3/min、定格電力55kW、設定圧力15
0Torr、減圧弁設置の本実施の形態のように、脱着工程
当初から約1.5分間、排気速度は5.9m3/minに維持
される(図2)。真空ポンプの吸引ガス量が一定に保た
れる時間としては、該設定圧力により異なるが、吸着工
程と脱着工程の切替え時間を5分毎とした場合、1〜4
分程度が好ましい。1分未満では、真空ポンプの排気量
の低減率が低く、冷却器や回収塔の小型化にも制限があ
る。また、残りの1分は減圧状態から常圧に戻すための
均圧時間に費やされる。その後、吸着塔2aの圧力が下
がるにつれ圧力制御弁8は更に開かれ、ついには全開と
なり真空ポンプ3へガスは吸引される。この操作によ
り、平準化状態で真空ポンプ3へのガスの吸入量と吸入
側の圧力は一定に保たれる。また、脱着工程は前記電磁
弁7g又は7hの開から閉又は閉から開への切替えによ
り終了する。
【0011】前記の如く、平準化とは、真空ポンプの吸
引側を減圧にすることにより、前記脱着工程開始から所
望の時間、真空ポンプの吸引ガス量を一定値に維持する
ことをいい、具体的には、図2中、脱着工程開始から約
1.5分間の真空ポンプの吸引ガス量が一定値を示す状
態を指す。また、上記真空ポンプ3は特に制限されない
が、完全ドライ型真空ポンプが好ましく、該真空ポンプ
3の排気速度としては、炭化水素蒸気回収装置の処理能
力により異なるが、10〜50m3/min、特に20〜40
m3/minが好ましい。
【0012】本実施の形態によれば、真空ポンプ3の吸
引ガス量を平準化できるため、冷却器4及び回収塔5の
最大能力値を減少させることができ、装置の小型化が図
れ、設備コストが低減できる。また、装置の安定化が図
れ安全性が高まる。
【0013】
【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。実施例1図1に示す炭化水素ガスを吸
着式回収法で処理する装置において、表1に示す条件で
運転を行った。真空ポンプは排気速度30m3/min、定格
電力55kWのものを用いた。また、真空ポンプの吸引ガ
ス量の最大値及び最小値を求めると共に、当該最大値か
ら設計される冷却器の冷却能力及び回収塔の塔径を計算
した。結果を表1に示す。
【0014】比較例1
真空ポンプの吸引側に、圧力制御弁を設置することなく
運転を行った以外は、実施例1と同様に行った。結果を
表1に示す。
【0015】
【表1】
【0016】
【発明の効果】本発明の炭化水素蒸気の回収の運転方法
によれば、真空ポンプの吸引ガス量を平準化できるた
め、真空ポンプの下流に設置される冷却器及び回収塔な
どの設備の最大能力値を減少させることができ、装置の
小型化が図れ設備コストが低減できる。また、装置の安
定化が図れ安全性が高まる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation method for absorbing and recovering hydrocarbons from waste gas or the like containing gaseous hydrocarbons by the PSA method, and to reduce the size of the equipment. The present invention relates to a method which is designed to be safe and excellent in safety. [0002] The release concentration of gaseous hydrocarbons, one of the causative substances causing photochemical smog, is not only in developed countries such as the United States and Europe, but also in industrialized countries such as Taiwan and Southeast Asia. It is strictly regulated by law. In Japan, regulations are also set by the Air Pollution Control Law guidelines, the Odor Control Law, and the regulations of each local government, and these regulations are likely to become more stringent in the future. [0003] Incidentally, one of the particular problems as a fixed source of gaseous hydrocarbons is an oil depot for discharging or unloading volatile hydrocarbons from storage tanks to lorries and coastal ships, and the like. The waste gas generated at this time is 1
It has a relatively high concentration of hydrocarbons of 0-30%. The other is gaseous hydrocarbons generated from solvents used in coating facilities, printing facilities, and the like, and has a relatively low concentration of several tens to several thousand ppm. As a method for treating and recovering such waste gas containing gaseous hydrocarbons, an absorption method using an absorbent and an adsorption method have been widely used for high concentrations, and an adsorption method has been widely used for low concentrations. In most cases, activated carbon or zeolite is used as an adsorbent in the adsorption method. As the adsorption method, there are a fixed bed type and a fluidized bed type from the viewpoint of the apparatus. Among them, the fixed-bed type is used to process gaseous gas containing gaseous hydrocarbons (solvents),
Examples of the method (apparatus) for recovery include the TSA method (temperature fluctuation adsorption / desorption method), the PSA method (pressure fluctuation adsorption / desorption method), and the TPSA method (temperature / pressure fluctuation adsorption / desorption method) that combines both methods. These are used properly depending on the conditions of recovery and recovery. In addition, the PSA method performs adsorption under pressure, desorption under normal pressure, or adsorption under normal pressure and desorption under reduced pressure, and utilizes the fact that the adsorption capacity of the adsorbent has pressure dependency to perform adsorption and desorption. Is what you do. The TPSA method adsorbs at normal temperature and normal pressure and desorbs at high temperature and reduced pressure, and has features of the TSA method and the PSA method. And, in the case of the PSA method and the TPSA method,
For example, the initial pressure of the adsorption tower in the desorption step is approximately atmospheric pressure, and then the pressure is reduced as the gas in the adsorption tower is exhausted by the vacuum pump.
The pressure becomes a predetermined pressure of Torr. [0005] However, since the displacement of the vacuum pump depends on its volume and the number of revolutions, the displacement of the vacuum pump in the standard state becomes maximum at the start of the desorption process, and gradually thereafter. At the end of the desorption process, and the displacement of the vacuum pump in the desorption process varies greatly. For example, in FIG. 2, the pumping speed of the vacuum pump is 30 m 3 / m
in, the rated power is 55 kW, and the pumping speed changes from the maximum pumping speed of 30 m 3 / min to the minimum pumping speed of 1 m 3 / min in about one minute as in the conventional example without the pressure reducing valve. When the displacement of the vacuum pump fluctuates in this way, for example, it is necessary to design the capacity of equipment installed downstream such as a cooler and a recovery tower with the maximum value of the displacement of the vacuum pump, and the size tends to increase. there were. Also, a sudden change in the displacement of the vacuum pump disturbs the stability of the apparatus, and there is a problem from the viewpoint of safety. Accordingly, an object of the present invention is to reduce the size of equipment in an operation method for absorbing and recovering hydrocarbons from waste gas or the like containing gaseous hydrocarbons by the PSA method.
Another object of the present invention is to provide a method that is excellent in safety. [0007] Under such circumstances, the present inventors have conducted intensive studies and as a result, provided a pressure control valve on the suction side of the vacuum pump, and set the amount of suction gas in the desorption process of the vacuum pump. It has been found that if the operation is controlled so as to equalize the size, the cooler and the recovery tower installed downstream of the vacuum pump device can be reduced in size and the operation can be performed with excellent safety, and the present invention has been completed. Was. That is, the present invention uses an adsorption device that alternately performs adsorption and desorption. One of the adsorption devices is made to pass waste gas containing gaseous hydrocarbons, and the adsorbent adsorbs gaseous hydrocarbons. Waste gas that does not contain gaseous hydrocarbons is discharged into the atmosphere, while the other adsorber is switched to a desorber, and the gaseous hydrocarbons adsorbed on the adsorbent are sucked by a vacuum pump to remove the adsorbent. In a method of recovering gaseous hydrocarbons from the purged exhaust gas separated from the bed, controlling the pressure on the suction side of the vacuum pump,
It is an object of the present invention to provide a hydrocarbon vapor recovery operation method characterized in that the suction gas amount in the desorption step is leveled. Next, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flow sheet for explaining an operation method for recovering gaseous hydrocarbons contained in waste gas according to the present embodiment, which is a fixed-bed type PS
Method A is adopted. In FIG. 1, 2a is an adsorption tower, 2b is a desorption tower, 3 is a vacuum pump, 4 is a cooler, 5 is a recovery tower, 7a to
7h denotes an electromagnetic valve, 8 denotes a pressure reducing valve, and 10 denotes a compressor. FIG.
First, the solenoid valves 7e, 7a, 7d, 7h are opened,
7g, 7c, 7b, and 7f are closed. The gas to be treated containing hydrocarbons is sent to the adsorption tower 2a (the adsorption tower 2b after switching to the desorption step) through the blower 10, where the adsorbent adsorbs the gaseous hydrocarbons and substantially converts the gaseous hydrocarbons. The waste gas which is not contained is released into the atmosphere (adsorption step), during which time the other adsorption tower 2b is switched to a desorption device, and the gaseous hydrocarbons adsorbed on the adsorbent are suctioned by the vacuum pump 3 to be discharged from the adsorption layer. The gaseous hydrocarbon is recovered from the purged exhaust gas that has been released through the cooler 4 and collected in the recovery tower 5. Next, the adsorption towers 2a and 2b can alternately switch between the adsorption step and the desorption step. That is, the solenoid valve 7f,
By operating 7b, 7c, 7g open and 7e, 7a, 7d, 7h closed, the same operation as described above is performed. This switching time is preferably 3 to 10 minutes. In the present embodiment, in the desorption process of the above operation, the pressure on the suction side of the vacuum pump 3 is controlled to level the amount of suction gas during the desorption process for at least a certain time. That is, the pressure reducing valve 8 installed in the pipe on the suction side of the vacuum pump 3 opens and closes the valve in response to a preset pressure on the suction side of the vacuum pump 3 to control the amount of suction gas. The pressure reducing valve 8 is fully closed at the beginning of the desorption process, and maintains the suction side pressure at a set value by limiting the amount of gas suctioned to the vacuum pump 3. For example, the pumping speed of the vacuum pump is 30 m 3 / min, the rated power is 55 kW, and the set pressure is 15
As in the present embodiment in which the pressure reducing valve is installed at 0 Torr, the pumping speed is maintained at 5.9 m 3 / min for about 1.5 minutes from the beginning of the desorption process (FIG. 2). The time during which the suction gas amount of the vacuum pump is kept constant depends on the set pressure, but when the switching time between the adsorption step and the desorption step is set to every 5 minutes, 1 to 4
Of the order of minutes. If the heating time is less than 1 minute, the rate of reduction of the displacement of the vacuum pump is low, and there is a limit to downsizing the cooler and the recovery tower. The remaining one minute is spent for equalizing time for returning from the reduced pressure state to the normal pressure. Thereafter, as the pressure of the adsorption tower 2a decreases, the pressure control valve 8 is further opened and finally fully opened, and the gas is sucked into the vacuum pump 3. By this operation, the amount of gas suctioned into the vacuum pump 3 and the pressure on the suction side in the leveled state are kept constant. The desorption process is completed by switching the solenoid valve 7g or 7h from open to closed or from closed to open. As described above, leveling means maintaining the suction gas amount of the vacuum pump at a constant value for a desired time from the start of the desorption step by reducing the pressure on the suction side of the vacuum pump. Specifically, FIG. 2 indicates a state in which the suction gas amount of the vacuum pump shows a constant value for about 1.5 minutes from the start of the desorption step. Further, the vacuum pump 3 is not particularly limited but is preferably completely dry vacuum pump, the pumping speed of the vacuum pump 3, processing power different but the hydrocarbon vapor recovery unit, 10 to 50 m 3 / min, in particular 20-40
m 3 / min is preferred. According to the present embodiment, since the suction gas amount of the vacuum pump 3 can be equalized, the maximum capacity value of the cooler 4 and the recovery tower 5 can be reduced, the apparatus can be downsized, and the equipment can be reduced. Cost can be reduced. In addition, the stability of the device is improved, and the safety is enhanced. Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. Example 1 In an apparatus shown in FIG. 1 for treating a hydrocarbon gas by an adsorption recovery method, operation was performed under the conditions shown in Table 1. The vacuum pump used had a pumping speed of 30 m 3 / min and a rated power of 55 kW. In addition, the maximum value and the minimum value of the suction gas amount of the vacuum pump were obtained, and the cooling capacity of the designed cooler and the tower diameter of the recovery tower were calculated from the maximum value. Table 1 shows the results. Comparative Example 1 The operation was performed in the same manner as in Example 1 except that the operation was performed without installing a pressure control valve on the suction side of the vacuum pump. Table 1 shows the results. [Table 1] According to the method for operating the recovery of hydrocarbon vapor of the present invention, the amount of gas suctioned by the vacuum pump can be leveled, so that a cooling device and a recovery tower installed downstream of the vacuum pump can be used. The maximum capacity value of the equipment can be reduced, the size of the apparatus can be reduced, and the equipment cost can be reduced. In addition, the stability of the device is improved, and the safety is enhanced.
【図面の簡単な説明】
【図1】本発明の実施の形態における炭化水素蒸気回収
の運転方法を説明するフローシートである。
【図2】平準化を説明するための図である。
【符号の説明】
2a 吸着塔
2b 脱着塔
3 真空ポンプ
4 冷却器
5 回収塔
7a〜7h 電磁弁
8 減圧弁
10 送風機BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow sheet illustrating a method for operating hydrocarbon vapor recovery in an embodiment of the present invention. FIG. 2 is a diagram for explaining leveling; [Description of Signs] 2a Adsorption tower 2b Desorption tower 3 Vacuum pump 4 Cooler 5 Recovery tower 7a to 7h Solenoid valve 8 Pressure reducing valve 10 Blower
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 53/04 B01D 53/34 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B01D 53/04 B01D 53/34
Claims (1)
い、一方の吸着装置にガス状炭化水素を含む廃棄ガスを
通過せしめ、吸着剤にガス状炭化水素を吸着させ、実質
的にガス状炭化水素を含まない廃棄ガスを大気中に放出
し、その間に、他方の吸着装置を脱着装置に切り換え、
吸着剤に吸着したガス状炭化水素を真空ポンプで吸引し
て該吸着剤層から離脱せしめ、この離脱したパージ排ガ
スからガス状炭化水素を回収する方法において、前記真
空ポンプの吸引側の圧力を制御して、脱着工程中の吸引
ガス量を平準化することを特徴とする炭化水素蒸気回収
の運転方法。(57) [Claims] [Claim 1] An adsorber that alternately adsorbs and desorbs is used, and a waste gas containing a gaseous hydrocarbon is passed through one adsorber, and the adsorbent is used as a gaseous hydrocarbon And releasing waste gas substantially free of gaseous hydrocarbons into the atmosphere, during which time the other adsorption device is switched to a desorption device,
In a method of sucking a gaseous hydrocarbon adsorbed by an adsorbent with a vacuum pump to separate the gaseous hydrocarbon from the adsorbent layer and recovering the gaseous hydrocarbon from the separated purged exhaust gas, the pressure on the suction side of the vacuum pump is controlled. And recovering the amount of the suction gas during the desorption step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07493298A JP3409836B2 (en) | 1998-03-09 | 1998-03-09 | Operating method of hydrocarbon vapor recovery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07493298A JP3409836B2 (en) | 1998-03-09 | 1998-03-09 | Operating method of hydrocarbon vapor recovery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11253737A JPH11253737A (en) | 1999-09-21 |
JP3409836B2 true JP3409836B2 (en) | 2003-05-26 |
Family
ID=13561633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07493298A Expired - Lifetime JP3409836B2 (en) | 1998-03-09 | 1998-03-09 | Operating method of hydrocarbon vapor recovery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3409836B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5241799B2 (en) * | 2004-12-22 | 2013-07-17 | 三菱電機株式会社 | Apparatus and method for treating and recovering gaseous hydrocarbons |
CN108194990A (en) * | 2018-01-30 | 2018-06-22 | 四川特空科技有限公司 | A kind of binary channels negative pressure air purifier |
JP2020032381A (en) * | 2018-08-31 | 2020-03-05 | ウシオ電機株式会社 | Gas treatment apparatus, gas treatment method |
CN112118900A (en) * | 2018-09-05 | 2020-12-22 | 系统工程服务有限公司 | Exhaust gas treatment method and apparatus |
-
1998
- 1998-03-09 JP JP07493298A patent/JP3409836B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11253737A (en) | 1999-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0345686A2 (en) | Pressure swing adsorption apparatus and process for recovery of oil-soluble vapors | |
JPH09215908A (en) | Method for recovering hydrocarbon from waste gas containing gaseous hydrocarbon | |
JP2001110284A (en) | Gas collecting device | |
JP3409836B2 (en) | Operating method of hydrocarbon vapor recovery | |
JP2005000862A (en) | Adsorption apparatus and adsorption method | |
WO2007000960A1 (en) | Method of purifying large quantity of exhaust gas containing dilute volatile hydrocarbon | |
JP2021169079A (en) | Air-conditioning system, building air-conditioning system, and carbon dioxide recovery method | |
JP4575673B2 (en) | Gasoline vapor recovery method and recovery device | |
JP3133988B2 (en) | Equipment for treating lean gaseous hydrocarbons contained in waste gas | |
JP7481859B2 (en) | Gas Separation and Recovery Equipment | |
JP2832372B2 (en) | Exhaust gas treatment method for organic solvent storage container | |
JP2925522B2 (en) | Method for recovering hydrocarbons in liquid form from waste gas containing gaseous hydrocarbons | |
JP2009247962A (en) | Method of cleaning large quantity of exhaust gas containing thin volatile hydrocarbon | |
JP4851432B2 (en) | Volatile organic matter recovery processing apparatus and volatile organic matter recovery processing system having the same | |
JPH1157372A (en) | Method of recovering hydrocarbon vapor using cooling condensation | |
EP1846139A2 (en) | Gas treatment adsorption-oxidation system | |
JPH1199314A (en) | Operation of hydrocarbon vapor recovery | |
JP2000117048A (en) | Adsorptive capturing device and adsorptive recovering device of volatile petroleum compound | |
JP2840563B2 (en) | Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas | |
JP4911139B2 (en) | Removal and recovery of volatile organic compounds | |
WO1996004978A1 (en) | Pressure swing adsorption apparatus and process for recovery of organic vapors | |
JP4973817B2 (en) | Removal and recovery of volatile organic compounds | |
JP7236888B2 (en) | Operation method of vacuum desorption type volatile organic compound recovery equipment | |
JP2005095858A (en) | Cleaning method of exhaust gas containing volatile hydrocarbon | |
JP2002035541A (en) | Method for recovering alcohols, etc., from waste gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140320 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |