JP3409804B2 - Low expansion sealing material - Google Patents

Low expansion sealing material

Info

Publication number
JP3409804B2
JP3409804B2 JP16018493A JP16018493A JP3409804B2 JP 3409804 B2 JP3409804 B2 JP 3409804B2 JP 16018493 A JP16018493 A JP 16018493A JP 16018493 A JP16018493 A JP 16018493A JP 3409804 B2 JP3409804 B2 JP 3409804B2
Authority
JP
Japan
Prior art keywords
powder
sealing material
lead titanate
pbo
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16018493A
Other languages
Japanese (ja)
Other versions
JPH06345485A (en
Inventor
俊郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP16018493A priority Critical patent/JP3409804B2/en
Publication of JPH06345485A publication Critical patent/JPH06345485A/en
Application granted granted Critical
Publication of JP3409804B2 publication Critical patent/JP3409804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置、蛍光表示
管、シリコンダイオード等の電子部品の封着に適した低
膨張性封着材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-expansion sealing material suitable for sealing electronic parts such as semiconductor devices, fluorescent display tubes and silicon diodes.

【0002】[0002]

【従来の技術】従来より、半導体装置、蛍光表示管、シ
リコンダイオード等の電子部品の封着に用いる封着材料
としてPbO−B23 系、PbO−ZnO−B23
系等のガラス粉末に、耐火性粉末としてチタン酸鉛(P
bTiO3 )粉末を混合してなる封着材料が知られてい
る。しかしながら従来の封着材料には、十分に低い熱膨
張係数を有するものが存在せず、用途によっては使用で
きないといった欠点がある。
Conventionally, semiconductor devices, fluorescent display tubes, electronic components PbO-B 2 O 3 -based as sealing material used for sealing, such as a silicon diode, PbO-ZnO-B 2 O 3
As a refractory powder, lead titanate (P
A sealing material formed by mixing bTiO 3 ) powder is known. However, conventional sealing materials have a drawback that there is no material having a sufficiently low coefficient of thermal expansion, and thus they cannot be used depending on the application.

【0003】そこで本発明者等は、特公平4−2865
8号、特開平2−30639号及び特開平5−1717
9号において、チタン酸鉛固溶体を耐火性粉末として用
いた熱膨張係数の低い封着材料を提案している。
Therefore, the inventors of the present invention have found that Japanese Patent Publication No. 2865/1992.
No. 8, JP-A-2-30639 and JP-A-5-1717.
No. 9 proposes a sealing material having a low coefficient of thermal expansion using a lead titanate solid solution as a refractory powder.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記した
各封着材料は、封着後の耐熱性が低いという問題を有し
ている。例えば蛍光表示管の封着に用いた場合、その後
の排気工程で350〜450℃に再加熱される場合もあ
るが、上記した封着材料は耐熱性が低いため、この排気
工程でガラスが再溶融して封着部に気泡が生じてしま
い、その結果、封着部の強度が著しく低下するという不
都合が起こる。
However, each of the above-mentioned sealing materials has a problem that the heat resistance after sealing is low. For example, when it is used for sealing a fluorescent display tube, it may be reheated to 350 to 450 ° C. in the subsequent exhaust step, but since the above-mentioned sealing material has low heat resistance, the glass is reheated in this exhaust step. There is an inconvenience that the melting occurs and bubbles are generated in the sealed portion, and as a result, the strength of the sealed portion is significantly reduced.

【0005】本発明は上記事情に鑑みなされたもので、
低い熱膨張係数を有し、且つ、350〜450℃の再加
熱に耐え得る程度の耐熱性を有する低膨張性封着材料を
提供することを目的とする。
The present invention has been made in view of the above circumstances.
It is an object of the present invention to provide a low-expansion sealing material having a low coefficient of thermal expansion and heat resistance sufficient to withstand reheating at 350 to 450 ° C.

【0006】[0006]

【課題を解決するための手段】本発明の低膨張性封着材
料は、転移点が330〜430℃のガラス粉末50〜9
5体積%とチタン酸鉛固溶体粉末5〜50体積%とから
なり、該チタン酸鉛固溶体粉末は、重量%で、(a)P
bO 55〜73%、CaO 0.5〜12%、TiO
2 26〜35%、(b)PbO 65〜75%、TiO
2 10〜25%、Fe23 1〜10%、WO3 1〜1
2%、CaO 0〜5%、(c)PbO 60〜73
%、TiO2 2〜23%、Fe23 、ZnO、Mg
O、MnO、CoO及びNiOの群から選ばれる1種以
上0.5〜10%、Nb25 、Ta25 及びSb2
5 の群から選ばれる1種以上2〜18%、CaO、S
rO及びBaOの群から選ばれる1種以上0〜7%、の
何れかであることを特徴とする。
The low expansion sealing material of the present invention comprises a glass powder 50-9 having a transition point of 330-430 ° C.
5% by volume and 5-50% by volume of lead titanate solid solution powder, wherein the lead titanate solid solution powder is (a) P
bO 55-73%, CaO 0.5-12%, TiO
2 26-35%, (b) PbO 65-75%, TiO
2 10~25%, Fe 2 O 3 1~10%, WO 3 1~1
2%, CaO 0-5%, (c) PbO 60-73
%, TiO 2 2 to 23%, Fe 2 O 3 , ZnO, Mg
One or more selected from the group consisting of O, MnO, CoO, and NiO, 0.5 to 10%, Nb 2 O 5 , Ta 2 O 5, and Sb 2
One or more selected from the group of O 5 2 to 18%, CaO, S
One or more selected from the group consisting of rO and BaO, and 0 to 7%.

【0007】[0007]

【作用】本発明の低膨張封着材料において、耐火性粉末
として使用するチタン酸鉛固溶体は、材料本来の熱膨張
係数がチタン酸鉛よりもかなり低いものである。このよ
うなチタン酸鉛固溶体は、基本的には Pb1-XCaXTiO3[ただし0<X<0.5] (Pb1-X,CaX){Ti1-Y(Fe2/3W1/3)Y}O3 [ただし0
<X<0.5,0<Y<0.5] Pb1-X(Ca,Sr,Ba)XTi1-Y{Fe1/2(Nb,Ta,Sb)1/2YO3
[ただし0<X<0.5,0<Y<0.7] Pb1-X(Ca,Sr,Ba)XTi1-Y{Zn,Mg,Mn,Co,Ni)1/3(Nb,T
a,Sb)2/3YO3 [ただし0<X<0.5,0<Y<0.
7] の何れかの式で示されるものであるが、固溶体の組成が
上記の化学量論値より多少ずれても耐火性粉末として良
好なものが得られる。しかしながら各成分の割合が先記
した組成範囲よりはずれると熱膨張係数が大きくなり、
通常のチタン酸鉛と変わらなくなるため好ましくない。
なお、チタン酸鉛固溶体粉末の平均粒径は、スクリーン
印刷時の作業性を考慮すると、約10μm以下であるこ
とが望ましい。
The lead titanate solid solution used as the refractory powder in the low expansion sealing material of the present invention has a coefficient of thermal expansion originally lower than that of lead titanate. Such a lead titanate solid solution is basically composed of Pb 1-X Ca X TiO 3 [where 0 <X <0.5] (Pb 1-X , Ca X ) {Ti 1-Y (Fe 2/3 W 1/3 ) Y } O 3 [however 0
<X <0.5, 0 <Y <0.5] Pb 1-X (Ca, Sr, Ba) X Ti 1-Y {Fe 1/2 (Nb, Ta, Sb) 1/2 } Y O 3
[However, 0 <X <0.5, 0 <Y <0.7] Pb 1-X (Ca, Sr, Ba) X Ti 1-Y {Zn, Mg, Mn, Co, Ni) 1/3 (Nb , T
a, Sb) 2/3 } Y O 3 [where 0 <X <0.5, 0 <Y <0.
7], a good refractory powder can be obtained even if the composition of the solid solution deviates slightly from the above stoichiometric value. However, if the ratio of each component deviates from the above composition range, the coefficient of thermal expansion increases,
It is not preferable because it is no different from ordinary lead titanate.
The average particle size of the lead titanate solid solution powder is preferably about 10 μm or less in consideration of workability during screen printing.

【0008】本発明の低膨張性封着材料において、ガラ
ス粉末として使用するガラスは、転移点が330〜43
0℃のものである。このようなガラスを使用することに
より、350〜450℃の再加熱に耐え得る程度の耐熱
性を有し、且つ、650℃以下の温度で封着できる封着
材料を得ることが可能になる。ガラスの転移点の範囲を
上記のように限定した理由は、転移点が330℃より低
いと封着材料の耐熱性が350℃を下回ってしまうため
であり、一方、430℃を越えると封着温度が650℃
以上となり封着材料として実用上価値がなくなるためで
ある。
In the low expansion sealing material of the present invention, the glass used as the glass powder has a transition point of 330 to 43.
It is at 0 ° C. By using such a glass, it becomes possible to obtain a sealing material which has heat resistance to withstand reheating at 350 to 450 ° C. and which can be sealed at a temperature of 650 ° C. or lower. The reason why the glass transition point range is limited as described above is that the heat resistance of the sealing material is lower than 350 ° C when the transition point is lower than 330 ° C, while the glass transition temperature is higher than 430 ° C. Temperature is 650 ℃
This is because the sealing material has no practical value as described above.

【0009】使用するガラス粉末としては、各種のガラ
スが使用でき、例えば重量%で、PbO 50〜85
%、B23 5〜25%、SiO2 0〜15%、Al2
30〜15%、ZnO 0〜20%、CuO 0〜1
0%、Bi23 0〜25%、Fe23 0〜10%、
BaO 0〜5%の組成からなるPbO−B23系ガラ
スを使用することができる。
As the glass powder to be used, various kinds of glass can be used. For example, in% by weight, PbO 50 to 85 is used.
%, B 2 O 3 5 to 25%, SiO 2 0 to 15%, Al 2
O 3 0-15%, ZnO 0-20%, CuO 0-1
0%, Bi 2 O 3 0 to 25%, Fe 2 O 3 0 to 10%,
It can be used PbO-B 2 O 3 -based glass consisting BaO 0 to 5% of the composition.

【0010】本発明において、ガラス粉末とチタン酸鉛
固溶体粉末の混合割合は、ガラス粉末50〜95体積
%、チタン酸鉛固溶体粉末5〜50体積%に限定され
る。ガラス粉末が50%未満の場合(即ち、チタン酸鉛
固溶体粉末が50%より多い場合)は流動性の良い封着
材料が得られず、またガラス粉末が95%より多い場合
(即ち、チタン酸鉛固溶体粉末が5%未満の場合)は熱
膨張係数が低い封着材料が得られない。
In the present invention, the mixing ratio of the glass powder and the lead titanate solid solution powder is limited to 50 to 95% by volume of the glass powder and 5 to 50% by volume of the lead titanate solid solution powder. When the glass powder is less than 50% (that is, when the lead titanate solid solution powder is more than 50%), a sealing material having good fluidity cannot be obtained, and when the glass powder is more than 95% (that is, titanic acid is used). When the lead solid solution powder is less than 5%), a sealing material having a low coefficient of thermal expansion cannot be obtained.

【0011】なお本発明の低膨張性封着材料において
は、封着材料の強度を高めるために、チタン酸鉛固溶体
粉末以外にも、ジルコン、酸化すず等の耐火性粉末を4
0体積%まで含有させることが可能である。
In the low-expansion sealing material of the present invention, in order to increase the strength of the sealing material, in addition to the lead titanate solid solution powder, a refractory powder such as zircon or tin oxide is added.
It is possible to contain up to 0% by volume.

【0012】[0012]

【実施例】以下本発明の低膨張性封着材料を実施例及び
比較例に基づいて説明する。
EXAMPLES The low-expansion sealing material of the present invention will be described below based on Examples and Comparative Examples.

【0013】(実施例)表1及び表2は、本実施例にお
いて使用するチタン酸鉛固溶体粉末(試料No.a〜p
を示すものである。
(Example) Tables 1 and 2 show lead titanate solid solution powders (Sample Nos. A to p) used in this example.
Is shown.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】各チタン酸鉛固溶体粉末は次のようにして
調製した。リサージ、酸化チタン、酸化第二鉄、酸化タ
ングステン、亜鉛華、マグネシア、二酸化マンガン、酸
化コバルト、酸化ニッケル、五酸化ニオブ、五酸化タン
タル、五酸化アンチモン、炭酸カルシウム、炭酸ストロ
ンチウム、炭酸バリウムを表に示した組成に調合し、ボ
ールミルにて乾式混合後、表中の条件で焼成した。次い
でこの焼成物を粉砕し、350メッシュの篩を通過させ
て平均粒径約5μmの粉末を得た。
Each lead titanate solid solution powder was prepared as follows. List litharge, titanium oxide, ferric oxide, tungsten oxide, zinc white, magnesia, manganese dioxide, cobalt oxide, nickel oxide, niobium pentoxide, tantalum pentoxide, antimony pentoxide, calcium carbonate, strontium carbonate, barium carbonate The composition shown in the table was prepared, dry mixed in a ball mill, and then fired under the conditions shown in the table. Then, the fired product was crushed and passed through a 350-mesh sieve to obtain a powder having an average particle size of about 5 μm.

【0017】表3は、本実施例において使用する低融点
ガラス粉末(試料No A〜D)を示すものである。
Table 3 shows low melting point glass powders (Sample Nos. A to D) used in this example.

【0018】[0018]

【表3】 [Table 3]

【0019】各ガラス粉末は次のようにして調製した。
鉛丹、硼酸、珪石粉、アルミナ、亜鉛華、酸化第二銅、
酸化ビスマス、酸化第二鉄、炭酸バリウムを表に示した
組成になるように調合し、白金坩堝に入れ、電気炉にお
いて1200℃で3時間溶融した後、薄板状に成形し
た。さらに得られた成形物をボールミルにて粉砕し、2
00メッシュの篩を通過させて平均粒径約7μmのガラ
ス粉末を得た。このようにして得られたガラス粉末は、
転移点が342〜400℃、屈伏点が362〜430
℃、30〜300℃における熱膨張係数が81〜106
×10-7/℃であった。
Each glass powder was prepared as follows.
Lead tin oxide, boric acid, silica stone powder, alumina, zinc white, cupric oxide,
Bismuth oxide, ferric oxide, and barium carbonate were blended so as to have the compositions shown in the table, put in a platinum crucible, melted at 1200 ° C. for 3 hours in an electric furnace, and then molded into a thin plate. Further, the obtained molded product is crushed with a ball mill and 2
It was passed through a 00 mesh sieve to obtain a glass powder having an average particle size of about 7 μm. The glass powder thus obtained is
Transition point 342-400 ° C, yield point 362-430
C., 30 to 300.degree. C. thermal expansion coefficient is 81 to 106
It was × 10 -7 / ° C.

【0020】表4及び表5は、表1及び表2のチタン酸
鉛固溶体粉末と、表3のガラス粉末とを用いて作製した
本発明の実施例(試料No.1〜18)を示している。
Tables 4 and 5 show examples of the present invention (sample Nos. 1 to 18) produced by using the lead titanate solid solution powders of Tables 1 and 2 and the glass powders of Table 3. There is.

【0021】なお表中の合成ジルコン粉末及び酸化すず
は次の様にして調製した。
The synthetic zircon powder and tin oxide in the table were prepared as follows.

【0022】合成ジルコンは、天然のジルコンサンドを
一旦ソーダ分解し、塩酸に溶解した後、濃縮結晶化を繰
り返すことによって、α線放出物質であるU、Thの極
めて少ないオキシ塩化ジルコニウムにし、アルカリ中和
後、加熱して精製ZrO2 を得た。次にこの精製したZ
rO2に高純度珪石粉、酸化第二鉄をを重量比でZrO2
66%、SiO2 32%、Fe23 2%の組成にな
るように調合した。続いて1400℃で16時間焼成し
た後、この焼成物を粉砕し、250メッシュのステンレ
ス篩を通過させた。
Synthetic zircon is obtained by decomposing natural zircon sand with soda, dissolving it in hydrochloric acid, and repeating concentration crystallization to obtain zirconium oxychloride, which is an α-ray emitting substance having extremely small amounts of U and Th, and is then dissolved in an alkali. After the addition, the mixture was heated to obtain purified ZrO 2 . Then this purified Z
High-purity silica stone powder and ferric oxide are added to rO 2 in a weight ratio of ZrO 2
The composition was 66%, SiO 2 32%, and Fe 2 O 3 2%. Then, after firing at 1400 ° C. for 16 hours, the fired product was crushed and passed through a 250-mesh stainless sieve.

【0023】酸化すずは、酸化第二錫と、焼結助剤とし
ての亜鉛華を、重量百分率で、SnO2 99%、ZnO
1%になるように調合、乾式混合し、1480℃で1
6時間焼成後、粉砕し、350メッシュの篩を通過させ
た。
Tin oxide is stannic oxide and zinc white as a sintering aid, in terms of weight percentage, SnO 2 99%, ZnO.
Formulate to 1%, dry mix, and 1 at 1480 ℃
After firing for 6 hours, it was ground and passed through a 350-mesh screen.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】このようにして用意した各試料について、
封着温度、熱膨張係数及び耐熱性について評価した。
For each sample thus prepared,
The sealing temperature, thermal expansion coefficient and heat resistance were evaluated.

【0027】なお封着温度はフローボタンテストを行っ
て求めた。即ち、各試料の真比重に相当する重量の粉末
を、金型を用いて外径20mm、高さ約5mmのボタン
に成型した後、ガラス板上にのせて電気炉で10℃/分
の速度で昇温し、種々の温度で10分間加熱した。この
ようにして軟化流動させたボタンの外径が22mmに達
した時の温度をもって封着温度とした。熱膨張係数は、
各試料を4φ×40mmの大きさに成形し、石英押棒式
の熱膨張計によって30〜250℃における熱膨張係数
を測定した。また耐熱性は、試料粉末を一旦封着温度で
加熱することにより軟化流動させた後、真空中で徐々に
温度を上げながら再加熱し、350℃まで昇温したとき
に試料の表面から発泡が生じなかったものを良、350
℃未満の温度で発泡が生じたものを不可とした。
The sealing temperature was determined by performing a flow button test. That is, a powder having a weight corresponding to the true specific gravity of each sample was molded into a button having an outer diameter of 20 mm and a height of about 5 mm by using a mold, and then the powder was placed on a glass plate and heated at a rate of 10 ° C./min in an electric furnace. The temperature was raised by, and the mixture was heated at various temperatures for 10 minutes. The temperature when the outer diameter of the softened and fluidized button reached 22 mm was defined as the sealing temperature. The coefficient of thermal expansion is
Each sample was molded into a size of 4φ × 40 mm, and the thermal expansion coefficient at 30 to 250 ° C. was measured by a quartz push rod type thermal dilatometer. The heat resistance is that the sample powder is once softened and fluidized by heating at the sealing temperature and then reheated while gradually raising the temperature in vacuum, and when the temperature rises to 350 ° C, foaming from the surface of the sample occurs. What did not occur is good, 350
Those in which foaming occurred at a temperature of less than 0 ° C were regarded as unacceptable.

【0028】表から明らかなように、本発明の実施例で
ある試料No.1〜18は、封着温度が470〜590
℃、30〜250℃における熱膨張係数が41〜60×
10-7/℃であり、また耐熱性が良好であった。
As is clear from the table, the sample No. which is an example of the present invention. 1 to 18 have a sealing temperature of 470 to 590.
Thermal expansion coefficient at 41 ° C, 30 to 250 ° C is 41 to 60 ×
It was 10 −7 / ° C., and the heat resistance was good.

【0029】(比較例1)リサージ及び酸化チタンを、
重量%でPbO 73.6%、TiO2 26.4%の組
成になるように調合し、乾式混合した後、1100℃で
5時間焼成した。
Comparative Example 1 Lisage and titanium oxide were
The composition was such that PbO was 73.6% and TiO 2 was 26.4% by weight, and the mixture was dry-mixed and then fired at 1100 ° C. for 5 hours.

【0030】次いでこの焼成物を粉砕し、350メッシ
ュの篩を通過させて平均粒径5μmのチタン酸鉛粉末を
得た。
Then, the fired product was pulverized and passed through a 350-mesh sieve to obtain a lead titanate powder having an average particle size of 5 μm.

【0031】このチタン酸鉛粉末30体積%と、実施例
において使用したガラス粉末(試料No.A)70体積
%を混合し、試料を得た。
A sample was obtained by mixing 30% by volume of the lead titanate powder with 70% by volume of the glass powder (Sample No. A) used in the examples.

【0032】このようにして得られた試料について、実
施例と同様にして封着温度、熱膨張係数及び耐熱性を評
価したところ、封着温度が530℃であり、また耐熱性
も良好であったが、熱膨張係数が65×10-7/℃と大
きかった。
The sample thus obtained was evaluated for sealing temperature, coefficient of thermal expansion and heat resistance in the same manner as in Example. The sealing temperature was 530 ° C. and the heat resistance was also good. However, the coefficient of thermal expansion was large at 65 × 10 −7 / ° C.

【0033】(比較例2)重量百分率でPbO 84.
3%、B23 11.9%、ZnO 2.8%、SiO
2 1.0%の組成を有するように、ガラス原料を調合
し、白金坩堝に入れ、電気炉において1000℃で3時
間溶融した後、薄板状に成形した。さらに得られた成形
物をボールミルにて粉砕し、200メッシュの篩を通過
させて平均粒径約7μmのガラス粉末を得た。このよう
にして得られたガラス粉末の転移点と屈伏点、及び30
〜250℃における熱膨張係数を測定したところ、それ
ぞれ300℃、325℃及び110×10-7/℃であっ
た。
(Comparative Example 2) PbO 84.
3%, B 2 O 3 11.9%, ZnO 2.8%, SiO
2 A glass raw material was prepared so as to have a composition of 1.0%, put into a platinum crucible, melted at 1000 ° C. for 3 hours in an electric furnace, and then formed into a thin plate. Further, the obtained molded product was crushed by a ball mill and passed through a 200-mesh sieve to obtain a glass powder having an average particle size of about 7 μm. The transition point and yield point of the glass powder thus obtained, and 30
The coefficient of thermal expansion at ˜250 ° C. was 300 ° C., 325 ° C. and 110 × 10 −7 / ° C., respectively.

【0034】次に得られたガラス粉末と、実施例で使用
したチタン酸鉛粉末(試料No.m)とを65体積%、
35体積%の割合で混合して試料を得た。
Next, 65% by volume of the obtained glass powder and the lead titanate powder (Sample No. m) used in the examples,
A sample was obtained by mixing at a ratio of 35% by volume.

【0035】このようにして得られた試料について、実
施例と同様にして封着温度、熱膨張係数及び耐熱性を評
価したところ、封着温度は430℃であり、実施例より
低い温度で封着することができた。また熱膨張係数は5
3×10-7/℃であり、実施例と同等を値を示した。し
かしながら耐熱性を評価したところ、340℃以上の再
加熱で発泡が生じ、耐熱性が低いことがわかった。
The sample thus obtained was evaluated for sealing temperature, thermal expansion coefficient and heat resistance in the same manner as in Example. The sealing temperature was 430 ° C., which was lower than that of Example. I was able to wear it. The coefficient of thermal expansion is 5
The value was 3 × 10 −7 / ° C., which was equivalent to that of the example. However, when the heat resistance was evaluated, it was found that the heat resistance was low because foaming occurred by reheating at 340 ° C. or higher.

【0036】[0036]

【発明の効果】以上説明したように、本発明の低膨張性
封着材料は、650℃以下で封着ができ、また低い熱膨
張係数を得ることができる。しかも350〜450℃の
再加熱に耐え得る程度の耐熱性を有しており、電子部
品、特に半導体装置、蛍光表示管、シリコンダイオード
などの封着材料として好適である。
As described above, the low-expansion sealing material of the present invention can be sealed at 650 ° C or lower and can have a low coefficient of thermal expansion. Moreover, it has heat resistance to withstand reheating at 350 to 450 ° C., and is suitable as a sealing material for electronic parts, particularly semiconductor devices, fluorescent display tubes, silicon diodes and the like.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 転移点が330〜430℃のガラス粉末
50〜95体積%とチタン酸鉛固溶体粉末5〜50体積
%とからなり、該チタン酸鉛固溶体粉末は、重量%で、 (a)PbO 55〜73%、CaO 0.5〜12
%、TiO2 26〜35%、 (b)PbO 65〜75%、TiO2 10〜25
%、Fe23 1〜10%、WO3 1〜12%、Ca
O 0〜5%、 (c)PbO 60〜73%、TiO2 2〜23%、
Fe23、ZnO、MgO、MnO、CoO及びNiO
の群から選ばれる1種以上0.5〜10%、Nb25
Ta25及びSb25の群から選ばれる1種以上2〜1
8%、CaO、SrO及びBaOの群から選ばれる1種
以上0〜7%、の何れかの組成からなることを特徴とす
る低膨張性封着材料。
1. A glass powder having a transition point of 330 to 430.degree. C. of 50 to 95% by volume and a lead titanate solid solution powder of 5 to 50% by volume, wherein the lead titanate solid solution powder is (a) PbO 55-73%, CaO 0.5-12
%, TiO 2 26-35%, (b) PbO 65-75%, TiO 2 10-25
%, Fe 2 O 3 1-10%, WO 3 1-12%, Ca
O 0-5%, (c) PbO 60-73%, TiO 2 2-23%,
Fe 2 O 3 , ZnO, MgO, MnO, CoO and NiO
One or more selected from the group of 0.5 to 10%, Nb 2 O 5 ,
One or more selected from the group of Ta 2 O 5 and Sb 2 O 5 2-1
8%, CaO, 1 or more 0-7% selected from the group consisting of SrO and BaO, low expansion sealing material characterized in that it consists of any of the compositions.
【請求項2】 ガラス粉末が、重量%で、PbO 50
〜85%、B235〜25%、SiO2 0〜15%、
Al23 0〜15%、ZnO 0〜20%、CuO
0〜10%、Bi23 0〜25%、Fe23 0〜1
0%、BaO 0〜5%の組成からなることを特徴とす
る請求項1の低膨張性封着材料。
2. A glass powder, in% by weight, of PbO 50.
~85%, B 2 O 3 5~25 %, SiO 2 0~15%,
Al 2 O 3 0-15%, ZnO 0-20%, CuO
0 to 10%, Bi 2 O 3 0 to 25%, Fe 2 O 3 0-1
0%, low expansion sealing material according to claim 1, characterized in that it consists of BaO 0 to 5% of the composition.
JP16018493A 1993-06-04 1993-06-04 Low expansion sealing material Expired - Fee Related JP3409804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16018493A JP3409804B2 (en) 1993-06-04 1993-06-04 Low expansion sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16018493A JP3409804B2 (en) 1993-06-04 1993-06-04 Low expansion sealing material

Publications (2)

Publication Number Publication Date
JPH06345485A JPH06345485A (en) 1994-12-20
JP3409804B2 true JP3409804B2 (en) 2003-05-26

Family

ID=15709646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16018493A Expired - Fee Related JP3409804B2 (en) 1993-06-04 1993-06-04 Low expansion sealing material

Country Status (1)

Country Link
JP (1) JP3409804B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318181B1 (en) * 1999-08-13 2001-12-22 손재익 Glass Composition for Joining

Also Published As

Publication number Publication date
JPH06345485A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
JP3424219B2 (en) Low melting point sealing composition
JP3814810B2 (en) Bismuth glass composition
JP3845853B2 (en) Tin borophosphate glass and sealing material
US6617269B2 (en) Lead-free tin silicate-phosphate glass and sealing material containing the same
JPS62191442A (en) Low-melting sealing composition
JP4069559B2 (en) Low melting glass for forming barrier ribs and plasma display panel
JP2002037644A (en) Glass for sealing and sealing material which uses it
JP3409804B2 (en) Low expansion sealing material
JP2007161524A (en) Bismuth-based glass composition
JP2002179436A (en) Silver phosphate glass and sealing material by using the same
JP5071876B2 (en) Metal cap for light transmission
EP0404501B2 (en) Overglaze colors for pottery and a method of manufacture thereof
JP3402314B2 (en) Method for producing low melting point sealing composition and method for using the same
JPH05170481A (en) Seal bonding composition having low melting point
JP2006143585A (en) Bismuth-based glass mixture
JP3087264B2 (en) Low melting point low expansion sealing material and filler powder
JP4573204B2 (en) Glass for sealing and sealing material using the same
JP3760455B2 (en) Adhesive composition
JPH08231242A (en) Low melting point sealing composition
JP3149929B2 (en) Low melting point sealing composition
JP3496687B2 (en) Low melting point sealing composition
JP3151794B2 (en) Low melting point sealing composition
JPH06171975A (en) Low melting point sealing composition
JP2968985B2 (en) Low melting point sealing composition
JPH04160035A (en) Low-melting point sealing composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees