JP3407589B2 - Cooling method for steel - Google Patents

Cooling method for steel

Info

Publication number
JP3407589B2
JP3407589B2 JP07161597A JP7161597A JP3407589B2 JP 3407589 B2 JP3407589 B2 JP 3407589B2 JP 07161597 A JP07161597 A JP 07161597A JP 7161597 A JP7161597 A JP 7161597A JP 3407589 B2 JP3407589 B2 JP 3407589B2
Authority
JP
Japan
Prior art keywords
cooling
steel material
nozzle
steel
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07161597A
Other languages
Japanese (ja)
Other versions
JPH10263669A (en
Inventor
壽志 栗山
慎一 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07161597A priority Critical patent/JP3407589B2/en
Publication of JPH10263669A publication Critical patent/JPH10263669A/en
Application granted granted Critical
Publication of JP3407589B2 publication Critical patent/JP3407589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、例えば熱間圧延さ
れた直後の鋼板、形鋼等の高温鋼材を、移動用ローラー
テーブル上において、冷却する方法に関するものであ
る。 【0002】 【従来の技術】鋼材の機械的性質、加工性、溶接性を向
上させるために、例えば熱間圧延された直後の高温状態
の鋼材を圧延ライン上で加速冷却し、鋼材に所定の冷却
履歴を与えることは一般に行われている。そして、その
場合の冷却方法としては、スプレー群による冷却を筆頭
に、水膜状の落下・噴出流を用いるスリットラミナー、
柱状噴流によるパイプラミナー等が用いられている。 【0003】ところで、この冷却に要求されることは、
冷却能力の制御性と鋼材の幅方向における冷却の均一性
である。このため、スプレー群から噴射される水量の受
水面積に対する割合を鋼材の冷却面で可及的に平準・均
一とし、冷却を均一化するためのスプレー群の幾何的な
適正配置の提案がなされている。 【0004】例えば、その加工性、保守の容易性より、
平板に多数のきり孔を開け、このきり孔を開けた面を鋼
材に対向させた箱状の冷却ヘッダーをテーブルローラ間
に配置することで、鋼材の下面を広範囲に冷却する方法
が特開昭62−259610号で提案されている。 【0005】また、幅方向に等間隔にノズルを配置した
ヘッダーを、テーブルローラ間の搬送方向に複数個並設
し、かつ、これらヘッダー毎に制御バルブを備えた装置
を用いて、鋼材を幅方向に均一冷却する方法が特開平7
−214136号に記載されている。 【0006】そして、特開昭62−259610号で提
案されている方法においては、きり孔を千鳥状に配置す
ることを、また、特開平7−214136号に記載され
ている方法においては,並列状に設けた2列の柱状冷却
噴出口を碁盤目状あるいは千鳥状に配置することを特徴
としている。 【0007】 【発明が解決しようとする課題】しかしながら、鋼材を
その幅方向に均一に冷却しようとする場合、特開昭62
−259610号や特開平7−214136号に開示さ
れているように、柱状噴流を形成するノズル配列を、た
だ単に碁盤目状や千鳥状に配置しただけでは、冷却の均
一性を確保することは困難である。 【0008】その理由は、柱状噴流群による冷却の場
合、図4(b)に示すような、ノズル1からの柱状噴流
2が鋼材3に直接当たる直下域4の冷却能は、図4
(a)に示すように、他の部分、すなわち流水域5や干
渉域6の冷却能に比べて高いので、基本的に、この直下
域4に相当する部分の鋼材3は幅方向に冷却筋むらが生
じるからである。 【0009】この冷却筋むらは、当然ながら鋼材の幅方
向に、冷却速度や冷却終了温度の不一致を生じせしめ、
鋼材の幅方向に機械的性質の周期的分布をもたらすこと
になる。また、冷却速度の違いにより、冷却過程中に鋼
材の幅方向に周期的な温度差が生じ、これにより幅方向
の残留応力を鋼材内に残す結果となる。そして、これら
により、製品の二次加工時の変形挙動や、小板に切断し
た場合の切断後変形を生じせしめることになる。 【0010】加えて、特開昭62−259610号で提
案されているように、搬送される鋼材に対し、中央の冷
却ノズルを鉛直に、そしてその両隣の冷却ノズルを異な
る角度で傾斜させた、5列構成の冷却ノズルからの柱状
噴流群で冷却する場合、冷却装置の入り側では、搬送鋼
材の先端部上面へ下部冷却水が水乗りし、また、冷却装
置の出側では、搬送鋼材の後端部上面へのすくい水や追
いかけ水により、鋼材の先端、後端が過冷却されて好ま
しくないという問題もある。 【0011】本発明は、上記した従来の問題点に鑑みて
なされたものであり、柱状噴流群による冷却において、
冷却後における鋼板幅方向の温度を可及的に均一となす
ことができる鋼材の冷却方法を提供することを目的とし
ている。 【0012】 【課題を解決するための手段】上記した目的を達成する
ために、本発明は、鋼材に対して略直角に設けた複数の
ノズルを、隣接するノズル間の鋼材幅方向及び鋼材移送
方向のノズルピッチs,s 1 が該ノズルのノズル口径d
の3〜10倍の長さであり、かつ、前記鋼材移送方向の
ノズルピッチs 1 が鋼材幅方向のノズルピッチs以下と
なるように、一定間隔の千鳥状に配置し、鋼材面に衝突
した後の流動水が、隣接するノズルからの流動水と衝突
してできる干渉流によって囲まれ、ノズル直下を細胞核
とみなす同一形状のハニカムセル状の冷却面群を形成さ
せることとしている。そして、このようにすることで、
柱状噴流はこのハニカムセル状の冷却面群に拘束され、
鋼材に衝突した後の冷却水の流動挙動は集合流となっ
て、不規則流動水による偏冷却もなく、均一な冷却が可
能になる。 【0013】 【発明の実施の形態】単一柱状噴流による冷却では直下
域から径方向に向かってその冷却能力は減衰するが、柱
状噴流群による冷却では、先に説明したように、直下
域、流水域、干渉域の三域が生じ、その冷却能力は、噴
出流が有する慣性力と冷却流体の温度より直下域が最大
で、続いて隣接するノズルからの流水と衝突し、干渉盛
り上がりが生ずる干渉域が、そして、最も低いのが流水
域である。干渉域は、相反する方向の流水が盛り上がる
ため、盛り上がろうとする反作用で鋼材表面の冷却流体
は鋼材に押し付けられる分、流水域より高い冷却能力を
有するようになる。 【0014】本発明者らが、このような柱状噴流群を用
いた鋼材の冷却について、種々研究、実験を行った結
果、鋼材面に衝突した後の流動水によって、直下域を核
とし、干渉域を細胞膜とするような同一のハニカムセル
状の冷却面群を形成させれば、柱状噴流はこの冷却面群
に拘束されることになって、鋼材に衝突した後の冷却水
の流動挙動は集合流となり、アットランダムな動きはと
らなくなって、不規則流動水による偏冷却もなく、均一
な冷却が可能になる、ことを知見した。 【0015】本発明に係る鋼材の冷却方法は、上記した
本発明者らの知見によってなされたものであり、搬送中
の鋼材を柱状噴流群によってローラーテーブル上で冷却
する(鋼材を冷却媒体中に浸漬する場合を除く)方法に
おいて、鋼材に対して略直角に設けた複数のノズルを、
隣接するノズル間の鋼材幅方向及び鋼材移送方向のノズ
ルピッチs,s 1 が該ノズルのノズル口径dの3〜10
倍の長さであり、かつ、前記鋼材移送方向のノズルピッ
チs 1 が鋼材幅方向のノズルピッチs以下となるよう
に、一定間隔の千鳥状に配置し、鋼材面に衝突した後の
流動水が、隣接するノズルからの流動水と衝突してでき
る干渉流によって囲まれ、ノズル直下を細胞核とみなす
同一形状のハニカムセル状の冷却面群を形成させるもの
である。 【0016】ノズルからの柱状噴流は、その吐出流速に
より層流または乱流となり、また、冷却は、テーブルロ
ーラによって搬送される鋼材の上下面だけでなく、垂直
面、傾斜面に対しても行う場合があるが、本発明では、
冷却する鋼材面に対して垂直となるように配置したノズ
ルから、鋼材の冷却面に対して柱状噴流を射出する。ノ
ズルから射出された柱状噴流は重力の影響を受けるが、
これは射出速度、またはノズル先端と鋼材間距離により
調整可能で、本発明では、柱状冷却水は鋼材衝突面で鋼
材面に対して垂直となるようにする。 【0017】本発明において、直下域を核とし、干渉域
を細胞膜とするように形成する各ハニカムセル状の冷却
面群の形状を同一とするには、ノズルピッチを一定間隔
にすることが重要である。また、各冷却面群において柱
状噴流の直下域と干渉域の距離を同等に保つには、柱状
噴流が鋼材に衝突した後、全方位に向けて均等な流れを
形成させることが重要で、このためには、柱状噴流を鋼
材面に対して可及的に垂直に衝突させることが必要であ
る。 【0018】また、本発明において、直下域、干渉域と
流水域の冷却能差を可及的に少なくするためには、直下
域に対する干渉域までの広がりを制限すればよい。その
ために、本発明においては、ノズル口径dに対し、隣接
するノズル間の距離、すなわち鋼材の幅方向のノズルピ
ッチs、及び鋼材の搬送方向のノズルピッチs1 を3〜
10dの範囲とすることとした。その理由は、3d未満
であれば、ノズル同士が接近しすぎてノズル間で水が流
れなくなり、また、10dを超えると、ハニカムセル状
となした冷却面群が大きくなりすぎ、すなわち、直下域
と干渉域の間隔が大きくなりすぎ、図4(a)に示した
ような冷却能となるからである。 【0019】すなわち、鋼材の幅方向のノズルピッチ
s、及び鋼材の搬送方向のノズルピッチs1 が3〜10
dの範囲であれば、直下域及び干渉域が流水域に比べて
冷却能力が高いために生じる一定間隔(幅方向のノズル
ピッチs、及び幅方向のノズルピッチsの1/2の長
さ)の冷却後の温度むらは殆ど見られなくなる。これ
は、単一柱状噴流による冷却では、流水域は直下域、干
渉域に比べて冷却能力は低いものの、それぞれの境界で
変化するわけではなく漸次変化すること、また、柱状噴
流群では流水域は交互に冷却されるため、その重畳によ
りお互いに影響しあって温度むらがなくなるためであ
る。 【0020】また、本発明を実施するに際しては、区間
毎に冷却流体を増減したり、また、区間毎にノズル密度
を増減させてもよい。この場合、鋼材移送方向のノズル
ピッチs1 を鋼材の幅方向のノズルピッチs以下とする
ようにして高密度に配置すれば、図1に示すように、幅
方向全てに干渉域6を有するハニカムセル状の冷却面群
7が形成されて、幅方向の冷却むらを生じることがな
い。一方、鋼材移送方向のノズルピッチs1 が鋼材の幅
方向のノズルピッチsを超えると、図2に示すように、
干渉域6は鋼材搬送方向のみに生じ、鋼材幅方向にノズ
ルピッチsの1/2の長さの筋状の冷却むらが等間隔に
生じる場合がある。 【0021】 【実施例】以下、図3に示す装置を用いて本発明に係る
鋼材の冷却方法を実施した場合について説明する。 【0022】図3において、11は例えば直径が200
mmのローラであり、600mmのピッチで配置されて
いる。そして、これらのローラ11間に、ノズル径が6
mmの柱状噴流ノズル12を、鋼材3の上下面に対して
直角に、かつ、鋼材3の搬送方向に5列、図3(b)に
示すように、一定間隔の千鳥状に配置した冷却ヘッダー
13を、各ローラ11間に3基、鋼材3を挟んで上下に
設置している。 【0023】900℃に加熱した幅1200mmで厚さ
30mmの鋼材3を、60m/分の速度でローラ11に
よって搬送・逆送・搬送する間に、冷却開始温度を80
0℃に揃えて前記冷却ヘッダー13を用いて3回連続し
て冷却した。そして、この冷却を、上記した冷却ヘッダ
ー13のノズル径やノズルピッチs、s1 を種々変化さ
せて行い、それぞれの冷却直後に、鋼材両側の100m
mを除いた部分全面において、鋼材幅方向の温度分布を
測定した。その結果を下記表1に示す。なお、下記表1
は、柱状噴流ノズル12からの冷却水温度が25℃で、
水量は、上部に配置した冷却ヘッダー13では120m
3 /時間、下部に配置した冷却ヘッダー13では175
3 /時間の場合の結果である。 【0024】 【表1】【0025】また、ノズル径が6.0mmで、幅方向の
ノズルピッチsが60mmの場合において、鋼材3の搬
送方向のノズルピッチs1 を種々変化させた場合の冷却
後の温度むら(絶対値)ΔTと温度むら(標準偏差)σ
を下記表2に示す。下記表2より明らかなように、搬送
方向のノズルピッチs1 が幅方向のノズルピッチsより
小さい場合は勿論のこと、幅方向のノズルピッチsを超
えた場合にも、幅方向のノズルピッチsより小さい場合
と比べて若干温度むらは大きくなるものの、従来と比べ
て幅方向の温度むらは格段に小さくなっている。 【0026】 【表2】 【0027】なお、比較として、ノズル径dが6.0m
m、幅方向のノズルピッチsが60mm、鋼材搬送方向
のノズルピッチs1 が60mmの場合おいて、特開昭6
2−259610号に開示されているように、各冷却ヘ
ッダーにおける中央のノズルを鋼材に対して90°、そ
してその両隣のノズルをそれぞれ80°と70°に傾斜
させた場合、前記した本発明と同じ条件で冷却すると、
冷却装置の入り側では、鋼材先端部上面への下部冷却水
の水乗りが、また、冷却装置の出側では鋼材の後端部上
面へのすくい水や追いかけ水が発生した。そして、これ
らの影響により、温度むら(標準偏差)σは12.3℃
にもなった。 【0028】本実施例では鋼材の冷却方法について説明
したが、本発明方法は均一冷却を必要とする平面を有す
る材料であれば、高温のガラスやフィルム、また、温風
による均一加熱や均一乾燥を必要とする製紙プロセスに
適用することも可能である。 【0029】 【発明の効果】以上説明したように、本発明に係る鋼材
の冷却方法によれば、柱状噴流はハニカムセル状の冷却
面群に拘束され、鋼材に衝突した後の冷却水の流動挙動
は集合流となるので、不規則流動水による偏冷却もな
く、鋼材の幅方向に均一な冷却が可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a high-temperature steel material such as a steel plate or a shape steel immediately after hot rolling on a moving roller table. Things. [0002] In order to improve the mechanical properties, workability and weldability of a steel material, for example, a steel material in a high temperature state immediately after hot rolling is accelerated and cooled on a rolling line, and the steel material is subjected to a predetermined process. It is common practice to provide a cooling history. And as a cooling method in that case, a slit laminar using a water film-shaped falling / jetting flow, with cooling by a spray group at the top,
A pipe laminar or the like using a columnar jet is used. By the way, what is required for this cooling is:
The controllability of the cooling capacity and the uniformity of cooling in the width direction of the steel material. For this reason, the ratio of the amount of water sprayed from the spray group to the receiving area is made as uniform and uniform as possible on the cooling surface of the steel material, and a geometrically appropriate arrangement of the spray group for uniform cooling has been proposed. ing. For example, due to its workability and maintenance easiness,
A method for cooling the lower surface of a steel material over a wide area by arranging a number of drilled holes in a flat plate and disposing a box-shaped cooling header between the table rollers with the surface with the drilled holes facing the steel material is disclosed in Japanese Patent Application Laid-Open No. H10-163,873. 62-259610. Further, a plurality of headers having nozzles arranged at equal intervals in the width direction are arranged in parallel in the transport direction between the table rollers, and a steel valve is provided with a control valve for each of the headers. Japanese Patent Laid-Open No. Hei 7
-214136. In the method proposed in Japanese Patent Application Laid-Open No. 62-259610, the arrangement of the holes in a zigzag pattern is described, and in the method described in Japanese Patent Application Laid-Open No. It is characterized in that the two rows of columnar cooling jets provided in a shape are arranged in a grid pattern or a staggered pattern. However, in the case where the steel material is to be uniformly cooled in the width direction, Japanese Patent Laid-Open No.
As disclosed in JP-A-259610 and JP-A-7-214136, simply arranging the nozzle arrangements for forming the columnar jets in a grid pattern or a staggered pattern does not ensure uniform cooling. Have difficulty. The reason for this is that, in the case of cooling by the group of columnar jets, the cooling capacity of the region 4 immediately below the columnar jet 2 from the nozzle 1 directly hitting the steel material 3 as shown in FIG.
As shown in (a), since the cooling capacity of the other portions, that is, the cooling capacity of the flowing water area 5 and the interference area 6 is higher, basically, the steel material 3 in the area corresponding to the area 4 immediately below the cooling area is provided with cooling streaks in the width direction. This is because unevenness occurs. [0009] The unevenness of the cooling line naturally causes a mismatch between the cooling rate and the cooling end temperature in the width direction of the steel material.
This results in a periodic distribution of mechanical properties in the width direction of the steel. Also, differences in cooling rates cause periodic temperature differences in the width direction of the steel during the cooling process, which results in residual stresses in the width in the steel. Thus, the deformation behavior of the product during the secondary processing and the deformation after cutting when the product is cut into small plates are caused. [0010] In addition, as proposed in Japanese Patent Application Laid-Open No. 62-259610, the central cooling nozzle is inclined vertically and the adjacent cooling nozzles are inclined at different angles with respect to the conveyed steel material. In the case of cooling with the group of columnar jets from the cooling nozzles of the five-row configuration, the lower cooling water rides on the upper surface of the tip of the conveyed steel at the entrance side of the cooling device, and the conveyed steel material at the outlet side of the cooling device. There is also a problem that the leading end and the rear end of the steel material are excessively cooled by rake water or chasing water on the upper surface of the rear end, which is not preferable. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems.
It is an object of the present invention to provide a method for cooling a steel material in which the temperature in the width direction of the steel sheet after cooling can be made as uniform as possible. [0012] In order to achieve the above-mentioned object, the present invention provides a plurality of nozzles provided substantially at right angles to a steel material by forming a steel material width between adjacent nozzles. Direction and steel transfer
Nozzle pitch s, s 1 in the direction is the nozzle diameter d of the nozzle.
3 to 10 times the length of the
A nozzle pitch s 1 is less nozzle pitch s of the steel width direction
Composed manner, staggered at regular intervals, the streaming water after colliding with the steel surface, surrounded by interference flow can collide with the flow water from the adjacent nozzles, the same shape viewed directly under the nozzle and the cell nucleus And a honeycomb cell-shaped cooling surface group. And by doing this,
The columnar jet is restrained by this honeycomb cell-shaped cooling surface group,
The flow behavior of the cooling water after colliding with the steel material is a collective flow, and uniform cooling is possible without uneven cooling due to irregular flowing water. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the cooling by a single columnar jet, the cooling capacity is attenuated in the radial direction from immediately below the region, but in the cooling by the group of columnar jets, as described above, There are three areas, a flowing water area and an interference area, and the cooling capacity of the area is the maximum immediately below the inertia force of the jet flow and the temperature of the cooling fluid, and subsequently collides with flowing water from an adjacent nozzle, causing interference swelling The interference zone, and the lowest is the watershed. In the interference region, flowing water in the opposite direction rises, so that the cooling fluid on the surface of the steel material is pressed against the steel material by the reaction of the rising, so that the cooling fluid has a higher cooling capacity than the flowing water region. The present inventors have conducted various studies and experiments on cooling of steel using such a group of columnar jets. As a result, the water immediately after the collision with the steel surface caused the interference in the area immediately below the nucleus. If the same honeycomb cell-like cooling surface group is formed so that the area becomes a cell film, the columnar jet will be constrained by this cooling surface group, and the flow behavior of the cooling water after colliding with the steel material will be It became a collective flow, and it was found that at random movement did not take place and uniform cooling was possible without uneven cooling by irregular flowing water. The method of cooling a steel material according to the present invention is based on the findings of the present inventors described above, and the steel material being conveyed is cooled on a roller table by a group of columnar jets (the steel material is cooled in a cooling medium). Method except for immersion) , a plurality of nozzles provided substantially at right angles to the steel material,
Nozzles between adjacent nozzles in steel width direction and steel transfer direction
Pitch s, s 1 is 3 to 10 of the nozzle diameter d of the nozzle.
Nozzle length in the steel material transfer direction
As the switch s 1 is equal to or less than the nozzle pitch s of the steel width direction
To, and arranged in a zigzag-shaped fixed intervals, flow water after colliding with the steel surface, surrounded by interference flow can collide with the flow water from adjacent nozzles, honeycomb same shape viewed directly under the nozzle and the cell nucleus This is to form a group of cooling surfaces in the form of cells. The columnar jet from the nozzle becomes laminar or turbulent depending on the discharge flow velocity, and the cooling is performed not only on the upper and lower surfaces of the steel material conveyed by the table rollers, but also on the vertical and inclined surfaces. However, in the present invention,
A columnar jet is injected from a nozzle disposed perpendicular to the surface of the steel material to be cooled onto the cooling surface of the steel material. The columnar jet ejected from the nozzle is affected by gravity,
This can be adjusted by the injection speed or the distance between the nozzle tip and the steel material. In the present invention, the columnar cooling water is made perpendicular to the steel material surface at the steel material collision surface. In the present invention, in order to make the shape of each honeycomb cell-like cooling surface group formed so that the area immediately below the nucleus is the nucleus and the interference area is the cell membrane, it is important to make the nozzle pitch constant. It is. In addition, in order to maintain the same distance between the area directly below the columnar jet and the interference area in each cooling surface group, it is important to form a uniform flow in all directions after the columnar jet collides with the steel material. For this purpose, it is necessary to make the columnar jet collide with the steel surface as perpendicularly as possible. In the present invention, in order to minimize the difference in cooling capacity between the area immediately below, the interference area, and the flowing water area, the extent of the cooling area to the area immediately below may be limited. Therefore, in the present invention, 3 to the nozzle diameter d, the distance between adjacent nozzles, that is, the width direction of the nozzle pitch s of steel materials, and in the conveying direction of the steel nozzle pitch s 1
It was to be in the range of 10d. The reason is that if it is less than 3d, the nozzles are too close to each other so that water does not flow between the nozzles, and if it exceeds 10d, the honeycomb cell-shaped cooling surface group becomes too large, This is because the interval between the interference regions becomes too large, and the cooling capacity becomes as shown in FIG. That is, the nozzle pitch s in the width direction of the steel material and the nozzle pitch s 1 in the conveyance direction of the steel material are 3 to 10.
In the range of d, a certain interval (a nozzle pitch s in the width direction and a length of の of the nozzle pitch s in the width direction) generated because the cooling capacity is higher in the immediately below area and the interference area than in the flowing water area. Almost no temperature unevenness after cooling is observed. This is because in the case of cooling with a single columnar jet, the water flow area is directly below and has a lower cooling capacity than the interference area, but it does not change at each boundary but gradually changes. Are alternately cooled, and the superposition thereof affects each other to eliminate temperature unevenness. In practicing the present invention, the cooling fluid may be increased or decreased for each section, or the nozzle density may be increased or decreased for each section. In this case, by arranging a high density nozzle pitch s 1 of the steel product transport direction so as to less nozzle pitch s of the width direction of the steel material, as shown in FIG. 1, a honeycomb having an interference zone 6 in every width direction The cell-shaped cooling surface group 7 is formed, so that cooling unevenness in the width direction does not occur. On the other hand, if the nozzle pitch s 1 of the steel product transport direction exceeds the width direction of the nozzle pitch s of steel materials, as shown in FIG. 2,
The interference area 6 occurs only in the steel material transport direction, and streak-like cooling unevenness having a length of の of the nozzle pitch s may occur at equal intervals in the steel material width direction. Hereinafter, a case where the method of cooling a steel material according to the present invention is carried out using the apparatus shown in FIG. 3 will be described. In FIG. 3, reference numeral 11 denotes, for example, a diameter of 200.
mm rollers and arranged at a pitch of 600 mm. The nozzle diameter is 6 between these rollers 11.
3 mm cooling jet headers in which the columnar jet nozzles 12 mm are arranged at right angles to the upper and lower surfaces of the steel material 3 and in five rows in the conveying direction of the steel material 3, as shown in FIG. 13 are arranged vertically between the rollers 11 with the steel material 3 interposed therebetween. While the steel material 3 heated to 900 ° C. and having a width of 1200 mm and a thickness of 30 mm is conveyed by the roller 11 at a speed of 60 m / min.
The temperature was adjusted to 0 ° C., and cooling was continuously performed three times using the cooling header 13. This cooling is performed by changing the nozzle diameter and the nozzle pitch s, s 1 of the cooling header 13 described above, and immediately after each cooling, 100 m on both sides of the steel material is cooled.
The temperature distribution in the width direction of the steel material was measured over the entire surface except for m. The results are shown in Table 1 below. Table 1 below
Means that the cooling water temperature from the columnar jet nozzle 12 is 25 ° C.
The amount of water is 120 m for the cooling header 13 placed at the top.
3 / hour, 175 for cooling header 13 located below
The result is in the case of m 3 / hour. [Table 1] In the case where the nozzle diameter is 6.0 mm and the nozzle pitch s in the width direction is 60 mm, the temperature unevenness after cooling when the nozzle pitch s 1 in the conveying direction of the steel material 3 is variously changed (absolute value) ) ΔT and uneven temperature (standard deviation) σ
Are shown in Table 2 below. As is clear from Table 2 below, not only when the nozzle pitch s 1 in the transport direction is smaller than the nozzle pitch s in the width direction, but also when it exceeds the nozzle pitch s in the width direction, the nozzle pitch s in the width direction is Although the temperature non-uniformity is slightly larger than in the case of the smaller one, the temperature non-uniformity in the width direction is much smaller than in the conventional case. [Table 2] As a comparison, the nozzle diameter d was 6.0 m.
m, the nozzle pitch s in the width direction is 60 mm, and the nozzle pitch s 1 in the steel material conveyance direction is 60 mm.
As disclosed in Japanese Unexamined Patent Publication No. 2-259610, when the central nozzle in each cooling header is inclined at 90 ° to the steel material and the nozzles on both sides thereof are inclined at 80 ° and 70 °, respectively, When cooled under the same conditions,
On the inlet side of the cooling device, lower cooling water was sprinkled on the upper surface of the steel material tip, and on the outlet side of the cooling device, rake water and chasing water were generated on the upper surface of the rear end of the steel material. Due to these effects, the temperature unevenness (standard deviation) σ is 12.3 ° C.
It also became. In this embodiment, a method of cooling a steel material has been described. However, in the method of the present invention, if the material has a flat surface requiring uniform cooling, high-temperature glass or film, or uniform heating or uniform drying with hot air may be used. Can also be applied to papermaking processes that require As described above, according to the method for cooling a steel material according to the present invention, the columnar jet is restrained by the honeycomb cell-shaped cooling surface group, and the flow of the cooling water after colliding with the steel material. Since the behavior is a collective flow, uniform cooling in the width direction of the steel material is possible without uneven cooling due to irregular flowing water.

【図面の簡単な説明】 【図1】鋼材移送方向のノズルピッチs1 を鋼材の幅方
向のノズルピッチs以下とした場合における本発明方法
により形成したハニカムセル状の冷却面群を平面から見
た図である。 【図2】鋼材移送方向のノズルピッチs1 が鋼材の幅方
向のノズルピッチsを超えた場合における本発明方法に
より形成したハニカムセル状の冷却面群を平面から見た
図である。 【図3】(a)は本発明方法を実施するための装置の一
例を示す概略図、(b)はノズルの配置を平面から見た
図である。 【図4】(a)は柱状噴流群により冷却した場合のノズ
ル間における冷却能の説明図、(b)は(a)図の冷却
能を得た場合におけるノズル配置及び柱状噴流の説明図
である。 【符号の説明】 2 柱状噴流 4 直下域 5 流水域 6 干渉域 7 冷却面群 12 柱状噴流ノズル s 幅方向ピッチ s1 搬送方向ピッチ
Viewed honeycomb cells like cooling surface groups formed by the method of the present invention from the plane in the BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] If the nozzle pitch s 1 of the steel product transport direction is less nozzle pitch s of the width direction of the steel material FIG. 2 is a diagram nozzle pitch s 1 of the steel product transport direction viewed honeycomb cells like cooling surface groups formed by the method of the present invention from the plane in case of exceeding the width direction of the nozzle pitch s of the steel. FIG. 3A is a schematic view showing an example of an apparatus for carrying out the method of the present invention, and FIG. 3B is a view showing the arrangement of nozzles as viewed from above. 4A is an explanatory diagram of a cooling capacity between nozzles when cooling is performed by a group of columnar jets, and FIG. 4B is an explanatory diagram of a nozzle arrangement and a columnar jet when the cooling capability of FIG. is there. [Description of Signs] 2 Column-shaped jet 4 Direct area 5 Flowing area 6 Interference area 7 Cooling surface group 12 Column-shaped jet nozzle s Pitch in width direction s 1 Pitch in conveyance direction

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−153235(JP,A) 特開 平6−210339(JP,A) 特開 昭53−100114(JP,A) 特開 平7−214136(JP,A) 特開 平4−238618(JP,A) 鉄と鋼,日本鉄鋼協会,1966年,第52 巻第10号,第1640〜1645頁 (58)調査した分野(Int.Cl.7,DB名) B21B 45/02 320 C21D 9/52 102 C21D 9/573 101 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-153235 (JP, A) JP-A-6-210339 (JP, A) JP-A-53-100114 (JP, A) JP-A-7-107 214136 (JP, A) JP-A-4-238618 (JP, A) Iron and steel, The Iron and Steel Institute of Japan, 1966, Vol. 52, No. 10, pp. 1640-1645 (58) Fields investigated (Int. . 7, DB name) B21B 45/02 320 C21D 9/52 102 C21D 9/573 101

Claims (1)

(57)【特許請求の範囲】 【請求項1】 搬送中の鋼材を柱状噴流群によってロー
ラーテーブル上で冷却する(鋼材を冷却媒体中に浸漬す
る場合を除く)方法において、鋼材に対して略直角に設
けた複数のノズルを、隣接するノズル間の鋼材幅方向及
び鋼材移送方向のノズルピッチs,s 1 が該ノズルのノ
ズル口径dの3〜10倍の長さであり、かつ、前記鋼材
移送方向のノズルピッチs 1 が鋼材幅方向のノズルピッ
チs以下となるように、一定間隔の千鳥状に配置し、鋼
材面に衝突した後の流動水が、隣接するノズルからの流
動水と衝突してできる干渉流によって囲まれ、ノズル直
下を細胞核とみなす同一形状のハニカムセル状の冷却面
群を形成させることを特徴とする鋼材の冷却方法。
(57) [Claims 1] A steel material being conveyed is cooled on a roller table by a group of columnar jets (the steel material is immersed in a cooling medium).
Method ) , a plurality of nozzles provided at a substantially right angle to the steel material are arranged in the width direction of the steel material between adjacent nozzles.
Fine steel transfer direction of the nozzle pitch s, s 1 is of the nozzle Roh
3 to 10 times as long as the bore diameter d, and the steel material
Nozurupi' nozzle pitch s 1 transport direction of the steel material width direction
流動 s or less , arranged in a staggered manner at regular intervals, the flowing water after colliding with the steel surface is surrounded by the interference flow generated by colliding with the flowing water from the adjacent nozzle, and the cell nucleus immediately below the nozzle A method for cooling a steel material, comprising forming a group of cooling surfaces in the form of honeycomb cells having the same shape.
JP07161597A 1997-03-25 1997-03-25 Cooling method for steel Expired - Fee Related JP3407589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07161597A JP3407589B2 (en) 1997-03-25 1997-03-25 Cooling method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07161597A JP3407589B2 (en) 1997-03-25 1997-03-25 Cooling method for steel

Publications (2)

Publication Number Publication Date
JPH10263669A JPH10263669A (en) 1998-10-06
JP3407589B2 true JP3407589B2 (en) 2003-05-19

Family

ID=13465740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07161597A Expired - Fee Related JP3407589B2 (en) 1997-03-25 1997-03-25 Cooling method for steel

Country Status (1)

Country Link
JP (1) JP3407589B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014304A (en) * 2012-12-21 2013-04-03 鞍钢股份有限公司 Plate shape control method for steel plate quenching
KR101607217B1 (en) * 2014-12-26 2016-03-29 주식회사 포스코 Cooling apparatus and system for rolled material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779749B2 (en) * 2006-03-28 2011-09-28 Jfeスチール株式会社 Steel plate cooling method and cooling equipment
JP5103770B2 (en) * 2006-03-28 2012-12-19 Jfeスチール株式会社 Compound nozzle and method of treating steel surface
JP4853224B2 (en) * 2006-10-19 2012-01-11 Jfeスチール株式会社 Steel sheet cooling equipment and cooling method
JP4905051B2 (en) * 2006-10-19 2012-03-28 Jfeスチール株式会社 Steel sheet cooling equipment and cooling method
JP4858113B2 (en) * 2006-11-22 2012-01-18 Jfeスチール株式会社 Steel sheet cooling equipment and cooling method
JP4858139B2 (en) * 2006-12-11 2012-01-18 Jfeスチール株式会社 Steel sheet cooling equipment and cooling method
JP4888124B2 (en) * 2007-01-11 2012-02-29 Jfeスチール株式会社 Steel cooling device and cooling method
JP4905180B2 (en) * 2007-02-28 2012-03-28 Jfeスチール株式会社 Steel cooling device and cooling method
JP5020863B2 (en) * 2008-03-04 2012-09-05 新日鐵住金ステンレス株式会社 Steel bar manufacturing equipment
JP4678069B1 (en) 2009-03-30 2011-04-27 Jfeスチール株式会社 Hot rolled steel sheet cooling device
EP3302837B1 (en) * 2015-05-29 2020-03-11 voestalpine Stahl GmbH Method for the homogeneous non-contact temperature control of non-endless surfaces which are to be temperature-controlled, and device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鉄と鋼,日本鉄鋼協会,1966年,第52巻第10号,第1640〜1645頁

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014304A (en) * 2012-12-21 2013-04-03 鞍钢股份有限公司 Plate shape control method for steel plate quenching
CN103014304B (en) * 2012-12-21 2014-03-12 鞍钢股份有限公司 Plate shape control method for steel plate quenching
KR101607217B1 (en) * 2014-12-26 2016-03-29 주식회사 포스코 Cooling apparatus and system for rolled material

Also Published As

Publication number Publication date
JPH10263669A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
JP3407589B2 (en) Cooling method for steel
EP2072157B1 (en) Method of cooling hot-rolled steel strip
EP1992426B1 (en) Cooling apparatus for hot rolled steel band and method of cooling the steel band
JP4779749B2 (en) Steel plate cooling method and cooling equipment
US4318534A (en) Plate quench
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
JP3287245B2 (en) Apparatus and method for cooling hot steel sheet
JP2008100256A (en) Equipment and method for cooling steel sheet
JP4905180B2 (en) Steel cooling device and cooling method
WO1998021535A1 (en) Apparatus for cooling strip and associated method
JP2010167501A (en) Steel plate cooling device
JP2848953B2 (en) High-efficiency quenching of roller-conveying glass sheets
JP3528740B2 (en) Steel cooling device
JP4888124B2 (en) Steel cooling device and cooling method
JPH09174137A (en) Method and device for descaling
JPH11216513A (en) Steel member descaling equipment
JPS5916617A (en) On-line cooling device of thick steel plate
JPS6043434A (en) Cooler for thick steel plate
JP5428452B2 (en) Lower surface cooling method and lower surface cooling device for hot-rolled steel strip
JP4621061B2 (en) Steel plate cooling equipment
JPH0596320A (en) Method for uniformly cooling thick steel plate
JPH1058026A (en) Method and device for cooling high temperature steel plate
JPS62166020A (en) Cooling device for hot rolled steel plate
CN216937726U (en) Cooling device with plate-shaped adjusting and controlling function
JP3146929B2 (en) Metal plate cooling device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees