JP3405536B2 - Porous ceramic honeycomb structure - Google Patents

Porous ceramic honeycomb structure

Info

Publication number
JP3405536B2
JP3405536B2 JP2000341644A JP2000341644A JP3405536B2 JP 3405536 B2 JP3405536 B2 JP 3405536B2 JP 2000341644 A JP2000341644 A JP 2000341644A JP 2000341644 A JP2000341644 A JP 2000341644A JP 3405536 B2 JP3405536 B2 JP 3405536B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
exhaust gas
porosity
pressure loss
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000341644A
Other languages
Japanese (ja)
Other versions
JP2002143615A (en
Inventor
靖彦 大坪
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18816355&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3405536(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000341644A priority Critical patent/JP3405536B2/en
Publication of JP2002143615A publication Critical patent/JP2002143615A/en
Application granted granted Critical
Publication of JP3405536B2 publication Critical patent/JP3405536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、デイーゼ
ルエンジンから排出される排気ガス中の微粒子を捕集す
る、コーディエライト組成からなる多孔質ハニカム構造
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous honeycomb structure having a cordierite composition for collecting fine particles in exhaust gas discharged from a diesel engine, for example.

【0002】[0002]

【従来技術】地域環境や地球環境の保全面から、自動車
などのエンジンから排出される排気ガスに含まれる有害
物質の削減が求められ、これに応えるため排気ガス浄化
用の触媒コンバータが用いられている。この触媒コンバ
ータのひとつにセラミックハニカム触媒コンバータがあ
る。また、最近はデイーゼルエンジンからの排気ガス中
に含まれる微粒子を捕集するために、コーディエライト
組成からなる多孔質セラミックハニカム構造体(以下、
「多孔質セラミックハニカム構造体」を略して「ハニカ
ム構造体」という)を用い、このハニカム構造体のセル
開口部の両端を交互に目封じした排気ガス浄化フィルタ
が使用されてきている。
2. Description of the Related Art From the viewpoint of protecting the local environment and the global environment, it is required to reduce harmful substances contained in exhaust gas emitted from engines such as automobiles, and in order to meet such demand, a catalytic converter for purifying exhaust gas is used. There is. One of these catalytic converters is a ceramic honeycomb catalytic converter. In addition, recently, in order to collect fine particles contained in exhaust gas from a diesel engine, a porous ceramic honeycomb structure composed of a cordierite composition (hereinafter,
An "exhaust gas purification filter" in which a "porous ceramic honeycomb structure" is abbreviated as "honeycomb structure") and both ends of cell openings of the honeycomb structure are alternately plugged has been used.

【0003】図1はハニカム構造体の斜視図であり、図
2は、図1のハニカム構造体11を用いた排気ガス浄化
フィルタ10の一例の断面模式図である。図1及び図2
に示すように、通常、ハニカム構造体11は略円筒状
で、外周壁11aと、この外周壁11aの内周側に各々
直交するセル壁11bにより形成された無数のセル11
cを有し、セル11cの流入側11d、流出側11eの
端面を交互に封止材31a、31bで封止されている。
そして、ハニカム構造体11は、収納容器12内に収納
され、その外周壁11aが収納容器12と密着するべく
配置され、把持部材23a、23bにより、使用中に動
かないように端面で把持されている。
FIG. 1 is a perspective view of a honeycomb structure, and FIG. 2 is a schematic sectional view of an example of an exhaust gas purification filter 10 using the honeycomb structure 11 of FIG. 1 and 2
As shown in FIG. 2, the honeycomb structure 11 is generally substantially cylindrical and has an innumerable number of cells 11 formed by an outer peripheral wall 11a and cell walls 11b orthogonal to the inner peripheral side of the outer peripheral wall 11a.
c, and the end faces of the inflow side 11d and the outflow side 11e of the cell 11c are alternately sealed with the sealing materials 31a and 31b.
The honeycomb structure 11 is housed in the storage container 12, the outer peripheral wall 11a thereof is arranged so as to be in close contact with the storage container 12, and the end faces of the honeycomb structure 11 are gripped by the gripping members 23a and 23b so as not to move during use. There is.

【0004】排気ガス浄化フィルタ10での排気浄化作
用は、以下の通り行われる。排気ガスは、ハニカム構造
体11の流入側11dで開口しているセル11cから流
入(10aで示す)し、セル壁11bに形成された細孔
を通過した後、流出側11eから排出(10bで示す)
される。そして、排気ガス中に含まれる微粒子などは、
セル壁11b内で連続する細孔から隣接セルに通過する
際に濾過され、捕集される。捕集される微粒子の量が多
くなると細孔が微粒子によって詰まり、エンジンに用い
た場合に背圧が増加する。このため、捕集された微粒子
が一定量を超えたときに微粒子を除去することによっ
て、背圧増加によるエンジンへの負荷増加を抑える必要
がある。微粒子は、固定炭素成分と有機溶剤に溶解可能
な可溶性有機成分の可燃性であるので、約650℃以上
の温度に加熱すれば燃焼する。そこで、電気ヒータ、バ
ーナ、熱風などの加熱手段を用いて微粒子を再燃焼させ
て、排気ガス浄化フィルタ10を再生している。
The exhaust gas purifying action of the exhaust gas purifying filter 10 is performed as follows. The exhaust gas flows in from the cells 11c that are open on the inflow side 11d of the honeycomb structure 11 (indicated by 10a), passes through the pores formed in the cell walls 11b, and then is exhausted from the outflow side 11e (at 10b). Show)
To be done. Then, the fine particles contained in the exhaust gas are
When passing through the continuous pores in the cell wall 11b to the adjacent cells, they are filtered and collected. When the amount of collected fine particles is large, the pores are clogged with the fine particles, and the back pressure increases when used in an engine. Therefore, it is necessary to suppress the increase of the load on the engine due to the increase of the back pressure by removing the fine particles when the collected fine particles exceed a certain amount. Since the fine particles are combustible of the fixed carbon component and the soluble organic component that can be dissolved in the organic solvent, they burn when heated to a temperature of about 650 ° C or higher. Therefore, the exhaust gas purification filter 10 is regenerated by reburning the fine particles using a heating means such as an electric heater, a burner, or hot air.

【0005】この排気ガス浄化フィルタ10には、使用
中に、排気ガスに含まれる微粒子を高効率で捕集するこ
と、圧力損失を低くしてエンジンへの負荷を少なくする
ことが要求されている。しかしながら、この捕集効率と
圧力損失は相反する関係にあり、捕集効率を高くしよう
とすると圧力損失が増大し、また圧力損失を低くする
と、捕集効率が悪化するようになる。このため、下記の
従来技術では、フィルタ中に存在する細孔を調整するこ
とにより、高捕集効率及び低圧力損失のフィルタを提供
することが開示されている。
The exhaust gas purification filter 10 is required to highly efficiently collect fine particles contained in the exhaust gas during use and to reduce pressure loss to reduce the load on the engine. . However, the collection efficiency and the pressure loss are in a contradictory relationship. When the collection efficiency is increased, the pressure loss increases, and when the pressure loss is decreased, the collection efficiency deteriorates. For this reason, the following prior art discloses to provide a filter with high collection efficiency and low pressure loss by adjusting the pores present in the filter.

【0006】特公昭61−54750号公報には、ハニ
カム構造体の気孔率と平行細孔径を制御することで高捕
集効率タイプから低捕集効率タイプまで適用できるとの
記載がある。そして、この特公昭61−54750号公
報での好適な具体例として、第20頁の図8の点1−5
−6−4を結ぶ境界内で限定される帯域内のオープンポ
ロシティ(気孔率)及び平均気孔寸法(平均細孔径)が
記載されている。ここで点1はオープンポロシティ5
8.5容量%、平均気孔直径1μm、点5はオープンポ
ロシティ39.5容量%、平均気孔直径15μm、点6
はオープンポロシティ62.0容量%、平均気孔直径1
5μm、点4はオープンポロシティ90.0容量%、平
均気孔直径1μmである。
[0006] Japanese Patent Publication No. 61-54750 describes that a high efficiency collection type to a low efficiency collection type can be applied by controlling the porosity and parallel pore size of the honeycomb structure. As a preferred specific example in this Japanese Patent Publication No. 61-54750, points 1-5 in FIG. 8 on page 20.
The open porosity (porosity) and the average pore size (average pore diameter) within the zone defined within the boundary connecting -6-4 are described. Here, point 1 is open porosity 5
8.5% by volume, average pore diameter 1 μm, point 5 shows open porosity 39.5% by volume, average pore diameter 15 μm, point 6
Is open porosity 62.0% by volume, average pore diameter 1
5 μm, point 4 has an open porosity of 90.0% by volume and an average pore diameter of 1 μm.

【0007】また、特開平9−77573号公報には、
コーディエライトからなるハニカム構造体で、気孔率を
55〜80%好ましくは62〜75%、平均細孔径を2
5〜40μm、かつセル壁の細孔を5〜40μmの小孔
と40〜100μmの大孔とし、また小孔の数を大孔の
数の5〜40倍として、捕集率を高く、圧力損失を低く
できるとする記載がある。
Further, Japanese Patent Laid-Open No. 9-77573 discloses that
A honeycomb structure made of cordierite having a porosity of 55 to 80%, preferably 62 to 75%, and an average pore diameter of 2.
5 to 40 μm, the pores of the cell wall are 5 to 40 μm small holes and 40 to 100 μm large holes, and the number of small holes is 5 to 40 times the number of large holes to obtain a high collection rate and a high pressure. There is a statement that the loss can be reduced.

【0008】一方、セル壁の側面及び細孔内に触媒を担
持することで、排気ガスに含まれる微粒子を捕集すると
共に有害物質を無害化することも行われてきている。例
えば、特開平9−158710号公報には、低熱膨張係
数のコーディエライト組成で、セル壁の側面及び細孔内
に高比表面積材料粒子を含むコーティング材料を付着し
ているハニカム構造体を用いたフィルタにおいて、高比
表面積材料を担持した後の、フィルタのセル壁の気孔率
を40〜65%、平均細孔径を5〜35μmとすること
で、フィルタになるべく多くの活性アルミナなどの高比
表面積材料粒子を担持すると共に、圧力損失を低くでき
るとする記載がある。
[0008] On the other hand, it has also been attempted to collect fine particles contained in exhaust gas and detoxify harmful substances by supporting a catalyst on the side surface and pores of the cell wall. For example, Japanese Patent Application Laid-Open No. 9-158710 uses a honeycomb structure having a cordierite composition having a low coefficient of thermal expansion and having a coating material containing high specific surface area material particles attached to the side surfaces and pores of cell walls. In the conventional filter, after the high specific surface area material is supported, the porosity of the cell wall of the filter is set to 40 to 65% and the average pore diameter is set to 5 to 35 μm. It is described that the pressure loss can be reduced while supporting the surface area material particles.

【0009】そして、特公平7−38930号公報に
は、多孔質セラミックフィルタを製造するに際し、コー
ジェライト化原料である、タルク粉末成分とシリカ粉末
成分の150μm以上の粒子が原料全体の3重量%以下
となるように、且つこれら両成分の45μm以下の粒子
が全体の25%となるように調整する技術が開示されて
いる。この技術によれば、10μmよりも小さな細孔
や、100μmよりも大きな細孔の形成を制御すること
ができ、10〜50μmの細孔を増大させることできる
ため、高捕集効率を維持したまま低圧損、捕集時間の長
いフィルタの製作が可能となり、その多孔質セラミック
フィルタは、気孔率が45〜60%、直径が100μm
以上の細孔容積は10%以下、かつ直径が10〜50μ
mの細孔容積は65%以上であるという記載がある。
In Japanese Patent Publication No. 7-38930, when producing a porous ceramic filter, particles of 150 μm or more of a talc powder component and a silica powder component, which are cordierite forming raw materials, account for 3% by weight of the entire raw material. A technique is disclosed in which the amount of particles of 45 μm or less of both components is adjusted to 25% of the total amount so as to be as follows. According to this technique, formation of pores smaller than 10 μm and pores larger than 100 μm can be controlled, and pores of 10 to 50 μm can be increased, so that high collection efficiency is maintained. It is possible to manufacture a filter with low pressure loss and long collection time. The porous ceramic filter has a porosity of 45 to 60% and a diameter of 100 μm.
The above pore volume is 10% or less, and the diameter is 10 to 50 μ.
There is a description that the pore volume of m is 65% or more.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記従
来のセラミックフィルタにおいては以下の問題がある。
即ち本発明者らが実際にやってみると、相反する特性で
ある、圧力損失と捕集効率、更には強度を両立させたフ
ィルタを提供することが困難であった。
However, the above-mentioned conventional ceramic filter has the following problems.
That is, when the present inventors actually tried it, it was difficult to provide a filter having both the pressure loss, the collection efficiency, and the strength, which are contradictory properties.

【0011】前記特公昭61−54750号公報記載の
技術は、平均細孔径が小さく、気孔率との関係で排気ガ
ス通過時の圧力損失が大きくなり、また、微粒子の詰ま
りや触媒担持により細孔が塞がれて通気抵抗が大きくな
るという問題があった。
The technique disclosed in Japanese Patent Publication No. 61-54750 has a small average pore diameter, a large pressure loss when passing through exhaust gas in relation to the porosity, and the fine pores due to clogging of fine particles and catalyst loading. There was a problem that the ventilation resistance was increased due to the blockage.

【0012】前記特開平9−77573号公報記載の技
術は、平均細孔径が25〜40μmと大きいため、より
微細な微粒子が透過してしまい、捕集効率が低下すると
いう問題があった。また、平均細孔径が大きいために、
機械的強度が低下し、組立時や使用時に破損し易いとい
う問題もあった。
The technique described in JP-A-9-77573 has a problem that fine particles are permeated and the collection efficiency is lowered because the average pore diameter is as large as 25 to 40 μm. Also, since the average pore size is large,
There is also a problem that the mechanical strength is lowered and it is easily damaged during assembly or use.

【0013】一方、前記特開平9−158710号公報
記載の技術は、気孔率が40〜65%と小さく、細孔径
との関係で排気ガス通過時の圧力損失が大きくなり、ま
た、触媒を担持した場合に細孔が塞がれて圧力損失が大
きくなるという問題があった。
On the other hand, in the technique described in Japanese Patent Laid-Open No. 9-158710, the porosity is as small as 40 to 65%, the pressure loss when passing through the exhaust gas becomes large in relation to the pore size, and the catalyst is supported. In that case, there is a problem that the pores are closed and the pressure loss increases.

【0014】そして、特公平7−38930号公報の技
術は、気孔率が45〜60%と小さく、細孔径との関係
で排気ガス通過時の圧力損失が大きくなり、また、触媒
を担持した場合に細孔が塞がれて圧力損失が大きくなる
という問題があった。
In the technique of Japanese Patent Publication No. 7-38930, the porosity is as small as 45 to 60%, the pressure loss at the passage of exhaust gas is large due to the pore size, and the catalyst is supported. There was a problem that the pores were blocked and the pressure loss increased.

【0015】以上述べたように従来技術では、フィルタ
の圧力損失、微粒子捕集効率、強度を満足させることは
難しく、特に気孔率を60%以上有するフィルタでは極
めて困難であった。従って、本発明の課題は、低圧力損
失を維持するとともに、気孔率が60%以上であって
も、排気ガス中の微粒子を高効率に捕集することがで
き、さらには組立て時或いは使用時に破損しない高強度
のハニカム構造体を得ることにある。
As described above, in the prior art, it is difficult to satisfy the pressure loss, the particulate collection efficiency, and the strength of the filter, and it is extremely difficult for the filter having the porosity of 60% or more. Therefore, an object of the present invention is to maintain a low pressure loss and to collect fine particles in exhaust gas with high efficiency even when the porosity is 60% or more, and further at the time of assembly or use. It is to obtain a high-strength honeycomb structure that is not damaged.

【0016】[0016]

【課題を解決するための手段】本発明者らは、フィルタ
中に存在する細孔の大きさについて検討を行い、細孔径
20〜40μmの細孔容積が圧力損失、捕集効率、強度
を両立させるために有効に作用することを見出し本発明
に想到した。
Means for Solving the Problems The present inventors have examined the size of the pores present in the filter, and the pore volume having a pore diameter of 20 to 40 μm achieves both pressure loss, collection efficiency and strength. The present invention was conceived to find that it works effectively in order to achieve this.

【0017】すなわち、本発明は、セル開口部両端を交
互に目封じして、排気ガスをセル壁の細孔を通過させて
隣接セルに流し、排気ガスに含まれる微粒子をセル壁で
捕集する、コーディエライト組成からなる多孔質ハニカ
ム構造体であって、前記セル壁の気孔率が60〜80
%、平均細孔径が15〜25μmであって、細孔径20
〜40μmの総細孔容積が全細孔容積の25%以上であ
ることを特徴とする多孔質セラミックハニカムである。
そして、前記多孔質セラミックハニカム構造体におい
て、単位体積あたりのフィルター表面積が7〜13cm
2/cm3であることが好ましい。
That is, according to the present invention, both ends of the cell opening are alternately plugged, the exhaust gas is passed through the pores of the cell wall to flow into the adjacent cell, and the fine particles contained in the exhaust gas are collected by the cell wall. A porous honeycomb structure having a cordierite composition, wherein the cell walls have a porosity of 60 to 80.
%, The average pore diameter is 15 to 25 μm, and the pore diameter is 20
The porous ceramic honeycomb is characterized in that the total pore volume of -40 μm is 25% or more of the total pore volume.
In the porous ceramic honeycomb structure, the filter surface area per unit volume is 7 to 13 cm.
It is preferably 2 / cm 3 .

【0018】次に、本発明の構成の理由を説明する。 (気孔率)本発明の多孔質セラミックハニカム構造体
は、セル壁の気孔率が60〜80%、平均細孔径15〜
25μmに加え、細孔径20〜40μmの総細孔容積が
全細孔容積の25%以上としているため、気孔率が60
〜80%と高いにも拘わらず、低圧力損失を維持しつ
つ、高捕集効率、高強度のハニカム構造体が得られるの
である。ここで、セル壁の気孔率が60%未満である
と、細孔径との関係で排気ガス通過時の圧力損失が大き
くなり、また触媒を担持した場合その担持量が少なくな
る。一方、気孔率が80%を超えると、強度が低下する
のと同時に微粒子の捕集効率が低下する。従って、気孔
率は60〜80%とする。好ましくは、気孔率は60〜
70%である。
Next, the reason for the constitution of the present invention will be explained. (Porosity) The porous ceramic honeycomb structure of the present invention has a cell wall porosity of 60 to 80% and an average pore diameter of 15 to
In addition to 25 μm, the total pore volume of pore diameters of 20 to 40 μm is 25% or more of the total pore volume, so that the porosity is 60%.
Despite being as high as -80%, it is possible to obtain a honeycomb structure having high collection efficiency and high strength while maintaining low pressure loss. Here, if the porosity of the cell wall is less than 60%, the pressure loss when passing through the exhaust gas becomes large in relation to the pore diameter, and when the catalyst is carried, the carried amount becomes small. On the other hand, when the porosity exceeds 80%, the strength decreases and at the same time, the collection efficiency of fine particles decreases. Therefore, the porosity is set to 60 to 80%. Preferably, the porosity is 60-
70%.

【0019】(平均細孔径)平均細孔径が15μm未満
では、気孔率との関係で排気ガス通過時の圧力損失が大
きくなり、また微粒子の詰まりや触媒担持により塞がれ
て通気抵抗が大きくなる。一方、平均細孔径が25μm
を超えると、強度が低下するのとより微細な微粒子が透
過して捕集効率が低下する。
(Average Pore Diameter) When the average pore diameter is less than 15 μm, the pressure loss when passing through the exhaust gas becomes large in relation to the porosity, and the clogging of fine particles and the blockage due to catalyst loading increase the ventilation resistance. . On the other hand, the average pore diameter is 25 μm
When it exceeds, the strength decreases and finer fine particles permeate to reduce the collection efficiency.

【0020】(細孔容積)圧力損失を小さくするには細
孔径20μm以上の細孔を多くするのが良く、一方、4
0μmを超える細孔は破壊の起点となって強度が低下す
る場合となることと、微粒子の捕集率を低下させる。こ
のため、細孔径20〜40μmの総細孔容積が全細孔容
積の25%以上が必要である。なお、気孔率、平均細孔
径、細孔径は、水銀圧入式ポロシメータを用いて測定す
る。
(Pore volume) In order to reduce the pressure loss, it is preferable to increase the number of pores having a diameter of 20 μm or more, while 4
The pores having a size of more than 0 μm may be the starting point of fracture and the strength may be reduced, and the collection rate of fine particles may be reduced. Therefore, the total pore volume of the pore diameter of 20 to 40 μm needs to be 25% or more of the total pore volume. The porosity, average pore diameter, and pore diameter are measured using a mercury porosimetry porosimeter.

【0021】(単位体積あたりのフィルター表面積)フ
ィルター表面積とは、セル壁の表面積をいう。ハニカム
構造体において単位体積あたりのフィルター表面積が7
cm2/cm3未満の場合は、圧力損失が大きくなり、1
3cm2/cm3を超えるとセル密度が高くなることで、
排気ガスが隣接セルに通過する際の通気抵抗が大きくな
り、かえって圧力損失が大きくなる。
(Filter surface area per unit volume) The filter surface area means the surface area of the cell wall. In the honeycomb structure, the filter surface area per unit volume is 7
When it is less than cm 2 / cm 3 , the pressure loss becomes large and 1
When the cell density exceeds 3 cm 2 / cm 3 , the cell density increases,
The ventilation resistance when the exhaust gas passes through the adjacent cells becomes large, and the pressure loss becomes large.

【0022】[0022]

【発明の実施の形態】以下、発明の実施の形態を詳細に
説明する。図1及び図2に示すハニカム構造体11を以
下のようにして作製した。 (原料粉末の調整)カオリン、タルク、シリカ、水酸化
アルミ、アルミナなどの粉末を調整して、化学組成が質
量比で、SiO2 :48〜52%、Al23:33〜3
7%、MgO:12〜15%、CaO:0〜0.05
%、Na2O :0〜0.05%、K2O :0〜0.05
%、TiO2 :0〜1.0%、Fe23:0〜1.0
%、PbO:0〜0.1%、P25:0〜0.2%を含
むコーディエライト質セラミックの原料粉末とした。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The honeycomb structure 11 shown in FIGS. 1 and 2 was produced as follows. (Preparation of raw material powder) Powders such as kaolin, talc, silica, aluminum hydroxide, and alumina are prepared so that the chemical composition by mass ratio is SiO 2 : 48 to 52%, Al 2 O 3 : 33 to 3 .
7%, MgO: 12-15%, CaO: 0-0.05
%, Na 2 O: 0 to 0.05%, K 2 O: 0 to 0.05
%, TiO 2 : 0 to 1.0%, Fe 2 O 3 : 0 to 1.0
%, PbO: 0~0.1%, P 2 O 5: the cordierite ceramic raw material powder containing 0 to 0.2%.

【0023】(成形助剤及び造孔剤の添加と、坏土の精
製)次に、このコーディエライト質セラミックの原料粉
末に対し、成形助剤としてメチルセルロースとヒドロキ
シプロピルメチルセルロース、造孔剤として、グラファ
イト、小麦粉、でん粉などの量を変えて添加し、乾式で
十分混合した。次いで、規定量の水を注入して更に十分
な混練を行い、押出成形可能な坏土を作製した。
(Addition of molding aid and pore-forming agent and purification of kneaded clay) Next, with respect to the raw material powder of the cordierite ceramic, methyl cellulose and hydroxypropylmethyl cellulose as molding assistants, and as a pore-forming agent, The amounts of graphite, wheat flour, starch, etc. were added in different amounts and mixed thoroughly in a dry system. Next, a specified amount of water was injected and kneading was further performed to prepare an extrusion-moldable kneaded material.

【0024】(押出成形)次に、この坏土を公知の押出
成形法により、外周壁とセル壁とが一体に形成された、
直径143.8mm×長さ152.4mmのハニカム構
造を有する成形体を成形した。なお、金型の寸法を変更
して各種単位体積あたりのフィルター表面積を有する成
形体が得られるようにした。
(Extrusion Molding) Next, the kneaded clay was integrally formed with the outer peripheral wall and the cell wall by a known extrusion molding method.
A molded body having a honeycomb structure having a diameter of 143.8 mm and a length of 152.4 mm was molded. The dimensions of the mold were changed so that molded articles having various filter surface areas per unit volume could be obtained.

【0025】(焼成)次に、このハニカム構造を有する
成形体を、バッチ式焼成炉を用いて最高温度1405℃
で焼成を行った。得られた焼成体のセル壁厚は0.12
〜0.60mm、セル密度75〜400cpsiであっ
た。
(Firing) Next, the formed body having the honeycomb structure was heated to a maximum temperature of 1405 ° C. in a batch type firing furnace.
Was fired at. The obtained fired body had a cell wall thickness of 0.12
˜0.60 mm, cell density 75-400 cpsi.

【0026】(目封じ)次に、このハニカム構造体11
の排気ガス流入側11dのセルを一個おきに目封じし、
排気ガス流出側11eでは流入側11dで目封じしてな
いセルについてのみ目封じする。目封じ材はコーディエ
ライト、アルミナ、ジルコニアなど、1000℃以上の
耐熱性のあるセラミック材料であれば良く、またセラミ
ック製の接着剤でもよい。そして、収納容器12内に収
納することで、圧力損失が少ないと共に強度が確保さ
れ、排気ガス中の微粒子を高効率に捕集し、又は更に、
エンジン始動直後から浄化機能を高めることのできる、
排気ガス浄化フィルタ10となる。
(Sealing) Next, this honeycomb structure 11
Every other cell on the exhaust gas inflow side 11d of
On the exhaust gas outflow side 11e, only the cells that are not plugged on the inflow side 11d are plugged. The plugging material may be a ceramic material having a heat resistance of 1000 ° C. or higher, such as cordierite, alumina, zirconia, or a ceramic adhesive. Then, by storing in the storage container 12, the pressure loss is small and the strength is secured, the fine particles in the exhaust gas are highly efficiently collected, or further,
Immediately after starting the engine, the purification function can be enhanced,
It becomes the exhaust gas purification filter 10.

【0027】そして、目封じして得られたハニカム構造
体11について、セル壁11bの気孔率(%)、平均細
孔径(μm)、細孔径20〜40μmの総細孔容積と全
細孔容積の比(%)、単位体積あたりのフィルター表面
積(cm2/cm3)をについて測定した。尚、単位体積
あたりのフィルター表面積は、セル壁厚とセルピッチを
測定して算出した。その結果を、表1に気孔率(%)の
小さい順に示す。ここで、気孔率、平均細孔径、細孔径
の測定には、Micromeritics社製のオートポアIII941
0を使用し、水銀圧入法で測定した。
Then, regarding the honeycomb structure 11 obtained by plugging, the porosity (%) of the cell wall 11b, the average pore diameter (μm), the total pore volume of 20-40 μm and the total pore volume. (%) And the filter surface area per unit volume (cm 2 / cm 3 ) were measured. The filter surface area per unit volume was calculated by measuring the cell wall thickness and the cell pitch. The results are shown in Table 1 in ascending order of porosity (%). Here, for measuring the porosity, the average pore diameter, and the pore diameter, Autopore III941 manufactured by Micromeritics is used.
0 was used and the measurement was performed by the mercury penetration method.

【0028】 (表1) No. 区分 気孔率 平均細孔径 細孔径20〜40μmの総細孔 フィルター表面積 (%) (μm) 容積と全細孔容積の比(%) (cm2/cm3) 01 比較例 1 54.5 7.7 4.1 5.9 02 比較例 2 56.7 13.1 18.6 13.5 03 比較例 3 56.8 14.9 22.5 6.5 04 発明例 1 60.8 19.8 49.6 6.8 05 比較例 4 64.0 11.2 15.4 5.7 06 比較例 5 64.3 11.7 10.1 6.1 07 発明例 2 66.0 17.0 30.6 8.0 08 比較例 6 66.2 14.5 26.6 13.5 09 比較例 7 66.6 12.0 9.4 5.7 10 発明例 3 66.6 19.5 26.4 10.8 11 発明例 4 67.2 16.0 27.3 7.8 12 発明例 5 67.2 21.8 42.0 8.3 13 比較例 8 70.0 13.4 11.4 6.5 14 比較例 9 70.2 27.0 44.8 8.3 15 発明例 6 70.4 18.8 45.7 14.0 16 比較例10 74.8 13.7 17.0 6.0 17 発明例 7 78.9 17.3 31.7 11.0 18 比較例11 82.8 13.7 17.0 6.0[0028] (Table 1) No. Classification Porosity Average pore size Total pore size 20 to 40 μm Filter surface area      (%)    (μm)    Ratio of volume to total pore volume (%)  (cm 2 / cm 3 ) 01 Comparative example 1 54.5 7.7 4.1 5.9 02 Comparative example 2 56.7 13.1 18.6 13.5 03 Comparative Example 3 56.8 14.9 22.5 6.5 04 Invention Example 1 60.8 19.8 49.6 6.8 05 Comparative example 4 64.0 11.2 15.4 5.7 06 Comparative example 5 64.3 11.7 10.1 6.1 07 Invention 2 66.0 17.0 30.6 8.0 08 Comparative example 6 66.2 14.5 26.6 13.5 09 Comparative example 7 66.6 12.0 9.4 5.7 10 Invention Example 3 66.6 19.5 26.4 10.8 11 Invention Example 4 67.2 16.0 27.3 7.8 12 Invention Example 5 67.2 21.8 42.0 8.3 13 Comparative example 8 70.0 13.4 11.4 6.5 14 Comparative example 9 70.2 27.0 44.8 8.3 15 Invention Example 6 70.4 18.8 45.7 14.0 16 Comparative Example 10 74.8 13.7 17.0 6.0 17 Invention Example 7 78.9 17.3 31.7 11.0 18 Comparative Example 11 82.8 13.7 17.0 6.0

【0029】次に、圧力損失試験装置(図示せず)で、
ハニカム構造体11に、(a)空気流量7.5Nm3
minとしたときの、流入側11dと流出側11eの差
圧、(b)粒径0.042μmのカーボン粉を3g/h
で2時間投入した後の流入側11dと流出側11eの差
圧、(c)触媒を担持した後に、7.5Nm3/min
のときの流入側11dと流出側11eの差圧を測定し
た。そして、圧力損失(mmAq)を、流入側11dと
流出側11eの差圧により求めた。なお、圧力損失の評
価は、(a)ハニカム構造体11単独(次の表2では
「担体」として示す)については、230mmAq未満
を優として(◎)、230〜250mmAqを良として
(○)、250mmAqを超えるものをNGとして
(×)で、(b)カーボン粉については、380mmA
q未満を優として(◎)、380〜400mmAqを良
BR>として(○)、400mmAqを超えるものをNG
として(×)で、(c)触媒については、280mmA
q未満を優として(◎)、280〜300mmAqを良
として(○)、300mmAqを超えるものをNGとし
て(×)で行った。また、粒径0.042μmのカーボ
ン粉を3g/hで2時間投入した後の捕集率(%)を測
定した。更に、(社)自動車技術会 自動車規格(JA
SO)M505−87に基づき、ハニカム構造体11に
ついて、A軸の圧縮破壊強度(MPa)をそれぞれ測定
した。その結果を表2に示す。
Next, with a pressure loss test device (not shown),
(A) Air flow rate of 7.5 Nm 3 /
The pressure difference between the inflow side 11d and the outflow side 11e at the time of min, (b) 3 g / h of carbon powder having a particle diameter of 0.042 μm
The pressure difference between the inflow side 11d and the outflow side 11e after charging for 2 hours at (c) 7.5 Nm 3 / min after supporting the catalyst
At this time, the pressure difference between the inflow side 11d and the outflow side 11e was measured. Then, the pressure loss (mmAq) was obtained by the differential pressure between the inflow side 11d and the outflow side 11e. The evaluation of the pressure loss is as follows: (a) For the honeycomb structure 11 alone (indicated as “carrier” in the following Table 2), less than 230 mmAq is excellent (⊚), 230 to 250 mmAq is good (∘), NG is NG when exceeding 250 mmAq, and 380 mmA for (b) carbon powder.
Less than q is excellent (⊚), 380 to 400 mmAq is good
As BR> (○), NG exceeding 400 mmAq
(X), for (c) catalyst, 280 mmA
Less than q was evaluated as excellent (⊚), 280 to 300 mmAq was evaluated as good (∘), and those exceeding 300 mmAq were evaluated as NG (x). Further, the collection rate (%) after charging carbon powder having a particle diameter of 0.042 μm at 3 g / h for 2 hours was measured. Furthermore, the Society of Automotive Engineers of Japan Automotive Standards (JA
Based on (SO) M505-87, the A-axis compressive fracture strength (MPa) of the honeycomb structure 11 was measured. The results are shown in Table 2.

【0030】 (表2) No. 区分 圧力損失の評価 捕集率 A軸圧縮破壊強度 (a)担体 (b)カーホ゛ン粉 (c)触媒 (%) (MPa) 01 比較例 1 × × × 100 8.8 02 比較例 2 ○ × × 100 7.0 03 比較例 3 ○ × ○ 98 6.6 04 発明例 1 ◎ ○ ○ 97 5.0 05 比較例 4 × × × 100 6.2 06 比較例 5 × × × 100 5.6 07 発明例 2 ◎ ◎ ◎ 99 3.5 08 比較例 6 ◎ × ○ 97 5.4 09 比較例 7 × × × 100 6.5 10 発明例 3 ◎ ◎ ◎ 97 4.2 11 発明例 4 ◎ ◎ ◎ 100 4.0 12 発明例 5 ◎ ◎ ◎ 96 3.0 13 比較例 8 ○ × ○ 100 1.8 14 比較例 9 ◎ ◎ ◎ 92 0.8 15 発明例 6 ◎ ◎ ○ 97 3.6 16 比較例10 ○ × ○ 98 1.4 17 発明例 7 ◎ ◎ ◎ 98 2.8 18 比較例11 ○ × ○ 97 0.5[0030] (Table 2) No. classificationPressure drop evaluation   Collection rate   A-axis compressive fracture strength     (a) carrier  (b) Carbon powder  (c) Catalyst   (%)   (MPa) 01 Comparative example 1 × × × 100 8.8 02 Comparative example 2 ○ × × 100 7.0 03 Comparative example 3 ○ × ○ 98 6.6 04 Invention 1 ◎ ○ ○ 97 5.0 05 Comparative example 4 × × × 100 6.2 06 Comparative example 5 × × × 100 5.6 07 Invention Example 2 ◎ ◎ ◎ ◎ 99 3.5 08 Comparative example 6 ◎ × ○ 97 5.4 09 Comparative example 7 × × × 100 6.5 10 Invention Example 3 ◎ ◎ ◎ 97 4.2 11 Inventive Example 4 ◎ ◎ ◎ ◎ 100 4.0 12 Invention Example 5 ◎ ◎ ◎ 96 3.0 13 Comparative example 8 ○ × ○ 100 1.8 14 Comparative example 9 ◎ ◎ ◎ 92 0.8 Inventive Example 6 ◎ ◎ ○ ○ 97 3.6 16 Comparative example 10 ○ × ○ 98 1.4 17 Invention Example 7 ◎ ◎ ◎ 98 2.8 18 Comparative example 11 ○ × ○ 97 0.5

【0031】表2から、発明例1〜7は、20〜40μ
mの総細孔容積が全細孔容積の25%以上、平均細孔径
が15〜25μmとしていることから、気孔率を60〜
80%と大きくしているにも拘わらず、(a)ハニカム
構造体11単独、(b)カーボン粉投入、(c)触媒担
持後、何れも圧力損失が少ない。また、発明例1〜7
は、カーボン粉の捕集率が高く、A軸圧縮破壊強度も確
保されている。特に、単位体積あたりのフィルター表面
積を7〜13cm2/cm3とすることで圧力損失をより
少なくすることができる。一方、比較例1〜11は、
(a)ハニカム構造体11単独、(b)カーボン粉投
入、(c)触媒担持後、の圧力損失、又は、カーボン粉
の捕集率、A軸圧縮破壊強度の何れかにおいても十分で
なく、問題が残されている。
From Table 2, invention examples 1 to 7 are 20 to 40 μm.
Since the total pore volume of m is 25% or more of the total pore volume and the average pore diameter is 15 to 25 μm, the porosity is 60 to
Despite the increase to 80%, the pressure loss is small in each of (a) the honeycomb structure 11 alone, (b) carbon powder addition, and (c) catalyst loading. Further, invention examples 1 to 7
Has a high collection rate of carbon powder and secures A-axis compressive fracture strength. In particular, the pressure loss can be further reduced by setting the filter surface area per unit volume to 7 to 13 cm 2 / cm 3 . On the other hand, Comparative Examples 1 to 11
(A) Honeycomb structure 11 alone, (b) carbon powder input, (c) pressure loss after catalyst loading, or carbon powder collection rate or A-axis compressive fracture strength is not sufficient, The problem remains.

【0032】[0032]

【発明の効果】以上詳細に説明のとおり、本発明のハニ
カム構造体によれば、気孔率が大きいにも拘わらず、低
圧力損失を維持しつつ、強度を確保し、また排気ガス中
の微粒子を高効率に捕集することができる。
As described in detail above, according to the honeycomb structure of the present invention, despite the large porosity, the strength is secured while maintaining the low pressure loss, and the fine particles in the exhaust gas are maintained. Can be collected with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】ハニカム構造体の斜視図である。FIG. 1 is a perspective view of a honeycomb structure.

【図2】図1のハニカム構造体を用いた排気ガス浄化フ
ィルタ10の一例の断面模式図である。
FIG. 2 is a schematic sectional view of an example of an exhaust gas purification filter 10 using the honeycomb structure of FIG.

【符号の説明】[Explanation of symbols]

11:ハニカム構造体 11a:外周壁 11b:セル壁 11c:セル 11d:流入側 11e:流出側 12:収納容器 23a、23b:把持部材。 11: Honeycomb structure 11a: outer peripheral wall 11b: cell wall 11c: cell 11d: Inflow side 11e: Outflow side 12: Storage container 23a, 23b: gripping members.

フロントページの続き (56)参考文献 特開 昭63−40777(JP,A) 特開 平9−29024(JP,A) 特開 平3−284313(JP,A) 特開 昭61−129015(JP,A) 特開 平9−159710(JP,A) 特開 平10−156118(JP,A) 特公 平7−38930(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B01D 39/00 - 41/04 B01D 46/00 - 46/54 B01D 53/86 - 53/96 B01J 20/00 - 38/74 F01N 3/00 - 3/38 C04B 38/06 Continuation of front page (56) Reference JP-A-63-40777 (JP, A) JP-A-9-29024 (JP, A) JP-A-3-284313 (JP, A) JP-A-61-129015 (JP , A) JP-A-9-159710 (JP, A) JP-A-10-156118 (JP, A) JP-B 7-38930 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB (Name) B01D 39/00-41/04 B01D 46/00-46/54 B01D 53/86-53/96 B01J 20/00-38/74 F01N 3/00-3/38 C04B 38/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セル開口部両端を交互に目封じして、排
気ガスをセル壁の細孔を通過させて隣接セルに流し、排
気ガスに含まれる微粒子をセル壁で捕集する、コーディ
エライト組成からなる多孔質ハニカム構造体であって、
セル壁の気孔率が60〜80%、平均細孔径が15〜2
5μmで、細孔径20〜40μmの総細孔容積が全細孔
容積の25%以上であることを特徴とする多孔質セラミ
ックハニカム構造体。
1. A cordier in which both ends of a cell opening are alternately plugged, exhaust gas is passed through pores in the cell wall to flow into an adjacent cell, and fine particles contained in the exhaust gas are collected by the cell wall. A porous honeycomb structure having a light composition,
Cell wall porosity 60-80%, average pore size 15-2
A porous ceramic honeycomb structure having a total pore volume of 5 μm and a pore diameter of 20 to 40 μm of 25% or more of the total pore volume.
【請求項2】 単位体積あたりのフィルター表面積が7
〜13cm2/cm3であることを特徴とする請求項1に
記載の多孔質セラミックハニカム構造体。
2. The filter surface area per unit volume is 7
The porous ceramic honeycomb structure according to claim 1, wherein the porous ceramic honeycomb structure has a density of about 13 cm 2 / cm 3 .
JP2000341644A 2000-11-09 2000-11-09 Porous ceramic honeycomb structure Expired - Lifetime JP3405536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341644A JP3405536B2 (en) 2000-11-09 2000-11-09 Porous ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341644A JP3405536B2 (en) 2000-11-09 2000-11-09 Porous ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2002143615A JP2002143615A (en) 2002-05-21
JP3405536B2 true JP3405536B2 (en) 2003-05-12

Family

ID=18816355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341644A Expired - Lifetime JP3405536B2 (en) 2000-11-09 2000-11-09 Porous ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP3405536B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074429A1 (en) 2016-10-17 2018-04-26 国立大学法人九州大学 Medical use honeycomb structure
WO2021177457A1 (en) 2020-03-05 2021-09-10 邦夫 石川 Medical honeycomb structure and manufacturing method thereof, medical tissue reconstruction bag, and forming mold

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827754B2 (en) 2001-09-13 2004-12-07 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP2004250324A (en) * 2003-01-30 2004-09-09 Hitachi Metals Ltd Method for producing ceramic honeycomb structure, and cordierite raw material
JP4200430B2 (en) 2003-02-18 2008-12-24 トヨタ自動車株式会社 Method for determining pass / fail of base material for exhaust gas purification filter catalyst
US20070166564A1 (en) * 2004-03-31 2007-07-19 Ngk Insulators, Ltd. Honeycomb structure and method for manufacture thereof
EP1790407B1 (en) * 2004-09-14 2018-02-28 NGK Insulators, Ltd. Porous honeycomb filter
JP2011058678A (en) * 2009-09-08 2011-03-24 Ngk Insulators Ltd Heat storage structure
JP6693477B2 (en) * 2017-06-13 2020-05-13 株式会社デンソー Exhaust gas purification filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074429A1 (en) 2016-10-17 2018-04-26 国立大学法人九州大学 Medical use honeycomb structure
WO2021177457A1 (en) 2020-03-05 2021-09-10 邦夫 石川 Medical honeycomb structure and manufacturing method thereof, medical tissue reconstruction bag, and forming mold

Also Published As

Publication number Publication date
JP2002143615A (en) 2002-05-21

Similar Documents

Publication Publication Date Title
US11033885B2 (en) Ceramic honeycomb structure and its production method
JP5142532B2 (en) Honeycomb structure
US7510755B2 (en) Honeycomb structure and method for producing same
KR100865101B1 (en) Porous honeycomb filter
KR100882767B1 (en) Honeycomb structure and method for manufacturing the same
JP4812316B2 (en) Honeycomb structure
KR100736303B1 (en) Honeycomb Structured Body
JP4550434B2 (en) Cell structure and manufacturing method thereof
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
JP5000873B2 (en) Method for producing porous body
WO2006035822A1 (en) Honeycomb structure
WO2006035823A1 (en) Honeycomb structure
WO2005039738A1 (en) Honeycomb structure body
JP5379039B2 (en) Exhaust gas purification device and exhaust gas purification method
JPWO2003093657A1 (en) Honeycomb filter for exhaust gas purification
JP7289813B2 (en) CERAMIC POROUS BODY, MANUFACTURING METHOD THEREOF, AND FILTER FOR DUST COLLECTION
WO2005014171A1 (en) Silicon carbide based catalyst material and method for preparation thereof
JP3874443B2 (en) Particulate collection filter
CN111818984A (en) Honeycomb filter and method for manufacturing honeycomb filter
JP3405536B2 (en) Porous ceramic honeycomb structure
JP2003001029A (en) Porous ceramic honeycomb filter
JP4577752B2 (en) Ceramic honeycomb filter
WO2005068396A1 (en) Honeycomb structure and method for producing the same
KR20090106483A (en) Method for obtaining a porous structure based on silicon carbide
EP2174698A1 (en) Honeycomb Structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3405536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term