JP2004250324A - Method for producing ceramic honeycomb structure, and cordierite raw material - Google Patents

Method for producing ceramic honeycomb structure, and cordierite raw material Download PDF

Info

Publication number
JP2004250324A
JP2004250324A JP2004023709A JP2004023709A JP2004250324A JP 2004250324 A JP2004250324 A JP 2004250324A JP 2004023709 A JP2004023709 A JP 2004023709A JP 2004023709 A JP2004023709 A JP 2004023709A JP 2004250324 A JP2004250324 A JP 2004250324A
Authority
JP
Japan
Prior art keywords
mass
particle size
ceramic honeycomb
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023709A
Other languages
Japanese (ja)
Inventor
Hirohisa Suwabe
博久 諏訪部
Osamu Tokutome
修 徳留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004023709A priority Critical patent/JP2004250324A/en
Publication of JP2004250324A publication Critical patent/JP2004250324A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a ceramic honeycomb structure used for a ceramic filter having a low pressure drop property and strength durable under mechanical vibration, shock, or thermal shock in use and to provide a powdery cordierite raw material therefor. <P>SOLUTION: The ceramic honeycomb structure is produced from a raw material mainly comprising a cordierite raw material by extruding the raw material and firing the resultant molded product. The cordierite raw material contains 10-20 mass% silica source component except kaolin and talc. The silica source component contains more than 1 mass% but 10 mass% or less powder whose particle diameter is 75-250 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタに使用されるに好適なセラミックハニカム構造体の製造方法、及びそのためのコージェライト化原料に関するものである。   The present invention relates to a method for manufacturing a ceramic honeycomb structure suitable for use in a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine, and a cordierite forming raw material therefor.

ディーゼル機関から排出される微粒子を除去するため、セラミックハニカム構造体の隔壁を多孔質構造とし、その隔壁に微粒子を含んだ排気ガスを通過せしめる構造の微粒子捕集用のセラミックハニカムフィルタを採用する検討が進められている。図1に、セラミックハニカムフィルタの正面図及び側面図を示す。このセラミックハニカムフィルタの特性に関しては、微粒子の捕集効率、圧力損失(圧損)、微粒子の捕集時間(捕集開始から一定圧損に達するまでの時間)の3つが重要とされている。中でも、捕集効率と圧損は相反する関係にあり、捕集効率を高くしようとすると、圧損が増大し、捕集時間が短くなり、また圧損を低くすると、捕集時間は長くできるが、捕集効率が悪くなる。これらの相反するフィルタの特性を満足するように、セラミックハニカム構造体に対しては、気孔率、平均細孔径、細孔径分布、隔壁表面に存在する細孔の大きさを制御する技術が従来から検討されており、併せて、所望の気孔率、平均細孔径、細孔径分布、隔壁表面に存在する細孔の大きさを得るためのセラミックハニカム構造体の製造方法が従来から検討されて来た。   Investigation of adopting a ceramic honeycomb filter for collecting fine particles with a structure in which the partition walls of the ceramic honeycomb structure are made porous and the exhaust gas containing the fine particles pass through the partition walls in order to remove the fine particles discharged from the diesel engine Is being promoted. FIG. 1 shows a front view and a side view of a ceramic honeycomb filter. Regarding the characteristics of the ceramic honeycomb filter, three are important: the collection efficiency of the fine particles, the pressure loss (pressure loss), and the collection time of the fine particles (the time from the start of collection to the time when a certain pressure loss is reached). Above all, the collection efficiency and the pressure loss are in a contradictory relationship. To increase the collection efficiency, the pressure loss increases and the collection time is shortened. The collection efficiency becomes poor. Techniques for controlling the porosity, average pore size, pore size distribution, and the size of pores present on the partition wall surface have been conventionally used for ceramic honeycomb structures so as to satisfy these conflicting filter characteristics. In addition, a method for producing a ceramic honeycomb structure for obtaining a desired porosity, average pore size, pore size distribution, and pore size present on the partition wall surface has been conventionally studied. .

特許文献1に記載の発明では、コージェライト化原料のうち、タルク粉末成分とシリカ粉末成分の150μm以上の粒子が原料全体の3重量%以下となるように、且つそれら両成分の45μm以下の粒子が全体の25重量%以下となるよう、コージェライト化原料を調整することを特徴とする多孔質セラミックハニカムフィルタの製法が開示されている。本製法によれば、気孔率が45〜65%で、直径が100μm以上の細孔が少なく、主として直径が10〜50μmの細孔にて構成されるものが有利に得られ、これによって捕集効率を低下させることなく、捕集時間を長くすることができるとしている。   In the invention described in Patent Document 1, among the cordierite-forming raw materials, particles of 150 μm or more of the talc powder component and silica powder component constitute 3% by weight or less of the entire raw material, and particles of 45 μm or less of both components. Discloses a method for producing a porous ceramic honeycomb filter, wherein a cordierite-forming raw material is adjusted so as to be 25% by weight or less of the whole. According to the present production method, a porous material having a porosity of 45 to 65%, a small number of pores having a diameter of 100 μm or more, and mainly having pores having a diameter of 10 to 50 μm is advantageously obtained. The collection time can be extended without lowering the efficiency.

特許文献2に記載の発明では、コージェライト化原料のうち、カオリンを、0〜10質量%以下で含有し、且つカオリン及びタルク以外のシリカ(SiO)源成分を、粒径75μm以上の粉末を1質量%以下とし、また、アルミナ(Al)源成分として粒径1〜10μmの水酸化アルミニウムを15〜45質量%、及び/或いは粒径4〜8μmの酸化アルミニウムを0〜20質量%含有させることを特徴とする多孔質ハニカムフィルターの製造方法が開示されている。この発明によれば、カオリン及びタルク以外のシリカ(SiO)源成分の粒径75μm以上の粗粒粉末をカットすることにより、また、アルミナ(Al)源成分の粒径を所望の範囲として、前記シリカ(SiO)源成分の粒径分布による細孔径分布の制御を精密に行えるようしたことにより、気孔率が65〜75%で、細孔径10〜50μmの狭い範囲の細孔を極めて高率で形成させることができ、これにより微粒子の捕集効率が高く、かつ細孔の目詰まりによる圧力損失の増大を防止することができるとしている。 In the invention described in Patent Document 2, among the cordierite-forming raw materials, kaolin is contained in an amount of 0 to 10% by mass or less, and a silica (SiO 2 ) source component other than kaolin and talc is powder having a particle size of 75 μm or more. To 1% by mass or less, and 15 to 45% by mass of aluminum hydroxide having a particle size of 1 to 10 μm and / or 0 to 20% of aluminum oxide having a particle size of 4 to 8 μm as an alumina (Al 2 O 3 ) source component. A method for producing a porous honeycomb filter, characterized in that the content is contained by mass%, is disclosed. According to this invention, the particle size of the silica (SiO 2 ) source component other than kaolin and talc having a particle size of 75 μm or more is cut, and the particle size of the alumina (Al 2 O 3 ) source component can be adjusted to a desired value. As the range, the pore size distribution can be precisely controlled by the particle size distribution of the silica (SiO 2 ) source component, so that the porosity is 65 to 75% and the pore size is narrow in the range of 10 to 50 μm. Can be formed at an extremely high rate, whereby the collection efficiency of fine particles is high, and an increase in pressure loss due to clogging of pores can be prevented.

特許文献3に記載の発明では、コージェライト化原料のうち、タルク及びシリカ原料粉末の平均粒子径が(2×シリカの平均粒子径)≧(タルクの平均粒子径)の関係を満たし、タルクの平均粒子径が40μm以下、シリカの平均粒子径が80μm以下とする製造方法が開示されている。この発明によると、使用シリカ粒度に対してその2倍以下の粒度のタルクを使用することにより、気孔率45〜60%、孔径100μm以上の細孔容積が全細孔容積の10%以下であり、その表面から内部に向かって開口及び貫通する全細孔の比表面積Mとフィルタ表面における表面粗さNとの関係が1000M+85N≧530の範囲にある多孔質セラミックハニカムフィルタが得られ、捕集時間が長く、再生回数を少なくできるとしている。   In the invention described in Patent Document 3, among the cordierite-forming raw materials, the average particle diameter of the talc and the silica raw material powder satisfies the relationship of (2 × average particle diameter of silica) ≧ (average particle diameter of talc). A production method in which the average particle diameter is 40 μm or less and the average particle diameter of silica is 80 μm or less is disclosed. According to the present invention, by using talc having a particle size smaller than twice the particle size of the silica used, the volume of pores having a porosity of 45 to 60% and a pore size of 100 μm or more is 10% or less of the total pore volume. A porous ceramic honeycomb filter is obtained in which the relationship between the specific surface area M of all pores opening and penetrating from the surface toward the inside and the surface roughness N on the filter surface is in the range of 1000M + 85N ≧ 530, and the collection time Is long, and the number of playbacks can be reduced.

特公平7−38930号公報Japanese Patent Publication No. 7-38930 特開2002−219319号公報JP-A-2002-219319 特開2003−193820号公報JP 2003-193820 A

しかしながら、近年採用が検討されるようになってきた、セラミックハニカムフィルタの隔壁表面や隔壁中の細孔に触媒物質を担持させて、触媒物質の作用により堆積した微粒子を燃焼させる構造のフィルタの場合、触媒物質による細孔の目詰まりによる圧力損失の増大が発生するため、従来技術以上に低圧力損失特性を有し、且つ使用時の機械的振動や衝撃、或いは熱衝撃に耐えうる強度を有し、且つ微粒子の捕集効率の高いセラミックハニカムフィルタが待望されていた。このようなフィルタに使用されるセラミックハニカム構造体の隔壁の特性としては、上記のように相反する特性を満足させるため、気孔率は60〜80%、平均細孔径は15〜25μm、細孔径20〜40μm以上の総細孔容積は全細孔容積の25%以上が必要とされ、上記特許文献に記載されているセラミックハニカムフィルタの製造方法を採用しただけでは、以下のように、必ずしも上記特性を全て満足するセラミックハニカム構造体が得られないという問題があった。   However, in the case of a filter having a structure in which a catalytic substance is carried on the surface of the partition wall of the ceramic honeycomb filter or pores in the partition wall and the fine particles deposited by the action of the catalytic substance are burned, the adoption of which has been considered in recent years. Since the pressure loss is increased due to clogging of pores by the catalyst substance, the pressure loss characteristic is lower than that of the conventional technology, and the strength is high enough to withstand mechanical vibration, shock or thermal shock during use. In addition, a ceramic honeycomb filter having a high collection efficiency of fine particles has been desired. As the characteristics of the partition walls of the ceramic honeycomb structure used for such a filter, the porosity is 60 to 80%, the average pore diameter is 15 to 25 μm, and the pore diameter is 20 in order to satisfy the conflicting characteristics as described above. The total pore volume of 4040 μm or more needs to be 25% or more of the total pore volume, and the mere use of the method for manufacturing a ceramic honeycomb filter described in the above-mentioned patent document does not necessarily result in the above-described characteristics as described below. However, there is a problem that a ceramic honeycomb structure satisfying all the above conditions cannot be obtained.

特許文献1に記載の発明では、得られるハニカム構造体の気孔率は45〜60%程度であり、隔壁表面や隔壁中の細孔に触媒物質を担持させたセラミックハニカムフィルタの場合には、圧力損失が大きくなって使用できないと言う問題があった。また、コージェライト化原料のうち、タルク粉末成分とシリカ粉末成分の150μm以上の粒子が原料全体の3重量%以下となるように、且つそれら両成分の45μm以下の粒子が全体の25重量以下%となるようにしているが、コージェライト質セラミックスの細孔は、主にタルク粉末成分やシリカ粉末成分などの焼成過程での形骸によるものとされていることから、本発明の作用によれば、細孔径が100μm以上、及び10μm以下の細孔容積を少なくして、細孔径が10〜50μmの細孔容積が相対的に多く(実施例では45%以上)なるため、平均細孔径が25μmより大きくなる場合もあって、微粒子の捕集効率や強度が低下するといった問題につながることがあった。また、コージェライト化原料の粒径については、タルク粉末成分とシリカ粉末成分の150μmを超える粒度、45μm未満の粒度、及び平均粒径の記載がある以外は、粒度分布の記載がないことから、気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μm以上の総細孔容積が全細孔容積の25%以上であるハニカム構造体が得られず、低圧力損失、高強度を満足したハニカムフィルタを製造できないという問題があった。   In the invention described in Patent Document 1, the porosity of the obtained honeycomb structure is about 45 to 60%, and in the case of a ceramic honeycomb filter in which a catalyst substance is supported on the surface of a partition wall or pores in the partition wall, the pressure is low. There was a problem that the loss was so great that it could not be used. Further, in the cordierite-forming raw material, particles of 150 μm or more of the talc powder component and silica powder component account for 3% by weight or less of the entire raw material, and particles of 45 μm or less of both components account for 25% or less of the whole. However, since the pores of the cordierite ceramics are mainly due to the skeleton in the firing process such as talc powder component and silica powder component, according to the operation of the present invention, Since the pore volume with a pore diameter of 100 μm or more and 10 μm or less is reduced and the pore volume with a pore diameter of 10 to 50 μm becomes relatively large (45% or more in the example), the average pore diameter is 25 μm or more. In some cases, the particle size becomes large, which may lead to a problem that the collection efficiency and strength of the fine particles are reduced. In addition, regarding the particle size of the cordierite-forming raw material, there is no description of the particle size distribution, except that the talc powder component and the silica powder component have a particle size of more than 150 μm, a particle size of less than 45 μm, and an average particle size. A honeycomb structure having a porosity of 60 to 80%, an average pore size of 15 to 25 µm, and a total pore volume of 20 to 40 µm or more with a total pore volume of 25% or more of the total pore volume cannot be obtained, and has a low pressure loss and high strength. There is a problem that a honeycomb filter satisfying the above condition cannot be manufactured.

特許文献2に記載の発明では、コージェライト化原料のうち、カオリン及びタルク以外のシリカ(SiO)源成分を、粒径75μm以上の粉末を1質量%以下として、粒径75μm以上の粗粒粉末をカットしているが、カオリン及びタルク以外のシリカ(SiO)源成分は、その粒径に略対応した細孔径の細孔を形成できるとされており、粒径75μm以上のシリカ(SiO)源成分から形成される大きな細孔を少なくすることは、小さな細孔が相対的に増えることにつながり、平均細孔径が15μm未満となって、セラミックハニカムフィルタの圧力損失が上昇するという問題につながることがあった。また、コージェライト化原料の粒径については、カオリン及びタルク以外のシリカ(SiO)源成分を、粒径75μm以上の粉末を1質量%以下に規定はしているものの、粒径75μm未満については、実施例に平均粒径の記載がある以外は、粒度分布の記載が無く、上述のようにカオリン及びタルク以外のシリカ(SiO)源成分は、この粒径に略対応した細孔径の細孔を形成することから、必ずしも気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μm以上の総細孔容積が全細孔容積の25%以上が得られない場合があり、低圧力損失、高強度を満足したハニカムフィルタを確実に製造できないという問題があった。 In the invention described in Patent Document 2, among the cordierite-forming raw materials, a silica (SiO 2 ) source component other than kaolin and talc is used, and a powder having a particle size of 75 μm or more is set to 1 mass% or less, and coarse particles having a particle size of 75 μm or more Although the powder is cut, silica (SiO 2 ) source components other than kaolin and talc are said to be capable of forming pores having a pore diameter substantially corresponding to their particle diameters. 2 ) Reducing the number of large pores formed from the source component leads to a relatively large number of small pores, resulting in an average pore diameter of less than 15 μm and an increase in the pressure loss of the ceramic honeycomb filter. Could lead to Regarding the particle size of the cordierite-forming raw material, a silica (SiO 2 ) source component other than kaolin and talc is specified, and a powder having a particle size of 75 μm or more is specified as 1% by mass or less, but a particle size of less than 75 μm is specified. Except for the description of the average particle size in the examples, there is no description of the particle size distribution, and as described above, the silica (SiO 2 ) source component other than kaolin and talc has a pore size substantially corresponding to this particle size. Due to the formation of pores, the total pore volume with a porosity of 60 to 80%, an average pore diameter of 15 to 25 μm, and a pore diameter of 20 to 40 μm or more may not always be obtained at 25% or more of the total pore volume. However, there is a problem that a honeycomb filter satisfying low pressure loss and high strength cannot be reliably manufactured.

特許文献3に記載の発明では、得られるハニカム構造体の気孔率は45〜60%程度であり、隔壁表面や隔壁中の細孔に触媒物質を担持させたセラミックハニカムフィルタの場合には、圧力損失が大きくなって使用できないと言う問題があった。また、コージェライト化原料のうち、細孔形成に対する寄与度が大きいとされているタルク及びシリカ原料粉末の平均粒子径は記載されているものの、粒度分布については記載されておらず、前述のように、コージェライト質セラミックスの細孔形成は、主にタルク粉末成分やシリカ粉末成分などの焼成過程での形骸によるものとされていることから、気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μm以上の総細孔容積が全細孔容積の25%以上が得られず、低圧力損失、高強度を満足したハニカムフィルタを確実に製造できないという問題もあった。
以上のように、従来技術の多孔質ハニカムフィルタの製造方法によれば、必ずしも気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μm以上の総細孔容積が全細孔容積の25%以上を有するセラミックハニカム構造体が得られず、低圧力損失、高強度を満足したハニカムフィルタを製造できないという問題があった。
In the invention described in Patent Document 3, the porosity of the obtained honeycomb structure is about 45 to 60%, and in the case of a ceramic honeycomb filter in which a catalyst substance is supported on the surface of the partition wall or the pores in the partition wall, the pressure is low. There was a problem that the loss was so great that it could not be used. Further, among the cordierite-forming raw materials, although the average particle diameter of talc and silica raw material powder that is considered to have a large contribution to pore formation is described, the particle size distribution is not described, and as described above. In addition, since the pore formation of cordierite ceramics is mainly based on the skeletons of the talc powder component and the silica powder component during the firing process, the porosity is 60 to 80%, and the average pore diameter is 15 to 25 μm. In addition, a total pore volume having a pore diameter of 20 to 40 μm or more cannot be obtained at 25% or more of the total pore volume, and there is a problem that a honeycomb filter satisfying low pressure loss and high strength cannot be reliably manufactured.
As described above, according to the conventional method for manufacturing a porous honeycomb filter, the total pore volume having a porosity of 60 to 80%, an average pore diameter of 15 to 25 μm, and a pore diameter of 20 to 40 μm or more is not necessarily a total pore volume. Thus, there was a problem that a ceramic honeycomb structure having 25% or more of the above was not obtained, and a honeycomb filter satisfying low pressure loss and high strength could not be manufactured.

従って、本発明の目的は、上記問題を解決し、低圧力損失特性を有し、且つ使用時の機械的振動や衝撃、或いは熱衝撃に耐えうる強度を有するセラミックフィルタに使用されるセラミックハニカム構造体を確実に得る製造方法及び、そのためのコージェライト化原料粉末を提供することを目的とする。   Accordingly, an object of the present invention is to solve the above-mentioned problems, to provide a ceramic honeycomb structure used for a ceramic filter having low pressure loss characteristics and a strength capable of withstanding mechanical vibration, shock or thermal shock during use. An object of the present invention is to provide a production method for surely obtaining a body, and a cordierite-forming raw material powder therefor.

上記課題を解決するため、本発明者は鋭意検討を行った結果、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源原料の含有量を最適化するのと共にシリカ原料の粒度分布を調整することにより、セラミックハニカムフィルタの隔壁中に存在する細孔の分布を所望の範囲に最適化させ、これにより低圧力損失特性を有し、且つ使用時の機械的振動や衝撃、或いは熱衝撃に耐えうる強度を有するセラミックハニカムフィルタが得られることを見出し、更にはコージェライト化原料のうち、アルミナ源原料の含有量及び粒度分布を好ましい範囲に最適化することにより、より低圧力損失、高強度のセラミックハニカムフィルタだ得られることを見出し、本発明に想到した。   In order to solve the above problems, the present inventors have conducted intensive studies and found that among the cordierite-forming raw materials, the content of the silica raw materials other than kaolin and talc was optimized and the particle size distribution of the silica raw materials was adjusted. Thereby, the distribution of the pores present in the partition walls of the ceramic honeycomb filter is optimized to a desired range, thereby having a low pressure loss characteristic and withstanding mechanical vibration, impact, or thermal shock during use. It has been found that a ceramic honeycomb filter having excellent strength can be obtained, and further, among the cordierite forming raw materials, by optimizing the content and the particle size distribution of the alumina source raw material in a preferable range, a lower pressure loss and a higher strength can be obtained. They have found that a ceramic honeycomb filter can be obtained, and have reached the present invention.

即ち、本発明のセラミックハニカム構造体の製造方法は、コージェライトを主結晶とする材料からなるセラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質の隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタに使用されるセラミックハニカム構造体の製造方法であって、コージェライト化原料を主原料として用い、この原料から所定の成形体を押出成形した後、焼成するセラミックハニカム構造体の製造方法であって、前記コージェライト化原料が、カオリン及びタルク以外のシリカ源成分を10〜20質量%で含有し、且つ前記シリカ源成分が、粒径75〜250μmの粉末を1質量%を超え10質量%以下で含有していることを特徴とする。   That is, the method for manufacturing a ceramic honeycomb structure of the present invention is a method for plugging a predetermined flow channel end of a ceramic honeycomb structure made of a material having cordierite as a main crystal, and forming a porous porous partitioning the flow channel. A method for manufacturing a ceramic honeycomb structure used for a ceramic honeycomb filter for removing fine particles contained in exhaust gas by passing exhaust gas through partition walls, using a cordierite-forming raw material as a main raw material. A method for producing a ceramic honeycomb structure, wherein a predetermined molded body is extruded from, and then fired, wherein the cordierite-forming raw material contains 10 to 20% by mass of a silica source component other than kaolin and talc, and The silica source component is characterized by containing a powder having a particle size of 75 to 250 μm in an amount of more than 1% by mass and 10% by mass or less.

本発明のセラミックハニカム構造体の製造方法において、前記カオリン及びタルク以外のシリカ源成分が、粒径45μm以上の粉末を3〜25質量%、粒径20μm以上の粉末を31〜52質量%、粒径10μm以上の粉末を49〜70質量%、粒径5μm以上の粉末を65〜90質量%、粒径2μm以上の粉末を80〜99.5質量%で含有していることが好ましい。   In the method for manufacturing a ceramic honeycomb structure according to the present invention, the silica source components other than kaolin and talc may be 3 to 25% by mass of a powder having a particle size of 45 μm or more, 31 to 52% by mass of a powder having a particle size of 20 μm or more, and It is preferable to contain 49 to 70% by mass of powder having a diameter of 10 μm or more, 65 to 90% by mass of powder having a particle size of 5 μm or more, and 80 to 99.5% by mass of powder having a particle size of 2 μm or more.

また、本発明のセラミックハニカム構造体の製造方法において、前記コージェライト化原料が、アルミナ源成分として、少なくとも酸化アルミニウムを30質量%以下含有しアルミナ源成分として、酸化アルミニウムを30質量%以下含有し、且つ前記酸化アルミニウムが、粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を2〜22質量%で含有し、粒径10μm以上の粉末を13〜33質量%、粒径5μm以上の粉末を48〜68質量%、粒径2μm以上の粉末を85質量%以上含有していることが好ましい。   Further, in the method for manufacturing a ceramic honeycomb structure of the present invention, the cordierite-forming raw material contains at least 30% by mass or less of aluminum oxide as an alumina source component and 30% by mass or less of aluminum oxide as an alumina source component. And the aluminum oxide contains 5% by mass or less of a powder having a particle size of 45 μm or more, 2 to 22% by mass of a powder having a particle size of 20 μm or more, and 13 to 33% by mass of a powder having a particle size of 10 μm or more. It is preferable to contain 48 to 68% by mass of powder having a particle size of 5 μm or more and 85% by mass or more of powder having a particle size of 2 μm or more.

本発明のセラミックハニカム構造体の製造方法において、前記コージェライト化原料を主成分とするセラミックス原料100質量部に対して、発泡樹脂を4質量部を超え20質量部以下含有することが好ましい。   In the method for manufacturing a ceramic honeycomb structure of the present invention, it is preferable that the foamed resin be contained in an amount of more than 4 parts by mass and 20 parts by mass or less based on 100 parts by mass of the ceramics material containing the cordierite-forming material as a main component.

本発明のセラミックハニカム構造体の製造に用いるコージェライト化原料は、カオリン及びタルク以外のシリカ源成分を10〜20質量%で含有し、且つ前記シリカ源成分が、粒径75〜250μmの粉末を1質量%を超え10質量%以下、粒径45μm以上の粉末を3〜25質量%で含有し、粒径20μm以上の粉末を31〜52質量%、粒径10μm以上の粉末を49〜70質量%、粒径5μm以上の粉末を65〜90質量%、粒径2μm以上の粉末を80〜99.5質量%で含有していることを特徴とする。   The cordierite-forming raw material used for producing the ceramic honeycomb structure of the present invention contains a silica source component other than kaolin and talc at 10 to 20% by mass, and the silica source component is a powder having a particle size of 75 to 250 μm. More than 1% by mass and 10% by mass or less, powder having a particle size of 45 μm or more is contained at 3 to 25% by mass, powder having a particle size of 20 μm or more is 31 to 52% by mass, and powder having a particle size of 10 μm or more is 49 to 70% by mass. %, Powder having a particle size of 5 μm or more is contained at 65 to 90% by mass, and powder having a particle size of 2 μm or more is contained at 80 to 99.5% by mass.

また、本発明のセラミックハニカム構造体の製造に用いるコージェライト化原料において、アルミナ源成分として、少なくとも酸化アルミニウムを30質量%以下含有し酸化アルミニウムを0〜30質量%含有し、且つ前記酸化アルミニウムが、粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を2〜22質量%で含有し、粒径10μm以上の粉末を13〜33質量%、粒径5μm以上の粉末を48〜68質量%、粒径2μm以上の粉末を85質量%以上含有していることが好ましい。   Further, in the cordierite forming raw material used for producing the ceramic honeycomb structure of the present invention, at least 30% by mass or less of aluminum oxide and 0 to 30% by mass of aluminum oxide are contained as alumina source components, and the aluminum oxide is Containing 5% by mass or less of a powder having a particle size of 45 μm or more, 2 to 22% by mass of a powder having a particle size of 20 μm or more, 13 to 33% by mass of a powder having a particle size of 10 μm or more, and 48 powders having a particle size of 5 μm or more. It is preferable that the powder contains 85% by mass or more of powder having a particle size of 2 μm or more and 68% by mass or more.

次に、本発明における作用効果につき説明する。
本発明のセラミックハニカムフィルタの製造方法は、コージェライトを主結晶とする材料からなるセラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質の隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタに使用されるセラミックハニカム構造体の製造方法であって、コージェライト化原料を主原料として用い、この原料から所定の成形体を押出成形した後、焼成するセラミックハニカムフィルタの製造方法において、前記コージェライト化原料が、カオリン及びタルク以外のシリカ源成分を10〜20質量%で含有し、且つ前記シリカ源成分が、粒径75〜250μmの粉末を1質量%を超え10質量%以下で含有している。このため、例えば気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μm以上の総細孔容積が全細孔容積の25%以上を有するセラミックハニカム構造体を得ることができ、低圧力損失、高捕集率、高強度を満足したハニカムフィルタを製造できる。
Next, the function and effect of the present invention will be described.
In the method for manufacturing a ceramic honeycomb filter of the present invention, a predetermined flow channel end of a ceramic honeycomb structure made of a material containing cordierite as a main crystal is plugged, and air is exhausted to a porous partition partitioning the flow channel. A method for producing a ceramic honeycomb structure used for a ceramic honeycomb filter for removing fine particles contained in exhaust gas by passing a gas, wherein a cordierite-forming raw material is used as a main raw material, and a predetermined In the method for manufacturing a ceramic honeycomb filter that is fired after extruding a molded body, the cordierite-forming raw material contains 10 to 20% by mass of a silica source component other than kaolin and talc, and the silica source component includes: It contains a powder having a particle size of 75 to 250 μm in an amount exceeding 1% by mass and not more than 10% by mass. Therefore, for example, a ceramic honeycomb structure having a porosity of 60 to 80%, an average pore diameter of 15 to 25 μm, and a total pore volume of 20 to 40 μm or more having a total pore volume of 25% or more of the total pore volume can be obtained. A honeycomb filter satisfying low pressure loss, high collection rate, and high strength can be manufactured.

コージェライトを主結晶とするセラミックスに形成される細孔は、焼成過程における、主に石英、溶融シリカのようなシリカ源成分の形骸によるものであり、このシリカ源成分は、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られている。このため、カオリン及びタルク以外のシリカ源成分を適量の10〜20質量%の範囲内で含有すると、所望の量の細孔が得られるからである。ここで、カオリン及びタルク以外のシリカ源成分の含有量が多いほど、形成される細孔の量を多くできるが、20質量%を超えて含有する場合には、セラミックハニカムフィルタの主結晶をコージェライト組成に維持するため、即ちセラミックハニカムフィルタの主成分の化学組成をSiO:42〜56質量%、Al:30〜45質量%、MgO:12〜16%の範囲内とするため、他のシリカ源成分であるカオリン及びタルクの添加量を低減する必要が有り、押出成形時に口金をカオリン及びタルク等の原料が通過する際のカオリンの配向に伴い形成されるコージェライト結晶配向による低熱膨張化が充分でなくなり、ハニカム構造体の流路方向の熱膨張係数が大きくなって、耐熱衝撃性が低下するからである。一方含有量が10質量%未満では、細孔の量が少なくなるため、気孔率が60%〜80%の達成が困難になるのとともに、細孔径の調整が難しくなり、平均細孔径15〜25μm、20〜40μmの総細孔容積が全細孔容積の25%以上を達成できないからである。また、このカオリン及びタルク以外のシリカ源成分が、粒径75〜250μmの粉末を1質量%を超え10質量%以下含有しているのは、前述のようにコージェライトを主結晶とするセラミックスに形成される細孔は、焼成過程における、主に石英、溶融シリカのようなシリカ源成分の形骸によるものであり、このシリカ源成分は、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られているように、粒径75〜250μmであるカオリン及びタルク以外のシリカ源成分から形成される比較的大きな寸法の細孔を適量導入することにより、コージェライト質セラミックスが元来保有する微細な細孔とのバランスを取って、平均細孔径15〜25μm、20〜40μmの総細孔容積が全細孔容積の25%以上を達成できるようにするためである。カオリン及びタルク以外のシリカ源成分が粒径75〜250μmの粉末を1質量%以下で含有していると、平均細孔径が15μmを下回り、場合によっては20〜40μmの総細孔容積が全細孔容積の25%以上が得られず、セラミックハニカムフィルタの圧力損失が大きくなるからであり、カオリン及びタルク以外のシリカ源成分が粒径75〜250μmの粉末を10質量%を超えて含有していると、平均細孔径が25μmを超え、セラミックハニカムフィルタの捕集効率及び強度が低下するからである。更に、カオリン及びタルク以外のシリカ源成分が粒径250μmを超える粉末を含有していると、本発明のセラミックハニカムフィルタに使用されるに好適なセラミックハニカム構造体の場合、その壁厚は0.25mm〜0.45mmであることから、押出成形の際に、口金のスリット部に詰まってしまい、ハニカム構造体の成形が困難となるため、本発明では、カオリン及びタルク以外のシリカ源成分は粒径250μmを超える粉末を含有しないようにすることが好ましい。 The pores formed in ceramics having cordierite as the main crystal are mainly due to the skeleton of silica source components such as quartz and fused silica during the firing process. It is known that it exists stably up to high temperatures, melts and diffuses at 1300 ° C. or higher, and forms pores. Therefore, when a silica source component other than kaolin and talc is contained in an appropriate amount within the range of 10 to 20% by mass, a desired amount of pores can be obtained. Here, the larger the content of the silica source component other than kaolin and talc, the larger the amount of pores formed. However, when the content exceeds 20% by mass, the main crystal of the ceramic honeycomb filter is corrugated. to maintain the light composition, i.e. ceramic honeycomb the chemical composition of the main component of the filter SiO 2: 42 to 56 wt%, Al 2 O 3: 30~45 wt%, MgO: to within 12-16% range It is necessary to reduce the addition amount of kaolin and talc, which are other silica source components, due to the cordierite crystal orientation formed along with the orientation of kaolin when the raw materials such as kaolin and talc pass through the die during extrusion molding. This is because the low thermal expansion is not sufficient, and the thermal expansion coefficient in the channel direction of the honeycomb structure increases, and the thermal shock resistance decreases. On the other hand, when the content is less than 10% by mass, the amount of the pores is reduced, so that it is difficult to achieve the porosity of 60% to 80%, and it is difficult to adjust the pore diameter, and the average pore diameter is 15 to 25 μm. This is because the total pore volume of 20 to 40 μm cannot achieve 25% or more of the total pore volume. Further, the reason that the silica source component other than kaolin and talc contains a powder having a particle size of 75 to 250 μm in a content of more than 1% by mass and 10% by mass or less is as described above in a ceramic having cordierite as a main crystal. The pores formed are mainly due to the form of silica source components such as quartz and fused silica in the firing process. As is known to melt and diffuse at temperatures of not less than 0 ° C. to form pores, a suitable amount of relatively large pores formed from silica source components other than kaolin and talc having a particle size of 75 to 250 μm are introduced. By doing so, the balance with the fine pores originally held by the cordierite ceramics, the average pore diameter of 15 to 25 μm, the total pore volume of 20 to 40 μm is the total pore volume In order to be more than 5% can be achieved is. When the silica source component other than kaolin and talc contains powder having a particle size of 75 to 250 μm in an amount of 1% by mass or less, the average pore diameter is less than 15 μm, and in some cases, the total pore volume of 20 to 40 μm is reduced to a total fine volume. This is because 25% or more of the pore volume cannot be obtained and the pressure loss of the ceramic honeycomb filter increases, and the silica source component other than kaolin and talc contains more than 10% by mass of a powder having a particle size of 75 to 250 μm. If the average pore diameter exceeds 25 μm, the collection efficiency and the strength of the ceramic honeycomb filter decrease. Further, when the silica source component other than kaolin and talc contains a powder having a particle size of more than 250 μm, the wall thickness of the ceramic honeycomb structure suitable for use in the ceramic honeycomb filter of the present invention is 0.1 mm. Since it is 25 mm to 0.45 mm, the material is clogged in the slit portion of the die during extrusion molding, and it becomes difficult to form the honeycomb structure. Therefore, in the present invention, the silica source components other than kaolin and talc are particles. It is preferable not to include a powder having a diameter exceeding 250 μm.

上記観点から、コージェライト化原料中のカオリン及びタルク以外のシリカ源成分の含有量は15〜19質量%が好ましく、また、カオリン及びタルク以外のシリカ源成分が、粒径75〜250μmの粉末を1.5〜4質量%含有していることが好ましい。   From the above viewpoint, the content of the silica source component other than kaolin and talc in the cordierite-forming raw material is preferably from 15 to 19% by mass, and the silica source component other than kaolin and talc has a particle size of 75 to 250 μm. It is preferable to contain 1.5 to 4% by mass.

本発明のセラミックハニカムフィルタの製造方法において、前記カオリン及びタルク以外のシリカ源成分が、粒径45μm以上の粉末を3〜25質量%、粒径20μm以上の粉末を31〜52質量%、粒径10μm以上の粉末を49〜70質量%、粒径5μm以上の粉末を65〜90質量%、粒径2μm以上の粉末を80〜99.5質量%で含有しているのが好ましい。ここで、前記カオリン及びタルク以外のシリカ源成分の、粒径分布を上記のように規定するのは、コージェライトを主結晶とするセラミックスに形成される細孔は、上述のように、焼成過程における、主に石英、溶融シリカのようなシリカ源成分の形骸によるものであって、このシリカ源成分は、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られているように、コージェライト質セラミックハニカム構造体の細孔径分布には、カオリン及びタルク以外のシリカ源成分の粒度分布が反映されるためである。これにより、この方法により得られたセラミックハニカムフィルタの多孔質隔壁では、例えば気孔率60〜80%、平均細孔径18〜23μm、20〜40μmの総細孔容積が全細孔容積の25%以上が達成される。このため、低圧力損失、高捕集率、高強度を満足したセラミックハニカムフィルタを製造することができる。   In the method for manufacturing a ceramic honeycomb filter according to the present invention, the silica source component other than kaolin and talc is 3 to 25% by mass of a powder having a particle size of 45 μm or more, 31 to 52% by mass of a powder having a particle size of 20 μm or more, and a particle size of 31 to 52% by mass. It is preferable to contain 49 to 70% by mass of a powder having a particle size of 10 μm or more, 65 to 90% by mass of a powder having a particle size of 5 μm or more, and 80 to 99.5% by mass of a powder having a particle size of 2 μm or more. Here, the particle size distribution of the silica source components other than kaolin and talc is defined as described above because the pores formed in the ceramics having cordierite as the main crystal are subjected to the firing process as described above. , Mainly due to the form of silica source components such as quartz and fused silica, which are present more stably at higher temperatures than other raw materials, melt-diffuse at 1300 ° C. or higher, As is known to form pores, the pore size distribution of the cordierite-based ceramic honeycomb structure reflects the particle size distribution of silica source components other than kaolin and talc. Thereby, in the porous partition wall of the ceramic honeycomb filter obtained by this method, for example, the porosity is 60 to 80%, the average pore diameter is 18 to 23 μm, and the total pore volume of 20 to 40 μm is 25% or more of the total pore volume. Is achieved. Therefore, a ceramic honeycomb filter satisfying low pressure loss, high collection rate, and high strength can be manufactured.

上記観点から、本発明のセラミックハニカムフィルタの製造方法において、前記カオリン及びタルク以外のシリカ源成分が、粒径45μm以上の粉末を10〜16質量%、粒径20μm以上の粉末を38〜44質量%、粒径10μm以上の粉末を56〜62質量%、粒径5μm以上の粉末を72〜78質量%、粒径2μm以上の粉末を95〜99質量%で含有していると、例えば気孔率60〜80%、平均細孔径18〜23μm、20〜40μmの総細孔容積が全細孔容積の25%以上のハニカム構造体が達成が確実に得られることからより好ましい。   In view of the above, in the method for manufacturing a ceramic honeycomb filter of the present invention, the silica source component other than kaolin and talc is such that 10 to 16% by mass of a powder having a particle size of 45 μm or more and 38 to 44% by mass of a powder having a particle size of 20 μm or more. %, Powder having a particle size of 10 μm or more is contained at 56 to 62% by mass, powder having a particle size of 5 μm or more is contained at 72 to 78% by mass, and powder having a particle size of 2 μm or more is contained at 95 to 99% by mass. It is more preferable that a honeycomb structure having a total pore volume of 60 to 80%, an average pore diameter of 18 to 23 μm, and 20 to 40 μm of 25% or more of the total pore volume can be surely obtained.

カオリン及びタルク以外のシリカ源成分としては、石英、溶融シリカ、ムライト、等をあげることができ、中でも焼成過程で溶融拡散して細孔を形成し、細孔径の制御が容易という観点で、石英、溶融シリカの少なくとも一種を含有するものが好ましい。   As a silica source component other than kaolin and talc, quartz, fused silica, mullite, and the like can be given.In particular, from the viewpoint that the pores are formed by melting and diffusing during the firing process and the pore diameter is easily controlled, quartz is used. And at least one kind of fused silica is preferable.

このシリカ源成分は、不純物として、NaO、KO、CaOを含有しても良いが、これら不純物の含有量は、熱膨張係数が大きくなるのを防止する意味で、シリカ源成分中、全量で0.1質量%以下であることが好ましい。このシリカ源成分のNaO、KO、CaO含有量のより好ましい範囲は0.01質量%以下であり、更に好ましくは0.006質量%以下である。 The silica source component may contain Na 2 O, K 2 O, and CaO as impurities. However, the content of these impurities is determined in the silica source component in order to prevent the coefficient of thermal expansion from increasing. , The total amount is preferably 0.1% by mass or less. The more preferable range of the content of Na 2 O, K 2 O and CaO of the silica source component is 0.01% by mass or less, and further preferably 0.006% by mass or less.

本発明に用いられるコージェライト化原料は、主結晶がコージェライトとなるように、即ち主成分の化学組成をSiO:42〜56質量%、Al:30〜45質量%、MgO:12〜16%の範囲内となるように、シリカ源成分、アルミナ源成分、マグネシア源成分の各原料粉末を配合する必要があり、上記カオリン及びタルク以外のシリカ源成分に加えて、例えばカオリン粉末、タルク粉末、更には酸化アルミニウム粉末、水酸化アルミニウム粉末等を配合する。 Cordierite forming raw material used in the present invention, as a main crystal is cordierite, i.e. the chemical composition of the main component SiO 2: 42 to 56 wt%, Al 2 O 3: 30~45 wt%, MgO: It is necessary to mix each raw material powder of the silica source component, the alumina source component, and the magnesia source component so as to be within the range of 12 to 16%. In addition to the above-mentioned kaolin and talc, for example, kaolin powder Talc powder, aluminum oxide powder, aluminum hydroxide powder and the like.

これらのうち、アルミナ源成分としては、不純物が少ないという点で酸化アルミニウム、又は水酸化アルミニウムのいずれか一種又はこれらの両方を含有するものが好ましい。   Among these, as the alumina source component, those containing either one or both of aluminum oxide and aluminum hydroxide are preferable from the viewpoint of a small amount of impurities.

また、アルミナ源原料は、コージェライト化原料中、水酸化アルミニウムは6〜42質量%含有することが好ましく、酸化アルミニウムの場合は、30質量%以下で含有させることが好ましい。更に好ましい範囲は、水酸化アルミニウムの場合は、6〜15質量%、酸化アルミニウムの場合は、12〜25質量%である。更により好ましい範囲は、水酸化アルミニウムの場合は、8〜12質量%、酸化アルミニウムの場合は、20〜24質量%である。   The alumina source material preferably contains 6 to 42% by mass of aluminum hydroxide in the cordierite forming material, and preferably 30% by mass or less in the case of aluminum oxide. A more preferred range is 6 to 15% by mass for aluminum hydroxide and 12 to 25% by mass for aluminum oxide. An even more preferred range is 8 to 12% by mass for aluminum hydroxide and 20 to 24% by mass for aluminum oxide.

また、アルミナ源原料の粒径は、熱膨張係数を低くすることができると共に、上述のシリカ源成分の粒度分布により得られる細孔径分布の調整するという観点から、水酸化アルミニウムの場合は平均粒径0.5〜5μmが好ましく、酸化アルミニウムの場合は平均粒径3〜10μmが好ましい。尚、酸化アルミニウムは焼成過程の比較的高温まで、酸化アルミニウムの形態で存在することから、その粒度分布が本発明のセラミックハニカムフィルタの細孔分布に影響を及ぼし、粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を2〜22質量%、粒径10μm以上の粉末を13〜33質量%、粒径5μm以上の粉末を48〜68質量%、粒径2μm以上の粉末を85%以上含有していると、セラミックハニカムフィルタの好ましい特性である気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μmの総細孔容積が全細孔容積の30%以上が達成されることから、好ましい。   In addition, the particle size of the alumina source material is such that, in terms of adjusting the pore size distribution obtained by the particle size distribution of the silica source component, the average particle size of The diameter is preferably 0.5 to 5 μm, and in the case of aluminum oxide, the average particle diameter is preferably 3 to 10 μm. Since aluminum oxide exists in the form of aluminum oxide up to a relatively high temperature during the firing process, its particle size distribution affects the pore distribution of the ceramic honeycomb filter of the present invention. 2% to 22% by mass of a powder having a particle size of 20 μm or more, 13 to 33% by mass of a powder having a particle size of 10 μm or more, 48 to 68% by mass of a powder having a particle size of 5 μm or more, and a powder having a particle size of 2 μm or more. When the content is 85% or more, the total pore volume of the porosity of 60 to 80%, the average pore diameter of 15 to 25 μm, and the pore diameter of 20 to 40 μm, which are preferable characteristics of the ceramic honeycomb filter, is 30% or more of the total pore volume. Is achieved, so that it is preferable.

また、上記観点から、酸化アルミニウムは、、粒径45μm以上の粉末を1質量%以下、粒径20μm以上の粉末を9〜15質量%、粒径10μm以上の粉末を22〜28質量%、粒径5μm以上の粉末を58〜64質量%、粒径2μm以上の粉末を94〜99質量%以上含有していると、より好ましい。   In addition, from the above viewpoint, aluminum oxide is 1% by mass or less of powder having a particle size of 45 μm or more, 9 to 15% by mass of powder having a particle size of 20 μm or more, 22 to 28% by mass of powder having a particle size of 10 μm or more, and More preferably, the powder contains 58 to 64% by mass of powder having a diameter of 5 μm or more and 94 to 99% by mass or more of powder having a particle size of 2 μm or more.

マグネシア源成分としては、例えば、タルク、マグネサイト、水酸化マグネシウム等などが使用出来るが、熱膨張係数を低くすると言う点でタルクを40〜43質量%含有させることが好ましく、その平均粒径は、5〜20μmが好ましい。また、本発明に用いるタルク等のマグネシア源成分は、不純物としてFe、CaO、NaO、KO等を含有しても良い。ここでFeの含有率は、マグネシア源成分中、0.5〜2.5質量%とするのが本発明のセラミックハニカムフィルタの粒度分布を得るためには好ましく、またNaO、KO、CaOの含有率は、熱膨張係数を低くするという点から、合計で0.35質量%以下が好ましい。 As the magnesia source component, for example, talc, magnesite, magnesium hydroxide and the like can be used, but it is preferable to contain talc in an amount of 40 to 43% by mass in terms of lowering the coefficient of thermal expansion, and the average particle size is , 5 to 20 μm are preferred. Further, the magnesia source component such as talc used in the present invention may contain Fe 2 O 3 , CaO, Na 2 O, K 2 O, etc. as impurities. Wherein the content of Fe 2 O 3 is in a magnesia source component, preferably in order that a 0.5 to 2.5 mass% to obtain a particle size distribution of the ceramic honeycomb filter of the present invention, also Na 2 O, The content of K 2 O and CaO is preferably 0.35% by mass or less in total from the viewpoint of lowering the coefficient of thermal expansion.

本発明の製造方法において、気孔率を更に大きくすることにより、圧力損失を更に小さくできるという観点から、コージェライト化原料に、添加剤として、細孔を形成する為の、造孔剤を含有させることが好ましい。   In the production method of the present invention, from the viewpoint that the pressure loss can be further reduced by further increasing the porosity, the cordierite-forming raw material contains, as an additive, a pore-forming agent for forming pores. Is preferred.

造孔剤としては、公知の小麦粉、グラファイト、澱粉粉、セラミックバルーン、ポリエチレン、ポリスチレン、ポリプロピレン、ナイロン、ポリエステル、アクリル、フェノール、エポキシ、エチレン−酢酸ビニル共重合体、スチレン−ブタジエンブロック重合体、スチレン−イソプレンブロック重合体、ポリメチルメタクリレート、メチルメタクルレートアクリロニトリル共重合体、ウレタン、ワックス等を1種類或いは一種類以上を組み合わせて使用することができるが、中でもメチルメタクルレート・アクリロニトリル共重合体で形成された発泡樹脂が好ましい。   Examples of the pore-forming agent include known wheat flour, graphite, starch powder, ceramic balloon, polyethylene, polystyrene, polypropylene, nylon, polyester, acrylic, phenol, epoxy, ethylene-vinyl acetate copolymer, styrene-butadiene block polymer, and styrene. -Isoprene block polymer, polymethyl methacrylate, methyl methacrylate acrylonitrile copolymer, urethane, wax, etc. can be used alone or in combination of one or more. Among them, methyl methacrylate / acrylonitrile copolymer Is preferred.

メチルメタクルレート・アクリロニトリル共重合体で形成された発泡樹脂は、内部に気体(イソブタン)を内包していることから、少量の添加質量で、気孔率の大きいセラミックハニカムフィルタを得ることができ、焼成工程での造孔剤の発熱量を小さく押さえることができるため、焼成時に問題となる造孔剤の燃焼によるセラミックハニカム構造体の割れの問題を低減することができる。   Since the foamed resin formed of the methyl methacrylate / acrylonitrile copolymer contains gas (isobutane) inside, a ceramic honeycomb filter having a large porosity can be obtained with a small amount of added mass, Since the calorific value of the pore-forming agent in the firing step can be suppressed to a small value, the problem of cracking of the ceramic honeycomb structure due to combustion of the pore-forming agent, which is a problem during firing, can be reduced.

但し、造孔剤の添加量を多量にすると、セラミックハニカムフィルタの気孔率を大きくできるが、セラミックハニカムフィルタの強度が低下し、実使用時の機械的衝撃や熱衝撃で破損しやすくなるため、全ての造孔剤にその添加量の上限はあり、メチルメタクリレート・アクリロニトリル共重合体で形成された発泡樹脂の場合は、コージェライト化原料100質量部に対して、4質量部を超え20質量部以下含有させることが好ましく、より好ましくは8〜15質量部である。   However, when the amount of the pore-forming agent is increased, the porosity of the ceramic honeycomb filter can be increased, but the strength of the ceramic honeycomb filter is reduced, and the ceramic honeycomb filter is likely to be damaged by mechanical shock or thermal shock in actual use. All pore-forming agents have an upper limit of the amount added, and in the case of a foamed resin formed of a methyl methacrylate-acrylonitrile copolymer, more than 4 parts by mass and 20 parts by mass with respect to 100 parts by mass of a cordierite-forming raw material. The content is preferably as follows, more preferably 8 to 15 parts by mass.

本発明において、必要に応じて、この他の添加剤を含有させることができる。例えば、バインダー、分散剤、潤滑剤などを添加することができる。
バインダーとしては、例えば、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カルボキシルメチルセルロース、ポリビニルアルコール等を挙げることができ、分散剤としては例えば、エチレングリコール、脂肪酸石鹸等を挙げることができ、潤滑剤としては、水溶性ワックス、ステアリン酸等を挙げることができる。尚、上記の添加剤は、目的に応じて1種単独又は2種以上組み合わせて用いることができる。
In the present invention, other additives can be contained as needed. For example, a binder, a dispersant, a lubricant, and the like can be added.
Examples of the binder include methylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, and polyvinyl alcohol.Examples of the dispersant include ethylene glycol and fatty acid soap. Water-soluble wax, stearic acid and the like can be mentioned. The above additives can be used alone or in combination of two or more depending on the purpose.

ここで、本発明のセラミックハニカム構造体の製造方法により得られたセラミックハニカム構造体は、前記多孔質隔壁の40℃〜800℃における流路方向の熱膨張係数を1.25×10―6/℃以下とすることにより、高温時の耐熱衝撃特性が改善されることから、好ましい。 Here, the ceramic honeycomb structure obtained by the method for manufacturing a ceramic honeycomb structure of the present invention has a thermal expansion coefficient of 1.25 × 10 −6 / 40 ° C. to 800 ° C. in the flow direction of the porous partition wall. C. or lower is preferable because the thermal shock resistance at high temperatures is improved.

ここで、本発明のセラミックハニカム構造体の製造方法により得られたセラミックハニカム構造体はコージェライトを主結晶とするものであるが、コージェライト結晶のC軸が隔壁面内に揃うように配向していると更に熱膨張係数が小さくなり、耐熱衝撃性に優れることから好ましい。また、ムライト、ジルコン、チタン酸アルミニウム、炭化珪素、ジルコニア、スピネル、インディアライト、サフィリン、コランダム、チタニア等の他の結晶相を含有しても良い。   Here, the ceramic honeycomb structure obtained by the method for manufacturing a ceramic honeycomb structure of the present invention has cordierite as a main crystal, but is oriented so that the C axis of the cordierite crystal is aligned within the partition wall plane. Is preferable because the thermal expansion coefficient is further reduced and the thermal shock resistance is excellent. Further, other crystal phases such as mullite, zircon, aluminum titanate, silicon carbide, zirconia, spinel, indialite, sapphirine, corundum, titania and the like may be contained.

本発明のセラミックハニカム構造体の製造方法に用いるコージェライト化原料は、カオリン及びタルク以外のシリカ源成分を10〜20質量%で含有し、且つ前記シリカ源成分が、粒径75〜250μmの粉末を1質量%を超え10質量%以下、粒径45μm以上の粉末を3〜25質量%で含有し、粒径20μm以上の粉末を31〜52質量%、粒径10μm以上の粉末を49〜70質量%、粒径5μm以上の粉末を65〜90質量%、粒径2μm以上の粉末を80〜99.5質量%で含有している。このため、この方法により得られたセラミックハニカム構造体の多孔質隔壁の気孔率を60〜80%、平均細孔径を15〜25μm、細孔径20〜40μmの総細孔容積が全細孔容積の25%以上とすることができる。これにより、低圧力損失、高捕集率、高強度を満足したハニカムフィルタを製造することができる。   The cordierite-forming raw material used in the method for producing a ceramic honeycomb structure of the present invention contains a silica source component other than kaolin and talc at 10 to 20% by mass, and the silica source component has a particle size of 75 to 250 μm. More than 1% by mass and not more than 10% by mass, 3 to 25% by mass of powder having a particle size of 45 μm or more, 31 to 52% by mass of a powder having a particle size of 20 μm or more, and 49 to 70% of a powder having a particle size of 10 μm or more. It contains 65 to 90% by mass of powder having a particle size of 5 μm or more and 80 to 99.5% by mass of a powder having a particle size of 2 μm or more. Therefore, the porosity of the porous partition wall of the ceramic honeycomb structure obtained by this method is 60 to 80%, the average pore diameter is 15 to 25 μm, and the total pore volume of the pore diameter 20 to 40 μm is the total pore volume. It can be 25% or more. Thereby, a honeycomb filter satisfying low pressure loss, high collection rate, and high strength can be manufactured.

また、本発明のコージェライト化原料において、酸化アルミニウムを30質量%以下含有し、且つ前記酸化アルミニウムが、粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を2〜22質量%、粒径10μm以上の粉末を13〜33質量%、粒径5μm以上の粉末を48〜68質量%、粒径2μm以上の粉末を85質量%以上含有することにより、上述のシリカ(SiO)源成分の粒度分布により得られる細孔径分布の調整をし、セラミックハニカムフィルタの好ましい特性である気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μmの総細孔容積が全細孔容積の30%以上が達成される。 Further, in the cordierite-forming raw material of the present invention, aluminum oxide contains 30% by mass or less, and the aluminum oxide contains 5% by mass or less of powder having a particle size of 45 μm or more and 2 to 22% by mass of powder having a particle size of 20 μm or more. %, 13 to 33 wt% of the particle size 10μm or more powder, 48 to 68 wt% of the particle size 5μm or more powder, by containing a particle size 2μm or more powder than 85 wt%, the above-mentioned silica (SiO 2 The pore size distribution obtained by the particle size distribution of the source component is adjusted, and the porosity of 60 to 80%, the average pore size of 15 to 25 μm, and the total pore volume of the pore size of 20 to 40 μm, which are preferable characteristics of the ceramic honeycomb filter, are obtained. Over 30% of the total pore volume is achieved.

以上説明したように、本発明のセラミックハニカムフィルタの製造方法及びそのためのコージェライト化原料によれば、コージェライト化原料の組合せ、配合割合、粒度分布等を最適な範囲に調整していることから、セラミックハニカムフィルタの隔壁内に形成される細孔の分布を所望の範囲に最適化でき、例えば気孔率60〜80%、平均細孔径15〜25μm、細孔径20〜40μmの総細孔容積が全細孔容積の25%以上が達成される。これにより低圧力損失特性、特に連続再生式の浄化装置に使用されるに適した低圧力損失特性及び使用時の機械的振動や衝撃、或いは熱衝撃等に耐えうる強度特性を有するセラミックハニカムフィルタ及びその製造方法を提供することができる。   As described above, according to the method for manufacturing a ceramic honeycomb filter of the present invention and the cordierite-forming raw material therefor, since the combination, blending ratio, particle size distribution, etc. of the cordierite-forming raw material are adjusted to the optimal range. The distribution of pores formed in the partition walls of the ceramic honeycomb filter can be optimized to a desired range. For example, the porosity is 60 to 80%, the average pore diameter is 15 to 25 μm, and the total pore volume is 20 to 40 μm. More than 25% of the total pore volume is achieved. Thereby, a ceramic honeycomb filter having low pressure loss characteristics, particularly low pressure loss characteristics suitable for use in a continuous regeneration type purification device, and strength characteristics capable of withstanding mechanical vibration, impact, or thermal shock during use, and The manufacturing method can be provided.

本発明のセラミックハニカムフィルタは、例えば、以下のようにして製造することが出来る。
上述したコージェライト化原料100質量部に対して、造孔材4〜40質量部、バインダー4〜12質量部を投入して乾式混合した後に、水を10〜40質量部投入後、混練し、可塑性を有する坏土とする。この坏土を公知の押出成形法によりハニカム構造の成形体を押出成形した後、公知の乾燥法、例えばマイクロ波乾燥、誘電乾燥、熱風乾燥等の方法により、成形体の乾燥を行う。次いで乾燥されたハニカム構造の成形体を、焼成炉内に配置し、1350〜1440℃の温度で焼成を行い、セラミックハニカム構造体を得る。
The ceramic honeycomb filter of the present invention can be manufactured, for example, as follows.
For 100 parts by mass of the cordierite-forming raw material described above, 4 to 40 parts by mass of a pore former and 4 to 12 parts by mass of a binder are added and dry-mixed. It is a clay having plasticity. After extruding the formed body of the honeycomb structure from the kneaded clay by a known extrusion molding method, the formed body is dried by a known drying method, for example, a method such as microwave drying, dielectric drying, or hot air drying. Next, the dried formed body having the honeycomb structure is placed in a firing furnace and fired at a temperature of 1350 to 1440 ° C. to obtain a ceramic honeycomb structure.

次いで、セラミックハニカム構造体の端面マスキングフィルムを配置した後、ハニカム構造体の流路に対して交互に穿孔部を形成し、別に準備していた目封止用のセラミックスラリーに、セラミックハニカム構造体の端面を浸漬し、マスキングフィルムの穿孔部を通じて、セラミックハニカム構造体にセラミックスラリーを導入する。導入されたスラリ−が固化後に、ハニカム構造体をセラミックスラリーから抜き出し、乾燥させ目封止材を形成する。さらに、ハニカム構造体の他端側も同様の手法で、セラミックスラリーを導入、固化、乾燥させて目封止材を形成した後マスキングフィルムを剥がす。その後、目封止材の焼成を行い、隔壁と目封止材を一体化せしめ、排気ガスの流入側と流出側の所定の流路が目封止されたセラミックハニカムフィルタを得る。
尚、所定の流路へのセラミックスラリーの導入は、乾燥後のセラミックハニカム構造の成形体に対して行った上で、成形体と同時に目封止材を焼成、一体化させても良い。
Then, after arranging the end face masking film of the ceramic honeycomb structure, a perforated portion is formed alternately with respect to the flow path of the honeycomb structure, and the ceramic slurry for plugging separately prepared is added to the ceramic honeycomb structure. The ceramic slurry is introduced into the ceramic honeycomb structure through the perforated portion of the masking film. After the introduced slurry is solidified, the honeycomb structure is extracted from the ceramic slurry and dried to form a plugging material. Further, the ceramic slurry is introduced, solidified, and dried to form a plugging material on the other end side of the honeycomb structure by the same method, and then the masking film is peeled off. Thereafter, the plugging material is fired to integrate the partition walls and the plugging material, thereby obtaining a ceramic honeycomb filter in which predetermined flow paths on the inflow side and the outflow side of the exhaust gas are plugged.
The ceramic slurry may be introduced into the predetermined flow path with respect to the dried ceramic honeycomb structured body, and then the plugging material may be fired and integrated simultaneously with the formed body.

以下、本発明の実際の実施例を説明するが、本発明はそれらに限定されるものではない。
(実施例1〜4)
表1〜3に示す平均粒径、粒度分布、CaO+NaO+KO含有量のタルク、カオリンA、石英A、酸化アルミニウムA、水酸化アルミニウム等のコージェライト化原料を、表4に示す割合で秤量した。次いで表4に示すように、このコージェライト化原料100質量部に対して、発泡樹脂であるイソブタン内包アクリロニトリル・メチルメタクリレート共重合体を10質量部、メチルセルロース5質量%、ヒドロキシプロピルメチルセルロースを2質量%を添加し、混合調整した。ここで、表1〜4に示す原料粉末の平均粒径及び粒度分布は、(株)セイシン企業製レーザ回折式粒度分布測定器LMS−30を使用して測定した。その後、このコージェライト化原料100質量部に対して水を25質量部投入し、混合、混練を加え、可塑化可能な坏土を作製し、この坏土を押出成形機に投入して、ハニカム構造を有する成形体を得た。次いで得られた成形体をマイクロ波乾燥機で乾燥した後、熱風乾燥を行い、所定の寸法に両端面を切断した。次いで、このハニカム構造の乾燥体の流路の開口端部に、コージェライト化原料からなるスラリーを端部から約10mmの深さまで充填、乾燥させ、図1に示す構造の、流路の両端部が交互に目封止された、セラミックハニカムフィルタ乾燥体を得た。その後、1420℃、10時間の条件で焼成を行い、Φ267mm、長さ304mm、隔壁厚さ300μm、隔壁ピッチ1.58mmの寸法特性を有する実施例1〜4のセラミックハニカムフィルタを得た。
EXAMPLES Hereinafter, actual examples of the present invention will be described, but the present invention is not limited thereto.
(Examples 1 to 4)
Raw materials for forming cordierite such as talc, kaolin A, quartz A, aluminum oxide A, and aluminum hydroxide having an average particle size, a particle size distribution, and a CaO + Na 2 O + K 2 O content shown in Tables 1 to 3 are shown in the ratios shown in Table 4. Weighed. Next, as shown in Table 4, based on 100 parts by mass of the cordierite-forming raw material, 10 parts by mass of an acrylonitrile / methyl methacrylate copolymer containing isobutane as a foaming resin, 5% by mass of methylcellulose, and 2% by mass of hydroxypropylmethylcellulose. Was added and mixed. Here, the average particle size and particle size distribution of the raw material powders shown in Tables 1 to 4 were measured using a laser diffraction particle size distribution analyzer LMS-30 manufactured by Seishin Enterprise Co., Ltd. Thereafter, 25 parts by mass of water was added to 100 parts by mass of the cordierite-forming raw material, and mixing and kneading were performed to prepare a plasticizable clay, and the clay was charged into an extruder to form a honeycomb. A molded article having a structure was obtained. Next, after the obtained molded body was dried with a microwave dryer, hot air drying was performed, and both end faces were cut to predetermined dimensions. Next, a slurry composed of a cordierite-forming raw material was filled into the opening end of the flow path of the dried body of the honeycomb structure to a depth of about 10 mm from the end and dried, and both ends of the flow path having the structure shown in FIG. Were alternately plugged to obtain a dried ceramic honeycomb filter. Thereafter, firing was performed at 1420 ° C. for 10 hours to obtain ceramic honeycomb filters of Examples 1 to 4 having dimensional characteristics of Φ267 mm, length 304 mm, partition wall thickness 300 μm, partition wall pitch 1.58 mm.

Figure 2004250324
Figure 2004250324

Figure 2004250324
Figure 2004250324

Figure 2004250324
Figure 2004250324

得られたセラミックハニカムフィルタの圧力損失特性について、以下のような測定を行った。セラミックハニカムフィルタを、圧力損失テストスタンドに設置し、空気流量15Nm/分の空気を流し、この時のセラミックハニカムフィルタの流入側と流出側の差圧を計測し、圧力損失とした。 The pressure loss characteristics of the obtained ceramic honeycomb filters were measured as follows. The ceramic honeycomb filter was placed on a pressure loss test stand, air was flowed at an air flow rate of 15 Nm 3 / min, and the differential pressure between the inflow side and the outflow side of the ceramic honeycomb filter at this time was measured to determine the pressure loss.

Figure 2004250324
Figure 2004250324

Figure 2004250324
Figure 2004250324

その後、試験終了後のハニカムフィルタから試験片を切り出し、気孔率、平均細孔径、20〜40μmの総細孔容積の全細孔容積に対する割合、熱膨張係数及びA軸圧縮強度の測定を行った。気孔率、平均細孔径、20〜40μmの総細孔容積の全細孔容積に対する割合の測定は、水銀圧入法により、Micromeritics社製オートポアIIIを使用して行い、セラミックハニカムフィルタから切り出した小片を試験片として測定セル内に収納し、セル内を減圧した後、水銀を導入して、加圧し、このときの圧力と試料内に存在する細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積の関係を求める。このとき、水銀を導入する圧力は0.5psi(0.35×10−3kg/mm)とし、圧力から細孔径を算出する際の常数は、接触角=130°、表面張力484dyne/cmとした。このとき、気孔率は、全細孔容積の測定値から、コージェライトの真比重を2.52g/cmとして、計算によって求めた。また、熱膨張係数の測定は、4.5mm×4.5mm×50mmの寸法で長手方向が、ハニカム構造体の流路に沿った試験片を、熱機械分析装置に設置し、40℃と800℃の間の熱膨張係数を求めた。また、A軸圧縮強度の測定は、社団法人自動車技術会が定める規格M505−87「自動車排気ガス浄化触媒用セラミックモノリス担体の試験方法」に従って行った。 Thereafter, a test piece was cut out from the honeycomb filter after the test, and the porosity, the average pore diameter, the ratio of the total pore volume of 20 to 40 μm to the total pore volume, the thermal expansion coefficient, and the A-axis compression strength were measured. . The porosity, the average pore diameter, the measurement of the ratio of the total pore volume of 20 to 40 μm to the total pore volume is performed by a mercury intrusion method using Autopore III manufactured by Micromeritics, and a small piece cut out of the ceramic honeycomb filter is used. After being stored as a test piece in the measurement cell and depressurizing the inside of the cell, mercury was introduced and pressurized, and from the relationship between the pressure at this time and the volume of mercury pushed into the pores present in the sample, The relationship between the pore diameter and the cumulative pore volume is determined. At this time, the pressure for introducing mercury was 0.5 psi (0.35 × 10 −3 kg / mm 2 ), and the constants for calculating the pore diameter from the pressure were a contact angle = 130 ° and a surface tension of 484 dyne / cm 2. And At this time, the porosity was calculated from the measured value of the total pore volume, assuming that the true specific gravity of cordierite was 2.52 g / cm 3 . The measurement of the coefficient of thermal expansion was performed by installing a test piece having a size of 4.5 mm × 4.5 mm × 50 mm along the flow path of the honeycomb structure in a thermomechanical analyzer at 40 ° C. and 800 ° C. The coefficient of thermal expansion between ° C was determined. The measurement of the A-axis compressive strength was performed in accordance with the standard M505-87 "Test method for ceramic monolithic carrier for automobile exhaust gas purification catalyst" specified by the Japan Society of Automotive Engineers of Japan.

測定結果を表5に示す。実施例1〜4のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として石英Aを11.8〜17.5質量%含有しており、この石英Aが粒径75〜250μmの粉末を2.3質量%、粒径45μm以上を14.2質量%、粒径20μm以上を41.2質量%、粒径10μm以上を59.4質量%、粒径5μm以上を75.3質量%、粒径2μm以上を88.7質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを19.2〜22.0質量%含有しており、この酸化アルミニウムAが粒径45μm以上を14.2質量%、粒径20μm以上を12.5質量%、粒径10μm以上を25.9質量%、粒径5μm以上を62質量%、粒径2μm以上を97.8質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が60.6〜62.5%、平均細孔径が17.3〜21.4μm、20〜40μmの総細孔容積が全細孔容積の30.5%〜31.8%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が185〜189mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.7〜4.0MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させることができた。また、熱膨張係数も7〜9×10−7/℃の低い値が得られた。 Table 5 shows the measurement results. The ceramic honeycomb filters of Examples 1 to 4 contained 11.8 to 17.5% by mass of quartz A as a silica source component other than kaolin and talc in the cordierite-forming raw material, and this quartz A had a particle size of 2.3% by mass of powder having a particle size of 75 to 250 μm, 14.2% by mass of particle size of 45 μm or more, 41.2% by mass of particle size of 20 μm or more, 59.4% by mass of particle size of 10 μm or more, and 59.4% by mass or more. 78.7% by mass, 88.7% by mass of a particle size of 2 μm or more, and 19.2 to 22.0% by mass of aluminum oxide A as an alumina source component. Particle size of 45 μm or more is 14.2% by mass, particle size of 20 μm or more is 12.5% by mass, particle size is 10 μm or more is 25.9% by mass, particle size is 5 μm or more is 62% by mass, and particle size is 2 μm or more is 97.8%. % By mass. Therefore, pores are formed in the partition walls, the porosity is 60.6 to 62.5%, the average pore diameter is 17.3 to 21.4 μm, and the total pore volume of 20 to 40 μm is the total pore volume. A ceramic honeycomb filter having a volume of 30.5% to 31.8% was obtained. This ceramic honeycomb filter has a pressure loss characteristic of 185 to 189 mmH 2 O, a practically no problem of 200 mmH 2 O or less, an A-axis compressive strength of 3.7 to 4.0 MPa, and a practically no problem of 3 MPa or more. Values were obtained, and both low pressure loss and high strength could be achieved. In addition, a low coefficient of thermal expansion of 7 to 9 × 10 −7 / ° C. was obtained.

(比較例1〜3)
実施例1〜4と同様の原料、タルク、カオリン、石英A、酸化アルミニウムA、水酸化アルミウムに仮焼カオリンを加えて、表4に示す割合で秤量し、次いで表4に示すように、このコージェライト化原料100質量部に対して、発泡樹脂であるイソブタン内包アクリロニトリル・メチルメタクリレート共重合体を10質量部、メチルセルロース5質量%、ヒドロキシプロピルメチルセルロースを2質量%を添加し、混合調整した。その後、実施例1〜4と同様の方法で、混練、成形、乾燥、焼成を行い、Φ267mm、長さ304mm、隔壁厚さ300μm、隔壁ピッチ1.58mmの寸法特性を有する比較例1〜3のセラミックハニカムフィルタを得た。これらについて、実施例1と同様に、圧力損失、細孔分布、熱膨張係数、A軸圧縮強度を測定した結果を表5に示す。
(Comparative Examples 1 to 3)
The calcined kaolin was added to the same raw materials as in Examples 1 to 4, talc, kaolin, quartz A, aluminum oxide A, and aluminum hydroxide, weighed at the ratio shown in Table 4, and then weighed as shown in Table 4. To 100 parts by mass of the cordierite-forming raw material, 10 parts by mass of an acrylonitrile / methyl methacrylate copolymer containing isobutane as a foaming resin, 5% by mass of methylcellulose, and 2% by mass of hydroxypropylmethylcellulose were added and mixed. Thereafter, in the same manner as in Examples 1 to 4, kneading, molding, drying and baking were performed, and Comparative Examples 1 to 3 having dimensional characteristics of Φ267 mm, length 304 mm, partition wall thickness 300 μm, partition wall pitch 1.58 mm were performed. A ceramic honeycomb filter was obtained. Table 5 shows the results of measuring pressure loss, pore distribution, thermal expansion coefficient, and A-axis compressive strength of these in the same manner as in Example 1.

比較例1のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分である石英Aの含有量が5.6質量%であり、カオリン及びタルク以外のシリカ源成分の含有割合が10質量%未満であることから、石英Aによる、細孔形成が充分に行われず、その隔壁の気孔率は57.2%となり、60%以上が得られなかった。このため、セラミックハニカムフィルタの圧力損失が200mmHOを上まわり、実施例1〜4のセラミックハニカムフィルタに対して大きくなり、低圧力損失と高強度を両立させたセラミックハニカムフィルタは得られなかった。 In the ceramic honeycomb filter of Comparative Example 1, the content of quartz A, which is a silica source component other than kaolin and talc, was 5.6% by mass in the cordierite-forming raw material, and the content of silica source components other than kaolin and talc was included. Since the proportion was less than 10% by mass, pores were not sufficiently formed by the quartz A, and the porosity of the partition walls was 57.2%, and 60% or more was not obtained. Therefore, the pressure loss of the ceramic honeycomb filter around top 200 mm 2 O, increases the ceramic honeycomb filters of Examples 1 to 4, the ceramic honeycomb filter having both low pressure loss and high strength can not be obtained .

また、比較例2のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分である石英Aの含有量が9質量%であり、カオリン及びタルク以外のシリカ源成分の含有割合が10質量%未満であることから、石英Aによる、細孔形成が充分に行われず、その隔壁の気孔率は58.1%となり、60%以上が得られなかった。このため、セラミックハニカムフィルタの圧力損失が200mmHOを上まわり、実施例1〜4のセラミックハニカムフィルタに対して大きくなり、低圧力損失と高強度を両立させたセラミックハニカムフィルタは得られなかった。 In the ceramic honeycomb filter of Comparative Example 2, the content of quartz A, which is a silica source component other than kaolin and talc, was 9% by mass in the cordierite-forming raw material, and the content of silica source components other than kaolin and talc was included. Since the proportion was less than 10% by mass, pores were not sufficiently formed by quartz A, and the porosity of the partition walls was 58.1%, which was not higher than 60%. Therefore, the pressure loss of the ceramic honeycomb filter around top 200 mm 2 O, increases the ceramic honeycomb filters of Examples 1 to 4, the ceramic honeycomb filter having both low pressure loss and high strength can not be obtained .

一方、比較例3のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分である石英Aの含有量が21質量%であり、カオリン及びタルク以外のシリカ源成分の含有割合が20質量%を超えたため、石英Aにより形成された粗大細孔の量が多くなり、その隔壁の平均細孔径は25.6μmとなり、25μmを越えた。このため、セラミックハニカムフィルタのA軸圧縮強度が2.5MPaとなり、実用上問題ない3MPa以上が得られず、実施例1〜4のセラミックハニカムフィルタに比べ低い強度特性となり、低圧力損失と高強度を両立させたセラミックハニカムフィルタは得られなかった。   On the other hand, in the ceramic honeycomb filter of Comparative Example 3, the content of quartz A, which is a silica source component other than kaolin and talc, in the cordierite-forming raw material was 21% by mass, and the content of silica source components other than kaolin and talc was included. Since the ratio exceeded 20% by mass, the amount of coarse pores formed by quartz A increased, and the average pore diameter of the partition walls became 25.6 μm, which exceeded 25 μm. For this reason, the A-axis compressive strength of the ceramic honeycomb filter is 2.5 MPa, and 3 MPa or more, which is not a practical problem, cannot be obtained. Thus, the strength characteristics are lower than those of the ceramic honeycomb filters of Examples 1 to 4, and low pressure loss and high strength are obtained. A ceramic honeycomb filter satisfying both conditions was not obtained.

(実施例5〜8)
実施例5のセラミックハニカムフィルタは、表4に示すように実施例4のセラミックハニカムフィルタに対して、カオリン及びタルク以外のシリカ源成分に溶融シリカAを使用し、造孔材にコージェライト化原料100質量部に対して、発泡樹脂であるイソブタン内包アクリロニトリル・メチルメタクリレート共重合体を12質量部添加したこと以外は、実施例4と同様にして作製した。
(Examples 5 to 8)
As shown in Table 4, the ceramic honeycomb filter of Example 5 was different from the ceramic honeycomb filter of Example 4 in that fused silica A was used as a silica source component other than kaolin and talc, and a cordierite-forming raw material was used as a pore-forming material. It was produced in the same manner as in Example 4 except that 12 parts by mass of an acrylonitrile-methyl methacrylate copolymer containing isobutane, which is a foamed resin, was added to 100 parts by mass.

実施例6のセラミックハニカムフィルタは、表4に示すように実施例5のセラミックハニカムフィルタに対して、カオリンとして粒径の異なるカオリンA及びカオリンBを用いたこと以外は、実施例5と同様にして作製した。
実施例7及び8のセラミックハニカムフィルタは、実施例5のセラミックハニカムフィルタに対して、アルミナ源成分の酸化アルミニウムAと水酸化アルミニウムの配合割合を変化させるとともに、カオリン、タルク、溶融シリカAの配合割合を僅か変化させたこと以外は、実施例5と同様にして作製した。
As shown in Table 4, the ceramic honeycomb filter of Example 6 was the same as that of Example 5 except that kaolin A and kaolin B having different particle sizes were used as the kaolin with respect to the ceramic honeycomb filter of Example 5. Produced.
The ceramic honeycomb filters of Examples 7 and 8 were different from the ceramic honeycomb filter of Example 5 in that the mixing ratio of aluminum oxide A and aluminum hydroxide as the alumina source components was changed and the mixing ratio of kaolin, talc, and fused silica A was changed. It was produced in the same manner as in Example 5, except that the ratio was slightly changed.

実施例5〜8の結果を表5に示す。実施例5〜8のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカを17.5〜18.2質量%含有しており、この溶融シリカAが粒径75〜250μmの粉末を2.2質量%、粒径45μm以上を13.6質量%、粒径20μm以上を40.7質量%、粒径10μm以上を58.6質量%、粒径5μm以上を74.6質量%、粒径2μm以上を97.4質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを20〜24.8質量%含有しており、この酸化アルミニウムAが粒径45μm以上を14.2質量%、粒径20μm以上を12.5質量%、粒径10μm以上を25.9質量%、粒径5μm以上を62質量%、粒径2μm以上を97.8質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が63.1〜64.1%、平均細孔径が20.5〜21.7μm、20〜40μmの総細孔容積が全細孔容積の30.0%〜33.8%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が185〜188mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.5〜3.6MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も7〜8×10−7/℃と低い値が得られた。 Table 5 shows the results of Examples 5 to 8. The ceramic honeycomb filters of Examples 5 to 8 contained 17.5 to 18.2% by mass of fused silica as a silica source component other than kaolin and talc in the cordierite-forming raw material. 2.2 mass% of powder having a diameter of 75 to 250 μm, 13.6 mass% of particle diameter of 45 μm or more, 40.7 mass% of particle diameter of 20 μm or more, 58.6 mass% of particle diameter of 10 μm or more, and particle diameter of 5 μm or more 74.6% by mass, 97.4% by mass of a particle diameter of 2 μm or more, and 20 to 24.8% by mass of aluminum oxide A as an alumina source component. A diameter of 45 μm or more is 14.2 mass%, a particle diameter of 20 μm or more is 12.5 mass%, a particle diameter of 10 μm or more is 25.9 mass%, a particle diameter of 5 μm or more is 62 mass%, and a particle diameter of 2 μm or more is 97.8 mass%. % I have. Therefore, pores are formed in the partition walls, the porosity is 63.1 to 64.1%, the average pore diameter is 20.5 to 21.7 μm, and the total pore volume of 20 to 40 μm is the total pore volume. A ceramic honeycomb filter having a volume of 30.0% to 33.8% was obtained. The ceramic honeycomb filter, pressure loss characteristic 185~188mmH 2 O, practically no problem 200 mm 2 O or less is obtained, the A-axis compressive strength 3.5~3.6MPa, no practical problem 3MPa or more Value, and a ceramic honeycomb filter having both low pressure loss and high strength was obtained. In addition, a low coefficient of thermal expansion of 7 to 8 × 10 −7 / ° C. was obtained.

(実施例9〜12)
実施例9及び実施例12のセラミックハニカムフィルタは、実施例5のセラミックハニカムフィルタに対して、アルミナ源成分に酸化アルミニウムB及び酸化アルミニウムCを使用したこと以外は、実施例5と同様にして作製した。
実施例10のセラミックハニカムフィルタは、実施例9のセラミックハニカムフィルタに対して、造孔材にコージェライト化原料100質量部に対して、発泡樹脂であるイソブタン内包アクリロニトリル・メチルメタクリレート共重合体を15質量部添加したこと以外は、実施例10と同様にして作製した。
また、実施例11のセラミックハニカムフィルタは、実施例9のセラミックハニカムフィルタに対して、造孔材にコージェライト化原料100質量部に対して、発泡樹脂であるイソブタン内包アクリロニトリル・メチルメタクリレート共重合体を10質量部、グラファイトを5質量部添加したこと以外は、実施例10と同様にして作製した。
(Examples 9 to 12)
The ceramic honeycomb filters of Example 9 and Example 12 were produced in the same manner as in Example 5 except that aluminum oxide B and aluminum oxide C were used as the alumina source components with respect to the ceramic honeycomb filter of Example 5. did.
The ceramic honeycomb filter of Example 10 is different from the ceramic honeycomb filter of Example 9 in that an acrylonitrile-methyl methacrylate copolymer containing isobutane, which is a foamed resin, is used in an amount of 100 parts by mass of a cordierite-forming raw material as a pore former. Except that it was added in parts by mass, it was produced in the same manner as in Example 10.
Further, the ceramic honeycomb filter of Example 11 is different from the ceramic honeycomb filter of Example 9 in that an acrylonitrile / methyl methacrylate copolymer containing isobutane, which is a foamed resin, based on 100 parts by weight of a cordierite forming raw material as a pore-forming material. Was prepared in the same manner as in Example 10 except that 10 parts by mass of, and 5 parts by mass of graphite were added.

実施例9〜12の結果を表5に示す。実施例9〜11のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカAを17.5質量%含有しており、この溶融シリカAが粒径75〜250μmの粉末を2.2質量%、粒径45μm以上を13.6質量%、粒径20μm以上を40.7質量%、粒径10μm以上を58.6質量%、粒径5μm以上を74.6質量%、粒径2μm以上を97.4質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムBを22.8質量%含有しており、この酸化アルミニウムBが粒径45μm以上を0質量%、粒径20μm以上を0.2質量%、粒径10μm以上を11.2質量%、粒径5μm以上を51.4質量%、粒径2μm以上を95.8質量%含有している。
このため、その隔壁内には細孔が形成され、気孔率が61.7〜67.0%、平均細孔径が15.5.〜16.5μm、20〜40μmの総細孔容積が全細孔容積の27.6〜29.8%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が196〜198mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.1〜3.2MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も7〜9×10−7/℃と低い値が得られた。
Table 5 shows the results of Examples 9 to 12. The ceramic honeycomb filters of Examples 9 to 11 contained 17.5% by mass of fused silica A as a silica source component other than kaolin and talc in the cordierite-forming raw material, and the fused silica A had a particle size of 75 to 75%. 2.2% by mass of a 250 μm powder, 13.6% by mass of a particle size of 45 μm or more, 40.7% by mass of a particle size of 20 μm or more, 58.6% by mass of a particle size of 10 μm or more, and 74.6% by mass of a particle size of 5 μm or more. It contains 97.4% by mass of 6% by mass and a particle size of 2 μm or more, and 22.8% by mass of aluminum oxide B as an alumina source component. 0.2% by mass, particle size of 20 μm or more, 11.2% by mass of particle size of 10 μm or more, 51.4% by mass of particle size of 5 μm or more, and 95.8% by mass of particle size of 2 μm or more. .
Therefore, pores are formed in the partition walls, the porosity is 61.7 to 67.0%, and the average pore diameter is 15.5. A ceramic honeycomb filter having a total pore volume of 1616.5 μm and 20 to 40 μm of 27.6 to 29.8% of the total pore volume was obtained. The ceramic honeycomb filter, pressure loss characteristic 196~198mmH 2 O, practically no problem 200 mm 2 O or less is obtained, the A-axis compressive strength 3.1~3.2MPa, no practical problem 3MPa or more Value, and a ceramic honeycomb filter having both low pressure loss and high strength was obtained. In addition, a low coefficient of thermal expansion of 7 to 9 × 10 −7 / ° C. was obtained.

実施例12のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカAを17.5質量%含有しており、この溶融シリカAが粒径75〜250μmの粉末を2.2質量%、粒径45μm以上を13.6質量%、粒径20μm以上を40.7質量%、粒径10μm以上を58.6質量%、粒径5μm以上を74.6質量%、粒径2μm以上を97.4質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムCを22.8質量%含有しており、この酸化アルミニウムCが粒径45μm以上を2質量%、粒径20μm以上を24.1質量%、粒径10μm以上を43.1質量%、粒径5μm以上を71.1質量%、粒径2μm以上を98.3質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が62.0%、平均細孔径が24.8μm、20〜40μmの総細孔容積が全細孔容積の29.8%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が196mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.1MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も8×10−7/℃と低い値が得られた。 The ceramic honeycomb filter of Example 12 contained 17.5% by mass of fused silica A as a silica source component other than kaolin and talc in the cordierite-forming raw material, and the fused silica A had a particle size of 75 to 250 μm. 2.2 mass% of powder, 13.6 mass% of particle diameter of 45 μm or more, 40.7 mass% of particle diameter of 20 μm or more, 58.6 mass% of particle diameter of 10 μm or more, and 74.6 mass of particle diameter of 5 μm or more. %, A particle size of 2 μm or more, 97.4% by mass, and an alumina source component of aluminum oxide C, 22.8% by mass, which contains 2% by mass of a particle size of 45 μm or more. It contains 24.1% by mass of a particle size of 20 μm or more, 43.1% by mass of a particle size of 10 μm or more, 71.1% by mass of a particle size of 5 μm or more, and 98.3% by mass of a particle size of 2 μm or more. Therefore, pores are formed in the partition walls, the porosity is 62.0%, the average pore diameter is 24.8 μm, and the total pore volume of 20 to 40 μm is 29.8% of the total pore volume. A ceramic honeycomb filter was obtained. This ceramic honeycomb filter has a pressure loss characteristic of 196 mmH 2 O, a practically no problem of 200 mmH 2 O or less, an A-axis compressive strength of 3.1 MPa, and a practically problematic value of 3 MPa or more. A ceramic honeycomb filter having both pressure loss and high strength was obtained. Further, a low coefficient of thermal expansion of 8 × 10 −7 / ° C. was obtained.

(実施例13〜18)
実施例13及び15〜18のセラミックハニカムフィルタは、表4に示すように実施例3のセラミックハニカムフィルタに対して、カオリン及びタルク以外のシリカ源成分に溶融シリカB、溶融シリカD、溶融シリカE、溶融シリカF、溶融シリカHを使用したこと以外は、実施例3と同様にして作製した。また、実施例14のセラミックハニカムフィルタは、表4に示すように、実施例4のセラミックハニカムフィルタに対して、カオリン及びタルク以外のシリカ源成分に溶融シリカBを使用したこと以外は、実施例4と同様にして作製した。
(Examples 13 to 18)
As shown in Table 4, the ceramic honeycomb filters of Examples 13 and 15 to 18 were different from the ceramic honeycomb filters of Example 3 in that the silica source components other than kaolin and talc were fused silica B, fused silica D, and fused silica E. , Fused silica F and fused silica H were used in the same manner as in Example 3. Further, as shown in Table 4, the ceramic honeycomb filter of Example 14 was the same as the ceramic honeycomb filter of Example 4 except that fused silica B was used as a silica source component other than kaolin and talc. In the same manner as in No. 4, it was produced.

実施例13〜18の結果を表5に示す。実施例13、14のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカBを16質量%及び17.5質量%含有しており、この溶融シリカBが粒径75〜200μmの粉末を4.7質量%、粒径45μm以上を26.6質量%、粒径20μm以上を68.3質量%、粒径10μm以上を93.4質量%、粒径5μm以上を94.2質量%、粒径2μm以上を99.8質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを22.0及び22.8質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が62.1〜62.7%、平均細孔径が24.1〜24.6μm、20〜40μmの総細孔容積が全細孔容積の32.3%〜33.8%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が186〜188mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.2〜3.3MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も7〜8×10−7/℃と低い値が得られた。 Table 5 shows the results of Examples 13 to 18. The ceramic honeycomb filters of Examples 13 and 14 contained 16% by mass and 17.5% by mass of fused silica B as a silica source component other than kaolin and talc in the cordierite-forming raw material. 4.7 mass% of powder having a particle diameter of 75 to 200 μm, 26.6 mass% of particle diameter of 45 μm or more, 68.3 mass% of particle diameter of 20 μm or more, 93.4 mass% of particle diameter of 10 μm or more, and particle diameter of 5 μm It contains 94.2% by mass of the above and 99.8% by mass of a particle size of 2 μm or more, and contains 22.0 and 22.8% by mass of aluminum oxide A as an alumina source component. Therefore, pores are formed in the partition walls, the porosity is 62.1 to 62.7%, the average pore diameter is 24.1 to 24.6 µm, and the total pore volume of 20 to 40 µm is the total pore volume. A ceramic honeycomb filter having a volume of 32.3% to 33.8% of the volume was obtained. The ceramic honeycomb filter, pressure loss characteristic 186~188mmH 2 O, practically no problem 200 mm 2 O or less is obtained, the A-axis compressive strength 3.2~3.3MPa, no practical problem 3MPa or more Value, and a ceramic honeycomb filter having both low pressure loss and high strength was obtained. In addition, a low coefficient of thermal expansion of 7 to 8 × 10 −7 / ° C. was obtained.

実施例15のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカDを16質量%含有しており、この溶融シリカDが粒径75〜200μmの粉末を1.8質量%、粒径45μm以上を5.8質量%、粒径20μm以上を36.3質量%、粒径10μm以上を58.8質量%、粒径5μm以上を82.2質量%、粒径2μm以上を97.5質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを22.0質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が61.0%、平均細孔径が20.6μm、20〜40μmの総細孔容積が全細孔容積の41.9%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が189mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.5MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も8×10−7/℃と低い値が得られた。 The ceramic honeycomb filter of Example 15 contained 16% by mass of fused silica D as a silica source component other than kaolin and talc in the cordierite-forming raw material, and the fused silica D contained powder having a particle size of 75 to 200 μm. 1.8% by mass, 5.8% by mass with a particle size of 45 μm or more, 36.3% by mass with a particle size of 20 μm or more, 58.8% by mass with a particle size of 10 μm or more, 82.2% by mass with a particle size of 5 μm or more, It contains 97.5% by mass of a particle size of 2 μm or more, and contains 22.0% by mass of aluminum oxide A as an alumina source component. Therefore, pores are formed in the partition walls, the porosity is 61.0%, the average pore diameter is 20.6 μm, and the total pore volume of 20 to 40 μm is 41.9% of the total pore volume. A ceramic honeycomb filter was obtained. This ceramic honeycomb filter has a pressure loss characteristic of 189 mmH 2 O, a practically no problem of 200 mmH 2 O or less, an A-axis compressive strength of 3.5 MPa, and a practically problematic value of 3 MPa or more. A ceramic honeycomb filter having both pressure loss and high strength was obtained. Further, a low coefficient of thermal expansion of 8 × 10 −7 / ° C. was obtained.

実施例16のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカEを16質量%含有しており、この溶融シリカEが粒径75〜200μmの粉末を4.9質量%、粒径45μm以上を21.5質量%、粒径20μm以上を43.1質量%、粒径10μm以上を55.7質量%、粒径5μm以上を68.5質量%、粒径2μm以上を85.2質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを22.0質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が60.4%、平均細孔径が21.7μm、20〜40μmの総細孔容積が全細孔容積の37.9%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が187mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.6MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も7×10−7/℃と低い値が得られた。 The ceramic honeycomb filter of Example 16 contained 16% by mass of fused silica E as a silica source component other than kaolin and talc in the cordierite-forming raw material, and the fused silica E contained powder having a particle size of 75 to 200 μm. 4.9% by mass, 21.5% by mass with a particle size of 45 μm or more, 43.1% by mass with a particle size of 20 μm or more, 55.7% by mass with a particle size of 10 μm or more, 68.5% by mass with a particle size of 5 μm or more, It contains 85.2% by mass of a particle diameter of 2 μm or more, and contains 22.0% by mass of aluminum oxide A as an alumina source component. Therefore, pores are formed in the partition walls, the porosity is 60.4%, the average pore diameter is 21.7 μm, and the total pore volume of 20 to 40 μm is 37.9% of the total pore volume. A ceramic honeycomb filter was obtained. This ceramic honeycomb filter has a pressure loss characteristic of 187 mmH 2 O, a practically no problem of 200 mmH 2 O or less, an A-axis compressive strength of 3.6 MPa, and a value of 3 MPa or more which is practically no problem. A ceramic honeycomb filter having both pressure loss and high strength was obtained. Also, a low coefficient of thermal expansion of 7 × 10 −7 / ° C. was obtained.

実施例17のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカFを16質量%含有しており、この溶融シリカFが粒径75〜200μmの粉末を5.3質量%、粒径45μm以上を24.5質量%、粒径20μm以上を53.1質量%、粒径10μm以上を75.3質量%、粒径5μm以上を92.2質量%、粒径2μm以上を99.8質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを22.0質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が60.5%、平均細孔径が23.5μm、20〜40μmの総細孔容積が全細孔容積の35.6%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が188mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.2MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も8×10−7/℃と低い値が得られた。 The ceramic honeycomb filter of Example 17 contained 16% by mass of fused silica F as a silica source component other than kaolin and talc in the cordierite-forming raw material, and the fused silica F contained powder having a particle size of 75 to 200 μm. 5.3% by mass, 24.5% by mass with a particle size of 45 μm or more, 53.1% by mass with a particle size of 20 μm or more, 75.3% by mass with a particle size of 10 μm or more, 92.2% by mass with a particle size of 5 μm or more, It contains 99.8% by mass of a particle diameter of 2 μm or more, and contains 22.0% by mass of aluminum oxide A as an alumina source component. Therefore, pores are formed in the partition walls, the porosity is 60.5%, the average pore diameter is 23.5 μm, and the total pore volume of 20 to 40 μm is 35.6% of the total pore volume. A ceramic honeycomb filter was obtained. This ceramic honeycomb filter has a pressure loss characteristic of 188 mmH 2 O, a practically no problem of 200 mmH 2 O or less, an A-axis compressive strength of 3.2 MPa, and a practically problematic value of 3 MPa or more. A ceramic honeycomb filter having both pressure loss and high strength was obtained. Further, a low coefficient of thermal expansion of 8 × 10 −7 / ° C. was obtained.

実施例18のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として溶融シリカHを16質量%含有しており、この溶融シリカHが粒径75〜200μmの粉末を1.3質量%、粒径45μm以上を2.9質量%、粒径20μm以上を29.0質量%、粒径10μm以上を46.5質量%、粒径5μm以上を62.5質量%、粒径2μm以上を78.5質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを22.0質量%含有している。このため、その隔壁内には細孔が形成され、気孔率が62.3%、平均細孔径が15.6μm、20〜40μmの総細孔容積が全細孔容積の30.5%であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が193mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.8MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も8×10−7/℃と低い値が得られた。 The ceramic honeycomb filter of Example 18 contained 16% by mass of fused silica H as a silica source component other than kaolin and talc in the cordierite-forming raw material, and the fused silica H contained powder having a particle size of 75 to 200 μm. 1.3% by mass, 2.9% by mass with a particle size of 45μm or more, 29.0% by mass with a particle size of 20μm or more, 46.5% by mass with a particle size of 10μm or more, 62.5% by mass with a particle size of 5μm or more, It contains 78.5% by mass of a particle diameter of 2 μm or more, and contains 22.0% by mass of aluminum oxide A as an alumina source component. Therefore, pores are formed in the partition walls, the porosity is 62.3%, the average pore diameter is 15.6 μm, and the total pore volume of 20 to 40 μm is 30.5% of the total pore volume. A ceramic honeycomb filter was obtained. This ceramic honeycomb filter has a pressure loss characteristic of 193 mmH 2 O, a practically no problem of 200 mmH 2 O or less, an A-axis compressive strength of 3.8 MPa, and a practically problematic value of 3 MPa or more. A ceramic honeycomb filter having both pressure loss and high strength was obtained. Further, a low coefficient of thermal expansion of 8 × 10 −7 / ° C. was obtained.

(比較例4〜9)
比較例4〜7のセラミックハニカムフィルタは、表4に示すように実施例3のセラミックハニカムフィルタに対して、カオリン及びタルク以外のシリカ源成分に石英B、石英C、溶融シリカC、溶融シリカGを使用したこと以外は、実施例3と同様にして作製した。また比較例8〜9のセラミックハニカムフィルタは、比較例5及び6のセラミックハニカムフィルタに対して、添加する造孔剤の種類び添加量を変化させた。比較例7では、グラファイト、比較例8では発泡樹脂及びポリエチレンを造孔剤として使用した。
(Comparative Examples 4 to 9)
As shown in Table 4, the ceramic honeycomb filters of Comparative Examples 4 to 7 were different from the ceramic honeycomb filters of Example 3 in that silica source components other than kaolin and talc were quartz B, quartz C, fused silica C, and fused silica G. Was prepared in the same manner as in Example 3 except that The ceramic honeycomb filters of Comparative Examples 8 and 9 were different from the ceramic honeycomb filters of Comparative Examples 5 and 6 in the type and amount of the pore-forming agent to be added. In Comparative Example 7, graphite was used as a pore-forming agent, and in Comparative Example 8, foamed resin and polyethylene were used as pore-forming agents.

評価結果を表5に示す。比較例4、5、7及び8のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分を16質量%含有しているものの、前記シリカ源成分(石英Bまたは石英Cまたは石英G)の粒径75〜200μmの粉末含有量が1質量%以下であるため、前記シリカ源成分により形成された細孔の大きさが全体的に小さくなり、その隔壁の平均細孔径は15μm未満であった。特に比較例5及び8のセラミックハニカムフィルタは、20〜40μmの総細孔容積の全細孔容積に対する割合が25%未満であり、更に比較例8のセラミックハニカムフィルタは、気孔率が60%未満であった。このため、比較例4、5、7及び8のセラミックハニカムフィルタは、A軸圧縮強度が3.6〜4.5MPaで、実用上問題ない3MPa以上の値が得られたものの、圧力損失特性が202〜221mmHOで、実用上問題となる200mmHOを超える値となり、低圧力損失と高強度を両立させたセラミックハニカムフィルタは得られなかった。 Table 5 shows the evaluation results. The ceramic honeycomb filters of Comparative Examples 4, 5, 7, and 8 contained 16% by mass of a silica source component other than kaolin and talc in the cordierite forming raw material, but the silica source component (quartz B or quartz C) was used. Alternatively, since the content of the powder having a particle diameter of 75 to 200 μm of quartz G) is 1% by mass or less, the size of the pores formed by the silica source component becomes small overall, and the average pore diameter of the partition walls is It was less than 15 μm. In particular, in the ceramic honeycomb filters of Comparative Examples 5 and 8, the ratio of the total pore volume of 20 to 40 µm to the total pore volume is less than 25%, and the porosity of the ceramic honeycomb filter of Comparative Example 8 is less than 60%. Met. For this reason, the ceramic honeycomb filters of Comparative Examples 4, 5, 7, and 8 had an A-axis compressive strength of 3.6 to 4.5 MPa, a value of 3 MPa or more, which was not problematic in practical use, but had a pressure loss characteristic. in 202~221mmH 2 O, it becomes a value greater than 200 mm 2 O as a practical problem, a ceramic honeycomb filter having both low pressure loss and high strength can not be obtained.

一方、比較例6及び9のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分(溶融シリカC)を16質量%で含有しているものの、前記シリカ源成分の粒径75〜200μmの粉末の含有量が24.3質量%であるため、前記シリカ源成分により形成された細孔の大きさが全体的に大きくなり、その隔壁の平均細孔径は、25μmを越えていた。このため、比較例6及び9のセラミックハニカムフィルタは、圧力損失特性が175〜192mmHOで、実用上問題ない200mmHO以下であったものの、A軸圧縮強度が1.0〜1.5MPaとなり、実用上問題ない3MPa以上が得られず、低圧力損失と高強度を両立させたセラミックハニカムフィルタは得られなかった。 On the other hand, although the ceramic honeycomb filters of Comparative Examples 6 and 9 contained 16% by mass of a silica source component (fused silica C) other than kaolin and talc in the cordierite-forming raw material, particles of the silica source component were not used. Since the content of the powder having a diameter of 75 to 200 μm is 24.3% by mass, the size of the pores formed by the silica source component becomes large as a whole, and the average pore diameter of the partition walls exceeds 25 μm. I was Therefore, the ceramic honeycomb filter of Comparative Example 6 and 9, a pressure loss characteristic 175~192MmH 2 O, practically no problem though 200mmH were 2 O or less, A-axis compressive strength 1.0~1.5MPa Thus, a practically problematic 3 MPa or more was not obtained, and a ceramic honeycomb filter having both low pressure loss and high strength was not obtained.

(実施例19〜21)
実施例19〜21のセラミックハニカムフィルタは、表4に示すように実施例3のセラミックハニカムフィルタに対して、添加する造孔剤の種類及び添加量を変化させた以外は、実施例と同様にして作製した。実施例19では、グラファイト及びポリメチルメタクリレート(PMMA)、実施例20では発泡樹脂及びグラファイト、実施例21では、小麦粉を造孔剤として使用した。
(Examples 19 to 21)
As shown in Table 4, the ceramic honeycomb filters of Examples 19 to 21 were the same as the examples except that the type and amount of the pore forming agent to be added were changed with respect to the ceramic honeycomb filters of Example 3. Produced. In Example 19, graphite and polymethyl methacrylate (PMMA) were used as the pore former, in Example 20, foamed resin and graphite, and in Example 21, wheat flour was used.

評価結果を表5に示すように、実施例19〜21のセラミックハニカムフィルタは、コージェライト化原料のうち、カオリン及びタルク以外のシリカ源成分として石英Aを16質量%で含有しており、この石英Aが粒径75〜250μmの粉末を2.3質量%、粒径45μm以上を14.2質量%、粒径20μm以上を41.2質量%、粒径10μm以上を59.4質量%、粒径5μm以上を75.3質量%、粒径2μm以上を88.7質量%含有しており、且つ、アルミナ源成分として酸化アルミニウムAを22質量%含有している。このため、その隔壁内には形成され、気孔率が60〜80%、平均細孔径が15〜25μm、20〜40μmの総細孔容積が全細孔容積の25%以上であるセラミックハニカムフィルタが得られた。このセラミックハニカムフィルタは、圧力損失特性が186〜189mmHOで、実用上問題ない200mmHO以下が得られ、A軸圧縮強度も3.5〜3.7MPaで、実用上問題ない3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。また、熱膨張係数も8〜9×10−7/℃と低い値が得られた。 As shown in the evaluation results in Table 5, the ceramic honeycomb filters of Examples 19 to 21 contained 16% by mass of quartz A as a silica source component other than kaolin and talc among the cordierite forming raw materials. 2.3% by mass of powder having a particle size of 75 to 250 μm in quartz A, 14.2% by mass of particle size of 45 μm or more, 41.2% by mass of particle size of 20 μm or more, 59.4% by mass of particle size of 10 μm or more, It contains 75.3% by mass of a particle size of 5 μm or more, 88.7% by mass of a particle size of 2 μm or more, and contains 22% by mass of aluminum oxide A as an alumina source component. For this reason, a ceramic honeycomb filter formed in the partition wall and having a porosity of 60 to 80%, an average pore diameter of 15 to 25 μm, and a total pore volume of 20 to 40 μm of 25% or more of the total pore volume is provided. Obtained. This ceramic honeycomb filter has a pressure loss characteristic of 186 to 189 mmH 2 O, a practically no problem of 200 mmH 2 O or less, and an A-axis compressive strength of 3.5 to 3.7 MPa, a practically problematic of 3 MPa or more. Value, and a ceramic honeycomb filter having both low pressure loss and high strength was obtained. In addition, a low coefficient of thermal expansion of 8 to 9 × 10 −7 / ° C. was obtained.

(実施例22〜25)
実施例1〜4と同様に作製したセラミックハニカムフィルタに対して、白金(Pt)、酸化セリウム、及び活性アルミナからなる触媒物質を隔壁表面及び内部にウオッシュコート法により担持し、実施例16〜19のセラミックハニカムフィルタを得た。このときの担持量はPt量で2g/L(ハニカムフィルタ容積1Lに対して、Pt2g担持の意味)とした。これらについて、実施例1と同様に、圧力損失、及びA軸圧縮強度を測定した結果を表6に示す。
実施例1〜4のセラミックハニカムフィルタの隔壁内には、カオリン及びタルク以外のシリカ源成分により得られた細孔が形成され、気孔率が60〜80%、平均細孔径が15〜25μm、20〜40μmの総細孔容積が全細孔容積の25%以上であるため、触媒物質が担持された実施例22〜25のセラミックハニカムフィルタであっても、その圧力損失特性は、触媒担持前と殆ど変わらず、200mmHO以下の低圧力損失が得られた。一方、A軸圧縮強度も実用上問題のない、3MPa以上の値が得られ、低圧力損失と高強度を両立させたセラミックハニカムフィルタが得られた。
(Examples 22 to 25)
Catalyst materials made of platinum (Pt), cerium oxide, and activated alumina were supported on the surface and inside of the partition wall by a wash coat method on the ceramic honeycomb filters manufactured in the same manner as in Examples 1 to 4. Was obtained. At this time, the carried amount was 2 g / L in Pt amount (meaning that 2 g of Pt was carried per 1 L of honeycomb filter volume). Table 6 shows the results of measuring the pressure loss and the A-axis compressive strength of these in the same manner as in Example 1.
In the partition walls of the ceramic honeycomb filters of Examples 1 to 4, pores obtained by a silica source component other than kaolin and talc are formed, the porosity is 60 to 80%, the average pore diameter is 15 to 25 µm, and Since the total pore volume of 4040 μm is 25% or more of the total pore volume, the pressure loss characteristics of the ceramic honeycomb filters of Examples 22 to 25 in which the catalyst substance is supported are the same as those before the catalyst is supported. most unchanged, 200 mm 2 O or lower pressure loss is obtained. On the other hand, the A-axis compressive strength was 3 MPa or more, which was practically no problem, and a ceramic honeycomb filter having both low pressure loss and high strength was obtained.

Figure 2004250324
Figure 2004250324

(1)及び(2)はそれぞれセラミックハニカムフィルタの一例を示す正面図及び側面図である。(1) and (2) are a front view and a side view, respectively, showing an example of a ceramic honeycomb filter.

符号の説明Explanation of reference numerals

1:隔壁、
2:流路、
3:セラミックハニカムフィルタ、
4:目封止材、

1: partition,
2: flow path,
3: ceramic honeycomb filter,
4: plugging material,

Claims (6)

コージェライト化原料を主原料として用い、この原料から所定の成形体を押出成形した後、焼成する、セラミックハニカム構造体の製造方法であって、前記コージェライト化原料が、カオリン及びタルク以外のシリカ源成分を10〜20質量%で含有し、且つ前記シリカ源成分が、粒径75〜250μmの粉末を1質量%を超え10質量%以下で含有していることを特徴とするセラミックハニカム構造体の製造方法。 A method for producing a ceramic honeycomb structure, wherein a cordierite-forming raw material is used as a main raw material, a predetermined molded body is extruded from the raw material, and then fired, wherein the cordierite-forming raw material is silica other than kaolin and talc. A ceramic honeycomb structure comprising: a source component in an amount of 10 to 20% by mass; and the silica source component contains a powder having a particle size of 75 to 250 µm in an amount of more than 1% by mass and 10% by mass or less. Manufacturing method. 前記、カオリン及びタルク以外のシリカ源成分が、粒径45μm以上の粉末を3〜25質量%、粒径20μm以上の粉末を31〜52質量%、粒径10μm以上の粉末を49〜70質量%、粒径5μm以上の粉末を65〜90質量%、粒径2μm以上の粉末を80〜99.5質量%で含有していることを特徴とする請求項1記載のセラミックハニカム構造体の製造方法。 The silica source components other than kaolin and talc are as follows: 3 to 25% by mass of a powder having a particle size of 45 μm or more, 31 to 52% by mass of a powder having a particle size of 20 μm or more, and 49 to 70% by mass of a powder having a particle size of 10 μm or more. 2. The method for producing a ceramic honeycomb structure according to claim 1, wherein the powder contains 65 to 90% by mass of powder having a particle size of 5 μm or more and 80 to 99.5% by mass of powder having a particle size of 2 μm or more. . 前記コージェライト化原料が、アルミナ源成分として、少なくとも酸化アルミニウムを30質量%以下含有し、該酸化アルミニウムは、粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を2〜22質量%で含有し、粒径10μm以上の粉末を13〜33質量%、粒径5μm以上の粉末を48〜68質量%、粒径2μm以上の粉末を85質量%以上含有していることを特徴とする請求項1乃至2記載のセラミックハニカム構造体の製造方法。 The cordierite-forming raw material contains at least 30% by mass or less of aluminum oxide as an alumina source component, and the aluminum oxide contains 5% by mass or less of a powder having a particle size of 45 μm or more and 2 to 22% of a powder having a particle size of 20 μm or more. It is characterized by containing 13 to 33% by mass of a powder having a particle size of 10 μm or more, 48 to 68% by mass of a powder having a particle size of 5 μm or more, and 85% by mass or more of a powder having a particle size of 2 μm or more. The method for manufacturing a ceramic honeycomb structure according to claim 1 or 2, wherein 前記コージェライト化原料を主成分とするセラミックス原料100質量部に対して、発泡樹脂を4質量部を超え20質量部以下含有することを特徴とする請求項1乃至3のいずれかに記載のセラミックハニカム構造体の製造方法。 The ceramic according to any one of claims 1 to 3, wherein the foamed resin is contained in an amount of more than 4 parts by mass and 20 parts by mass or less with respect to 100 parts by mass of the ceramic raw material containing the cordierite-forming raw material as a main component. A method for manufacturing a honeycomb structure. セラミックハニカム構造体の製造に用いるコージェライト化原料であって、カオリン及びタルク以外のシリカ源成分を10〜20質量%で含有し、且つ前記シリカ源成分が、粒径75〜250μmの粉末を1質量%を超え10質量%以下、粒径45μm以上の粉末を3〜25質量%で含有し、粒径20μm以上の粉末を31〜52質量%、粒径10μm以上の粉末を49〜70質量%、粒径5μm以上の粉末を65〜90質量%、粒径2μm以上の粉末を80〜99.5質量%で含有していることを特徴とするコージェライト化原料。 A cordierite-forming raw material used for manufacturing a ceramic honeycomb structure, comprising 10 to 20% by mass of a silica source component other than kaolin and talc, and wherein the silica source component is a powder having a particle size of 75 to 250 μm. More than 10% by mass and less than 10% by mass, 3 to 25% by mass of a powder having a particle size of 45 μm or more, 31 to 52% by mass of a powder having a particle size of 20 μm or more, and 49 to 70% by mass of a powder having a particle size of 10 μm or more. A cordierite-forming raw material containing 65 to 90% by mass of powder having a particle size of 5 µm or more and 80 to 99.5% by mass of powder having a particle size of 2 µm or more. セラミックハニカム構造体の製造に用いるコージェライト化原料であって、該コージェライト化原料がアルミナ源成分として、少なくとも酸化アルミニウムを30質量%以下含有し、該酸化アルミニウムが、粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を2〜22質量%で含有し、粒径10μm以上の粉末を13〜33質量%、粒径5μm以上の粉末を48〜68質量%、粒径2μm以上の粉末を85質量%以上含有していることを特徴とする請求項7に記載のコージェライト化原料。
A cordierite-forming raw material used for manufacturing a ceramic honeycomb structure, wherein the cordierite-forming raw material contains at least 30% by mass or less of aluminum oxide as an alumina source component, and the aluminum oxide has a particle size of 45 μm or more. 5% by mass or less, powder having a particle size of 20 μm or more is contained at 2 to 22% by mass, powder having a particle size of 10 μm or more is 13 to 33% by mass, powder having a particle size of 5 μm or more is 48 to 68% by mass, and particle size is 2 μm. The cordierite-forming raw material according to claim 7, comprising 85% by mass or more of the above powder.
JP2004023709A 2003-01-30 2004-01-30 Method for producing ceramic honeycomb structure, and cordierite raw material Pending JP2004250324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023709A JP2004250324A (en) 2003-01-30 2004-01-30 Method for producing ceramic honeycomb structure, and cordierite raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003022005 2003-01-30
JP2004023709A JP2004250324A (en) 2003-01-30 2004-01-30 Method for producing ceramic honeycomb structure, and cordierite raw material

Publications (1)

Publication Number Publication Date
JP2004250324A true JP2004250324A (en) 2004-09-09

Family

ID=33032197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023709A Pending JP2004250324A (en) 2003-01-30 2004-01-30 Method for producing ceramic honeycomb structure, and cordierite raw material

Country Status (1)

Country Link
JP (1) JP2004250324A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790407A1 (en) * 2004-09-14 2007-05-30 Ngk Insulators, Ltd. Porous honeycomb filter
WO2009048156A1 (en) 2007-10-12 2009-04-16 Hitachi Metals, Ltd. Cordierite ceramic honeycomb filter and process for producing the same
JP2009521388A (en) * 2005-12-21 2009-06-04 コーニング インコーポレイテッド High porosity cordierite ceramic honeycomb articles and methods
WO2010013509A1 (en) * 2008-07-28 2010-02-04 日立金属株式会社 Ceramic honeycomb structure and process for producing the same
JP2010260787A (en) * 2008-03-31 2010-11-18 Denso Corp Method for manufacturing porous honeycomb structure
JP2013530118A (en) * 2010-05-27 2013-07-25 コーニング インコーポレイテッド Cordierite composition for improving extrusion process quality
JP5293608B2 (en) * 2007-09-27 2013-09-18 日立金属株式会社 Ceramic honeycomb structure and manufacturing method thereof
JP5372494B2 (en) * 2006-03-17 2013-12-18 日本碍子株式会社 Manufacturing method of honeycomb structure
CN109179432A (en) * 2018-09-27 2019-01-11 内蒙古超牌建材科技有限公司 Low calcium calcines black talc production equipment, low calcium calcining black talc and preparation method thereof
JP7399901B2 (en) 2021-02-22 2023-12-18 日本碍子株式会社 Honeycomb filter and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143615A (en) * 2000-11-09 2002-05-21 Hitachi Metals Ltd Porous ceramic honeycomb structural body
JP2002219319A (en) * 2000-11-24 2002-08-06 Ngk Insulators Ltd Porous honeycomb filter and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143615A (en) * 2000-11-09 2002-05-21 Hitachi Metals Ltd Porous ceramic honeycomb structural body
JP2002219319A (en) * 2000-11-24 2002-08-06 Ngk Insulators Ltd Porous honeycomb filter and method for manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790407A4 (en) * 2004-09-14 2010-01-20 Ngk Insulators Ltd Porous honeycomb filter
EP1790407A1 (en) * 2004-09-14 2007-05-30 Ngk Insulators, Ltd. Porous honeycomb filter
JP2009521388A (en) * 2005-12-21 2009-06-04 コーニング インコーポレイテッド High porosity cordierite ceramic honeycomb articles and methods
JP5372494B2 (en) * 2006-03-17 2013-12-18 日本碍子株式会社 Manufacturing method of honeycomb structure
JP5293608B2 (en) * 2007-09-27 2013-09-18 日立金属株式会社 Ceramic honeycomb structure and manufacturing method thereof
WO2009048156A1 (en) 2007-10-12 2009-04-16 Hitachi Metals, Ltd. Cordierite ceramic honeycomb filter and process for producing the same
JP5402638B2 (en) * 2007-10-12 2014-01-29 日立金属株式会社 Cordierite ceramic honeycomb filter and manufacturing method thereof
US8500840B2 (en) 2007-10-12 2013-08-06 Hitachi Metals, Ltd. Cordierite-based ceramic honeycomb filter and its production method
JP2010260787A (en) * 2008-03-31 2010-11-18 Denso Corp Method for manufacturing porous honeycomb structure
WO2010013509A1 (en) * 2008-07-28 2010-02-04 日立金属株式会社 Ceramic honeycomb structure and process for producing the same
CN102089058B (en) * 2008-07-28 2014-03-12 日立金属株式会社 Ceramic honeycomb structure and process for producing same
US8691361B2 (en) 2008-07-28 2014-04-08 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP5464142B2 (en) * 2008-07-28 2014-04-09 日立金属株式会社 Ceramic honeycomb structure and manufacturing method thereof
JP2013530118A (en) * 2010-05-27 2013-07-25 コーニング インコーポレイテッド Cordierite composition for improving extrusion process quality
CN109179432A (en) * 2018-09-27 2019-01-11 内蒙古超牌建材科技有限公司 Low calcium calcines black talc production equipment, low calcium calcining black talc and preparation method thereof
CN109179432B (en) * 2018-09-27 2020-03-13 内蒙古超牌建材科技有限公司 Low-calcium calcined black talc production equipment, low-calcium calcined black talc and preparation method thereof
JP7399901B2 (en) 2021-02-22 2023-12-18 日本碍子株式会社 Honeycomb filter and its manufacturing method

Similar Documents

Publication Publication Date Title
US6803086B2 (en) Porous honeycomb structure body, the use thereof and method for manufacturing the same
JP4094830B2 (en) Porous honeycomb filter and manufacturing method thereof
EP2011775B1 (en) Ceramic structure and process for producing the same
JP5725265B2 (en) Ceramic honeycomb structure and manufacturing method thereof
CN1809409B (en) Cordierite filters with reduced pressure drop
US8512433B2 (en) Low back pressure porous honeycomb and method
JP5751397B1 (en) Cordierite ceramic honeycomb structure and manufacturing method thereof
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
US8497009B2 (en) Honeycomb structure and method for manufacturing the same
US7141087B2 (en) Honeycomb ceramics filter
EP1452512A1 (en) Method for producing porous ceramic article
JP2006516528A (en) Cordierite ceramic body and method
JP5095215B2 (en) Porous body manufacturing method, porous body and honeycomb structure
JP2010221155A (en) Method of producing honeycomb structure, and method of producing honeycomb catalyst
JPWO2010013509A1 (en) Ceramic honeycomb structure and manufacturing method thereof
JP2008037722A (en) Method of manufacturing honeycomb structure
JP2004250324A (en) Method for producing ceramic honeycomb structure, and cordierite raw material
JP2006096634A (en) Porous ceramic body
JP4233031B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP2005324154A (en) Ceramic honeycomb structure
WO2021075211A1 (en) Ceramic honeycomb structure and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100625