JP2005324154A - Ceramic honeycomb structure - Google Patents

Ceramic honeycomb structure Download PDF

Info

Publication number
JP2005324154A
JP2005324154A JP2004145922A JP2004145922A JP2005324154A JP 2005324154 A JP2005324154 A JP 2005324154A JP 2004145922 A JP2004145922 A JP 2004145922A JP 2004145922 A JP2004145922 A JP 2004145922A JP 2005324154 A JP2005324154 A JP 2005324154A
Authority
JP
Japan
Prior art keywords
ceramic honeycomb
partition wall
honeycomb structure
pore volume
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145922A
Other languages
Japanese (ja)
Inventor
Osamu Tokutome
修 徳留
Hirohisa Suwabe
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004145922A priority Critical patent/JP2005324154A/en
Publication of JP2005324154A publication Critical patent/JP2005324154A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic honeycomb structure having a very low-pressure-drop characteristic, high collection efficiency and mechanical strength to withstand mechanical vibrations and a mechanical or thermal shock during use, which is used for an exhaust gas cleaner to collect particulates contained in an exhaust gas from a diesel engine, and in which the exaust gas is passed through a porous partition wall parting gas passages by sealing predetermined gas passages of the ceramic honeycomb structure. <P>SOLUTION: An area ratio of 3 to 16% of a solid wall in a cross section of the partition wall of the ceramic honeycomb structure and a maximum size of 5 to 30 μm of the solid wall are attained by controlling a particle-size distribution of a raw material alumina powder in a raw material cordierite powder and optimizing a content of the raw material alumina powder therein. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタに使用されるに好適なセラミックハニカム構造体に関するものである。   The present invention relates to a ceramic honeycomb structure suitable for use in a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine.

ディーゼル機関から排出される微粒子を除去するため、セラミックハニカム構造体の隔壁を多孔質構造とし、その隔壁に微粒子を含んだ排気ガスを通過せしめる構造の微粒子捕集用のセラミックハニカムフィルタが使用されてきている。図1に、セラミックハニカムフィルタの正面図及び側面図を示す。このセラミックハニカムフィルタの特性に関しては、圧力損失、微粒子の捕集効率、微粒子の捕集時間(捕集開始から一定圧損に達するまでの時間)の3つが重要とされている。中でも、圧力損失と捕集効率は相反する関係にあり、圧力損失を低くしようとすると捕集時間は長くできるが捕集効率が悪くなり、また、捕集効率を高くしようとすると圧力損失が増大し捕集時間が短くなる。そこで、これらの相反するフィルタの特性を満足するように、セラミックハニカム構造体に対しては、下記のように、隔壁の気孔率、平均細孔径、細孔分布、隔壁表面に存在する細孔の大きさ、および隔壁表面の表面粗さ等を制御する技術が従来から検討されてきた。   In order to remove fine particles discharged from diesel engines, ceramic honeycomb filters for collecting fine particles having a structure in which the partition walls of the ceramic honeycomb structure have a porous structure and allow exhaust gas containing fine particles to pass through the partition walls have been used. ing. FIG. 1 shows a front view and a side view of the ceramic honeycomb filter. Regarding the characteristics of this ceramic honeycomb filter, three are important: pressure loss, particulate collection efficiency, and particulate collection time (time from the start of collection until reaching a certain pressure loss). Above all, the pressure loss and the collection efficiency are in a contradictory relationship. If you try to reduce the pressure loss, the collection time can be lengthened, but the collection efficiency deteriorates, and if you try to increase the collection efficiency, the pressure loss increases. The collection time is shortened. Therefore, in order to satisfy these contradictory filter characteristics, for the ceramic honeycomb structure, as shown below, the porosity of the partition walls, the average pore diameter, the pore distribution, the pores existing on the partition wall surface, Techniques for controlling the size, the surface roughness of the partition wall surface, and the like have been studied conventionally.

特許文献1に記載の発明では、コージェライト化原料粉末のうちの、カオリン、タルク、シリカ、酸化アルミニウム、および水酸化アルミニウムの粒径や、含有量を調整する製造方法により得られた、細孔径10μm未満の細孔容積が全細孔容積の15%以下であり、細孔径10〜50μmの細孔容積が全細孔容積の75%以上、細孔径50μmを超える細孔容積が全細孔容積の10%以下、気孔率が50〜80%である多孔質ハニカムフィルタが開示されている。この発明によれば、微粒子の捕集効率が高く、且つ細孔の目詰まりによる圧力損失の増大を防止できるフィルタを得られるとしている。   In the invention described in Patent Document 1, among the cordierite-forming raw material powders, the pore diameter obtained by a production method for adjusting the particle size and content of kaolin, talc, silica, aluminum oxide, and aluminum hydroxide The pore volume of less than 10 μm is 15% or less of the total pore volume, the pore volume having a pore diameter of 10 to 50 μm is 75% or more of the total pore volume, and the pore volume exceeding 50 μm is the total pore volume. No. 10% or less and a porosity of 50 to 80% is disclosed. According to the present invention, it is possible to obtain a filter that has a high particulate collection efficiency and can prevent an increase in pressure loss due to pore clogging.

また特許文献2に記載の発明では、コージェライト化原料に、造孔剤としてグラファイト、及び合成樹脂の添加量を調整する製造方法により得られた、気孔率が55〜65%、平均細孔径が15〜30μmであり、ハニカム構造体を構成する隔壁表面に露出した細孔の総面積が隔壁表面の総面積の35%以上であるハニカムセラミックス構造体が開示されている。この発明によれば、低い圧力損失と高い捕集効率を達成することができるフィルタを得られるとしている。   In the invention described in Patent Document 2, the porosity is 55 to 65%, and the average pore diameter is obtained by a production method of adjusting the amount of graphite and synthetic resin added to the cordierite forming raw material. A honeycomb ceramic structure having a size of 15 to 30 μm and having a total area of pores exposed on the partition wall surface constituting the honeycomb structure is 35% or more of the total area of the partition wall surface is disclosed. According to the present invention, a filter capable of achieving low pressure loss and high collection efficiency can be obtained.

また特許文献3に記載の発明では、カオリンと酸化アルミニウムをコージェライト化原料に含有させず、平均粒子径が30〜200μmのタルク粉末、平均粒子径が30〜200μm溶融シリカ粉末、平均粒子径が5〜20μmの水酸化アルミニウム粉末の混合物からなるコージェライト化原料に、所定の有機発泡剤又は可燃性物質を添加した原料を用いる製造方法により得られた、気孔率55〜80%、平均気孔径30〜50μmとし、気孔径100μm以上の細孔容積を全細孔容積の0.05以下とするハニカム構造体が開示されている。この発明によれば、高捕集率、低圧損、かつ低熱膨張率の特性を合わせもつハニカムフィルタが提供できるとしている。   In addition, in the invention described in Patent Document 3, kaolin and aluminum oxide are not included in the cordierite forming raw material, talc powder having an average particle size of 30 to 200 μm, fused silica powder having an average particle size of 30 to 200 μm, and an average particle size of A porosity of 55 to 80% and an average pore diameter obtained by a production method using a raw material obtained by adding a predetermined organic foaming agent or a combustible substance to a cordierite forming raw material comprising a mixture of 5 to 20 μm aluminum hydroxide powder A honeycomb structure having a pore volume of 30 to 50 μm and a pore volume of 100 μm or more being 0.05 or less of the total pore volume is disclosed. According to the present invention, a honeycomb filter having characteristics of a high collection rate, a low pressure loss, and a low thermal expansion coefficient can be provided.

また特許文献4に記載の発明では、細孔形成原料としてのタルク及びシリカの平均粒子径が(2×シリカの平均粒子径)≧(タルクの平均粒子径)の関係を満たし、タルクの平均粒子径が40μm以下、シリカの平均粒子径が80μm以下である原料系を使用することで、気孔率が45%以上60%以下であり、その孔径100μm以上の細孔容積が全細孔容積の10%以下であり、その表面から内部に向かって開口及び貫通する全細孔の比表面積M(m/g)と、そのフィルタ表面における表面粗さN(μm)との関係が1000M+85N≧530の範囲である多孔質セラミックハニカムフィルタが開示されている。本発明によれば、捕集時間が長く、再生回数が少なくて足りる多孔質セラミックハニカムフィルタが得られるとしている。 In the invention described in Patent Document 4, the average particle diameter of talc and silica as the pore-forming raw material satisfies the relationship of (2 × average particle diameter of silica) ≧ (average particle diameter of talc), and the average particle of talc By using a raw material system having a diameter of 40 μm or less and an average particle diameter of silica of 80 μm or less, the porosity is 45% or more and 60% or less, and the pore volume of 100 μm or more is 10% of the total pore volume. %, And the relationship between the specific surface area M (m 2 / g) of all pores opening and penetrating from the surface toward the inside and the surface roughness N (μm) on the filter surface is 1000 M + 85 N ≧ 530 A range of porous ceramic honeycomb filters is disclosed. According to the present invention, it is said that a porous ceramic honeycomb filter having a long collection time and a small number of regenerations can be obtained.

特開2002−219319号公報JP 2002-219319 A 特開2003−40687号公報JP 2003-40687 A 特開2002−357114号公報JP 2002-357114 A 特許第2726616号公報Japanese Patent No. 2726616

しかしながら、近年採用が検討されるようになってきた、セラミックハニカムフィルタの隔壁表面や隔壁内の細孔中に触媒物質が担持されたセラミックハニカムフィルタにおいては、セラミックハニカムフィルタ上で微粒子を捕集しつつ、触媒物質の作用により微粒子を燃焼させるため、隔壁内部の微細構造を従来技術以上に高度に制御したセラミックハニカムフィルタの出現が望まれていた。更に、このセラミックハニカムフィルタの排気ガス通路上流側に、酸化触媒が担持されたハニカム構造体を配置する構造の排気ガス浄化装置も検討されており、装置全体の圧力損失が高くなるらないようにするため、従来以上に低圧力損失特性を有するセラミックハニカムフィルタの出現が求められていた。また、今後も引き続き強化される排気ガス規制では、これまで以上に、排気ガス中の微粒子及びNOx低減の要求が強まるため、排気ガス通路に、上記のような酸化触媒が担持されたセラミックハニカム構造体、セラミックハニカムフィルタに加えて、NO低減のための触媒を担持したセラミックハニカム構造体を配置した排気ガス浄化装置も検討されており、セラミックハニカムフィルタに対しては、微粒子の燃焼をスムーズに行わせると共に、従来技術以上に低圧力損失特性を有し、且つ微粒子の捕集効率が十分高く、また更には使用時の機械的振動や衝撃、或いは熱衝撃等に耐えうる強度を有するハニカムフィルタが待望されていた。 However, in a ceramic honeycomb filter in which a catalytic substance is supported on the surface of the partition walls of the ceramic honeycomb filter or in the pores in the partition walls, which has recently been studied for adoption, fine particles are collected on the ceramic honeycomb filter. On the other hand, in order to burn fine particles by the action of the catalytic substance, it has been desired to develop a ceramic honeycomb filter in which the fine structure inside the partition walls is controlled more than in the prior art. Furthermore, an exhaust gas purification device having a structure in which a honeycomb structure carrying an oxidation catalyst is arranged upstream of the exhaust gas passage of this ceramic honeycomb filter has been studied, so that the pressure loss of the entire device does not increase. Therefore, the appearance of a ceramic honeycomb filter having a lower pressure loss characteristic than before has been demanded. Further, in the exhaust gas regulations that will continue to be strengthened in the future, the demand for reducing particulates and NOx in the exhaust gas will become stronger than ever. Therefore, the ceramic honeycomb structure in which the above oxidation catalyst is supported in the exhaust gas passage. body, in addition to the ceramic honeycomb filter, the catalyst exhaust gas purification device arranged ceramic honeycomb structure supporting for of the NO X reduction has also been studied, for the ceramic honeycomb filter, smooth combustion of the particulates Honeycomb filter that has low pressure loss characteristics over the prior art, has a sufficiently high particulate collection efficiency, and has a strength that can withstand mechanical vibration, impact, or thermal shock during use. Was long-awaited.

このような低圧力損失化、高捕集効率化、及び高強度化の要求に対して、上記、従来技術である特許文献1〜4に記載されているハニカム構造体やハニカムフィルタでは、隔壁の気孔率や平均細孔径、隔壁内部の細孔分布や隔壁表面に開口した細孔の大きさや面積率といった、隔壁内部や表面の細孔の大きさやその量に注目して、これらを所定範囲内に制御することが行われているが、隔壁内部の構造、即ち隔壁構成部分については、何ら考慮がなされていなかった。このため、今後強化される排気ガス規制に対応しうる排気ガス浄化装置に適用可能な、低圧力損失と高捕集効率及び使用時の機械的振動や衝撃あるいは熱衝撃等に耐えうる十分な強度を満足したハニカムフィルタが得られないという問題があった。本発明は、上記問題を解決し、低圧力損失と高捕集効率及び使用時の機械的振動や衝撃あるいは熱衝撃等に耐えうる十分な強度を満足したセラミックハニカムフィルタに適用するに適切なセラミックハニカム構造体を提供することを目的とする。   In response to such demands for low pressure loss, high collection efficiency, and high strength, the honeycomb structure and the honeycomb filter described in Patent Documents 1 to 4 which are the conventional technologies described above have partition walls. Pay attention to the size and amount of pores inside and on the partition walls, such as the porosity, average pore diameter, pore distribution inside the partition walls, and the size and area ratio of pores opened on the partition surface. However, no consideration has been given to the structure inside the partition, that is, the partition component. For this reason, it can be applied to exhaust gas purification equipment that can meet exhaust gas regulations that will be strengthened in the future, with low pressure loss and high collection efficiency, and sufficient strength to withstand mechanical vibration, shock or thermal shock during use. There was a problem that a honeycomb filter satisfying the above conditions could not be obtained. The present invention solves the above-mentioned problems, and is suitable for application to a ceramic honeycomb filter satisfying low pressure loss, high collection efficiency, and sufficient strength to withstand mechanical vibration, shock or thermal shock during use. An object is to provide a honeycomb structure.

上記課題を解決するため、本発明者は鋭意検討を行った結果、セラミックハニカム構造体の隔壁構成部分を最適化することにより、低圧力損失特性、特に今後の排気ガス規制に対応しうる高度な排気ガス浄化装置に使用されるに適した低圧力損失特性、そして高い捕集効率、及び使用時の機械的振動や衝撃、或いは熱衝撃等に耐えうる強度特性を併せ持ったセラミックハニカムフィルタに適用可能なセラミックハニカム構造体が得られることを見出し、本発明に想到した。   In order to solve the above-mentioned problems, the present inventor has intensively studied, and as a result, by optimizing the partition wall constituting part of the ceramic honeycomb structure, it has a high pressure response characteristic, particularly an advanced exhaust gas regulation that can meet future exhaust gas regulations. Applicable to ceramic honeycomb filters that have low pressure loss characteristics suitable for use in exhaust gas purification equipment, high collection efficiency, and strength characteristics that can withstand mechanical vibration, shock, or thermal shock during use. The present inventors have found that a ceramic honeycomb structure can be obtained, and have arrived at the present invention.

即ち、本発明のセラミックハニカム構造体は、コージェライトを主結晶とする材料からなるセラミックハニカム構造体の所定の流路を目封止し、該流路を区画する多孔質の隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタに使用されるセラミックハニカム構造体であって、前記隔壁の破断面における隔壁構成部分の面積率が3〜16%であり、該隔壁構成部分の最大寸法の平均値が5〜30μmであることを特徴とする。   That is, the ceramic honeycomb structure of the present invention plugs a predetermined flow path of the ceramic honeycomb structure made of a material having cordierite as a main crystal, and exhaust gas is passed through the porous partition walls that define the flow path. A ceramic honeycomb structure used for a ceramic honeycomb filter that removes fine particles contained in exhaust gas by allowing it to pass through, wherein an area ratio of partition wall constituent portions in a fracture surface of the partition wall is 3 to 16%, The average value of the maximum dimension of the partition wall constituting portion is 5 to 30 μm.

本発明のセラミックハニカム構造体において、前記隔壁の全細孔容積が0.60〜1.00cm/gであって、隔壁の細孔分布が、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm以上の細孔容積:0.07cm/g以下であることが好ましい。 In the ceramic honeycomb structure of the present invention, the total pore volume of the partition walls is 0.60 to 1.00 cm 3 / g, and the pore distribution of the partition walls is a pore volume having a pore diameter of 2 μm or more: 0.60 -0.95 cm 3 / g, pore volume of 5 μm or more: 0.60 to 0.95 cm 3 / g, pore volume of 10 μm or more: 0.50 to 0.90 cm 3 / g, pore volume of 20 μm or more : 0.35~0.70cm 3 / g, 40μm or more pore volume: 0.10~0.35cm 3 / g, 100μm or more pore volume: it is preferably 0.07cm at 3 / g or less.

本発明における作用効果につき説明する。本発明のセラミックハニカム構造体は、コージェライトを主結晶とする材料からなるセラミックハニカム構造体の所定の流路を目封止し、該流路を区画する多孔質の隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタに使用されるセラミックハニカム構造体であって、前記隔壁の破断面における隔壁構成部分の面積率が3〜16%であり、該隔壁構成部分の最大寸法の平均値が5〜30μmであることを特徴としている。ここで、前記隔壁の破断面とは、隔壁の破断面を走査型電子顕微鏡(Scanning Electronic Microscope、略称SEM)により隔壁に沿った方向から観察したSEM像から得た破断面のことを言い、隔壁構成部分とは、前記SEM像から得た破断面において、隔壁を構成するセラミックス部分のことを言う。また隔壁構成部分の最大寸法とは、前記SEM像から得た破断面において、隔壁構成部分の重心を通り、かつ隔壁構成部分の外周の2点を結ぶ径のうち最大のものを言う。   The effects of the present invention will be described. The ceramic honeycomb structure of the present invention plugs a predetermined flow path of a ceramic honeycomb structure made of a material having cordierite as a main crystal, and allows exhaust gas to pass through porous partition walls that define the flow path. Thus, a ceramic honeycomb structure used for a ceramic honeycomb filter for removing fine particles contained in exhaust gas, wherein an area ratio of partition wall constituent portions in a fracture surface of the partition wall is 3 to 16%, and the partition wall The average value of the maximum dimensions of the constituent parts is 5 to 30 μm. Here, the fracture surface of the partition wall refers to a fracture surface obtained from an SEM image obtained by observing the fracture surface of the partition wall from a direction along the partition wall with a scanning electron microscope (abbreviated as SEM). The constituent part refers to a ceramic part constituting the partition wall in the fracture surface obtained from the SEM image. Further, the maximum dimension of the partition wall constituent portion means the largest diameter among the diameters passing through the center of gravity of the partition wall constituent portion and connecting two points on the outer periphery of the partition wall constituent portion in the fracture surface obtained from the SEM image.

上記のようにセラミックハニカム構造体の隔壁破断面における隔壁構成部分の面積率及び最大寸法の平均値を適切な範囲としているため、低圧力損失、高捕集効率、及び実用に耐えうる高強度特性の相反する特性を満足したセラミックハニカムフィルタを得ることができる。即ち、排気ガスが隔壁を通過する際には、この隔壁構成部分が、排気ガス流に対する実質的な抵抗になるのと共に、フィルタに加わった応力を担うことになり、隔壁構成部分の存在割合、及び大きさ等が、微粒子を含む排気ガスに対するフィルタの圧力損失特性、捕集効率、強度の相反する特性を両立させる上で重要であり、隔壁の破断面における隔壁構成部分の面積率を3〜16%、該隔壁構成部分の最大寸法の平均値を5〜30μmとすることにより、低圧力損失、高捕集効率、及び高強度を有するセラミックハニカム構造体を得ることができるからである。   As described above, the average area ratio and maximum dimension of the partition wall components in the partition wall fracture surface of the ceramic honeycomb structure are within an appropriate range, so low pressure loss, high collection efficiency, and high strength characteristics that can withstand practical use Thus, a ceramic honeycomb filter satisfying the conflicting characteristics can be obtained. That is, when the exhaust gas passes through the partition wall, the partition wall component becomes a substantial resistance to the exhaust gas flow, and bears the stress applied to the filter. And the size is important in achieving both the pressure loss characteristics, the collection efficiency, and the strength conflicting characteristics of the filter with respect to the exhaust gas containing fine particles. This is because a ceramic honeycomb structure having a low pressure loss, a high collection efficiency, and a high strength can be obtained by setting the average value of the maximum dimension of the partition wall constituting part to 16% and 5 to 30 μm.

ここで、隔壁の破断面における、隔壁構成部分の面積率及び大きさを、隔壁の切断面でなく破断面で規定することが重要である。この理由について、理解を容易にするために図4を用いて説明する。隔壁をAに沿って切断した切断面を観察すると、切断面に現れる隔壁構成部分の割合は単に気孔率の大小を表しているに過ぎない。一方隔壁を破断した場合、例えばBに沿うように、連通した気孔に添って、または隔壁構成部分の最弱部を通って破断面が形成されるため、破断面を観察した際の、隔壁構成部分の面積率と寸法を規定することにより、圧力損失、捕集効率、及び強度に対する隔壁構成部分の影響度をより適格に表すことが可能となる。   Here, it is important to define the area ratio and the size of the partition wall constituting portion in the fracture surface of the partition wall not by the cut surface of the partition wall but by the fracture surface. The reason for this will be described with reference to FIG. 4 for easy understanding. When observing the cut surface obtained by cutting the partition wall along A, the ratio of the partition wall components appearing on the cut surface merely represents the magnitude of the porosity. On the other hand, when the partition wall is broken, for example, along B, the fracture surface is formed along the pores communicating with each other or through the weakest part of the partition component part. By defining the area ratio and dimensions of the portion, it becomes possible to more appropriately represent the influence of the partition wall component on the pressure loss, the collection efficiency, and the strength.

ここで、前記隔壁の破断面における、隔壁構成部分の面積率を3〜16%、隔壁構成部分の最大寸法を5〜30μmに数値限定するのは、以下の理由による。隔壁構成部分の面積率が16%を越えると気孔の連通度が悪くなり、また隔壁構成部分の排気ガス流に対する抵抗が大きくなって、圧力損失が高くなり、隔壁構成部分の面積率が3%未満であると、隔壁構成部分の割合が少なくなるため、捕集効率及び強度が低下する。また隔壁の破断面において、隔壁構成部分の最大寸法の平均値が30μmを越えると、排気ガス流に対する抵抗が大きくなって圧力損失が高くなり、隔壁構成部分の最大寸法の平均値が5μm未満であると、隔壁構成部分の寸法が小さくなって捕集効率及び強度が低下する。上記観点から、より好ましい隔壁構成部分の面積率は3〜8%であり、より好ましい隔壁構成部分の最大寸法の平均値は10〜20μmである。   Here, in the fracture surface of the partition wall, the area ratio of the partition wall constituent portion is limited to 3 to 16% and the maximum dimension of the partition wall constituent portion is numerically limited to 5 to 30 μm for the following reason. If the area ratio of the partition wall component exceeds 16%, the degree of pore communication will deteriorate, the resistance of the partition wall component to the exhaust gas flow will increase, the pressure loss will increase, and the area ratio of the partition wall component will be 3%. If it is less than the range, the ratio of the partition wall constituent parts is reduced, so that the collection efficiency and strength are lowered. Moreover, in the fracture surface of the partition wall, if the average value of the maximum dimension of the partition wall component exceeds 30 μm, the resistance to the exhaust gas flow increases and the pressure loss increases, and the average value of the maximum dimension of the partition wall component is less than 5 μm. If it exists, the dimension of a partition structural part will become small and collection efficiency and intensity | strength will fall. From the above viewpoint, the area ratio of the partition wall constituent part is more preferably 3 to 8%, and the average value of the maximum dimension of the more preferable partition wall constituent part is 10 to 20 μm.

ここで、隔壁の破断面における、隔壁構成部分の面積率及び最大寸法の平均値の測定は、以下の様に行った。まず任意隔壁の破断面をSEM観察し、0.8×0.8mmの視野を選定して写真撮影を行い、この撮影した視野内を更に倍率を上げて(250〜10000倍)観察し、脆性破壊面であった箇所を隔壁構成部分と見なして、写真上に黒塗りして2値化した後、この黒塗り部を画像解析することにより、隔壁構成部分の面積率及び最大寸法を求めた。隔壁の破断面を2値化した後の一例を図2に示す。なお、隔壁構成部分の面積率の測定は、SEM観察の観察箇所を変えて複数回行い、平均値として求めたが、少なくとも10箇所以上で行うことが好ましい。   Here, in the fracture surface of the partition wall, the area ratio of the partition wall constituent portions and the average value of the maximum dimensions were measured as follows. First, the fracture surface of an arbitrary partition wall is observed with an SEM, a field of view of 0.8 × 0.8 mm is selected, a photograph is taken, the inside of the photographed field of view is further increased (250 to 10000 times), and brittleness is observed. The portion that was the fracture surface was regarded as a partition wall component, blacked on the photo and binarized, and then image analysis was performed on the black painted part to determine the area ratio and maximum dimension of the partition wall component. . An example after binarizing the fracture surface of the partition wall is shown in FIG. In addition, although the measurement of the area rate of a partition component part was performed several times, changing the observation location of SEM observation, and it calculated | required as an average value, it is preferable to carry out at least 10 or more places.

本発明のセラミックハニカム構造体において、前記隔壁の全細孔容積が0.60〜1.00cm/gであって、隔壁の細孔分布が、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm以上の細孔容積:0.07cm/g以下であることが好ましいのは、前記隔壁の破断面における隔壁構成部分の面積率を3〜16%とし、該隔壁構成部分の最大寸法の平均値を5〜30μmとしているのと共に、隔壁の全細孔容積を0.60〜1.00cm/gとして、且つ隔壁内に細孔径2μm以下の細孔から、100μm以上の細孔までを所望の割合で含有させることにより、各種大きさの細孔が連通して、細孔間の連通割合が増加して、より確実に低圧力損失特性、高捕集率、及び高強度を両立させることができるからである。 In the ceramic honeycomb structure of the present invention, the total pore volume of the partition walls is 0.60 to 1.00 cm 3 / g, and the pore distribution of the partition walls is a pore volume having a pore diameter of 2 μm or more: 0.60 -0.95 cm 3 / g, pore volume of 5 μm or more: 0.60 to 0.95 cm 3 / g, pore volume of 10 μm or more: 0.50 to 0.90 cm 3 / g, pore volume of 20 μm or more : 0.35~0.70cm 3 / g, 40μm or more pore volume: 0.10~0.35cm 3 / g, 100μm or more pore volume: the is preferably 0.07cm at 3 / g or less Is 3 to 16% of the area ratio of the partition wall constituent part in the fracture surface of the partition wall, the average value of the maximum dimension of the partition wall constituent part is 5 to 30 μm, and the total pore volume of the partition wall is 0.60. as ~1.00cm 3 / g, and in the partition wall By containing pores having a pore diameter of 2 μm or less to pores of 100 μm or more in a desired ratio, pores of various sizes communicate with each other, the communication ratio between the pores increases, and it is more reliably reduced. This is because the pressure loss characteristics, high collection rate, and high strength can be achieved at the same time.

ここで、本発明のセラミックハニカム構造体における隔壁の細孔分布の好ましい範囲について、図3を用いて説明する。図3は細孔径と累積細孔容積の関係を示す図であり、点△(12)は、本発明の好ましい全細孔容積の上限を示し、点▲(11)は、本発明の好ましい全細孔容積の下限を示し、点□(14)は、本発明の細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上、100μm以上における好ましい累積細孔容積の上限を示し、点■(13)は、本発明の細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上、100μm以上における好ましい累積細孔容積の下限を示す。また点◇(15)は、本発明を実施するための最良の形態で記載している実施例1のセラミックハニカム構造体の隔壁の細孔分布を示す。本発明の好ましいセラミックハニカム構造体では、各細孔径に対する累積細孔容積を、点△(12)、及び□(14)と点▲(11)、及び点■(13)の間に存在させれば良い。   Here, a preferable range of the pore distribution of the partition walls in the ceramic honeycomb structure of the present invention will be described with reference to FIG. FIG. 3 is a graph showing the relationship between the pore diameter and the cumulative pore volume. Point (12) indicates the upper limit of the preferred total pore volume of the present invention, and point (11) indicates the preferred total of the present invention. The lower limit of the pore volume is shown, and the point □ (14) shows the upper limit of the preferred cumulative pore volume at the pore diameter of 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, 40 μm or more, 100 μm or more of the present invention. (13) shows a preferable lower limit of the cumulative pore volume of the present invention when the pore diameter is 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, 40 μm or more, 100 μm or more. Further, point (15) indicates the pore distribution of the partition walls of the ceramic honeycomb structure of Example 1 described in the best mode for carrying out the present invention. In the preferred ceramic honeycomb structure of the present invention, the cumulative pore volume with respect to each pore diameter can be made to exist between the points Δ (12) and □ (14) and the points ▲ (11) and (1) (13). It ’s fine.

本発明のセラミックハニカム構造体において、前記隔壁のより好ましい細孔分布は、細孔径20μm以上の細孔容積:0.35〜0.65cm/g、40μm以上の細孔容積:0.1〜0.25cm/g、100μm径以上の細孔容積:0.05cm/g以下である。このように細孔径20〜100μmの間の細孔容積がより最適な狭い範囲に調整されることにより、各種大きさの細孔の連通割合がより改善され、低圧力損失、高捕集効率、及び高強度のセラミックハニカム構造体を確実に得ることができる。 In the ceramic honeycomb structure of the present invention, more preferable pore distribution of the partition walls is as follows: pore volume of pore diameter of 20 μm or more: 0.35 to 0.65 cm 3 / g, pore volume of 40 μm or more: 0.1 0.25 cm 3 / g, pore volume of 100 μm diameter or more: 0.05 cm 3 / g or less. Thus, by adjusting the pore volume between pore diameters of 20 to 100 μm to a more optimal narrow range, the communication ratio of pores of various sizes is further improved, low pressure loss, high collection efficiency, In addition, a high-strength ceramic honeycomb structure can be obtained with certainty.

本発明のセラミックハニカム構造体において、前記隔壁の表面粗さ(最大高さRy)は30μm以上であると好ましい。隔壁の表面粗さ(最大高さRy)を30μm以上とすると、多孔質隔壁の表面に形成された凹凸部により、微粒子をさらに効率良く捕集することが可能となるからである。この表面粗さ(最大高さRy)のより好ましい範囲は、50〜100μmである。また、多孔質隔壁の表面に形成された凹凸部を利用して触媒物質と共に担持される高比表面積材料の形成が容易になるという効果もある。   In the ceramic honeycomb structure of the present invention, the surface roughness (maximum height Ry) of the partition walls is preferably 30 μm or more. This is because if the surface roughness (maximum height Ry) of the partition walls is 30 μm or more, the fine particles can be collected more efficiently by the uneven portions formed on the surface of the porous partition walls. A more preferable range of the surface roughness (maximum height Ry) is 50 to 100 μm. In addition, there is an effect that it is easy to form a high specific surface area material that is supported together with the catalyst substance by using the uneven portions formed on the surface of the porous partition wall.

本発明のセラミックハニカム構造体において、前記多孔質隔壁の40℃〜800℃における流路方向の熱膨張係数を1.25×10―6/℃以下とすることにより、高温時の耐熱衝撃特性が改善されることから、好ましい。 In the ceramic honeycomb structure of the present invention, by setting the thermal expansion coefficient in the flow path direction at 40 ° C. to 800 ° C. of the porous partition wall to 1.25 × 10 −6 / ° C. or less, the thermal shock characteristics at high temperature can be obtained. It is preferable because it is improved.

本発明のセラミックハニカム構造体はコージェライトを主結晶とするものであるが、コージェライト結晶のC軸が隔壁面内に揃うように配向していると更に熱膨張係数が小さくなり、耐熱衝撃性に優れることから好ましい。また、ムライト、ジルコン、チタン酸アルミニウム、炭化ケイ素、ジルコニア、スピネル、インディアライト、サフィリン、コランダム、チタニア等の他の結晶相を含有しても良い。   The ceramic honeycomb structure of the present invention has cordierite as the main crystal, but if the C-axis of the cordierite crystal is oriented so that it is aligned within the partition wall surface, the thermal expansion coefficient is further reduced and the thermal shock resistance is reduced. It is preferable because of its excellent resistance. In addition, other crystal phases such as mullite, zircon, aluminum titanate, silicon carbide, zirconia, spinel, Indialite, sapphirine, corundum, and titania may be contained.

本発明のセラミックハニカム構造体を得るための製造方法の一例を以下に示す。カオリン、タルク、シリカ、酸化アルミニウム、水酸化アルミニウム等のコージェライト化原料を主原料として用い、前記コージェライト化原料が酸化アルミニウムを5〜35質量%含有し、且つ前記酸化アルミニウムが、粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を15〜50質量%で含有し、粒径10μm以上の粉末を40〜90質量%、粒径5μm以上の粉末を65〜95質量%、粒径2μm以上の粉末を95質量%以上含有し、このコージェライト化原料に、造孔剤及びバインダーなどの添加剤を加えて混練し、所定の成形体を押出成形した後、焼成してセラミックハニカム構造体を得る。   An example of a manufacturing method for obtaining the ceramic honeycomb structure of the present invention is shown below. A cordierite forming raw material such as kaolin, talc, silica, aluminum oxide, aluminum hydroxide is used as a main raw material, the cordierite forming raw material contains 5 to 35% by mass of aluminum oxide, and the aluminum oxide has a particle size of 45 μm. The above powder is contained in an amount of 5% by mass or less, a powder having a particle size of 20 μm or more at 15 to 50% by mass, a powder having a particle size of 10 μm or more is 40 to 90% by mass, and a powder having a particle size of 5 μm or more is 65 to 95% by mass. In addition, it contains 95% by mass or more of powder having a particle size of 2 μm or more, and additives such as a pore-forming agent and a binder are added to this cordierite forming raw material and kneaded. A ceramic honeycomb structure is obtained.

上記のように酸化アルミニウムが比較的大きな粒径を有しており、且つこの酸化アルミニウムを5〜35質量%含有していると、ハニカム構造の成形体における、コージェライト化原料の充填性(成形体密度)が低下して、コージェライト化原料間の微細な空隙や粗大な空隙が各種存在することになる。そしてこの酸化アルミニウムは、コージェライトが合成される焼成過程における固相・液相焼結反応において、タルク、シリカなどの酸化アルミニウム以外のコージェライト化原料粉末により生成される液相の存在下において、コージェライトが析出する比較的高温まで安定に存在して、隔壁構成部分を形成し、前記ハニカム構造のセラミック成形体中におけるコージェライト化原料間の微細な空隙や粗大な空隙が、焼成後も残留して、セラミック焼成体中に細孔が形成され、前記隔壁の破断面における隔壁構成部分の面積率を3〜16%とし、隔壁構成部分の最大寸法を5〜30μmとすることができる。   As described above, when aluminum oxide has a relatively large particle diameter and contains 5 to 35% by mass of this aluminum oxide, the cordierite-forming raw material fillability (molding) in the honeycomb structure formed body. (Body density) decreases, and various fine and coarse voids exist between the cordierite forming raw materials. And this aluminum oxide is in the presence of a liquid phase produced by a cordierite forming raw material powder other than aluminum oxide such as talc and silica in a solid phase / liquid phase sintering reaction in a firing process in which cordierite is synthesized. Stablely present at relatively high temperatures where cordierite precipitates, forming partition wall constituent parts, and fine or coarse voids between cordierite forming raw materials in the ceramic molded body of the honeycomb structure remain even after firing Then, pores are formed in the ceramic fired body, and the area ratio of the partition wall constituting portion in the fracture surface of the partition wall can be set to 3 to 16%, and the maximum dimension of the partition wall constituting portion can be set to 5 to 30 μm.

ここで、前記酸化アルミニウムが、粒径45μm以上の粉末を5質量%越え、粒径20μm以上の粉末を50質量%越え、粒径10μm以上の粉末を90質量%越え、粒径5μm以上の粉末を95質量%越えて含有している場合は、酸化アルミニウムの粒径が大きくなり、コージェライト原料間に形成される空隙が大きくなるため、得られたセラミックハニカム構造体の隔壁の破断面における隔壁構成部分の最大寸法の平均値が5μm未満となって、捕集効率、強度が低下する。   Here, the aluminum oxide exceeds 5% by mass of powder having a particle size of 45 μm or more, exceeds 50% by mass of powder having a particle size of 20 μm or more, exceeds 90% by mass of powder having a particle size of 10 μm or more, and powder having a particle size of 5 μm or more. When the content of C is over 95% by mass, the particle size of aluminum oxide is increased and the gap formed between the cordierite raw materials is increased, so that the partition wall in the fracture surface of the partition wall of the obtained ceramic honeycomb structure is obtained. The average value of the maximum dimensions of the constituent parts is less than 5 μm, and the collection efficiency and strength are reduced.

一方、また、前記酸化アルミニウムが、粒径45μm以上の粉末を含まず、粒径20μm以上の粉末を15質量%未満、粒径10μm以上の粉末を40質量%未満、粒径5μm以上の粉末を65質量%未満、粒径2μm以上の粉末を95%未満含有している場合は、酸化アルミニウムの粒径が小さくなり、コージェライト化原料間に形成される空隙が小さくなるため、得られたセラミックハニカム構造体の、隔壁の破断面における隔壁構成部分の最大寸法の平均値が30μmを越えるようになり、低圧力損失特性が得られない。   On the other hand, the aluminum oxide does not contain powder having a particle size of 45 μm or more, powder having a particle size of 20 μm or more is less than 15% by mass, powder having a particle size of 10 μm or more is less than 40% by mass, and powder having a particle size of 5 μm or more. When the powder containing less than 65% by mass and having a particle size of 2 μm or less is less than 95%, the particle size of the aluminum oxide becomes small, and the voids formed between the cordierite forming raw materials become small. In the honeycomb structure, the average value of the maximum dimension of the partition wall constituting part of the partition wall fracture surface exceeds 30 μm, and the low pressure loss characteristic cannot be obtained.

上記のような粒度分布をもつ酸化アルミニウムを得るには、ボールミル等を用いた公知の粉砕方法で粉砕したり、或いは、異なる粒度分布を持つ複数の酸化アルミニウムを混合することによって得ることができる。   In order to obtain aluminum oxide having a particle size distribution as described above, it can be obtained by pulverization by a known pulverization method using a ball mill or the like, or by mixing a plurality of aluminum oxides having different particle size distributions.

また、上記のように酸化アルミニウムが比較的大きな粒径を有している場合は、酸化アルミニウムが、丸みを帯びた略球状の形態を有していると、押出成形時の原料の流動性が改善されることから好ましい。   In addition, when aluminum oxide has a relatively large particle size as described above, if aluminum oxide has a rounded, substantially spherical shape, the fluidity of the raw material during extrusion molding It is preferable because it is improved.

また、コージェライト化原料中に酸化アルミニウムを5〜35質量%以下含有するのは、酸化アルミニウムの含有量が35質量%を超えると、コージェライト組成が維持できないからであり、酸化アルミニウムの含有量が5質量%未満であると、コージェライト化原料間に形成される空隙の量が少なくなるため、隔壁の破断面における隔壁構成部分の面積率が16%を越えて、低圧力損失特性が得られないからである。   The reason why aluminum oxide is contained in the cordierite forming raw material is 5 to 35% by mass or less is that when the content of aluminum oxide exceeds 35% by mass, the cordierite composition cannot be maintained. Is less than 5% by mass, the amount of voids formed between the cordierite forming raw materials is reduced, so that the area ratio of the partition wall constituting part in the fracture surface of the partition wall exceeds 16%, and low pressure loss characteristics are obtained. Because it is not possible.

ここで、酸化アルミニウムの含有量の更に好ましい範囲は、12〜25質量%である。
コージェライト化原料中の酸化アルミニウムの含有量が12質量%以上であると、隔壁破断面における隔壁構成部分の好ましい面積率3〜8%が得られるからであり、コージェライト化原料中の酸化アルミニウムの含有量が25質量%以下であると、セラミックハニカム構造体の主結晶をコージェライトに維持するため酸化アルミニウム以外のアルミナ源成分であるカオリン原料粉末の添加量を増大できることから、押出成形時に口金をカオリン原料粉末が通過する際の配向に伴うコージェライト結晶配向による低熱膨張化に寄与し、耐熱衝撃性が増加するからである。また、本発明に用いられるコージェライト化原料中の酸化アルミニウム以外のアルミナ源成分としては、カオリン及び/又は水酸化アルミニウムを含有するものが好ましい。
Here, the more preferable range of the content of aluminum oxide is 12 to 25% by mass.
This is because when the content of aluminum oxide in the cordierite forming raw material is 12% by mass or more, a preferable area ratio of 3 to 8% of the partition wall constituting portion in the partition wall fracture surface is obtained. When the content of is 25% by mass or less, since the main crystal of the ceramic honeycomb structure is maintained as cordierite, the amount of the kaolin raw material powder that is an alumina source component other than aluminum oxide can be increased. This is because it contributes to the reduction of thermal expansion due to the cordierite crystal orientation accompanying the orientation when the kaolin raw material powder passes, and the thermal shock resistance is increased. Moreover, as an alumina source component other than aluminum oxide in the cordierite forming raw material used in the present invention, those containing kaolin and / or aluminum hydroxide are preferable.

前記酸化アルミニウムは、粒径20μm以上の粉末を15〜40質量%で含有し、粒径10μm以上の粉末を50〜70質量%、粒径5μm以上の粉末を70〜85質量%含有していると、隔壁構成部分の最大寸法を10〜20μmとすることができるため、より好ましい。   The aluminum oxide contains 15 to 40% by mass of powder having a particle size of 20 μm or more, 50 to 70% by mass of powder having a particle size of 10 μm or more, and 70 to 85% by mass of powder having a particle size of 5 μm or more. Since the maximum dimension of the partition wall constituting portion can be 10 to 20 μm, it is more preferable.

前記コージェライト化原料のうち、シリカ源成分としては、カオリン、およびタルク以外に、石英、溶融シリカ、ムライトなどを使用できるが、中でも熱膨張係数を低くする点において、石英、溶融シリカの少なくとも一種を10〜20質量%含有することが好ましく、その平均粒径は、10〜30μmが好ましい。   Among the cordierite forming raw materials, as the silica source component, quartz, fused silica, mullite, etc. can be used in addition to kaolin and talc. Among them, at least one of quartz and fused silica is used in that the coefficient of thermal expansion is lowered. It is preferable to contain 10-20 mass%, and the average particle diameter has preferable 10-30 micrometers.

前記コージェライト化原料のうちマグネシア源成分としては、例えば、タルク、マグネサイト、水酸化マグネシウムなどを使用できるが、熱膨張係数を低くするという点において、タルクを40〜43質量%含有させることが好ましく、その平均粒径は5〜20μmが好ましい。   As the magnesia source component in the cordierite forming raw material, for example, talc, magnesite, magnesium hydroxide, etc. can be used, but 40 to 43% by mass of talc is contained in terms of reducing the thermal expansion coefficient. The average particle size is preferably 5 to 20 μm.

また、隔壁の全細孔容積を0.60〜1.00cm/g、隔壁の細孔分布を、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm以上の細孔容積:0.07cm/g以下とする観点から、コージェライト化原料に、添加剤として、細孔を形成する為の、造孔剤を含有させることが好ましい。 In addition, the total pore volume of the partition walls is 0.60 to 1.00 cm 3 / g, and the pore distribution of the partition walls is a pore volume having a pore diameter of 2 μm or more: 0.60 to 0.95 cm 3 / g, 5 μm or more. Pore volume: 0.60 to 0.95 cm 3 / g, 10 μm or more pore volume: 0.50 to 0.90 cm 3 / g, 20 μm or more pore volume: 0.35 to 0.70 cm 3 / g From the viewpoint of setting the pore volume of 40 μm or more: 0.10 to 0.35 cm 3 / g, and the pore volume of 100 μm or more: 0.07 cm 3 / g or less to the cordierite forming raw material, It is preferable to contain a pore-forming agent for forming the film.

造孔剤としては、公知の小麦粉、グラファイト、澱粉粉、セラミックバルーン、ポリエチレン、ポリスチレン、ポリプロピレン、ナイロン、ポリエステル、アクリル、フェノール、エポキシ、エチレン−酢酸ビニル共重合体、スチレン−ブタジエンブロック重合体、スチレン−イソプレンブロック重合体、ポリメチルメタクリレート、メチルメタクルレート・アクリロニトリル共重合体、ウレタン、ワックス等を1種類或いは一種類以上を組み合わせて使用することが出来るが、中でもメチルメタクルレート・アクリロニトリル共重合体で形成された発泡樹脂が好ましい。   As the pore-forming agent, known flour, graphite, starch powder, ceramic balloon, polyethylene, polystyrene, polypropylene, nylon, polyester, acrylic, phenol, epoxy, ethylene-vinyl acetate copolymer, styrene-butadiene block polymer, styrene -Isoprene block polymer, polymethylmethacrylate, methylmethacrylate / acrylonitrile copolymer, urethane, wax, etc. can be used alone or in combination of one or more, but in particular methylmethacrylate / acrylonitrile copolymer A foamed resin formed by coalescence is preferred.

メチルメタクルレート・アクリロニトリル共重合体で形成された発泡樹脂は、内部に気体(イソブタン)を内包していることから、少量の添加量で、全細孔容積の大きいセラミックハニカムフィルタを得ることができ、焼成工程での造孔剤の発熱量を小さく押さえることができることから、焼成時に問題となる造孔剤の燃焼によるセラミックハニカム構造体の割れの問題を低減することができる。   Since the foamed resin formed of methyl methacrylate and acrylonitrile copolymer contains gas (isobutane) inside, a ceramic honeycomb filter having a large total pore volume can be obtained with a small amount of addition. In addition, since the calorific value of the pore forming agent in the firing step can be kept small, the problem of cracking of the ceramic honeycomb structure due to combustion of the pore forming agent, which becomes a problem during firing, can be reduced.

但し、造孔剤の添加量を多量にすると、セラミックハニカムフィルタの全細孔容積を大きくできるのと共に、セラミックハニカムフィルタの強度が低下し、実使用時の機械的衝撃や熱衝撃で破損しやすくなるため、全ての造孔剤にその添加量の上限はあり、メチルメタクリレート・アクリロニトリル共重合体で形成された発泡樹脂の場合は、コージェライト化原料100質量部に対して、4〜20質量部含有させることが好ましく、より好ましくは8〜15質量部である。   However, if the amount of pore-forming agent added is large, the total pore volume of the ceramic honeycomb filter can be increased, and the strength of the ceramic honeycomb filter is reduced, which is easily damaged by mechanical shock and thermal shock during actual use. Therefore, there is an upper limit of the amount added to all pore formers, and in the case of a foamed resin formed of a methyl methacrylate / acrylonitrile copolymer, 4 to 20 parts by mass with respect to 100 parts by mass of the cordierite forming raw material It is preferable to contain, More preferably, it is 8-15 mass parts.

また必要に応じて、前記造孔剤以外の添加剤を含有させることができる。例えば、バインダー、分散剤、潤滑剤などを添加することができる。バインダーとしては、例えば、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カルボキシルメチルセルロース、ポリビニルアルコール等を挙げることができ、分散剤としては例えば、エチレングリコール、脂肪酸石鹸等を挙げることができ、潤滑剤としては、水溶性ワックス、ステアリン酸等を挙げることができる。尚、上記の添加剤は、目的に応じて1種単独又は2種以上組み合わせて用いることができる。   Moreover, additives other than the said pore making agent can be contained as needed. For example, a binder, a dispersant, a lubricant and the like can be added. Examples of the binder include methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. Examples of the dispersant include ethylene glycol and fatty acid soap. Examples of the lubricant include Water-soluble wax, stearic acid, etc. can be mentioned. In addition, said additive can be used individually by 1 type or in combination of 2 or more types according to the objective.

本発明のセラミックハニカム構造体によれば、隔壁の破断面における隔壁構成部分の面積率が3〜16%であり、隔壁構成部分の最大寸法の平均値が5〜30μmとして、隔壁内部の隔壁構成部分の形態を最適化しているため、低圧力損失と高捕集効率及び及び使用時の機械的振動や衝撃あるいは熱衝撃等に耐えうる十分な強度を満足することができる。   According to the ceramic honeycomb structure of the present invention, the area ratio of the partition wall constituent portion in the fracture surface of the partition wall is 3 to 16%, and the average value of the maximum dimension of the partition wall constituent portion is 5 to 30 μm. Since the shape of the portion is optimized, it is possible to satisfy low pressure loss, high collection efficiency, and sufficient strength to withstand mechanical vibration, shock or thermal shock during use.

本発明のセラミックハニカム構造体は、例えば、以下のようにして製造することが出来る。 The ceramic honeycomb structure of the present invention can be manufactured, for example, as follows.

上述したコージェライト化原料100質量部に対して、造孔材4〜40質量部、バインダー4〜12質量部を投入して乾式混合した後に、水を10〜40質量部投入後、混練し、可塑性を有する坏土とする。この坏土を公知の押出成形法によりハニカム構造の成形体を押出成形した後、公知の乾燥法、例えばマイクロ波乾燥、誘電乾燥、熱風乾燥等の方法により、成形体の乾燥を行う。次いで乾燥されたハニカム構造の成形体を、焼成炉内に配置し、1350〜1440℃の温度で焼成を行い、セラミックハニカム構造体を得る。   After 100 parts by mass of the above cordierite forming raw material, 4 to 40 parts by mass of the pore former and 4 to 12 parts by mass of the binder and dry-mixed, 10 to 40 parts by mass of water and kneaded, Use a clay with plasticity. After this kneaded material is extruded by a known extrusion molding method, the molded body is dried by a known drying method such as microwave drying, dielectric drying, hot air drying or the like. Next, the dried honeycomb structure formed body is placed in a firing furnace and fired at a temperature of 1350 to 1440 ° C. to obtain a ceramic honeycomb structure.

次いで、セラミックハニカム構造体の端面マスキングフィルムを配置した後、ハニカム構造体の流路に対して交互に穿孔部を形成し、予め準備していた目封止用のセラミックスラリーに、セラミックハニカム構造体の端面を浸漬し、マスキングフィルムの穿孔部を通じて、セラミックハニカム構造体にセラミックスラリーを導入する。導入されたスラリ−が固化後に、ハニカム構造体をセラミックスラリーから抜き出し、乾燥させ目封止材を形成する。さらに、ハニカム構造体の他端側も同様の手法で、セラミックスラリーを導入、固化、乾燥させて目封止材を形成した後マスキングフィルムを剥がす。その後、目封止材の焼成を行い、隔壁と目封止材を一体化せしめ、排気ガスの流入側と流出側の所定の流路が目封止されたセラミックハニカムフィルタを得る。   Next, after arranging the end face masking film of the ceramic honeycomb structure, the perforated portions are alternately formed in the flow path of the honeycomb structure, and the ceramic honeycomb structure is prepared in the ceramic slurry for plugging prepared in advance. The ceramic slurry is introduced into the ceramic honeycomb structure through the perforated portion of the masking film. After the introduced slurry is solidified, the honeycomb structure is extracted from the ceramic slurry and dried to form a plugging material. Further, the other end side of the honeycomb structure is introduced in the same manner, ceramic slurry is introduced, solidified, and dried to form a plugging material, and then the masking film is peeled off. Thereafter, the plugging material is fired to integrate the partition walls and the plugging material, thereby obtaining a ceramic honeycomb filter in which predetermined flow paths on the exhaust gas inflow side and the outflow side are plugged.

なお、所定の流路へのセラミックスラリーの導入は、乾燥後のセラミックハニカム構造の成形体に対して行った上で、成形体と同時に目封止材を焼成、一体化させても良い。   The introduction of the ceramic slurry into the predetermined flow path may be performed on the dried ceramic honeycomb structure formed body, and the plugging material may be fired and integrated simultaneously with the formed body.

以下、本発明の実際の実施例を説明するが、本発明はそれらに限定されるものではない。
(実施例1〜7)
平均粒径とCaO+NaO+KOの含有量がそれぞれ表1に示す値である水酸化アルミニウム、カオリン、タルク、溶融シリカ、及び平均粒径、粒度分布、CaO+NaO+KOの含有量がそれぞれ表2に示す値である酸化アルミニウムBを、表3に示す割合で秤量した。次いで表3に示すように、このコージェライト化原料100質量部に対して、造孔剤として、発泡樹脂であるイソブタン内包アクリロニトリル・メチルメタクリレート共重合体、さらに結合剤としてメチルセルロース5質量部、ヒドロキシプロピルメチルセルロースを2質量部添加し、混合調整した。ここで、表1、2に示す粒度分布は、(株)セイシン企業製レーザ回折式粒度分布測定器LMS−30を使用して測定した。その後、水を添加し、混合、混練を加え、可塑化可能な坏土を作製し、この坏土を押出成形機に投入して、ハニカム構造を有する成形体を得た。次いで得られた成形体をマイクロ波乾燥機で乾燥した後、熱風乾燥を行い、所定の寸法に両端面を切断した。次いで、このハニカム構造の乾燥体の流路の開口端部に、コージェライト化原料からなるスラリーを端部から約10mmの深さまで充填、乾燥させ、図1に示す構造の、流路の両端部が交互に目封止された、セラミックハニカム乾燥体を得た。その後、1420℃、10時間の条件で焼成を行い、Φ143.8mm、長さ152.4mm、隔壁厚さ300μm、隔壁ピッチ1.58mmの寸法特性を有する実施例1〜7のセラミックハニカム構造体を得た。
Hereinafter, although the actual Example of this invention is described, this invention is not limited to them.
(Examples 1-7)
The average particle size and the content of CaO + Na 2 O + K 2 O are the values shown in Table 1, respectively, and aluminum hydroxide, kaolin, talc, fused silica, and the average particle size, particle size distribution, and the content of CaO + Na 2 O + K 2 O are each Aluminum oxide B having the values shown in Table 2 was weighed at the ratio shown in Table 3. Next, as shown in Table 3, with respect to 100 parts by mass of this cordierite-forming raw material, as a pore-forming agent, isobutane-encapsulated acrylonitrile / methyl methacrylate copolymer, which is a foamed resin, and as a binder, 5 parts by mass of methylcellulose, hydroxypropyl 2 parts by mass of methylcellulose was added and mixed. Here, the particle size distributions shown in Tables 1 and 2 were measured using a laser diffraction particle size distribution analyzer LMS-30 manufactured by Seishin Enterprise Co., Ltd. Thereafter, water was added, and mixing and kneading were performed to prepare a kneaded clay, and this kneaded clay was put into an extruder to obtain a formed body having a honeycomb structure. Next, the obtained molded body was dried with a microwave dryer and then dried with hot air, and both end surfaces were cut into predetermined dimensions. Next, the end of the channel of the dried honeycomb structured body is filled with the slurry made of cordierite-forming raw material to a depth of about 10 mm from the end and dried, and both ends of the channel of the structure shown in FIG. A dried ceramic honeycomb body in which the plugs were alternately plugged was obtained. Thereafter, firing was performed at 1420 ° C. for 10 hours, and the ceramic honeycomb structures of Examples 1 to 7 having dimensional characteristics of Φ143.8 mm, length 152.4 mm, partition wall thickness 300 μm, partition wall pitch 1.58 mm were obtained. Obtained.

Figure 2005324154
Figure 2005324154









Figure 2005324154
Figure 2005324154


Figure 2005324154
Figure 2005324154






Figure 2005324154
Figure 2005324154

(比較例1)
実施例1〜7に対して、酸化アルミニウムBの含有量を4.5%とした以外は同様にして比較例1のセラミックハニカム構造体を得た。
(Comparative Example 1)
A ceramic honeycomb structure of Comparative Example 1 was obtained in the same manner as in Examples 1 to 7, except that the content of aluminum oxide B was 4.5%.

(実施例8〜13)
実施例4に対して、酸化アルミニウムBの代わりに酸化アルミニウムAを用い、造孔剤として、発泡樹脂であるイソブタン内包アクリロニトリル・メチルメタクリレート共重合体、グラファイト、ポリメチルメタクリレート(PMMA)、ポリエチレン、小麦粉を表3に示すように用いたこと以外は同様にして実施例8〜13のセラミックハニカム構造体を得た。
(Examples 8 to 13)
In contrast to Example 4, aluminum oxide A was used in place of aluminum oxide B, and as a pore-forming agent, isobutane encapsulated acrylonitrile-methyl methacrylate copolymer, graphite, polymethyl methacrylate (PMMA), polyethylene, wheat flour as a foaming resin The ceramic honeycomb structures of Examples 8 to 13 were obtained in the same manner except that was used as shown in Table 3.

(実施例14〜18)
実施例4に対して、酸化アルミニウムBの代わりに酸化アルミニウムF、G、H、I、Jを用いたこと以外は同様にして実施例14〜18のセラミックハニカム構造体を得た。
(Examples 14 to 18)
The ceramic honeycomb structures of Examples 14 to 18 were obtained in the same manner as in Example 4 except that aluminum oxides F, G, H, I, and J were used instead of aluminum oxide B.

(比較例2〜4)
実施例4に対して、酸化アルミニウムBの代わりに酸化アルミニウムC、D、Eを用いたこと以外は同様にして比較例2〜4のセラミックハニカム構造体を得た。
(Comparative Examples 2 to 4)
The ceramic honeycomb structures of Comparative Examples 2 to 4 were obtained in the same manner as in Example 4 except that aluminum oxides C, D, and E were used instead of aluminum oxide B.

得られた実施例1〜18及び比較例1〜4セラミックハニカム構造体に対し、圧力損失特性、微粒子の捕集率、アイソスタティック強度のフィルター特性の評価を行った結果を表4に記した。 Table 4 shows the results of evaluating the pressure loss characteristics, the collection rate of fine particles, and the filter characteristics of isostatic strength for the obtained Examples 1 to 18 and Comparative Examples 1 to 4 ceramic honeycomb structures.

圧力損失特性は、以下の方法で測定した。セラミックハニカム構造体を、圧力損失テストスタンドに設置し、空気流量7.5Nm/分の空気を流してセラミックハニカム構造体流入側と流出側の差圧を計測して初期圧力損失を求めた後、平均粒径0.042μmのカーボン粉末を供給速度3g/hで投入し一定時間経過後、セラミックハニカム構造体1リットル当りカーボンを1g捕集したときの差圧を再度計測して圧力損失を求めた。そして、カーボン粉末捕集量1g/Lにおける圧力損失を初期圧力損失に対する圧損上昇率として計算し、カーボン捕集時の圧損上昇率15%以下を優良として◎、15%以上20%未満を良○、20%以上を不可×、として評価判定した。 The pressure loss characteristic was measured by the following method. After the ceramic honeycomb structure is installed in a pressure loss test stand, the air pressure of 7.5 Nm 3 / min is flowed and the pressure difference between the inflow side and the outflow side of the ceramic honeycomb structure is measured to determine the initial pressure loss. Then, carbon powder with an average particle size of 0.042 μm was charged at a supply rate of 3 g / h, and after a certain time had elapsed, the pressure loss was obtained by measuring again the differential pressure when 1 g of carbon was collected per liter of the ceramic honeycomb structure. It was. Then, the pressure loss at a carbon powder collection amount of 1 g / L is calculated as the pressure loss increase rate with respect to the initial pressure loss, the pressure loss increase rate at the time of carbon collection being 15% or less is excellent, and 15% or more and less than 20% is good. 20% or more was evaluated and judged as “bad”.

捕集率は、上記カーボン粉末捕集後のセラミックハニカム構造体の重量増分をカーボン粉末投入量に対する比として求めた。捕集効率の評価判定は、捕集効率95%以上を優良として◎、90%以上95%未満を良○、90%未満を不可×、として評価判定した。   The collection rate was determined as the ratio of the weight increase of the ceramic honeycomb structure after collecting the carbon powder to the input amount of the carbon powder. The evaluation of the collection efficiency was evaluated with a collection efficiency of 95% or more as excellent, ◎, 90% or more and less than 95% as good ○, and less than 90% as unsatisfactory.

その後、試験終了後のセラミックハニカム構造体を600℃、5時間の条件で加熱することによりカーボンを燃焼除去し、カーボン除去後のセラミックハニカム構造体のアイソスタティック試験を実施した。アイソスタティック試験では、アイソスタティック試験装置を用いて静水圧加圧により破壊したときの水圧を測定し、アイソスタティック強度とした。アイソスタティック強度の評価判定は、アイソスタティック強度1.5MPa以上を優良◎、1.0MPa以上1.5MPa未満を良○、1.0MPa未満を不可×、として評価判定した。   Thereafter, the ceramic honeycomb structure after the test was heated at 600 ° C. for 5 hours to burn and remove carbon, and an isostatic test of the ceramic honeycomb structure after carbon removal was performed. In the isostatic test, the water pressure when broken by hydrostatic pressure was measured using an isostatic test device to obtain isostatic strength. The evaluation of the isostatic strength was evaluated with an isostatic strength of 1.5 MPa or more as excellent 優, 1.0 MPa or more and less than 1.5 MPa as good ○, and less than 1.0 MPa as unsatisfactory ×.

その後、アイソスタティック試験終了後の破壊したセラミックハニカム構造体から試験片を切り出し、隔壁破断面における、隔壁構成部分の面積率及び最大寸法、隔壁の全細孔容積及び細孔分布を求めた。 隔壁破断面における、隔壁構成部分の面積率及び最大寸法の平均値の測定は、以下の様に行った。まず任意隔壁の破断面をSEM観察し、0.8×0.8mmの視野を選定して写真撮影を行い、この撮影した視野内を更に倍率を上げて(250〜1000倍)観察し、脆性破壊面であった箇所を隔壁構成部分と見なして、写真上に黒塗りして2値化した後、この黒塗りを画像解析することにより、隔壁構成部分の面積率及び最大寸法の平均値を求めた。測定は、各実施例のセラミックハニカム構造体に対し隔壁破断面10ケ所について行って平均値を求めた。一方、隔壁の全細孔容積及び細孔分布の測定は、水銀圧入法により、Micromeritics社製オートポアIIIを使用して行い、セラミックハニカムフィルタから切り出した小片を試験片として測定セル内に収納し、セル内を減圧した後、水銀を導入して、加圧し、このときの圧力と試料内に存在する細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積の関係を求める。このとき、水銀を導入する圧力は0.5psi(0.35×10−3kg/mm)とし、圧力から細孔径を算出する際の常数は、接触角=130°、表面張力484dyne/cmとした。 Thereafter, a test piece was cut out from the broken ceramic honeycomb structure after completion of the isostatic test, and the area ratio and the maximum dimension of the partition wall constituting portion, the total pore volume of the partition wall, and the pore distribution in the partition wall fracture surface were obtained. Measurement of the area ratio and the average value of the maximum dimensions of the partition wall constituent portions in the partition wall fracture surface was performed as follows. First, the fracture surface of an arbitrary partition wall is observed with an SEM, a field of view of 0.8 × 0.8 mm is selected, a photograph is taken, the inside of the photographed field of view is further increased (250 to 1000 times), and is brittle. Considering the part that was the fracture surface as the partition wall component, blacken it on the photo and binarize it, and then analyze the image of this black coating to obtain the average value of the area ratio and maximum dimension of the partition wall component. Asked. The measurement was performed at 10 locations on the fracture surface of the partition walls of the ceramic honeycomb structure of each example, and an average value was obtained. On the other hand, the measurement of the total pore volume and pore distribution of the partition walls is performed by using a mercury intrusion method, using Autopore III manufactured by Micromeritics, and a small piece cut out from the ceramic honeycomb filter is stored as a test piece in a measurement cell, After depressurizing the inside of the cell, mercury was introduced and pressurized, and the relationship between the pore diameter and the cumulative pore volume was determined from the relationship between the pressure at this time and the volume of mercury pushed into the pores existing in the sample. Ask for. At this time, the pressure for introducing mercury was 0.5 psi (0.35 × 10 −3 kg / mm 2 ), and the constants for calculating the pore diameter from the pressure were contact angle = 130 °, surface tension 484 dyne / cm. It was.

さらに、隔壁表面の表面粗さ(最大高さRy)の測定を(JIS)B 0601−1994に準じて行った。   Furthermore, the surface roughness (maximum height Ry) of the partition wall surface was measured according to (JIS) B 0601-1994.

実施例1〜7のセラミックハニカム構造体は、コージェライト化原料のうち、酸化アルミニウムBを7.0〜34.9質量%含有しており、且つ酸化アルミニウムBが粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を15〜50質量%で含有し、粒径10μm以上の粉末を40〜90質量%、粒径5μm以上の粉末を65〜95質量%、粒径2μm以上の粉末を95質量%以上含有していたことから、その隔壁破断面における隔壁構成部分は面積率が3.0〜15.9%であり、隔壁構成部分の最大寸法の平均値は5.2〜9.7μmであった。また、造孔剤として発泡樹脂を12質量部、含有していることから、各種大きさの細孔がバランス良く、配置され、隔壁の全細孔容積は0.60〜1.00cm/gであって、細孔分布は、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm径以上の細孔容積:0.07cm/g以下であった。このため、これら実施例1〜7のセラミックハニカム構造体は、圧力損失、捕集率、アイソスタティック強度の評価結果がいずれも合格の(○)又は(◎)であった。 The ceramic honeycomb structures of Examples 1 to 7 contain 7.0 to 34.9% by mass of aluminum oxide B among the cordierite forming raw materials, and the aluminum oxide B contains 5 powders having a particle diameter of 45 μm or more. 15% to 50% by mass of powder having a particle size of 20 μm or less, 40 to 90% by mass of powder having a particle size of 10 μm or more, 65 to 95% by mass of powder having a particle size of 5 μm or more, and 2 μm or more of particle size Therefore, the partition wall portion of the partition wall fracture surface has an area ratio of 3.0 to 15.9%, and the average maximum dimension of the partition wall portion is 5.2. It was -9.7 micrometers. Moreover, since it contains 12 parts by mass of foamed resin as a pore-forming agent, pores of various sizes are arranged in a well-balanced manner, and the total pore volume of the partition walls is 0.60 to 1.00 cm 3 / g. The pore distribution was such that the pore volume with a pore diameter of 2 μm or more: 0.60 to 0.95 cm 3 / g, the pore volume with 5 μm or more: 0.60 to 0.95 cm 3 / g, 10 μm or more. pore volume: 0.50~0.90cm 3 / g, 20μm or more of the pore volume: 0.35~0.70cm 3 / g, 40μm or more of the pore volume: 0.10~0.35cm 3 / g The volume of pores with a diameter of 100 μm or more was 0.07 cm 3 / g or less. For this reason, the ceramic honeycomb structures of Examples 1 to 7 all passed (◯) or (◎) that passed the evaluation results of the pressure loss, the collection rate, and the isostatic strength.

中でも実施例3〜7のセラミックハニカム構造体は、コージェライト化原料のうち、酸化アルミニウムBを12質量%以上含有していることから、その隔壁破断面における隔壁構成部分は面積率が3.0〜7.9%となり、圧力損失は優良の(◎)であった。   Among them, the ceramic honeycomb structures of Examples 3 to 7 contain 12% by mass or more of aluminum oxide B in the cordierite forming raw material. It was ˜7.9%, and the pressure loss was excellent (◎).

一方、コージェライト化原料のうち、酸化アルミニウムBの含有量が4.5%であった比較例1のセラミックハニカム構造体は、隔壁断面における隔壁構成部分の面積率が17.4%であったため、圧力損失は不可の(×)であった。   On the other hand, among the cordierite forming raw materials, the ceramic honeycomb structure of Comparative Example 1 in which the content of aluminum oxide B was 4.5% had an area ratio of partition wall constituent portions in the partition wall cross section of 17.4%. The pressure loss was not possible (x).

また、実施例8〜13のセラミックハニカム構造体は、コージェライト化原料のうち、酸化アルミニウムAを22.0質量%含有しており、且つ酸化アルミニウムAが粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を15〜40質量%で含有し、粒径10μm以上の粉末を50〜70質量%、粒径5μm以上の粉末を70〜85質量%、粒径2μm以上の粉末を95質量%以上の好ましい粒度分布を有していたことから、その隔壁破断面における隔壁構成部分は面積率が4.5〜7.9%であり、隔壁構成部分の最大寸法の平均値は14.9〜19.6μmであった。このため、これら実施例8〜13のセラミックハニカム構造体は、圧力損失、捕集率、アイソスタティック強度の評価結果がいずれも合格の(○)又は(◎)であった。中でも、実施例8、10、12、及び13のセラミックハニカム構造体は、造孔剤に発泡樹脂を4〜12質量部含有していたことから、隔壁の全細孔容積は0.60〜1.00cm/gであって、細孔分布は、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm径以上の細孔容積:0.07cm/g以下であり、圧力損失、捕集率、アイソスタティック強度の評価結果がいずれも優良の(◎)であった。 Moreover, the ceramic honeycomb structures of Examples 8 to 13 contain 22.0% by mass of aluminum oxide A among the cordierite forming raw materials, and 5% by mass of the aluminum oxide A having a particle diameter of 45 μm or more. Hereinafter, powder having a particle size of 20 μm or more is contained at 15 to 40% by mass, powder having a particle size of 10 μm or more is 50 to 70% by mass, powder having a particle size of 5 μm or more is 70 to 85% by mass, and powder having a particle size of 2 μm or more. The partition wall constituent part in the partition wall fracture surface has an area ratio of 4.5 to 7.9%, and the average value of the maximum dimension of the partition wall constituent part is It was 14.9 to 19.6 μm. For this reason, in the ceramic honeycomb structures of Examples 8 to 13, the evaluation results of the pressure loss, the collection rate, and the isostatic strength were all acceptable (◯) or ()). Among them, since the ceramic honeycomb structures of Examples 8, 10, 12, and 13 contained 4 to 12 parts by mass of the foamed resin in the pore forming agent, the total pore volume of the partition walls was 0.60 to 1. a .00cm 3 / g, pore distribution, pore size 2μm or more pore volume: 0.60~0.95cm 3 / g, 5μm or more pore volume: 0.60~0.95cm 3 / g, 10μm or more of the pore volume: 0.50~0.90cm 3 / g, 20μm or more of the pore volume: 0.35~0.70cm 3 / g, 40μm or more of the pore volume: 0.10 to 0 .35 cm 3 / g, pore volume of 100 μm diameter or more: 0.07 cm 3 / g or less, and the evaluation results of pressure loss, collection rate, and isostatic strength were all excellent (◎).

また、実施例14及び15のセラミックハニカム構造体は、コージェライト化原料のうち、酸化アルミニウムH、及びIを22.0質量%含有しており、且つこの酸化アルミニウムH、及びIが粒径45μm以上の粉末を0.3〜0.5質量%、粒径20μm以上の粉末を15.6〜16.5質量%で含有し、粒径10μm以上の粉末を43.6〜46.5質量%、粒径5μm以上の粉末を66.5〜69.8質量%、粒径2μm以上の粉末を96.0〜96.5質量%含有した粒度分布を有していることから、その隔壁破断面における隔壁構成部分は面積率が6.5〜7.7%であり、隔壁構成部分の最大寸法の平均値は24.5〜29.7μmであった。また、造孔剤として発泡樹脂を12質量部、含有していることから、各種大きさの細孔がバランス良く、配置され、隔壁の全細孔容積は0.60〜1.00cm/gであって、細孔分布は、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm径以上の細孔容積:0.07cm/g以下であった。このため、これら実施例14及び15のセラミックハニカム構造体は、圧力損失、捕集率、アイソスタティック強度の評価結果がいずれも合格の(○)又は(◎)であった。 The ceramic honeycomb structures of Examples 14 and 15 contained 22.0% by mass of aluminum oxides H and I among the cordierite forming raw materials, and the aluminum oxides H and I had a particle size of 45 μm. The above powder is contained at 0.3 to 0.5% by mass, the powder having a particle size of 20 μm or more is contained at 15.6 to 16.5% by mass, and the powder having a particle size of 10 μm or more is contained at 43.6 to 46.5% by mass. The partition wall fracture surface has a particle size distribution containing 66.5 to 69.8% by mass of powder having a particle size of 5 μm or more and 96.0 to 96.5% by mass of powder having a particle size of 2 μm or more. The area ratio of the partition wall constituting portion was 6.5 to 7.7%, and the average value of the maximum dimension of the partition wall constituting portion was 24.5 to 29.7 μm. Moreover, since it contains 12 parts by mass of foamed resin as a pore-forming agent, pores of various sizes are arranged in a well-balanced manner, and the total pore volume of the partition walls is 0.60 to 1.00 cm 3 / g. The pore distribution was such that the pore volume with a pore diameter of 2 μm or more: 0.60 to 0.95 cm 3 / g, the pore volume with 5 μm or more: 0.60 to 0.95 cm 3 / g, 10 μm or more. pore volume: 0.50~0.90cm 3 / g, 20μm or more of the pore volume: 0.35~0.70cm 3 / g, 40μm or more of the pore volume: 0.10~0.35cm 3 / g The volume of pores with a diameter of 100 μm or more was 0.07 cm 3 / g or less. For this reason, in the ceramic honeycomb structures of Examples 14 and 15, the evaluation results of the pressure loss, the collection rate, and the isostatic strength were all acceptable (◯) or (◎).

また、実施例16、及び17のセラミックハニカム構造体は、コージェライト化原料のうち、酸化アルミニウムが2種類の粒度の酸化アルミニウムB及びCを適切に混合した酸化アルミニウムF、及びGを22.0質量%含有しており、且つこの酸化アルミニウムF、及びGが粒径45μm以上の粉末を5質量%以下、粒径20μm以上の粉末を15〜40質量%で含有し、粒径10μm以上の粉末を50〜70質量%、粒径5μm以上の粉末を70〜85質量%、粒径2μm以上の粉末を95質量%以上の好ましい粒度分布を有していることから、その隔壁破断面における隔壁構成部分は面積率が6.6〜7.3%であり、隔壁構成部分の最大寸法の平均値は15.6〜16.5μmであった。また、造孔剤として発泡樹脂を12質量部、含有していることから、各種大きさの細孔がバランス良く、配置され、隔壁の全細孔容積は0.60〜1.00cm/gであって、細孔分布は、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm径以上の細孔容積:0.07cm/g以下であった。このため、これら実施例16及び17のセラミックハニカム構造体は、圧力損失、捕集率、アイソスタティック強度の評価結果がいずれも優良の(◎)であった。 Moreover, the ceramic honeycomb structures of Examples 16 and 17 were made of 22.0 of aluminum oxide F and G in which aluminum oxide was appropriately mixed with aluminum oxide B and C having two kinds of particle sizes among the cordierite forming raw materials. Powders containing 5% by mass of powders having a particle size of 45 μm or more and 15-40% by mass of powders having a particle size of 20 μm or more, and containing aluminum oxides F and G having a particle size of 45 μm or more. 50 to 70% by mass, powder having a particle size of 5 μm or more has a preferred particle size distribution of 70 to 85% by mass, and powder having a particle size of 2 μm or more has a preferable particle size distribution of 95% by mass or more. The area ratio of the portion was 6.6 to 7.3%, and the average value of the maximum dimension of the partition wall constituting portion was 15.6 to 16.5 μm. Moreover, since it contains 12 parts by mass of foamed resin as a pore-forming agent, pores of various sizes are arranged in a well-balanced manner, and the total pore volume of the partition walls is 0.60 to 1.00 cm 3 / g. The pore distribution was such that the pore volume with a pore diameter of 2 μm or more: 0.60 to 0.95 cm 3 / g, the pore volume with 5 μm or more: 0.60 to 0.95 cm 3 / g, 10 μm or more. pore volume: 0.50~0.90cm 3 / g, 20μm or more of the pore volume: 0.35~0.70cm 3 / g, 40μm or more of the pore volume: 0.10~0.35cm 3 / g The volume of pores with a diameter of 100 μm or more was 0.07 cm 3 / g or less. For this reason, the ceramic honeycomb structures of Examples 16 and 17 all had excellent (が) evaluation results of pressure loss, collection rate, and isostatic strength.

また、実施例18のセラミックハニカム構造体は、コージェライト化原料のうち、酸化アルミニウムJを22.0質量%含有しており、且つこの酸化アルミニウムJが粒径45μm以上の粉末を1.4質量%、粒径20μm以上の粉末を45.6質量%で含有し、粒径10μm以上の粉末を85.7質量%、粒径5μm以上の粉末を94.2質量%、粒径2μm以上の粉末を99.5質量%含有した粒度分布を有していることから、その隔壁破断面における隔壁構成部分は面積率が6.8%であり、隔壁構成部分の最大寸法の平均値は5.2μmであった。また、造孔剤として発泡樹脂を12質量部、含有していることから、各種大きさの細孔がバランス良く、配置され、隔壁の全細孔容積は0.60〜1.00cm/gであって、細孔分布は、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm径以上の細孔容積:0.07cm/g以下であった。このため、この実施例18のセラミックハニカム構造体は、圧力損失、捕集率、アイソスタティック強度の評価結果がいずれも合格の(○)又は(◎)であった。 The ceramic honeycomb structure of Example 18 contained 22.0% by mass of aluminum oxide J among the cordierite forming raw materials, and the aluminum oxide J was 1.4% by mass with a particle size of 45 μm or more. %, A powder having a particle size of 20 μm or more at 45.6% by mass, a powder having a particle size of 10 μm or more is 85.7% by mass, a powder having a particle size of 5 μm or more is 94.2% by mass, and a powder having a particle size of 2 μm or more. Therefore, the partition wall portion of the partition wall fracture surface has an area ratio of 6.8%, and the average maximum dimension of the partition wall portion is 5.2 μm. Met. Moreover, since it contains 12 parts by mass of foamed resin as a pore-forming agent, pores of various sizes are arranged in a well-balanced manner, and the total pore volume of the partition walls is 0.60 to 1.00 cm 3 / g. The pore distribution was such that the pore volume with a pore diameter of 2 μm or more: 0.60 to 0.95 cm 3 / g, the pore volume with 5 μm or more: 0.60 to 0.95 cm 3 / g, 10 μm or more. pore volume: 0.50~0.90cm 3 / g, 20μm or more of the pore volume: 0.35~0.70cm 3 / g, 40μm or more of the pore volume: 0.10~0.35cm 3 / g The volume of pores with a diameter of 100 μm or more was 0.07 cm 3 / g or less. For this reason, the ceramic honeycomb structure of Example 18 was evaluated as (◯) or (◎) that passed the evaluation results of pressure loss, collection rate, and isostatic strength.

一方、コージェライト化原料のうち、酸化アルミニウムに、粒径20μm以上の粉末を15質量%未満、粒径10μm以上の粉末を40質量%未満、粒径5μm以上の粉末を65質量%未満で含有している酸化アルミニウムC及びFを用いた比較例2及び3のセラミックハニカム構造体は、隔壁破断面における隔壁構成部分の最大寸法の平均値が30μmを越えたため、圧力損失の判定が不合格の(×)であった。   On the other hand, among the cordierite forming raw materials, aluminum oxide contains less than 15% by weight of powder having a particle size of 20 μm or more, less than 40% by weight of powder having a particle size of 10 μm or more, and less than 65% by weight of powder having a particle size of 5 μm or more. In the ceramic honeycomb structures of Comparative Examples 2 and 3 using the aluminum oxides C and F, the average value of the maximum dimension of the partition wall constituting part in the partition wall fracture surface exceeded 30 μm, so the determination of the pressure loss was unsuccessful. (X).

また、コージェライト化原料のうち、酸化アルミニウムに、粒径20μm以上の粉末を50質量%越え、粒径10μm以上の粉末を90質量%越え、粒径5μm以上の粉末を95質量%越えで含有している酸化アルミニウムDを用いた比較例4のセラミックハニカム構造体は、隔壁破断面における隔壁構成部分の最大寸法の平均値が5μm未満であったため、捕集率及びアイソスタティック強度の判定が不合格の(×)であった。   Among the cordierite forming materials, aluminum oxide contains powder with a particle size of 20 μm or more exceeding 50 mass%, powder with a particle size of 10 μm or more exceeding 90 mass%, and powder with a particle size of 5 μm or more exceeding 95 mass% In the ceramic honeycomb structure of Comparative Example 4 using aluminum oxide D, the average value of the maximum dimension of the partition wall constituting part in the partition wall fracture surface was less than 5 μm, so that the determination of the collection rate and isostatic strength was not possible. It was a pass (x).

(1)及び(2)はそれぞれセラミックハニカムフィルタの一例を示す正面図及び側面図である。(1) And (2) is the front view and side view which respectively show an example of a ceramic honeycomb filter. 本発明のセラミックハニカム構造体の隔壁破断面の隔壁構成部分と非隔壁構成部分とに2値化した一例を示す図である。It is a figure which shows an example binarized into the partition component part and non-partition component part of the partition fracture surface of the ceramic honeycomb structure of this invention. 本発明のセラミックハニカム構造体の細孔径と累積細孔容積の関係を示す図である。It is a figure which shows the relationship between the pore diameter of the ceramic honeycomb structure of this invention, and a cumulative pore volume. セラミックハニカム構造体の隔壁断面の形態を示す模式図。The schematic diagram which shows the form of the partition cross section of a ceramic honeycomb structure.

符号の説明Explanation of symbols

1:隔壁、
2:流路、
3:セラミックハニカムフィルタ、
4:目封止材
5:破断面
11:本発明のセラミックハニカム構造体の好ましい全細孔容積の下限を示す点
12:本発明のセラミックハニカム構造体の好ましい全細孔容積の上限を示す点
13:本発明のセラミックハニカム構造体の細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上における好ましい累積細孔容積の下限を示す点
14:本発明のセラミックハニカム構造体の細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上における好ましい累積細孔容積の上限を示す点
15:本発明の実施例1のセラミックハニカム構造体の細孔分布
A:隔壁断面において切断面を模式的に表す線
B:隔壁断面において破断面を模式的に表す線
1: partition wall,
2: flow path,
3: Ceramic honeycomb filter,
4: plugging material 5: fracture surface 11: point indicating the lower limit of the preferred total pore volume of the ceramic honeycomb structure of the present invention 12: point indicating the upper limit of the preferred total pore volume of the ceramic honeycomb structure of the present invention 13: A point indicating a lower limit of a preferable cumulative pore volume at a pore diameter of 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, 40 μm or more of the ceramic honeycomb structure of the present invention 14: Pore diameter of the ceramic honeycomb structure of the present invention 2 μm As described above, the upper limit of the preferred cumulative pore volume at 5 μm or more, 10 μm or more, 20 μm or more, or 40 μm or more 15: Pore distribution of the ceramic honeycomb structure of Example 1 of the present invention A: A cut surface is schematically shown in the partition wall section Line B: Line that schematically represents the fracture surface in the partition wall section

Claims (2)

コージェライトを主結晶とする材料からなるセラミックハニカム構造体の所定の流路を目封止し、該流路を区画する多孔質の隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタに使用されるセラミックハニカム構造体であって、前記隔壁の破断面における隔壁構成部分の面積率が3〜16%であり、該隔壁構成部分の最大寸法の平均値が5〜30μmであることを特徴とするセラミックハニカム構造体。   It is contained in the exhaust gas by plugging a predetermined flow path of the ceramic honeycomb structure made of a material having cordierite as a main crystal and allowing the exhaust gas to pass through a porous partition wall that defines the flow path. A ceramic honeycomb structure used for a ceramic honeycomb filter for removing fine particles, wherein an area ratio of partition wall constituent parts in the fracture surface of the partition walls is 3 to 16%, and an average value of maximum dimensions of the partition wall constituent parts is A ceramic honeycomb structure having a thickness of 5 to 30 μm. 前記隔壁の全細孔容積が0.60〜1.00cm/gであって、隔壁の細孔分布が、細孔径2μm以上の細孔容積:0.60〜0.95cm/g、5μm以上の細孔容積:0.60〜0.95cm/g、10μm以上の細孔容積:0.50〜0.90cm/g、20μm以上の細孔容積:0.35〜0.70cm/g、40μm以上の細孔容積:0.10〜0.35cm/g、100μm以上の細孔容積:0.07cm/g以下であることを特徴とする請求項1記載のセラミックハニカム構造体。 The total pore volume of the partition wall is 0.60 to 1.00 cm 3 / g, and the pore distribution of the partition wall is a pore volume having a pore diameter of 2 μm or more: 0.60 to 0.95 cm 3 / g, 5 μm The above pore volume: 0.60 to 0.95 cm 3 / g, the pore volume of 10 μm or more: 0.50 to 0.90 cm 3 / g, the pore volume of 20 μm or more: 0.35 to 0.70 cm 3 2. The ceramic honeycomb structure according to claim 1, wherein the pore volume is 40 μm or more: 0.10 to 0.35 cm 3 / g and the pore volume is 100 μm or more: 0.07 cm 3 / g or less. body.
JP2004145922A 2004-05-17 2004-05-17 Ceramic honeycomb structure Pending JP2005324154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145922A JP2005324154A (en) 2004-05-17 2004-05-17 Ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145922A JP2005324154A (en) 2004-05-17 2004-05-17 Ceramic honeycomb structure

Publications (1)

Publication Number Publication Date
JP2005324154A true JP2005324154A (en) 2005-11-24

Family

ID=35470921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145922A Pending JP2005324154A (en) 2004-05-17 2004-05-17 Ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP2005324154A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048156A1 (en) * 2007-10-12 2009-04-16 Hitachi Metals, Ltd. Cordierite ceramic honeycomb filter and process for producing the same
WO2013024744A1 (en) * 2011-08-12 2013-02-21 住友化学株式会社 Honeycomb filter
JP2015029937A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
WO2017051806A1 (en) * 2015-09-24 2017-03-30 住友化学株式会社 Honeycomb filter, and method for producing honeycomb filter
WO2024074113A1 (en) * 2022-10-08 2024-04-11 深圳麦克韦尔科技有限公司 Porous ceramic body and preparation method therefor, heating assembly, atomizer and electronic atomization device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (en) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd Filter for purifying exhaust gas and its preparation
JP2003193820A (en) * 2001-09-13 2003-07-09 Hitachi Metals Ltd Ceramic honeycomb filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (en) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd Filter for purifying exhaust gas and its preparation
JP2003193820A (en) * 2001-09-13 2003-07-09 Hitachi Metals Ltd Ceramic honeycomb filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048156A1 (en) * 2007-10-12 2009-04-16 Hitachi Metals, Ltd. Cordierite ceramic honeycomb filter and process for producing the same
US8500840B2 (en) 2007-10-12 2013-08-06 Hitachi Metals, Ltd. Cordierite-based ceramic honeycomb filter and its production method
WO2013024744A1 (en) * 2011-08-12 2013-02-21 住友化学株式会社 Honeycomb filter
JP2015029937A (en) * 2013-07-31 2015-02-16 イビデン株式会社 Honeycomb filter
US9650928B2 (en) 2013-07-31 2017-05-16 Ibiden Co., Ltd. Honeycomb filter
WO2017051806A1 (en) * 2015-09-24 2017-03-30 住友化学株式会社 Honeycomb filter, and method for producing honeycomb filter
WO2024074113A1 (en) * 2022-10-08 2024-04-11 深圳麦克韦尔科技有限公司 Porous ceramic body and preparation method therefor, heating assembly, atomizer and electronic atomization device

Similar Documents

Publication Publication Date Title
US6803086B2 (en) Porous honeycomb structure body, the use thereof and method for manufacturing the same
JP5419505B2 (en) Method for manufacturing honeycomb structure and method for manufacturing honeycomb catalyst body
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
JP4094830B2 (en) Porous honeycomb filter and manufacturing method thereof
US8512433B2 (en) Low back pressure porous honeycomb and method
EP2158956B1 (en) Honeycomb filter
EP2011775B1 (en) Ceramic structure and process for producing the same
KR100865101B1 (en) Porous honeycomb filter
JP5064432B2 (en) Honeycomb catalyst body
JP4796496B2 (en) Filter, manufacturing method thereof, and exhaust purification device
JP5095215B2 (en) Porous body manufacturing method, porous body and honeycomb structure
JP2007525612A (en) Cordierite filter with reduced pressure loss
JP4991778B2 (en) Honeycomb structure
JP2010501467A (en) Low back pressure porous cordierite ceramic honeycomb article and manufacturing method thereof
JPWO2008047558A1 (en) Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
JP2008037722A (en) Method of manufacturing honeycomb structure
ZA200306846B (en) Honeycomb ceramics filter.
CN105939982A (en) Aluminum titanate compositions, ceramic articles comprising same, and methods of manufacturing same
CN104995154A (en) Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
JP2007045686A (en) Method for manufacturing porous ceramic structure
JP2006096634A (en) Porous ceramic body
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP2014198654A (en) Honeycomb structure
JP2004250324A (en) Method for producing ceramic honeycomb structure, and cordierite raw material
JP2005324154A (en) Ceramic honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100423