WO2013024744A1 - Honeycomb filter - Google Patents

Honeycomb filter Download PDF

Info

Publication number
WO2013024744A1
WO2013024744A1 PCT/JP2012/070079 JP2012070079W WO2013024744A1 WO 2013024744 A1 WO2013024744 A1 WO 2013024744A1 JP 2012070079 W JP2012070079 W JP 2012070079W WO 2013024744 A1 WO2013024744 A1 WO 2013024744A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb filter
aluminum
powder
flow path
magnesium
Prior art date
Application number
PCT/JP2012/070079
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 岩崎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013024744A1 publication Critical patent/WO2013024744A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb filter.
  • the honeycomb filter is used as a ceramic filter for removing the collected matter from the fluid containing the collected matter, for example, for purifying exhaust gas exhausted from an internal combustion engine such as a diesel engine or a gasoline engine. Used as an exhaust gas filter.
  • a honeycomb filter has a plurality of parallel flow paths partitioned by partition walls (see, for example, Patent Document 1 below).
  • the honeycomb filter when the fluid containing the collected matter flows in from the one end side and flows out from the other end side in the honeycomb filter, the pressure is increased as the collected matter is collected in the honeycomb filter. It is difficult to sufficiently suppress the increase in loss. Therefore, it is required for the honeycomb filter to reduce the pressure loss as compared with the related art.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a honeycomb filter capable of reducing pressure loss.
  • the honeycomb filter according to the present invention is a honeycomb filter having a plurality of parallel flow paths partitioned by a porous partition wall, wherein the plurality of flow paths includes the first flow path and the first flow path.
  • the honeycomb filter according to the present invention the maximum height Rz of at least a part of the inner wall of at least one of the first flow path or the second flow path is 55.00 ⁇ m or less. It becomes easy to suppress that an inner wall prevents the movement of a fluid. Moreover, it becomes easy to suppress that the flow path is blocked by the collected matter as the collected matter is collected by the honeycomb filter. Therefore, in the honeycomb filter according to the present invention, pressure loss can be reduced.
  • the average value of the maximum height Rz on the inner wall is preferably 56.00 ⁇ m or less. In this case, the pressure loss can be further reduced.
  • the arithmetic average roughness Ra of the region of the inner wall is preferably 9.000 ⁇ m or less.
  • the inner wall of the flow path is further easily prevented from interfering with fluid movement.
  • the average value of the arithmetic average roughness Ra on the inner wall is preferably 8.000 ⁇ m or less. In this case, the pressure loss can be further reduced.
  • the partition may contain aluminum titanate. In this case, durability against thermal stress of the honeycomb filter can be improved.
  • the honeycomb filter according to the present invention can reduce the pressure loss as compared with the conventional one.
  • a honeycomb filter is suitably used as a ceramic filter for removing the collected matter from the fluid containing the collected matter.
  • FIG. 1 is a perspective view showing a honeycomb filter according to an embodiment of the present invention.
  • FIG. 2 is a view taken along the line II-II in FIG.
  • FIG. 3 is an example of the surface shape of a predetermined measurement region on the inner wall of the flow path.
  • FIG. 4 is a diagram schematically showing a pressure loss measuring device.
  • FIG. 5 is a diagram showing measurement results of pressure loss.
  • FIG. 1 is a perspective view showing a honeycomb filter according to the present embodiment
  • FIG. 2 is a view taken along the line II-II in FIG.
  • the honeycomb filter 100 is a cylindrical body having a plurality of flow paths 110 arranged in parallel to each other. Each of the plurality of flow paths 110 is partitioned by a partition wall 120 that extends parallel to the central axis of the honeycomb filter 100.
  • the flow path 110 includes a flow path (first flow path) 110a constituting a part of the flow path 110 and a flow path (second flow path) 110b constituting the remaining part of the flow path 110. Have.
  • One end of the honeycomb filter 100 in the flow channel 110a is opened as a gas inlet on one end surface 100a of the honeycomb filter 100, and the other end of the honeycomb filter 100 in the flow channel 110a is opened in the honeycomb filter 100.
  • the other end surface 100b of 100 is sealed by the sealing portion 130.
  • the end portion on one end side of the honeycomb filter 100 in the channel 110b is sealed by the sealing portion 130 on the one end surface 100a, and the end portion on the other end side of the honeycomb filter 100 in the channel 110b is on the other end surface 100b. It opens as a gas outlet.
  • the flow path 110b is adjacent to the flow path 110a.
  • the flow paths 110a and the flow paths 110b are alternately arranged to form a lattice structure.
  • the flow paths 110a and 110b are perpendicular to both end faces of the honeycomb filter 100, and are arranged in a square arrangement when viewed from the end face, that is, the central axes of the flow paths 110a and 110b are respectively located at the apexes of the square. .
  • vertical to the axial direction (longitudinal direction) of the said flow path in flow path 110a, 110b is square shape, for example.
  • the maximum height Rz of at least a part of the inner wall of at least one of the flow channel 110a or the flow channel 110b is 55.00 ⁇ m or less.
  • the maximum height Rz of at least a part of the region A (see FIG. 2) in the inner wall 115a of the flow channel 110a that is a flow channel on the gas inflow side is 55.00 ⁇ m or less.
  • the maximum height Rz of at least a part of the region B (see FIG. 2) in the inner wall 115b of the flow channel 110b that is the flow channel on the gas outflow side may be 55.00 ⁇ m or less.
  • the maximum height Rz refers to the maximum height based on JIS B 0601: 2001. From the viewpoint of further reducing the pressure loss, the maximum height Rz is preferably 50.00 ⁇ m or less, and more preferably 48.00 ⁇ m or less.
  • the positions of the area A and the area B are not particularly limited, and may be the center position of the honeycomb filter 100 in the axial direction of the flow path 110, and may be located on the one end face 100a side or the other end face 100b side from the center position. It may be.
  • the size of the areas A and B is, for example, 298 ⁇ m ⁇ 224 ⁇ m.
  • Each of the flow paths 110 may include a plurality of regions having a maximum height Rz of 55.00 ⁇ m or less on one inner wall, and an inner wall having a region having a maximum height Rz of 55.00 ⁇ m or less. You may have two or more.
  • the average value of the maximum height Rz measured on at least one inner wall of the flow channel 110a or the flow channel 110b is preferably 56.00 ⁇ m or less, more preferably 55.00 ⁇ m or less, from the viewpoint of further reducing the pressure loss. More preferably, it is 0.000 ⁇ m or less.
  • the average value of the maximum height Rz is the maximum of the three regions when three regions located along the axial direction of the flow channel are arbitrarily selected from one inner wall of the flow channel to be measured. The average value of height Rz is said.
  • the arithmetic average roughness Ra of the above region that gives the maximum height Rz of 55.00 ⁇ m or less is preferably 9.000 ⁇ m or less, more preferably 8.000 ⁇ m or less, and 7.500 ⁇ m or less. Further preferred.
  • the arithmetic average roughness Ra refers to the arithmetic average roughness based on JIS B 0601: 2001.
  • the average value of the arithmetic average roughness Ra measured on at least one inner wall of the channel 110a or the channel 110b is preferably 8.000 ⁇ m or less, and more preferably 7.500 ⁇ m or less.
  • the average value of the arithmetic average roughness Ra means that the three regions located along the axial direction of the flow channel are arbitrarily selected from the inner wall of one of the flow channels to be measured.
  • the average value of arithmetic average roughness Ra is said.
  • the average value of the maximum height Rz is 56.00 ⁇ m or less and the arithmetic average roughness Ra on at least one inner wall of the flow channel 110a or the flow channel 110b. Is preferably 8.000 ⁇ m or less.
  • the length of the honeycomb filter 100 in the longitudinal direction of the flow paths 110a and 110b is, for example, 30 to 300 mm.
  • the outer diameter of the honeycomb filter 100 is, for example, 10 to 300 mm.
  • the inner diameter (the length of one side of the square) of the cross section perpendicular to the axial direction of the flow paths 110a, 110b is, for example, 0.5 to 1.2 mm.
  • the average thickness (cell wall thickness) of the partition wall 120 is, for example, 0.1 to 0.5 mm.
  • the partition wall 120 is porous, and includes, for example, porous ceramics (porous ceramic sintered body).
  • the partition wall 120 has a structure that allows fluid (for example, exhaust gas containing fine particles such as soot) to pass therethrough. Specifically, a large number of communication holes (flow channels) through which fluid can pass are formed in the partition wall 120.
  • the porosity (open porosity) of the partition wall 120 is, for example, 30 to 70% by volume.
  • the pore diameter (pore diameter) of the partition wall 120 is, for example, 5 to 30 ⁇ m.
  • the porosity and the pore diameter of the partition wall 120 can be adjusted by the particle diameter of the raw material, the added amount of the pore forming agent, the kind of the pore forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
  • the partition wall 120 may contain aluminum titanate, and may further contain magnesium or silicon.
  • the partition 120 is made of, for example, porous ceramics mainly made of an aluminum titanate crystal. “Mainly composed of an aluminum titanate-based crystal” means that the main crystal phase constituting the aluminum titanate-based ceramic fired body is an aluminum titanate-based crystal phase. An aluminum titanate crystal phase, an aluminum magnesium titanate crystal phase, or the like may be used.
  • the composition formula of the partition wall 120 is, for example, Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is preferably 0.03 or more. 0.03-0.20 is more preferable, and 0.03-0.18 is still more preferable.
  • the partition 120 may contain a trace component derived from a raw material or a trace component inevitably included in the manufacturing process.
  • the partition 120 may contain the glass phase derived from a silicon source powder.
  • the glass phase refers to an amorphous phase in which SiO 2 is the main component.
  • the glass phase content is preferably 4% by mass or less.
  • an aluminum titanate-based ceramic fired body that satisfies the pore characteristics required for a ceramic filter such as a particulate filter is easily obtained.
  • the glass phase content is preferably 2% by mass or more.
  • the partition wall 120 may include a phase (crystal phase) other than the aluminum titanate crystal phase or the glass phase.
  • the phase other than the aluminum titanate-based crystal phase include a phase derived from a raw material used for producing an aluminum titanate-based ceramic fired body. More specifically, the phase derived from the raw material is a phase derived from an aluminum source powder, a titanium source powder and / or a magnesium source powder that remains without forming an aluminum titanate-based crystal phase during the manufacture of the honeycomb filter.
  • the phase derived from the raw material include phases such as alumina and titania.
  • the crystal phase forming the partition wall 120 can be confirmed by an X-ray diffraction spectrum.
  • the honeycomb filter 100 is suitable as a particulate filter that collects a collection object such as soot contained in exhaust gas from an internal combustion engine such as a diesel engine or a gasoline engine.
  • a collection object such as soot contained in exhaust gas from an internal combustion engine such as a diesel engine or a gasoline engine.
  • the gas G supplied from the one end face 100a to the flow path 110a passes through the communication hole in the partition wall 120 and reaches the adjacent flow path 110b, and the other end face 100b. Discharged from.
  • the collected matter in the gas G is collected on the surface of the partition wall 120 or in the communication hole and removed from the gas G, whereby the honeycomb filter 100 functions as a filter.
  • the partition 120 is not limited to including aluminum titanate, and may include ceramics such as cordierite, silicon carbide, mullite, or a metal substance.
  • the cross section of the flow path perpendicular to the axial direction of the flow path in the honeycomb filter 100 is not limited to a rectangular shape such as a square shape, but a hexagonal shape, an octagonal shape, a triangular shape, a circular shape, an elliptical shape, or the like. It may be.
  • the honey-comb filter 100 is not restricted to a cylindrical body, A cube, a rectangular parallelepiped, etc. may be sufficient.
  • the manufacturing method of the honeycomb filter 100 includes, for example, (a) a raw material preparation step of preparing a raw material mixture containing the ceramic powder and additives, and (b) forming a raw material mixture to obtain a formed body having a flow path. A molding step, and (c) a firing step for firing the molded body, and (d) a sealing step for sealing one end of each flow path between the molding step and the firing step or after the firing step. .
  • the ceramic powder and the additive are mixed and then kneaded to prepare a raw material mixture.
  • the additive include a hole forming agent (pore forming agent), a binder, a plasticizer, a dispersant, and a solvent.
  • the ceramic powder includes at least an aluminum source powder and a titanium source powder, and may further include a magnesium source powder and a silicon source powder.
  • the aluminum source powder is a powder of a compound that becomes an aluminum component constituting the partition wall.
  • Examples of the aluminum source powder include alumina (aluminum oxide) powder.
  • Examples of the crystal type of alumina include ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type, and may be indefinite (amorphous).
  • the crystal type of alumina is preferably ⁇ type.
  • the aluminum source powder may be a powder of a compound that is led to alumina by firing alone in air.
  • a compound that is led to alumina by firing alone in air.
  • examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, metal aluminum and the like.
  • the aluminum salt may be an aluminum inorganic salt with an inorganic acid or an aluminum organic salt with an organic acid.
  • the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate; aluminum carbonates such as ammonium carbonate aluminum and the like.
  • the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
  • aluminum alkoxide examples include, for example, aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide and the like.
  • Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous).
  • Examples of amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
  • the aluminum source powder may be one type or two or more types.
  • the aluminum source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
  • the particle size (center particle size, D50) equivalent to a volume-based cumulative percentage of 50% measured by a laser diffraction method is preferably 20 to 60 ⁇ m.
  • D50 of the aluminum source powder is more preferably 25 to 60 ⁇ m.
  • titanium source powder is a powder of a compound that becomes a titanium component constituting the partition walls, and is, for example, a titanium oxide powder.
  • Titanium oxide is, for example, titanium (IV) oxide, titanium (III) oxide, or titanium (II) oxide, and preferably titanium (IV) oxide.
  • the crystal forms of titanium (IV) oxide are anatase, rutile, and brookite.
  • the titanium oxide may be amorphous (amorphous).
  • the titanium oxide is more preferably anatase type or rutile type titanium (IV) oxide.
  • the titanium source powder may be a powder of a compound that is led to titania (titanium oxide) by firing alone in the air.
  • titania titanium oxide
  • titanium salt titanium alkoxide, titanium hydroxide, titanium nitride, titanium sulfide, titanium It is a metal.
  • titanium salt examples include titanium trichloride, titanium tetrachloride, titanium (IV) sulfide, titanium sulfide (VI), and titanium sulfate (IV).
  • Titanium alkoxides include, for example, titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) t-butoxide, titanium (IV) isobutoxide, titanium (IV) n-propoxide, titanium (IV) tetraisopropoxide, And these chelating products.
  • the titanium source powder may be one type or two or more types.
  • the titanium source powder may contain a trace component derived from the raw material or unavoidably contained in the production process.
  • the volume-based cumulative particle diameter (D50) measured by laser diffraction method is preferably 0.1 to 25 ⁇ m.
  • the D50 of the titanium source powder is more preferably 1 to 20 ⁇ m in order to achieve a sufficiently low firing shrinkage rate.
  • the titanium source powder may show a bimodal particle size distribution.
  • the particle size of the particles forming the peak having the larger particle size measured by the laser diffraction method is preferably 20 to 50 ⁇ m.
  • the mode diameter of the titanium source powder measured by the laser diffraction method is usually 0.1 to 60 ⁇ m.
  • the molar ratio of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania) in the raw material mixture is preferably 35:65 to 45 : 55, more preferably 40:60 to 45:55.
  • titanium source powder excessively with respect to the aluminum source powder, it becomes possible to more effectively reduce the firing shrinkage rate of the molded body of the raw material mixture.
  • the raw material mixture may further contain a magnesium source powder.
  • the obtained aluminum titanate ceramic fired body is a fired body containing aluminum magnesium titanate crystals.
  • the magnesium source powder is not only magnesia (magnesium oxide) powder but also a powder of a compound introduced into magnesia by firing alone in air. Such compounds are, for example, magnesium salts, magnesium alkoxides, magnesium hydroxide, magnesium nitride, and metallic magnesium.
  • Magnesium salts include, for example, magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, magnesium stearate, magnesium salicylate , Magnesium myristate, magnesium gluconate, magnesium dimethacrylate, and magnesium benzoate.
  • magnesium alkoxide examples include magnesium methoxide and magnesium ethoxide.
  • the magnesium source powder a powder of a compound serving both as a magnesium source and an aluminum source can be used.
  • a compound is, for example, magnesia spinel (MgAl 2 O 4 ).
  • the magnesium source powder When using a powder of a compound that serves as both a magnesium source and an aluminum source as the magnesium source powder, it is included in the amount of Al 2 O 3 (alumina) equivalent of the aluminum source powder and a compound powder that serves as both the magnesium source and the aluminum source.
  • the molar ratio between the total amount of Al 2 O 3 (alumina) equivalent of the Al component and the amount of TiO 2 (titania) equivalent of the titanium source powder is adjusted to be within the above range in the raw material mixture.
  • the magnesium source powder may be one type or two or more types.
  • the magnesium source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
  • the particle size (D50) equivalent to a volume-based cumulative percentage of 50% as measured by a laser diffraction method is preferably 0.5 to 30 ⁇ m.
  • the D50 of the magnesium source powder is more preferably 3 to 20 ⁇ m from the viewpoint of reducing the firing shrinkage of the molded body.
  • the content of magnesium source powder in terms of MgO (magnesia) in the raw material mixture is based on the total amount of aluminum source powder in terms of Al 2 O 3 (alumina) and titanium source powder in terms of TiO 2 (titania).
  • the molar ratio is preferably 0.03 to 0.15, more preferably 0.03 to 0.12.
  • the raw material mixture may further contain a silicon source powder.
  • the silicon source powder is a powder of a compound that becomes a silicon component and is contained in the aluminum titanate ceramic fired body. By using the silicon source powder in combination, a heat-resistant aluminum titanate ceramic fired body is obtained. Is possible.
  • the silicon source powder is, for example, a powder of silicon oxide (silica) such as silicon dioxide or silicon monoxide.
  • the silicon source powder may be a powder of a compound led to silica by firing alone in air.
  • Such compounds are, for example, silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, glass frit, preferably feldspar, glass frit, industrially Glass frit is more preferable because it is easily available and has a stable composition. Glass frit refers to flakes or powdery glass obtained by pulverizing glass. It is also preferable to use a powder made of a mixture of feldspar and glass frit as the silicon source powder.
  • the yield point of the glass frit is 600 ° C. or higher from the viewpoint of further improving the thermal decomposition resistance of the obtained aluminum titanate ceramic fired body.
  • the yield point of the glass frit is determined by measuring the expansion of the glass frit from a low temperature using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis). Is defined.
  • a general silicate glass containing silicate [SiO 2 ] as a main component (50 mass% or more in all components) can be used.
  • the glass constituting the glass frit includes, as other components, alumina [Al 2 O 3 ], sodium oxide [Na 2 O], potassium oxide [K 2 O], calcium oxide [ CaO], magnesia [MgO] and the like may be included.
  • the glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself.
  • the silicon source powder may be one type or two or more types.
  • the silicon source powder may contain a trace component derived from the raw material or inevitably contained in the production process.
  • the particle size (D50) equivalent to a 50% cumulative percentage on a volume basis measured by a laser diffraction method is preferably 0.5 to 30 ⁇ m.
  • the D50 of the silicon source powder is more preferably 1 to 20 ⁇ m in order to obtain a fired body having higher mechanical strength by further improving the filling factor of the molded body.
  • the content of the silicon source powder in the raw material mixture is the sum of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania).
  • the amount is usually 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass in terms of SiO 2 (silica) with respect to 100 parts by mass.
  • a compound containing two or more metal elements among titanium, aluminum, silicon and magnesium as a raw material powder such as a composite oxide such as magnesia spinel (MgAl 2 O 4 )
  • the compound can be considered to be the same as the raw material in which the respective metal source compounds are mixed. Based on such an idea, the content of the aluminum source, the titanium source, the magnesium source and the silicon source in the raw material mixture is adjusted within the above range.
  • the raw material mixture may contain aluminum titanate or aluminum magnesium titanate.
  • the aluminum magnesium titanate when aluminum magnesium titanate is used as a constituent of the raw material mixture, the aluminum magnesium titanate contains a titanium source, an aluminum source and magnesium. Corresponds to a raw material mixture that also has a source.
  • Aluminum titanate or aluminum magnesium titanate may be prepared from a honeycomb filter obtained by this production method.
  • the honeycomb filter obtained by the present manufacturing method is damaged, the damaged honeycomb filter or its fragments can be pulverized and used.
  • the powder obtained by pulverization can be aluminum magnesium titanate powder.
  • the pore forming agent those formed by a material that disappears at a temperature lower than the temperature at which the molded body is degreased and fired in the firing step can be used.
  • the hole forming agent disappears due to combustion or the like.
  • a space is created at the location where the pore-forming agent was present, and the ceramic powder located between the spaces shrinks during firing, so that a communication hole through which fluid can flow is formed in the partition wall. Can be formed.
  • the pore-forming agent is, for example, corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, coral starch, canna starch, potato starch (potato starch).
  • the average particle diameter of the pore forming agent is, for example, 5 to 25 ⁇ m.
  • the content of the hole forming agent is, for example, 1 to 25 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • the binder is, for example, celluloses such as methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax.
  • Content of the binder in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of ceramic powder, for example.
  • plasticizer examples include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid, and stearic acid; stearic acid metal salts such as Al stearate, and polyoxyalkylene alkyl ethers.
  • the content of the plasticizer in the raw material mixture is, for example, 0 to 10 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; interfaces such as ammonium polycarboxylate It is an activator.
  • the content of the dispersant in the raw material mixture is, for example, 0 to 20 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • the solvent is, for example, water, and ion-exchanged water is preferable in terms of few impurities.
  • the content of the solvent is, for example, 10 to 100 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • a ceramic molded body having a predetermined shape having a honeycomb structure is obtained.
  • a so-called extrusion molding method in which the raw material mixture is extruded from a die while being kneaded by a single screw extruder can be employed.
  • Step (c): Firing step In the step (c), degreasing (calcination) for removing a hole forming agent or the like contained in the molded body (in the raw material mixture) may be performed before firing the molded body. Degreasing is performed in an atmosphere having an oxygen concentration of 0.1% or less.
  • % used as a unit of oxygen concentration means “volume%”.
  • an atmosphere examples include an inert gas atmosphere such as nitrogen gas and argon gas, a reducing gas atmosphere such as carbon monoxide gas and hydrogen gas, and a vacuum.
  • firing may be performed in an atmosphere with a low water vapor partial pressure, or steaming with charcoal may reduce the oxygen concentration.
  • the maximum temperature for degreasing is preferably 700 to 1100 ° C, more preferably 800 to 1000 ° C.
  • the maximum degreasing temperature is preferably 700 to 1100 ° C, more preferably 800 to 1000 ° C.
  • Degreasing is used for normal firing of tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. A similar furnace is used. Degreasing may be performed batchwise or continuously. Moreover, degreasing may be performed by a stationary method or a fluid method.
  • the time required for degreasing may be a time sufficient for a part of the organic component contained in the ceramic molded body to disappear, and preferably 90 to 99% by mass of the organic component contained in the ceramic molded body. It is time to disappear. Specifically, although it varies depending on the amount of the raw material mixture, the type of furnace used for degreasing, temperature conditions, atmosphere, etc., the time for keeping at the maximum temperature is usually 1 minute to 10 hours, preferably 1 to 7 hours. is there.
  • the ceramic molded body is fired after the above degreasing.
  • the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
  • a calcination temperature is 1650 degrees C or less normally, Preferably it is 1550 degrees C or less.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 to 500 ° C./hour.
  • the silicon source powder it is preferable to provide a step of holding at a temperature range of 1100 to 1300 ° C. for 3 hours or more before the firing step. Thereby, melting and diffusion of the silicon source powder can be promoted.
  • Calcination is preferably performed in an atmosphere having an oxygen concentration of 1 to 6%.
  • oxygen concentration is preferably 1% or more because carbide (soot) derived from organic components does not remain in the obtained aluminum titanate-based ceramic fired body.
  • the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder it may be fired in an inert gas such as nitrogen gas or argon gas, or carbon monoxide You may bake in reducing gas, such as gas and hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • an inert gas such as nitrogen gas or argon gas, or carbon monoxide
  • reducing gas such as gas and hydrogen gas.
  • Firing is usually performed using conventional equipment such as a tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. Done. Firing may be performed batchwise or continuously. Moreover, baking may be performed by a stationary type or may be performed by a fluid type.
  • the firing time may be a time sufficient for the ceramic molded body to transition to the aluminum titanate-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but usually 10 minutes to 24 hours.
  • Step (d): Sealing step] Step (d) is performed between step (b) and step (c) or after step (c).
  • step (d) between step (b) and step (c)
  • the sealing material is fired together with the ceramic molded body to obtain a sealing portion that seals one end of the flow path.
  • the sealing material the same mixture as the raw material mixture can be used.
  • a honeycomb filter can be obtained through the above steps.
  • the honeycomb filter has a shape that substantially maintains the shape of the molded body immediately after the molding in the step (b), but after the step (b), the step (c) or the step (d), a grinding process or the like is performed, It can also be processed into a desired shape.
  • Example 1 Raw material powder of aluminum magnesium titanate (Al 2 O 3 powder, TiO 2 powder, MgO powder), SiO 2 powder, ceramic powder having a composite phase of aluminum magnesium titanate, alumina and aluminosilicate glass (composition formula at the time of preparation) : 41.4Al 2 O 3 -49.9TiO 2 -5.4MgO-3.3SiO 2 , where the numerical values represent molar ratios), pore formers, organic binders, lubricants, plasticizers, dispersants and water
  • a raw material mixture containing (solvent) was prepared. The content of main components in the raw material mixture was adjusted to the following values.
  • a columnar honeycomb filter (DPF) having the structure shown in FIGS. 1 and 2 was produced by extruding after kneading the above raw material mixture.
  • the aluminum titanate conversion rate (AT conversion rate) of the honeycomb filter of Example 1 was measured and found to be 100%.
  • AT conversion rate (%) I AT / (I T + I AT ) ⁇ 100 (1)
  • the length of the honeycomb filter in the axial direction of the flow path was 152 mm.
  • the outer diameter of the honeycomb filter was 144 mm.
  • the density of the flow path (cell density) was 300 cpsi.
  • the cross-sectional inner diameter (the length of one side of the square) of the flow path was 1.2 mm.
  • the thickness of the partition between the flow paths was 0.30 mm.
  • the porosity of the partition walls was 45% by volume, and the pore diameter of the partition walls was 15 ⁇ m.
  • a honeycomb filter (DPF) having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared.
  • the length of the honeycomb filter in the axial direction of the flow path was 140 mm.
  • the outer diameter of the honeycomb filter was 144 mm.
  • the partition wall thickness between the channels was 0.33 mm.
  • Example 2 A honeycomb filter (DPF) having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared.
  • the length of the honeycomb filter in the axial direction of the flow path was 152 mm.
  • the outer diameter of the honeycomb filter was 144 mm.
  • the thickness of the partition between the flow paths was 0.28 mm.
  • ⁇ Surface roughness measurement> One flow path from each honeycomb filter was selected as a measurement target. Three measurement regions were arbitrarily selected from one inner wall of the flow channel to be measured, and the maximum height Rz and the arithmetic average roughness Ra of each measurement region were measured in accordance with JIS B 0601: 2001. The surface shape of each measurement region was measured with a Keyence laser microscope VK-8500. An example of the surface shape of the measurement region is shown in FIG. The size of the measurement area was 298 ⁇ m ⁇ 224 ⁇ m in all cases. Table 1 shows the measurement results of the maximum height Rz and the arithmetic average roughness Ra.
  • FIG. 4 shows a schematic diagram of a pressure loss measuring apparatus.
  • a soot generator (trade name: REXS, manufactured by Matter Engineering) 200 and a large compressor device 210 were used.
  • One end face of the honeycomb filter was connected to the soot generating device 200, and the compressor device 210 was connected to a pipe connecting the honeycomb filter and the soot generating device 200.
  • soot generator 200 propane gas was supplied at a flow rate of 2 L / min, nitrogen gas was supplied at a flow rate of 2 L / min, and air was supplied at a flow rate of 1000 L / min.
  • the soot generated from the soot generator 200 is artificial soot generated by incomplete combustion of propane gas.
  • the average particle diameter of soot is controlled by the air flow rate, oxygen concentration, and the like. can do. In the measurement, the average particle diameter of the soot was adjusted to about 90 nm.
  • the flow rate of air containing soot was adjusted to 200 Nm 3 h ⁇ 1 by the compressor device 210.
  • FIG. 5 shows the results of measuring the pressure loss with the increase in the soot deposition amount using the honeycomb filters of Example 1 and Comparative Examples 1 and 2. As shown in FIG. 5, in Example 1, it is confirmed that the pressure loss value is smaller than in Comparative Examples 1 and 2. Moreover, in Example 1, it is confirmed that the increase amount of the pressure loss accompanying the increase in the amount of soot deposition is small compared with Comparative Examples 1 and 2.
  • DESCRIPTION OF SYMBOLS 100 ... Honeycomb filter, 110 ... Channel, 110a ... Channel (first channel), 110b ... Channel (second channel), 115a, 115b ... Inner wall, 120 ... Partition, A, B ... Area.

Abstract

 A honeycomb filter (100) comprising a plurality of parallel flow channels (110) divided by porous partition walls (120), the plurality of flow channels (110) comprising flow channels (110a) and other flow channels (110b) adjacent thereto, wherein the end sections of the flow channels (110a) are sealed at one side of the honeycomb filter (100), and the end sections of the other flow channels (110b) are sealed at the other side of the honeycomb filter (100), and the maximum height (Rz) of at least one among a region (A) in the partition walls (115a) of the flow channels (110a) and a region (B) in the partition walls (115b) of the other flow channels (110b) is not more than 55.00μm.

Description

ハニカムフィルタHoneycomb filter
 本発明は、ハニカムフィルタに関する。 The present invention relates to a honeycomb filter.
 ハニカムフィルタは、被捕集物を含む流体から当該被捕集物を除去するセラミックスフィルタとして用いられており、例えば、ディーゼルエンジンやガソリンエンジン等の内燃機関から排気される排気ガスを浄化するための排ガスフィルタ等として用いられている。このようなハニカムフィルタは、隔壁により仕切られた互いに平行な複数の流路を有している(例えば、下記特許文献1参照)。 The honeycomb filter is used as a ceramic filter for removing the collected matter from the fluid containing the collected matter, for example, for purifying exhaust gas exhausted from an internal combustion engine such as a diesel engine or a gasoline engine. Used as an exhaust gas filter. Such a honeycomb filter has a plurality of parallel flow paths partitioned by partition walls (see, for example, Patent Document 1 below).
特開2005-270755号公報JP 2005-270755 A
 しかしながら、従来のハニカムフィルタでは、被捕集物を含む流体が当該ハニカムフィルタにおいて一端側から流入して他端側から流出する場合において、ハニカムフィルタに被捕集物が捕集されるに伴い圧力損失が増加することを充分に抑制することが困難である。そのため、ハニカムフィルタに対しては、従来に比して圧力損失を低減することが求められている。 However, in the conventional honeycomb filter, when the fluid containing the collected matter flows in from the one end side and flows out from the other end side in the honeycomb filter, the pressure is increased as the collected matter is collected in the honeycomb filter. It is difficult to sufficiently suppress the increase in loss. Therefore, it is required for the honeycomb filter to reduce the pressure loss as compared with the related art.
 本発明は、このような実情に鑑みてなされたものであり、圧力損失を低減することが可能なハニカムフィルタを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a honeycomb filter capable of reducing pressure loss.
 すなわち、本発明に係るハニカムフィルタは、多孔質の隔壁により仕切られた互いに平行な複数の流路を有するハニカムフィルタであって、複数の流路が、第1の流路と、当該第1の流路に隣接する第2の流路とを有しており、第1の流路におけるハニカムフィルタの一端側の端部が封口されており、第2の流路におけるハニカムフィルタの他端側の端部が封口されており、第1の流路又は第2の流路の少なくとも一方の内壁における少なくとも一部の領域の最大高さRzが55.00μm以下である。 That is, the honeycomb filter according to the present invention is a honeycomb filter having a plurality of parallel flow paths partitioned by a porous partition wall, wherein the plurality of flow paths includes the first flow path and the first flow path. A second flow path adjacent to the flow path, the end of one end of the honeycomb filter in the first flow path is sealed, and the other end side of the honeycomb filter in the second flow path The end is sealed, and the maximum height Rz of at least a part of the inner wall of at least one of the first flow path or the second flow path is 55.00 μm or less.
 ところで、被捕集物を含む流体が流通する流路において、当該流路の内壁が最大高さRzの大きい領域を有していると、当該領域において流体の移動が妨げられると共に、ハニカムフィルタに被捕集物が捕集されるに伴い被捕集物により流路が塞がれ易くなる。一方、本発明に係るハニカムフィルタでは、第1の流路又は第2の流路の少なくとも一方の内壁における少なくとも一部の領域の最大高さRzが55.00μm以下であることにより、流路の内壁が流体の移動を妨げることが抑制され易くなる。また、ハニカムフィルタに被捕集物が捕集されるに伴い被捕集物により流路が塞がれることが抑制され易くなる。したがって、本発明に係るハニカムフィルタでは、圧力損失を低減することができる。 By the way, in the flow path through which the fluid containing the trapped material flows, if the inner wall of the flow path has a region having a large maximum height Rz, the movement of the fluid is prevented in the region, and the honeycomb filter As the collection object is collected, the flow path is easily blocked by the collection object. On the other hand, in the honeycomb filter according to the present invention, the maximum height Rz of at least a part of the inner wall of at least one of the first flow path or the second flow path is 55.00 μm or less. It becomes easy to suppress that an inner wall prevents the movement of a fluid. Moreover, it becomes easy to suppress that the flow path is blocked by the collected matter as the collected matter is collected by the honeycomb filter. Therefore, in the honeycomb filter according to the present invention, pressure loss can be reduced.
 上記内壁における最大高さRzの平均値は、56.00μm以下であることが好ましい。この場合、圧力損失を更に低減することができる。 The average value of the maximum height Rz on the inner wall is preferably 56.00 μm or less. In this case, the pressure loss can be further reduced.
 上記内壁の上記領域の算術平均粗さRaは、9.000μm以下であることが好ましい。この場合、流路の内壁が流体の移動を妨げることが更に抑制され易くなる。また、ハニカムフィルタに被捕集物が捕集されるに伴い被捕集物により流路が塞がれることが更に抑制され易くなる。したがって、圧力損失を更に低減することができる。 The arithmetic average roughness Ra of the region of the inner wall is preferably 9.000 μm or less. In this case, the inner wall of the flow path is further easily prevented from interfering with fluid movement. Moreover, it becomes easier to further suppress the flow path from being blocked by the collected matter as the collected matter is collected by the honeycomb filter. Therefore, the pressure loss can be further reduced.
 上記内壁における算術平均粗さRaの平均値は、8.000μm以下であることが好ましい。この場合、圧力損失を更に低減することができる。 The average value of the arithmetic average roughness Ra on the inner wall is preferably 8.000 μm or less. In this case, the pressure loss can be further reduced.
 また、隔壁はチタン酸アルミニウムを含んでいてもよい。この場合、ハニカムフィルタの熱応力に対する耐久性を向上させることができる。 Moreover, the partition may contain aluminum titanate. In this case, durability against thermal stress of the honeycomb filter can be improved.
 本発明に係るハニカムフィルタによれば、従来に比して圧力損失を低減することができる。このようなハニカムフィルタは、被捕集物を含む流体から当該被捕集物を除去するセラミックスフィルタとして好適に用いられる。 The honeycomb filter according to the present invention can reduce the pressure loss as compared with the conventional one. Such a honeycomb filter is suitably used as a ceramic filter for removing the collected matter from the fluid containing the collected matter.
図1は、本発明の一実施形態に係るハニカムフィルタを示す斜視図である。FIG. 1 is a perspective view showing a honeycomb filter according to an embodiment of the present invention. 図2は、図1のII-II矢視図である。FIG. 2 is a view taken along the line II-II in FIG. 図3は、流路の内壁における所定の測定領域の表面形状の例である。FIG. 3 is an example of the surface shape of a predetermined measurement region on the inner wall of the flow path. 図4は、圧力損失の測定装置を模式的に示す図である。FIG. 4 is a diagram schematically showing a pressure loss measuring device. 図5は、圧力損失の測定結果を示す図である。FIG. 5 is a diagram showing measurement results of pressure loss.
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
<ハニカムフィルタ>
 図1は、本実施形態に係るハニカムフィルタを示す斜視図であり、図2は、図1のII-II矢視図である。ハニカムフィルタ100は、図1,2に示すように、互いに平行に配置された複数の流路110を有する円柱体である。複数の流路110のそれぞれは、ハニカムフィルタ100の中心軸に平行に伸びる隔壁120により仕切られている。流路110は、流路110のうちの一部を構成する流路(第1の流路)110aと、流路110のうちの残部を構成する流路(第2の流路)110bとを有している。
<Honeycomb filter>
FIG. 1 is a perspective view showing a honeycomb filter according to the present embodiment, and FIG. 2 is a view taken along the line II-II in FIG. As shown in FIGS. 1 and 2, the honeycomb filter 100 is a cylindrical body having a plurality of flow paths 110 arranged in parallel to each other. Each of the plurality of flow paths 110 is partitioned by a partition wall 120 that extends parallel to the central axis of the honeycomb filter 100. The flow path 110 includes a flow path (first flow path) 110a constituting a part of the flow path 110 and a flow path (second flow path) 110b constituting the remaining part of the flow path 110. Have.
 流路110aにおけるハニカムフィルタ100の一端側の端部は、ハニカムフィルタ100の一端面100aにおいてガス流入口として開口しており、流路110aにおけるハニカムフィルタ100の他端側の端部は、ハニカムフィルタ100の他端面100bにおいて封口部130により封口されている。一方、流路110bにおけるハニカムフィルタ100の一端側の端部は、一端面100aにおいて封口部130により封口されており、流路110bにおけるハニカムフィルタ100の他端側の端部は、他端面100bにおいてガス流出口として開口している。 One end of the honeycomb filter 100 in the flow channel 110a is opened as a gas inlet on one end surface 100a of the honeycomb filter 100, and the other end of the honeycomb filter 100 in the flow channel 110a is opened in the honeycomb filter 100. The other end surface 100b of 100 is sealed by the sealing portion 130. On the other hand, the end portion on one end side of the honeycomb filter 100 in the channel 110b is sealed by the sealing portion 130 on the one end surface 100a, and the end portion on the other end side of the honeycomb filter 100 in the channel 110b is on the other end surface 100b. It opens as a gas outlet.
 流路110bは、流路110aに隣接している。ハニカムフィルタ100では、流路110aと流路110bとが交互に配置されて格子構造が形成されている。流路110a,110bは、ハニカムフィルタ100の両端面に垂直であり、端面から見て正方形配置、すなわち、流路110a,110bの中心軸が、正方形の頂点にそれぞれ位置するように配置されている。流路110a,110bにおける当該流路の軸方向(長手方向)に垂直な断面は、例えば正方形状である。 The flow path 110b is adjacent to the flow path 110a. In the honeycomb filter 100, the flow paths 110a and the flow paths 110b are alternately arranged to form a lattice structure. The flow paths 110a and 110b are perpendicular to both end faces of the honeycomb filter 100, and are arranged in a square arrangement when viewed from the end face, that is, the central axes of the flow paths 110a and 110b are respectively located at the apexes of the square. . The cross section perpendicular | vertical to the axial direction (longitudinal direction) of the said flow path in flow path 110a, 110b is square shape, for example.
 流路110a又は流路110bの少なくとも一方の内壁における少なくとも一部の領域の最大高さRzは、55.00μm以下である。例えば、ガス流入側の流路である流路110aの内壁115aにおける少なくとも一部の領域A(図2参照)の最大高さRzが55.00μm以下である。さらに、ガス流出側の流路である流路110bの内壁115bにおける少なくとも一部の領域B(図2参照)の最大高さRzが55.00μm以下であってもよい。最大高さRzは、JIS B 0601:2001に基づく最大高さをいう。最大高さRzは、圧力損失を更に低減する観点から、50.00μm以下が好ましく、48.00μm以下がより好ましい。 The maximum height Rz of at least a part of the inner wall of at least one of the flow channel 110a or the flow channel 110b is 55.00 μm or less. For example, the maximum height Rz of at least a part of the region A (see FIG. 2) in the inner wall 115a of the flow channel 110a that is a flow channel on the gas inflow side is 55.00 μm or less. Furthermore, the maximum height Rz of at least a part of the region B (see FIG. 2) in the inner wall 115b of the flow channel 110b that is the flow channel on the gas outflow side may be 55.00 μm or less. The maximum height Rz refers to the maximum height based on JIS B 0601: 2001. From the viewpoint of further reducing the pressure loss, the maximum height Rz is preferably 50.00 μm or less, and more preferably 48.00 μm or less.
 領域A及び領域Bの位置は特に限定されず、流路110の軸方向におけるハニカムフィルタ100の中央の位置であってもよく、当該中央の位置よりも一端面100a側又は他端面100b側の位置であってもよい。領域A,Bの大きさは、例えば298μm×224μmである。また、流路110のそれぞれは、最大高さRzが55.00μm以下である領域を一の内壁に複数有していてもよく、最大高さRzが55.00μm以下である領域を有する内壁を複数有していてもよい。 The positions of the area A and the area B are not particularly limited, and may be the center position of the honeycomb filter 100 in the axial direction of the flow path 110, and may be located on the one end face 100a side or the other end face 100b side from the center position. It may be. The size of the areas A and B is, for example, 298 μm × 224 μm. Each of the flow paths 110 may include a plurality of regions having a maximum height Rz of 55.00 μm or less on one inner wall, and an inner wall having a region having a maximum height Rz of 55.00 μm or less. You may have two or more.
 流路110a又は流路110bの少なくとも一方の内壁において測定される最大高さRzの平均値は、圧力損失を更に低減する観点から、56.00μm以下が好ましく、55.00μm以下がより好ましく、54.00μm以下が更に好ましい。最大高さRzの平均値とは、流路の軸方向に沿って位置する3箇所の領域を、測定対象の流路の一の内壁から任意に選択した場合において、当該3箇所の領域における最大高さRzの平均値をいう。 The average value of the maximum height Rz measured on at least one inner wall of the flow channel 110a or the flow channel 110b is preferably 56.00 μm or less, more preferably 55.00 μm or less, from the viewpoint of further reducing the pressure loss. More preferably, it is 0.000 μm or less. The average value of the maximum height Rz is the maximum of the three regions when three regions located along the axial direction of the flow channel are arbitrarily selected from one inner wall of the flow channel to be measured. The average value of height Rz is said.
 55.00μm以下の最大高さRzを与える上記領域の算術平均粗さRaは、圧力損失を更に低減する観点から、9.000μm以下が好ましく、8.000μm以下がより好ましく、7.500μm以下が更に好ましい。算術平均粗さRaは、JIS B 0601:2001に基づく算術平均粗さをいう。 From the viewpoint of further reducing the pressure loss, the arithmetic average roughness Ra of the above region that gives the maximum height Rz of 55.00 μm or less is preferably 9.000 μm or less, more preferably 8.000 μm or less, and 7.500 μm or less. Further preferred. The arithmetic average roughness Ra refers to the arithmetic average roughness based on JIS B 0601: 2001.
 流路110a又は流路110bの少なくとも一方の内壁において測定される算術平均粗さRaの平均値は、圧力損失を更に低減する観点から、8.000μm以下が好ましく、7.500μm以下がより好ましい。算術平均粗さRaの平均値とは、流路の軸方向に沿って位置する3箇所の領域を、測定対象の流路の一の内壁から任意に選択した場合において、当該3箇所の領域における算術平均粗さRaの平均値をいう。本実施形態では、圧力損失を更に低減する観点から、流路110a又は流路110bの少なくとも一方の内壁において、最大高さRzの平均値が56.00μm以下であり、且つ、算術平均粗さRaの平均値が8.000μm以下であることが好ましい。 From the viewpoint of further reducing the pressure loss, the average value of the arithmetic average roughness Ra measured on at least one inner wall of the channel 110a or the channel 110b is preferably 8.000 μm or less, and more preferably 7.500 μm or less. The average value of the arithmetic average roughness Ra means that the three regions located along the axial direction of the flow channel are arbitrarily selected from the inner wall of one of the flow channels to be measured. The average value of arithmetic average roughness Ra is said. In the present embodiment, from the viewpoint of further reducing the pressure loss, the average value of the maximum height Rz is 56.00 μm or less and the arithmetic average roughness Ra on at least one inner wall of the flow channel 110a or the flow channel 110b. Is preferably 8.000 μm or less.
 流路110a,110bの長手方向におけるハニカムフィルタ100の長さは、例えば30~300mmである。ハニカムフィルタ100が円柱体である場合、ハニカムフィルタ100の外径は、例えば10~300mmである。また、流路110a,110bの軸方向に垂直な断面の内径(正方形の一辺の長さ)は、例えば0.5~1.2mmである。隔壁120の平均厚み(セル壁厚)は、例えば0.1~0.5mmである。 The length of the honeycomb filter 100 in the longitudinal direction of the flow paths 110a and 110b is, for example, 30 to 300 mm. When the honeycomb filter 100 is a cylindrical body, the outer diameter of the honeycomb filter 100 is, for example, 10 to 300 mm. The inner diameter (the length of one side of the square) of the cross section perpendicular to the axial direction of the flow paths 110a, 110b is, for example, 0.5 to 1.2 mm. The average thickness (cell wall thickness) of the partition wall 120 is, for example, 0.1 to 0.5 mm.
 ハニカムフィルタ100において隔壁120は、多孔質であり、例えば多孔質セラミックス(多孔質セラミックス焼結体)を含んでいる。隔壁120は、流体(例えば、すす等の微粒子を含む排ガス)が透過できるような構造を有している。具体的には、流体が通過し得る多数の連通孔(流通経路)が隔壁120内に形成されている。隔壁120の気孔率(開気孔率)は、例えば30~70体積%である。隔壁120の気孔径(細孔直径)は、例えば5~30μmである。隔壁120の気孔率及び気孔径は、原料の粒子径、孔形成剤の添加量、孔形成剤の種類、焼成条件により調整可能であり、水銀圧入法により測定することができる。 In the honeycomb filter 100, the partition wall 120 is porous, and includes, for example, porous ceramics (porous ceramic sintered body). The partition wall 120 has a structure that allows fluid (for example, exhaust gas containing fine particles such as soot) to pass therethrough. Specifically, a large number of communication holes (flow channels) through which fluid can pass are formed in the partition wall 120. The porosity (open porosity) of the partition wall 120 is, for example, 30 to 70% by volume. The pore diameter (pore diameter) of the partition wall 120 is, for example, 5 to 30 μm. The porosity and the pore diameter of the partition wall 120 can be adjusted by the particle diameter of the raw material, the added amount of the pore forming agent, the kind of the pore forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
 隔壁120は、チタン酸アルミニウムを含んでいてもよく、マグネシウムやケイ素を更に含んでいてもよい。隔壁120は、例えば、主にチタン酸アルミニウム系結晶からなる多孔性のセラミックスから形成されている。「主にチタン酸アルミニウム系結晶からなる」とは、チタン酸アルミニウム系セラミックス焼成体を構成する主結晶相がチタン酸アルミニウム系結晶相であることを意味し、チタン酸アルミニウム系結晶相は、例えば、チタン酸アルミニウム結晶相、チタン酸アルミニウムマグネシウム結晶相等であってもよい。 The partition wall 120 may contain aluminum titanate, and may further contain magnesium or silicon. The partition 120 is made of, for example, porous ceramics mainly made of an aluminum titanate crystal. “Mainly composed of an aluminum titanate-based crystal” means that the main crystal phase constituting the aluminum titanate-based ceramic fired body is an aluminum titanate-based crystal phase. An aluminum titanate crystal phase, an aluminum magnesium titanate crystal phase, or the like may be used.
 隔壁120がチタン酸アルミニウム及びマグネシウムを含有する場合、隔壁120の組成式は、例えばAl2(1-x)MgTi(1+x)であり、xの値は、0.03以上が好ましく、0.03~0.20がより好ましく、0.03~0.18が更に好ましい。隔壁120は、原料由来の微量成分又は製造工程において不可避的に含まれる微量成分を含有し得る。 When the partition wall 120 contains aluminum titanate and magnesium, the composition formula of the partition wall 120 is, for example, Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is preferably 0.03 or more. 0.03-0.20 is more preferable, and 0.03-0.18 is still more preferable. The partition 120 may contain a trace component derived from a raw material or a trace component inevitably included in the manufacturing process.
 隔壁120がケイ素を含有する場合、隔壁120は、ケイ素源粉末由来のガラス相を含んでいてもよい。ガラス相は、SiOが主要成分である非晶質相を指す。この場合、ガラス相の含有量は、4質量%以下であることが好ましい。ガラス相の含有量が4質量%以下であることにより、パティキュレートフィルタ等のセラミックスフィルタに要求される細孔特性を充足するチタン酸アルミニウム系セラミックス焼成体が得られ易くなる。ガラス相の含有量は、2質量%以上であることが好ましい。 When the partition 120 contains silicon, the partition 120 may contain the glass phase derived from a silicon source powder. The glass phase refers to an amorphous phase in which SiO 2 is the main component. In this case, the glass phase content is preferably 4% by mass or less. When the glass phase content is 4% by mass or less, an aluminum titanate-based ceramic fired body that satisfies the pore characteristics required for a ceramic filter such as a particulate filter is easily obtained. The glass phase content is preferably 2% by mass or more.
 隔壁120は、チタン酸アルミニウム系結晶相やガラス相以外の相(結晶相)を含んでいてもよい。このようなチタン酸アルミニウム系結晶相以外の相としては、チタン酸アルミニウム系セラミックス焼成体の作製に用いる原料由来の相等を挙げることができる。原料由来の相とは、より具体的には、ハニカムフィルタの製造に際してチタン酸アルミニウム系結晶相を形成することなく残存したアルミニウム源粉末、チタン源粉末及び/又はマグネシウム源粉末由来の相である。原料由来の相としては、アルミナ、チタニア等の相が挙げられる。隔壁120を形成する結晶相は、X線回折スペクトルにより確認することができる。 The partition wall 120 may include a phase (crystal phase) other than the aluminum titanate crystal phase or the glass phase. Examples of the phase other than the aluminum titanate-based crystal phase include a phase derived from a raw material used for producing an aluminum titanate-based ceramic fired body. More specifically, the phase derived from the raw material is a phase derived from an aluminum source powder, a titanium source powder and / or a magnesium source powder that remains without forming an aluminum titanate-based crystal phase during the manufacture of the honeycomb filter. Examples of the phase derived from the raw material include phases such as alumina and titania. The crystal phase forming the partition wall 120 can be confirmed by an X-ray diffraction spectrum.
 ハニカムフィルタ100は、ディーゼルエンジンやガソリンエンジン等の内燃機関からの排ガス中に含まれるすす等の被捕集物を捕集するパティキュレートフィルタとして適する。例えば、ハニカムフィルタ100では、図2に示すように、一端面100aから流路110aに供給されたガスGが隔壁120内の連通孔を通過して隣の流路110bに到達し、他端面100bから排出される。このとき、ガスG中の被捕集物が隔壁120の表面や連通孔内に捕集されてガスGから除去されることにより、ハニカムフィルタ100はフィルタとして機能する。 The honeycomb filter 100 is suitable as a particulate filter that collects a collection object such as soot contained in exhaust gas from an internal combustion engine such as a diesel engine or a gasoline engine. For example, in the honeycomb filter 100, as shown in FIG. 2, the gas G supplied from the one end face 100a to the flow path 110a passes through the communication hole in the partition wall 120 and reaches the adjacent flow path 110b, and the other end face 100b. Discharged from. At this time, the collected matter in the gas G is collected on the surface of the partition wall 120 or in the communication hole and removed from the gas G, whereby the honeycomb filter 100 functions as a filter.
 なお、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。例えば、隔壁120は、チタン酸アルミニウムを含むことに限られず、コージェライト、炭化珪素、ムライト等のセラミックスや、金属物質を含んでいてもよい。また、ハニカムフィルタ100における流路の軸方向に垂直な当該流路の断面は、正方形状等の矩形状であることに限定されず、六角形状、八角形状、三角形状、円形状、楕円形状等であってもよい。さらに、ハニカムフィルタ100は円柱体であることに限られず、立方体、直方体等であってもよい。 In addition, this invention is not necessarily limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the summary. For example, the partition 120 is not limited to including aluminum titanate, and may include ceramics such as cordierite, silicon carbide, mullite, or a metal substance. In addition, the cross section of the flow path perpendicular to the axial direction of the flow path in the honeycomb filter 100 is not limited to a rectangular shape such as a square shape, but a hexagonal shape, an octagonal shape, a triangular shape, a circular shape, an elliptical shape, or the like. It may be. Furthermore, the honey-comb filter 100 is not restricted to a cylindrical body, A cube, a rectangular parallelepiped, etc. may be sufficient.
<ハニカムフィルタの製造方法>
 次に、ハニカムフィルタ100の製造方法について説明する。上記ハニカムフィルタ100の製造方法は、例えば、(a)上記セラミックス粉末や添加剤を含む原料混合物を調製する原料調製工程と、(b)原料混合物を成形して、流路を有する成形体を得る成形工程と、(c)成形体を焼成する焼成工程と、を備え、(d)成形工程と焼成工程の間、又は、焼成工程の後に、各流路の一端を封口する封口工程を更に備える。
<Honeycomb filter manufacturing method>
Next, a method for manufacturing the honeycomb filter 100 will be described. The manufacturing method of the honeycomb filter 100 includes, for example, (a) a raw material preparation step of preparing a raw material mixture containing the ceramic powder and additives, and (b) forming a raw material mixture to obtain a formed body having a flow path. A molding step, and (c) a firing step for firing the molded body, and (d) a sealing step for sealing one end of each flow path between the molding step and the firing step or after the firing step. .
[工程(a):原料調製工程]
 工程(a)では、セラミックス粉末と添加剤とを混合した後に混練して原料混合物を調製する。添加剤としては、例えば孔形成剤(造孔剤)、バインダ、可塑剤、分散剤、溶媒が挙げられる。
[Step (a): Raw material preparation step]
In the step (a), the ceramic powder and the additive are mixed and then kneaded to prepare a raw material mixture. Examples of the additive include a hole forming agent (pore forming agent), a binder, a plasticizer, a dispersant, and a solvent.
 以下、チタン酸アルミニウムを含む隔壁を備えるハニカムフィルタの製造方法を例として説明する。セラミックス粉末は、アルミニウム源粉末及びチタン源粉末を少なくとも含み、マグネシウム源粉末及びケイ素源粉末等を更に含んでいてもよい。 Hereinafter, a method for manufacturing a honeycomb filter having partition walls containing aluminum titanate will be described as an example. The ceramic powder includes at least an aluminum source powder and a titanium source powder, and may further include a magnesium source powder and a silicon source powder.
(アルミニウム源粉末)
 アルミニウム源粉末は、隔壁を構成するアルミニウム成分となる化合物の粉末である。アルミニウム源粉末としては、例えば、アルミナ(酸化アルミニウム)の粉末が挙げられる。アルミナの結晶型としては、γ型、δ型、θ型、α型等が挙げられ、不定形(アモルファス)であってもよい。アルミナの結晶型は、α型が好ましい。
(Aluminum source powder)
The aluminum source powder is a powder of a compound that becomes an aluminum component constituting the partition wall. Examples of the aluminum source powder include alumina (aluminum oxide) powder. Examples of the crystal type of alumina include γ-type, δ-type, θ-type, and α-type, and may be indefinite (amorphous). The crystal type of alumina is preferably α type.
 アルミニウム源粉末は、単独で空気中で焼成することによりアルミナに導かれる化合物の粉末であってもよい。かかる化合物としては、例えばアルミニウム塩、アルミニウムアルコキシド、水酸化アルミニウム、金属アルミニウム等が挙げられる。 The aluminum source powder may be a powder of a compound that is led to alumina by firing alone in air. Examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, metal aluminum and the like.
 アルミニウム塩は、無機酸とのアルミニウム無機塩であってもよく、有機酸とのアルミニウム有機塩であってもよい。アルミニウム無機塩の具体例としては、例えば、硝酸アルミニウム、硝酸アンモニウムアルミニウム等のアルミニウム硝酸塩;炭酸アンモニウムアルミニウム等のアルミニウム炭酸塩などが挙げられる。アルミニウム有機塩としては、例えば、蓚酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウム等が挙げられる。 The aluminum salt may be an aluminum inorganic salt with an inorganic acid or an aluminum organic salt with an organic acid. Specific examples of the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate; aluminum carbonates such as ammonium carbonate aluminum and the like. Examples of the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
 アルミニウムアルコキシドの具体例としては、例えば、アルミニウムイソプロポキシド、アルミニウムエトキシド、アルミニウムsec-ブトキシド、アルミニウムtert-ブトキシド等が挙げられる。 Specific examples of the aluminum alkoxide include, for example, aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide and the like.
 水酸化アルミニウムの結晶型としては、例えば、ギブサイト型、バイヤライト型、ノロソトランダイト型、ベーマイト型、擬ベーマイト型等が挙げられ、不定形(アモルファス)であってもよい。アモルファスの水酸化アルミニウムとしては、例えば、アルミニウム塩、アルミニウムアルコキシド等のような水溶性アルミニウム化合物の水溶液を加水分解して得られるアルミニウム加水分解物が挙げられる。 Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous). Examples of amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
 アルミニウム源粉末は、1種又は2種以上のいずれでもよい。アルミニウム源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The aluminum source powder may be one type or two or more types. The aluminum source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
 アルミニウム源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(中心粒径、D50)は、好ましくは20~60μmである。アルミニウム源粉末のD50をこの範囲内に調整することにより、優れた多孔性を示すチタン酸アルミニウム系セラミックス焼成体が得られると共に、焼成収縮率をより効果的に低減させることができる。アルミニウム源粉末のD50は、より好ましくは25~60μmである。 In the aluminum source powder, the particle size (center particle size, D50) equivalent to a volume-based cumulative percentage of 50% measured by a laser diffraction method is preferably 20 to 60 μm. By adjusting D50 of the aluminum source powder within this range, an aluminum titanate ceramic fired body exhibiting excellent porosity can be obtained, and the firing shrinkage rate can be more effectively reduced. The D50 of the aluminum source powder is more preferably 25 to 60 μm.
(チタン源粉末)
 チタン源粉末は、隔壁を構成するチタン成分となる化合物の粉末であり、例えば酸化チタンの粉末である。酸化チタンは、例えば、酸化チタン(IV)、酸化チタン(III)、酸化チタン(II)であり、好ましくは酸化チタン(IV)である。酸化チタン(IV)の結晶型は、アナターゼ型、ルチル型、ブルッカイト型である。酸化チタンは不定形(アモルファス)であってもよい。酸化チタンは、より好ましくはアナターゼ型やルチル型の酸化チタン(IV)である。
(Titanium source powder)
The titanium source powder is a powder of a compound that becomes a titanium component constituting the partition walls, and is, for example, a titanium oxide powder. Titanium oxide is, for example, titanium (IV) oxide, titanium (III) oxide, or titanium (II) oxide, and preferably titanium (IV) oxide. The crystal forms of titanium (IV) oxide are anatase, rutile, and brookite. The titanium oxide may be amorphous (amorphous). The titanium oxide is more preferably anatase type or rutile type titanium (IV) oxide.
 チタン源粉末は、単独で空気中で焼成することによりチタニア(酸化チタン)に導かれる化合物の粉末であってもよく、例えば、チタニウム塩、チタニウムアルコキシド、水酸化チタニウム、窒化チタン、硫化チタン、チタン金属である。 The titanium source powder may be a powder of a compound that is led to titania (titanium oxide) by firing alone in the air. For example, titanium salt, titanium alkoxide, titanium hydroxide, titanium nitride, titanium sulfide, titanium It is a metal.
 チタニウム塩は、例えば三塩化チタン、四塩化チタン、硫化チタン(IV)、硫化チタン(VI)、硫酸チタン(IV)である。チタニウムアルコキシドは、例えばチタン(IV)エトキシド、チタン(IV)メトキシド、チタン(IV)t-ブトキシド、チタン(IV)イソブトキシド、チタン(IV)n-プロポキシド、チタン(IV)テトライソプロポキシド、及び、これらのキレート化物である。 Examples of the titanium salt include titanium trichloride, titanium tetrachloride, titanium (IV) sulfide, titanium sulfide (VI), and titanium sulfate (IV). Titanium alkoxides include, for example, titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) t-butoxide, titanium (IV) isobutoxide, titanium (IV) n-propoxide, titanium (IV) tetraisopropoxide, And these chelating products.
 チタン源粉末は、1種又は2種以上のいずれでもよい。チタン源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The titanium source powder may be one type or two or more types. The titanium source powder may contain a trace component derived from the raw material or unavoidably contained in the production process.
 チタン源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、好ましくは0.1~25μmである。チタン源粉末のD50は、充分に低い焼成収縮率を達成するため、より好ましくは1~20μmである。 In the titanium source powder, the volume-based cumulative particle diameter (D50) measured by laser diffraction method is preferably 0.1 to 25 μm. The D50 of the titanium source powder is more preferably 1 to 20 μm in order to achieve a sufficiently low firing shrinkage rate.
 チタン源粉末は、バイモーダルな粒径分布を示すことがある。このようなバイモーダルな粒径分布を示すチタニウム源粉末を用いる場合、レーザ回折法により測定される粒径が大きい方のピークを形成する粒子の粒径は、好ましくは20~50μmである。 The titanium source powder may show a bimodal particle size distribution. When the titanium source powder having such a bimodal particle size distribution is used, the particle size of the particles forming the peak having the larger particle size measured by the laser diffraction method is preferably 20 to 50 μm.
 レーザ回折法により測定されるチタン源粉末のモード径は、通常0.1~60μmである。 The mode diameter of the titanium source powder measured by the laser diffraction method is usually 0.1 to 60 μm.
 原料混合物中におけるAl23(アルミナ)換算でのアルミニウム源粉末とTiO2(チタニア)換算でのチタン源粉末のモル比(アルミニウム源粉末:チタン源粉末)は、好ましくは35:65~45:55であり、より好ましくは40:60~45:55である。このような範囲内で、チタン源粉末をアルミニウム源粉末に対して過剰に用いることにより、原料混合物の成形体の焼成収縮率をより効果的に低減させることが可能となる。 The molar ratio of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania) in the raw material mixture (aluminum source powder: titanium source powder) is preferably 35:65 to 45 : 55, more preferably 40:60 to 45:55. Within such a range, by using the titanium source powder excessively with respect to the aluminum source powder, it becomes possible to more effectively reduce the firing shrinkage rate of the molded body of the raw material mixture.
(マグネシウム源粉末)
 原料混合物は、マグネシウム源粉末を更に含有していてもよい。原料混合物がマグネシウム源粉末を含む場合、得られるチタン酸アルミニウム系セラミックス焼成体は、チタン酸アルミニウムマグネシウム結晶を含む焼成体である。マグネシウム源粉末は、マグネシア(酸化マグネシウム)の粉末のほか、単独で空気中で焼成することによりマグネシアに導かれる化合物の粉末である。このような化合物は、例えば、マグネシウム塩、マグネシウムアルコキシド、水酸化マグネシウム、窒化マグネシウム、金属マグネシウムである。
(Magnesium source powder)
The raw material mixture may further contain a magnesium source powder. When the raw material mixture contains a magnesium source powder, the obtained aluminum titanate ceramic fired body is a fired body containing aluminum magnesium titanate crystals. The magnesium source powder is not only magnesia (magnesium oxide) powder but also a powder of a compound introduced into magnesia by firing alone in air. Such compounds are, for example, magnesium salts, magnesium alkoxides, magnesium hydroxide, magnesium nitride, and metallic magnesium.
 マグネシウム塩は、例えば塩化マグネシウム、過塩素酸マグネシウム、リン酸マグネシウム、ピロりん酸マグネシウム、蓚酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、クエン酸マグネシウム、乳酸マグネシウム、ステアリン酸マグネシウム、サリチル酸マグネシウム、ミリスチン酸マグネシウム、グルコン酸マグネシウム、ジメタクリル酸マグネシウム、安息香酸マグネシウムである。 Magnesium salts include, for example, magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, magnesium stearate, magnesium salicylate , Magnesium myristate, magnesium gluconate, magnesium dimethacrylate, and magnesium benzoate.
 マグネシウムアルコキシドは、例えばマグネシウムメトキシド、マグネシウムエトキシド等である。 Examples of the magnesium alkoxide include magnesium methoxide and magnesium ethoxide.
 マグネシウム源粉末として、マグネシウム源とアルミニウム源とを兼ねた化合物の粉末を用いることができる。このような化合物は、例えば、マグネシアスピネル(MgAl24)である。 As the magnesium source powder, a powder of a compound serving both as a magnesium source and an aluminum source can be used. Such a compound is, for example, magnesia spinel (MgAl 2 O 4 ).
 マグネシウム源粉末として、マグネシウム源とアルミニウム源とを兼ねた化合物の粉末を用いる場合、アルミニウム源粉末のAl23(アルミナ)換算量、及び、マグネシウム源とアルミニウム源とを兼ねた化合物粉末に含まれるAl成分のAl23(アルミナ)換算量の合計量と、チタニウム源粉末のTiO2(チタニア)換算量とのモル比が、原料混合物中において上記範囲内となるように調整される。 When using a powder of a compound that serves as both a magnesium source and an aluminum source as the magnesium source powder, it is included in the amount of Al 2 O 3 (alumina) equivalent of the aluminum source powder and a compound powder that serves as both the magnesium source and the aluminum source. The molar ratio between the total amount of Al 2 O 3 (alumina) equivalent of the Al component and the amount of TiO 2 (titania) equivalent of the titanium source powder is adjusted to be within the above range in the raw material mixture.
 マグネシウム源粉末は、1種又は2種以上のいずれでもよい。マグネシウム源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The magnesium source powder may be one type or two or more types. The magnesium source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
 マグネシウム源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、好ましくは0.5~30μmである。マグネシウム源粉末のD50は、成形体の焼成収縮率を低減する観点から、より好ましくは3~20μmである。 In the magnesium source powder, the particle size (D50) equivalent to a volume-based cumulative percentage of 50% as measured by a laser diffraction method is preferably 0.5 to 30 μm. The D50 of the magnesium source powder is more preferably 3 to 20 μm from the viewpoint of reducing the firing shrinkage of the molded body.
 原料混合物中におけるMgO(マグネシア)換算でのマグネシウム源粉末の含有量は、Al(アルミナ)換算でのアルミニウム源粉末とTiO(チタニア)換算でのチタニウム源粉末との合計量に対して、モル比で、好ましくは0.03~0.15であり、より好ましくは0.03~0.12である。マグネシウム源粉末の含有量をこの範囲内に調整することにより、耐熱性がより向上された、大きい気孔径及び気孔率を有するチタン酸アルミニウム系セラミックス焼成体を比較的容易に得ることができる。 The content of magnesium source powder in terms of MgO (magnesia) in the raw material mixture is based on the total amount of aluminum source powder in terms of Al 2 O 3 (alumina) and titanium source powder in terms of TiO 2 (titania). The molar ratio is preferably 0.03 to 0.15, more preferably 0.03 to 0.12. By adjusting the content of the magnesium source powder within this range, an aluminum titanate-based ceramic fired body having a large pore diameter and porosity with improved heat resistance can be obtained relatively easily.
(ケイ素源粉末)
 原料混合物は、ケイ素源粉末を更に含有していてもよい。ケイ素源粉末は、シリコン成分となってチタン酸アルミニウム系セラミックス焼成体に含まれる化合物の粉末であり、ケイ素源粉末の併用により、耐熱性がより向上されたチタン酸アルミニウム系セラミックス焼成体を得ることが可能となる。ケイ素源粉末は、例えば、二酸化ケイ素、一酸化ケイ素等の酸化ケイ素(シリカ)の粉末である。
(Silicon source powder)
The raw material mixture may further contain a silicon source powder. The silicon source powder is a powder of a compound that becomes a silicon component and is contained in the aluminum titanate ceramic fired body. By using the silicon source powder in combination, a heat-resistant aluminum titanate ceramic fired body is obtained. Is possible. The silicon source powder is, for example, a powder of silicon oxide (silica) such as silicon dioxide or silicon monoxide.
 ケイ素源粉末は、単独で空気中で焼成することによりシリカに導かれる化合物の粉末であってもよい。かかる化合物は、例えば、ケイ酸、炭化ケイ素、窒化ケイ素、硫化ケイ素、四塩化ケイ素、酢酸ケイ素、ケイ酸ナトリウム、オルトケイ酸ナトリウム、長石、ガラスフリット、好ましくは長石、ガラスフリットであり、工業的に入手が容易であると共に組成が安定している点で、より好ましくはガラスフリットである。ガラスフリットは、ガラスを粉砕して得られるフレーク又は粉末状のガラスをいう。ケイ素源粉末として、長石とガラスフリットとの混合物からなる粉末を用いることも好ましい。 The silicon source powder may be a powder of a compound led to silica by firing alone in air. Such compounds are, for example, silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, glass frit, preferably feldspar, glass frit, industrially Glass frit is more preferable because it is easily available and has a stable composition. Glass frit refers to flakes or powdery glass obtained by pulverizing glass. It is also preferable to use a powder made of a mixture of feldspar and glass frit as the silicon source powder.
 ガラスフリットを用いる場合、得られるチタン酸アルミニウム系セラミックス焼成体の耐熱分解性をより向上させるという観点から、ガラスフリットの屈伏点は、600℃以上であることが好ましい。本明細書において、ガラスフリットの屈伏点は、熱機械分析装置(TMA:Thermo Mechanical Analysis)を用いて、低温からガラスフリットの膨張を測定し、膨張が止まり、次に収縮が始まる温度(℃)と定義される。 When using a glass frit, it is preferable that the yield point of the glass frit is 600 ° C. or higher from the viewpoint of further improving the thermal decomposition resistance of the obtained aluminum titanate ceramic fired body. In this specification, the yield point of the glass frit is determined by measuring the expansion of the glass frit from a low temperature using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis). Is defined.
 ガラスフリットを構成するガラスには、ケイ酸〔SiO2〕を主成分(全成分中50質量%以上)とする一般的なケイ酸ガラスを用いることができる。ガラスフリットを構成するガラスは、その他の含有成分として、一般的なケイ酸ガラスと同様、アルミナ〔Al23〕、酸化ナトリウム〔Na2O〕、酸化カリウム〔K2O〕、酸化カルシウム〔CaO〕、マグネシア〔MgO〕等を含んでいてもよい。また、ガラスフリットを構成するガラスは、ガラス自体の耐熱水性を向上させるために、ZrO2を含有していてもよい。 As the glass constituting the glass frit, a general silicate glass containing silicate [SiO 2 ] as a main component (50 mass% or more in all components) can be used. The glass constituting the glass frit includes, as other components, alumina [Al 2 O 3 ], sodium oxide [Na 2 O], potassium oxide [K 2 O], calcium oxide [ CaO], magnesia [MgO] and the like may be included. The glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself.
 ケイ素源粉末は、1種又は2種以上のいずれでもよい。ケイ素源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The silicon source powder may be one type or two or more types. The silicon source powder may contain a trace component derived from the raw material or inevitably contained in the production process.
 ケイ素源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、好ましくは0.5~30μmである。ケイ素源粉末のD50は、成形体の充填率をより向上させて機械的強度が更に高い焼成体を得るため、より好ましくは1~20μmである。 In the silicon source powder, the particle size (D50) equivalent to a 50% cumulative percentage on a volume basis measured by a laser diffraction method is preferably 0.5 to 30 μm. The D50 of the silicon source powder is more preferably 1 to 20 μm in order to obtain a fired body having higher mechanical strength by further improving the filling factor of the molded body.
 原料混合物がケイ素源粉末を含む場合、原料混合物中におけるケイ素源粉末の含有量は、Al(アルミナ)換算でのアルミニウム源粉末とTiO(チタニア)換算でのチタニウム源粉末との合計量100質量部に対して、SiO(シリカ)換算で、通常0.1~10質量部であり、好ましくは0.1~5質量部である。 When the raw material mixture includes a silicon source powder, the content of the silicon source powder in the raw material mixture is the sum of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania). The amount is usually 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass in terms of SiO 2 (silica) with respect to 100 parts by mass.
 ハニカムフィルタの製造では、上記マグネシアスピネル(MgAl24)等の複合酸化物のように、チタニウム、アルミニウム、ケイ素及びマグネシウムのうち、2つ以上の金属元素を成分とする化合物を原料粉末として用いることができる。この場合、化合物は、それぞれの金属源化合物を混合した原料と同じであると考えることができる。このような考えに基づき、原料混合物中におけるアルミニウム源、チタニウム源、マグネシウム源及びケイ素源の含有量が上記範囲内に調整される。 In the manufacture of a honeycomb filter, a compound containing two or more metal elements among titanium, aluminum, silicon and magnesium as a raw material powder, such as a composite oxide such as magnesia spinel (MgAl 2 O 4 ), is used. be able to. In this case, the compound can be considered to be the same as the raw material in which the respective metal source compounds are mixed. Based on such an idea, the content of the aluminum source, the titanium source, the magnesium source and the silicon source in the raw material mixture is adjusted within the above range.
 原料混合物にはチタン酸アルミニウムやチタン酸アルミニウムマグネシウムが含まれていてもよく、例えば、原料混合物の構成成分としてチタン酸アルミニウムマグネシウムを使用する場合、チタン酸アルミニウムマグネシウムは、チタニウム源、アルミニウム源及びマグネシウム源を兼ね備えた原料混合物に相当する。 The raw material mixture may contain aluminum titanate or aluminum magnesium titanate. For example, when aluminum magnesium titanate is used as a constituent of the raw material mixture, the aluminum magnesium titanate contains a titanium source, an aluminum source and magnesium. Corresponds to a raw material mixture that also has a source.
 チタン酸アルミニウムやチタン酸アルミニウムマグネシウムは、本製造方法により得られるハニカムフィルタから調製してもよい。例えば、本製造方法により得られたハニカムフィルタが破損した場合、破損したハニカムフィルタやその破片等を粉砕して使用することができる。粉砕して得られる粉末をチタン酸アルミニウムマグネシウム粉末とすることができる。 Aluminum titanate or aluminum magnesium titanate may be prepared from a honeycomb filter obtained by this production method. For example, when the honeycomb filter obtained by the present manufacturing method is damaged, the damaged honeycomb filter or its fragments can be pulverized and used. The powder obtained by pulverization can be aluminum magnesium titanate powder.
(添加剤)
 孔形成剤としては、焼成工程において成形体を脱脂・焼成する温度以下で消失する素材によって形成されたものを使用することができる。脱脂や焼成において、孔形成剤を含有する成形体が加熱されると、孔形成剤は燃焼等によって消滅する。これにより、孔形成剤が存在していた箇所に空間ができると共に、この空間同士の間に位置するセラミックス粉末が焼成の際に収縮することにより、流体を流すことができる連通孔を隔壁内に形成することができる。
(Additive)
As the pore forming agent, those formed by a material that disappears at a temperature lower than the temperature at which the molded body is degreased and fired in the firing step can be used. In degreasing and firing, when a molded body containing a hole forming agent is heated, the hole forming agent disappears due to combustion or the like. As a result, a space is created at the location where the pore-forming agent was present, and the ceramic powder located between the spaces shrinks during firing, so that a communication hole through which fluid can flow is formed in the partition wall. Can be formed.
 孔形成剤は、例えば、トウモロコシ澱粉、大麦澱粉、小麦澱粉、タピオカ澱粉、豆澱粉、米澱粉、エンドウ澱粉、サンゴヤシ澱粉、カンナ澱粉、ポテト澱粉(馬鈴薯デンプン)である。孔形成剤の平均粒径は、例えば5~25μmである。原料混合物が孔形成剤を含有する場合、孔形成剤の含有量は、例えば、セラミックス粉末100質量部に対して1~25質量部である。 The pore-forming agent is, for example, corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, coral starch, canna starch, potato starch (potato starch). The average particle diameter of the pore forming agent is, for example, 5 to 25 μm. When the raw material mixture contains a hole forming agent, the content of the hole forming agent is, for example, 1 to 25 parts by mass with respect to 100 parts by mass of the ceramic powder.
 バインダは、例えば、メチルセルロース、カルボキシルメチルセルロース、ナトリウムカルボキシルメチルセルロース等のセルロース類;ポリビニルアルコール等のアルコール類;リグニンスルホン酸塩等の塩;パラフィンワックス、マイクロクリスタリンワックス等のワックスである。原料混合物におけるバインダの含有量は、例えば、セラミックス粉末100質量部に対して20質量部以下である。 The binder is, for example, celluloses such as methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax. Content of the binder in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of ceramic powder, for example.
 可塑剤は、例えばグリセリン等のアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸等の高級脂肪酸;ステアリン酸Al等のステアリン酸金属塩、ポリオキシアルキレンアルキルエーテルである。原料混合物における可塑剤の含有量は、例えば、セラミックス粉末100質量部に対して0~10質量部である。 Examples of the plasticizer include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid, and stearic acid; stearic acid metal salts such as Al stearate, and polyoxyalkylene alkyl ethers. . The content of the plasticizer in the raw material mixture is, for example, 0 to 10 parts by mass with respect to 100 parts by mass of the ceramic powder.
 分散剤は、例えば、硝酸、塩酸、硫酸等の無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸;メタノール、エタノール、プロパノール等のアルコール類;ポリカルボン酸アンモニウムなどの界面活性剤である。原料混合物における分散剤の含有量は、例えば、セラミックス粉末100質量部に対して0~20質量部である。 Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; interfaces such as ammonium polycarboxylate It is an activator. The content of the dispersant in the raw material mixture is, for example, 0 to 20 parts by mass with respect to 100 parts by mass of the ceramic powder.
 溶媒は、例えば水であり、不純物が少ない点で、イオン交換水が好ましい。原料混合物が溶媒を含有する場合、溶媒の含有量は、例えば、セラミックス粉末100質量部に対して10~100質量部である。 The solvent is, for example, water, and ion-exchanged water is preferable in terms of few impurities. When the raw material mixture contains a solvent, the content of the solvent is, for example, 10 to 100 parts by mass with respect to 100 parts by mass of the ceramic powder.
[工程(b):成形工程]
 工程(b)では、ハニカム構造を有する所定形状のセラミックス成形体を得る。工程(b)では、例えば、一軸押出機により原料混合物を混練しながらダイから押出す、いわゆる押出成形法を採用することができる。
[Step (b): Molding step]
In the step (b), a ceramic molded body having a predetermined shape having a honeycomb structure is obtained. In the step (b), for example, a so-called extrusion molding method in which the raw material mixture is extruded from a die while being kneaded by a single screw extruder can be employed.
[工程(c):焼成工程]
 工程(c)では、成形体の焼成前に、成形体中(原料混合物中)に含まれる孔形成剤等を除去するための脱脂(仮焼)が行われてもよい。脱脂は、酸素濃度0.1%以下の雰囲気下で行われる。
[Step (c): Firing step]
In the step (c), degreasing (calcination) for removing a hole forming agent or the like contained in the molded body (in the raw material mixture) may be performed before firing the molded body. Degreasing is performed in an atmosphere having an oxygen concentration of 0.1% or less.
 本明細書において酸素濃度の単位として用いられる「%」は、「体積%」を意味する。脱脂工程(昇温時)の酸素濃度を0.1%以下の濃度に管理することにより、有機物の発熱が抑えられ、脱脂後の割れを抑制することができる。脱脂においては、脱脂が酸素濃度0.1%以下の雰囲気中で行われることにより、孔形成剤等の有機成分の一部が除去され、残部が炭化されてセラミック成形体中に残存することが好ましい。このように、セラミックス成形体中に微量のカーボンが残存することで、成形体の強度が向上し、セラミックス成形体の焼成工程への仕込みが容易になる。このような雰囲気としては、窒素ガス、アルゴンガス等の不活性ガス雰囲気や、一酸化炭素ガス、水素ガス等のような還元性ガス雰囲気、真空中等が挙げられる。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよく、炭と一緒に蒸し込んで酸素濃度を低減させてもよい。 In this specification, “%” used as a unit of oxygen concentration means “volume%”. By controlling the oxygen concentration in the degreasing step (at the time of temperature rise) to a concentration of 0.1% or less, heat generation of the organic matter can be suppressed and cracking after degreasing can be suppressed. In degreasing, degreasing is performed in an atmosphere having an oxygen concentration of 0.1% or less, whereby a part of organic components such as a pore-forming agent is removed, and the remainder is carbonized and remains in the ceramic molded body. preferable. Thus, the trace amount of carbon remains in the ceramic molded body, so that the strength of the molded body is improved and the ceramic molded body can be easily charged into the firing step. Examples of such an atmosphere include an inert gas atmosphere such as nitrogen gas and argon gas, a reducing gas atmosphere such as carbon monoxide gas and hydrogen gas, and a vacuum. In addition, firing may be performed in an atmosphere with a low water vapor partial pressure, or steaming with charcoal may reduce the oxygen concentration.
 脱脂の最高温度は、好ましくは700~1100℃であり、より好ましくは800~1000℃である。脱脂の最高温度を従来の600~700℃程度から、700~1100℃に上昇させることで、粒成長によって、脱脂後のセラミックス成形体の強度が向上するため、セラミックス成形体の焼成への仕込みが容易になる。また、脱脂は、セラミックス成形体の割れを防止するために、最高温度に到達するまでの昇温速度を極力抑えることが好ましい。 The maximum temperature for degreasing is preferably 700 to 1100 ° C, more preferably 800 to 1000 ° C. By increasing the maximum degreasing temperature from about 600 to 700 ° C to 700 to 1100 ° C, the strength of the ceramic body after degreasing is improved by grain growth. It becomes easy. In addition, degreasing preferably suppresses the rate of temperature rise until reaching the maximum temperature as much as possible in order to prevent cracking of the ceramic molded body.
 脱脂は、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉、ガス燃焼炉等の通常の焼成に用いられるものと同様の炉を用いて行なわれる。脱脂は回分式で行なってもよいし、連続式で行なってもよい。また、脱脂は静置式で行なってもよいし、流動式で行なってもよい。 Degreasing is used for normal firing of tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. A similar furnace is used. Degreasing may be performed batchwise or continuously. Moreover, degreasing may be performed by a stationary method or a fluid method.
 脱脂に要する時間は、セラミックス成形体中に含まれる有機成分の一部が消失するのに充分な時間であればよく、好ましくは、セラミックス成形体中に含まれる有機成分の90~99質量%が消失する時間である。具体的には、原料混合物の量、脱脂に用いる炉の形式、温度条件、雰囲気等により異なるが、最高温度でキープする時間は、通常1分~10時間であり、好ましくは1~7時間である。 The time required for degreasing may be a time sufficient for a part of the organic component contained in the ceramic molded body to disappear, and preferably 90 to 99% by mass of the organic component contained in the ceramic molded body. It is time to disappear. Specifically, although it varies depending on the amount of the raw material mixture, the type of furnace used for degreasing, temperature conditions, atmosphere, etc., the time for keeping at the maximum temperature is usually 1 minute to 10 hours, preferably 1 to 7 hours. is there.
 セラミックス成形体は、上記の脱脂後、焼成される。焼成温度は、通常1300℃以上であり、好ましくは1400℃以上である。また、焼成温度は、通常1650℃以下であり、好ましくは1550℃以下である。焼成温度までの昇温速度は特に限定されるものではないが、通常1~500℃/時間である。ケイ素源粉末を用いる場合には、焼成工程の前に、1100~1300℃の温度範囲で3時間以上保持する工程を設けることが好ましい。これにより、ケイ素源粉末の融解、拡散を促進させることができる。 The ceramic molded body is fired after the above degreasing. The firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, a calcination temperature is 1650 degrees C or less normally, Preferably it is 1550 degrees C or less. The rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 to 500 ° C./hour. When the silicon source powder is used, it is preferable to provide a step of holding at a temperature range of 1100 to 1300 ° C. for 3 hours or more before the firing step. Thereby, melting and diffusion of the silicon source powder can be promoted.
 焼成は、酸素濃度1~6%の雰囲気下で行われることが好ましい。酸素濃度を6%以下とすることによって脱脂で発生した残存炭化物の燃焼を抑制することができるため、焼成におけるセラミックス成形体の割れが生じにくくなる。また、適度な酸素が存在するため、最終的に得られるチタン酸アルミニウム系セラミックス成形体の有機成分を完全に除去することができる。酸素濃度は、得られるチタン酸アルミニウム系セラミックス焼成体中に有機成分に由来する炭化物(すす)が残存しないことから、1%以上が好ましい。原料混合物、すなわちアルミニウム源粉末、チタン源粉末、マグネシウム源粉末及びケイ素源粉末の種類や使用量比によっては、窒素ガス、アルゴンガス等の不活性ガス中で焼成してもよいし、一酸化炭素ガス、水素ガス等のような還元性ガス中で焼成してもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。 Calcination is preferably performed in an atmosphere having an oxygen concentration of 1 to 6%. By setting the oxygen concentration to 6% or less, combustion of residual carbides generated by degreasing can be suppressed, so that the ceramic molded body is hardly cracked during firing. Moreover, since moderate oxygen exists, the organic component of the finally obtained aluminum titanate ceramic molded body can be completely removed. The oxygen concentration is preferably 1% or more because carbide (soot) derived from organic components does not remain in the obtained aluminum titanate-based ceramic fired body. Depending on the type and usage ratio of the raw material mixture, that is, the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder, it may be fired in an inert gas such as nitrogen gas or argon gas, or carbon monoxide You may bake in reducing gas, such as gas and hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉、ガス燃焼炉等の従来の装置を用いて行なわれる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また、焼成は静置式で行なってもよいし、流動式で行なってもよい。 Firing is usually performed using conventional equipment such as a tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. Done. Firing may be performed batchwise or continuously. Moreover, baking may be performed by a stationary type or may be performed by a fluid type.
 焼成時間は、セラミックス成形体がチタン酸アルミニウム系結晶に遷移するのに充分な時間であればよく、原料の量、焼成炉の形式、焼成温度、焼成雰囲気等により異なるが、通常は10分~24時間である。 The firing time may be a time sufficient for the ceramic molded body to transition to the aluminum titanate-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but usually 10 minutes to 24 hours.
[工程(d):封口工程]
 工程(d)は、工程(b)と工程(c)の間、又は、工程(c)の後に行われる。工程(b)と工程(c)の間に工程(d)を行う場合、工程(b)において得られた未焼成のセラミックス成形体の各流路の一方の端部を封口物で封口した後、工程(c)においてセラミックス成形体と共に封口物を焼成することにより、流路の一方の端部を封口する封口部が得られる。工程(c)の後に工程(d)を行う場合、工程(c)において得られたセラミックス成形体の各流路の一方の端部を封口物で封口した後、セラミックス成形体と共に封口物を焼成することにより、流路の一方の端部を封口する封口部が得られる。封口物としては、上記原料混合物と同様の混合物を用いることができる。
[Step (d): Sealing step]
Step (d) is performed between step (b) and step (c) or after step (c). When performing step (d) between step (b) and step (c), after sealing one end of each flow path of the unfired ceramic molded body obtained in step (b) with a sealing material In the step (c), the sealing material is fired together with the ceramic molded body to obtain a sealing portion that seals one end of the flow path. When the step (d) is performed after the step (c), one end of each flow path of the ceramic molded body obtained in the step (c) is sealed with a sealing body, and then the sealing body is baked together with the ceramic molded body. By doing so, the sealing part which seals one edge part of a flow path is obtained. As the sealing material, the same mixture as the raw material mixture can be used.
 以上の工程によって、ハニカムフィルタを得ることができる。なお、ハニカムフィルタは、工程(b)における成形直後の成形体の形状をほぼ維持した形状を有するが、工程(b)、工程(c)又は工程(d)の後に研削加工等を行って、所望の形状に加工することもできる。 A honeycomb filter can be obtained through the above steps. The honeycomb filter has a shape that substantially maintains the shape of the molded body immediately after the molding in the step (b), but after the step (b), the step (c) or the step (d), a grinding process or the like is performed, It can also be processed into a desired shape.
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<ハニカムフィルタの作製>
(実施例1)
 チタン酸アルミニウムマグネシウムの原料粉末(Al粉末、TiO粉末、MgO粉末)、SiO粉末、チタン酸アルミニウムマグネシウムとアルミナとアルミノシリケートガラスとの複合相をもつセラミックス粉末(仕込み時の組成式:41.4Al-49.9TiO-5.4MgO-3.3SiO、式中の数値はモル比を表す)、孔形成剤、有機バインダ、潤滑剤、可塑剤、分散剤及び水(溶媒)を含む原料混合物を調製した。原料混合物中の主な成分の含有量は下記の値に調整した。
<Production of honeycomb filter>
(Example 1)
Raw material powder of aluminum magnesium titanate (Al 2 O 3 powder, TiO 2 powder, MgO powder), SiO 2 powder, ceramic powder having a composite phase of aluminum magnesium titanate, alumina and aluminosilicate glass (composition formula at the time of preparation) : 41.4Al 2 O 3 -49.9TiO 2 -5.4MgO-3.3SiO 2 , where the numerical values represent molar ratios), pore formers, organic binders, lubricants, plasticizers, dispersants and water A raw material mixture containing (solvent) was prepared. The content of main components in the raw material mixture was adjusted to the following values.
[原料混合物の成分]
 Al粉末:37.3質量部
 TiO粉末:37.0質量部
 MgO粉末:1.9質量部
 SiO粉末:3.0質量部
 セラミックス粉末:8.8質量部
 孔形成剤:馬鈴薯から得た平均粒径25μmの澱粉、12.0質量部
 有機バインダ1:メチルセルロース(三星精密化学社製:MC-40H)、5.5質量部
 有機バインダ2:ヒドロキシプロピルメチルセルロース(三星精密化学社製:PMB-40H)、2.4質量部
[Components of raw material mixture]
Al 2 O 3 powder: 37.3 parts by mass TiO 2 powder: 37.0 parts by mass MgO powder: 1.9 parts by mass SiO 2 powder: 3.0 parts by mass Ceramic powder: 8.8 parts by mass Porous forming agent: potato 12.0 parts by weight of organic binder 1: methylcellulose (manufactured by Samsung Precision Chemical Co., Ltd .: MC-40H), 5.5 parts by weight of organic binder 2: hydroxypropylmethylcellulose (manufactured by Samsung Precision Chemical Co., Ltd.) : PMB-40H), 2.4 parts by mass
 上記の原料混合物を混練した後に押出成形することにより、図1,2に示す構造を有する円柱状のハニカムフィルタ(DPF)を作製した。実施例1のハニカムフィルタのチタン酸アルミニウム化率(AT化率)を測定したところ100%であった。なお、AT化率は、実施例1のハニカムフィルタを乳鉢にて解砕して得られる粉末の粉末X線回折スペクトルにおける2θ=27.4°の位置に現れるピーク(チタニア・ルチル相(110)面)の積分強度(I)と、2θ=33.7°の位置に現れるピーク〔チタン酸アルミニウムマグネシウム相(230)面〕の積分強度(IAT)とから、下記式(1)により算出した。
  AT化率(%)=IAT/(I+IAT)×100 ・・・(1)
A columnar honeycomb filter (DPF) having the structure shown in FIGS. 1 and 2 was produced by extruding after kneading the above raw material mixture. The aluminum titanate conversion rate (AT conversion rate) of the honeycomb filter of Example 1 was measured and found to be 100%. The AT conversion rate is a peak appearing at a position of 2θ = 27.4 ° in the powder X-ray diffraction spectrum of the powder obtained by pulverizing the honeycomb filter of Example 1 in a mortar (titania-rutile phase (110)). since the integrated intensity of the surface) (I T), 2θ = 33.7 ° of the peak appearing at the position [aluminum magnesium titanate phase (230) face] and the integrated intensity (I AT) of, calculated by the following equation (1) did.
AT conversion rate (%) = I AT / (I T + I AT ) × 100 (1)
 流路の軸方向におけるハニカムフィルタの長さは152mmであった。ハニカムフィルタの外径は144mmであった。流路の密度(セル密度)は300cpsiであった。流路の断面内径(正方形の一辺の長さ)は1.2mmであった。流路間の隔壁の厚みは0.30mmであった。隔壁の気孔率は45体積%であり、隔壁の気孔径は15μmであった。 The length of the honeycomb filter in the axial direction of the flow path was 152 mm. The outer diameter of the honeycomb filter was 144 mm. The density of the flow path (cell density) was 300 cpsi. The cross-sectional inner diameter (the length of one side of the square) of the flow path was 1.2 mm. The thickness of the partition between the flow paths was 0.30 mm. The porosity of the partition walls was 45% by volume, and the pore diameter of the partition walls was 15 μm.
(比較例1)
 SiCからなる隔壁により仕切られた互いに平行な複数の流路を有するハニカムフィルタ(DPF)を準備した。流路の軸方向におけるハニカムフィルタの長さは140mmであった。ハニカムフィルタの外径は144mmであった。流路間の隔壁の厚みは0.33mmであった。
(Comparative Example 1)
A honeycomb filter (DPF) having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared. The length of the honeycomb filter in the axial direction of the flow path was 140 mm. The outer diameter of the honeycomb filter was 144 mm. The partition wall thickness between the channels was 0.33 mm.
(比較例2)
 SiCからなる隔壁により仕切られた互いに平行な複数の流路を有するハニカムフィルタ(DPF)を準備した。流路の軸方向におけるハニカムフィルタの長さは152mmであった。ハニカムフィルタの外径は144mmであった。流路間の隔壁の厚みは0.28mmであった。
(Comparative Example 2)
A honeycomb filter (DPF) having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared. The length of the honeycomb filter in the axial direction of the flow path was 152 mm. The outer diameter of the honeycomb filter was 144 mm. The thickness of the partition between the flow paths was 0.28 mm.
<表面粗さ測定>
 各ハニカムフィルタから一つの流路を測定対象として選択した。測定対象の流路の一つの内壁から任意に3箇所の測定領域を選択し、各測定領域の最大高さRz及び算術平均粗さRaをJIS B 0601:2001に準拠して測定した。各測定領域の表面形状をキーエンス製レーザ顕微鏡 VK-8500により測定した。測定領域の表面形状の例を図3に示す。なお、測定領域の大きさは、いずれも298μm×224μmであった。最大高さRz及び算術平均粗さRaの測定結果を表1に示す。
<Surface roughness measurement>
One flow path from each honeycomb filter was selected as a measurement target. Three measurement regions were arbitrarily selected from one inner wall of the flow channel to be measured, and the maximum height Rz and the arithmetic average roughness Ra of each measurement region were measured in accordance with JIS B 0601: 2001. The surface shape of each measurement region was measured with a Keyence laser microscope VK-8500. An example of the surface shape of the measurement region is shown in FIG. The size of the measurement area was 298 μm × 224 μm in all cases. Table 1 shows the measurement results of the maximum height Rz and the arithmetic average roughness Ra.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<圧力損失測定>
 スス堆積時の圧力損失測定を以下のとおり実施した。図4に、圧力損失測定装置の概略図を示す。圧力損失測定には、スス発生装置(Matter Engineering社製、商品名:REXS)200、及び、大型コンプレッサー装置210を用いた。ハニカムフィルタの一方の端面をスス発生装置200に接続し、ハニカムフィルタとスス発生装置200とを接続する配管にコンプレッサー装置210を接続した。
<Pressure loss measurement>
The pressure loss measurement during soot deposition was performed as follows. FIG. 4 shows a schematic diagram of a pressure loss measuring apparatus. For pressure loss measurement, a soot generator (trade name: REXS, manufactured by Matter Engineering) 200 and a large compressor device 210 were used. One end face of the honeycomb filter was connected to the soot generating device 200, and the compressor device 210 was connected to a pipe connecting the honeycomb filter and the soot generating device 200.
 スス発生装置200には、プロパンガスを流量2L/minで供給し、窒素ガスを流量2L/minで供給し、空気を流量1000L/minで供給した。スス発生装置200から発生する“スス”は、プロパンガスを不完全燃焼することによって生成する人工的なススであり、スス発生装置200では、空気流量や酸素濃度等によってススの平均粒子径を制御することができる。測定に際しては、ススの平均粒子径を約90nmに調整した。ススを含む空気の流量はコンプレッサー装置210により200Nm-1に調整した。 To the soot generator 200, propane gas was supplied at a flow rate of 2 L / min, nitrogen gas was supplied at a flow rate of 2 L / min, and air was supplied at a flow rate of 1000 L / min. The soot generated from the soot generator 200 is artificial soot generated by incomplete combustion of propane gas. In the soot generator 200, the average particle diameter of soot is controlled by the air flow rate, oxygen concentration, and the like. can do. In the measurement, the average particle diameter of the soot was adjusted to about 90 nm. The flow rate of air containing soot was adjusted to 200 Nm 3 h −1 by the compressor device 210.
 スス堆積時の圧力損失挙動を把握するため、ハニカムフィルタ内部にススを供給しつつハニカムフィルタ前後の差圧(図4中の圧力P1と圧力P2の差圧ΔP)を記録した。実施例1及び比較例1,2のハニカムフィルタを用いてスス堆積量の増加に伴う圧力損失を測定した結果を図5に示す。図5に示されるように、実施例1では、比較例1,2に比して圧力損失の値が小さいことが確認される。また、実施例1では、比較例1,2に比してスス堆積量の増加に伴う圧力損失の増加量が小さいことが確認される。 In order to grasp the pressure loss behavior during soot deposition, the pressure difference before and after the honeycomb filter (the pressure difference ΔP between the pressure P1 and the pressure P2 in FIG. 4) was recorded while supplying soot inside the honeycomb filter. FIG. 5 shows the results of measuring the pressure loss with the increase in the soot deposition amount using the honeycomb filters of Example 1 and Comparative Examples 1 and 2. As shown in FIG. 5, in Example 1, it is confirmed that the pressure loss value is smaller than in Comparative Examples 1 and 2. Moreover, in Example 1, it is confirmed that the increase amount of the pressure loss accompanying the increase in the amount of soot deposition is small compared with Comparative Examples 1 and 2.
 100…ハニカムフィルタ、110…流路、110a…流路(第1の流路)、110b…流路(第2の流路)、115a,115b…内壁、120…隔壁、A,B…領域。 DESCRIPTION OF SYMBOLS 100 ... Honeycomb filter, 110 ... Channel, 110a ... Channel (first channel), 110b ... Channel (second channel), 115a, 115b ... Inner wall, 120 ... Partition, A, B ... Area.

Claims (5)

  1.  多孔質の隔壁により仕切られた互いに平行な複数の流路を有するハニカムフィルタであって、
     前記複数の流路が、第1の流路と、当該第1の流路に隣接する第2の流路とを有しており、
     前記第1の流路における前記ハニカムフィルタの一端側の端部が封口されており、
     前記第2の流路における前記ハニカムフィルタの他端側の端部が封口されており、
     前記第1の流路又は前記第2の流路の少なくとも一方の内壁における少なくとも一部の領域の最大高さRzが55.00μm以下である、ハニカムフィルタ。
    A honeycomb filter having a plurality of parallel flow paths partitioned by a porous partition wall,
    The plurality of flow paths have a first flow path and a second flow path adjacent to the first flow path,
    An end of one end of the honeycomb filter in the first flow path is sealed;
    The end of the other end side of the honeycomb filter in the second flow path is sealed,
    A honeycomb filter, wherein a maximum height Rz of at least a part of an inner wall of at least one of the first flow path or the second flow path is 55.00 μm or less.
  2.  前記内壁における最大高さRzの平均値が56.00μm以下である、請求項1に記載のハニカムフィルタ。 The honeycomb filter according to claim 1, wherein an average value of maximum heights Rz on the inner wall is 56.00 µm or less.
  3.  前記内壁の前記領域の算術平均粗さRaが9.000μm以下である、請求項1又は2に記載のハニカムフィルタ。 The honeycomb filter according to claim 1 or 2, wherein the arithmetic average roughness Ra of the region of the inner wall is 9.000 µm or less.
  4.  前記内壁における算術平均粗さRaの平均値が8.000μm以下である、請求項1~3のいずれか一項に記載のハニカムフィルタ。 The honeycomb filter according to any one of claims 1 to 3, wherein an average value of arithmetic average roughness Ra on the inner wall is 8.000 µm or less.
  5.  前記隔壁がチタン酸アルミニウムを含む、請求項1~4のいずれか一項に記載のハニカムフィルタ。 The honeycomb filter according to any one of claims 1 to 4, wherein the partition wall contains aluminum titanate.
PCT/JP2012/070079 2011-08-12 2012-08-07 Honeycomb filter WO2013024744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011177003A JP2013039513A (en) 2011-08-12 2011-08-12 Honeycomb filter
JP2011-177003 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013024744A1 true WO2013024744A1 (en) 2013-02-21

Family

ID=47715064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070079 WO2013024744A1 (en) 2011-08-12 2012-08-07 Honeycomb filter

Country Status (2)

Country Link
JP (1) JP2013039513A (en)
WO (1) WO2013024744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103951A (en) * 2017-12-08 2019-06-27 日本碍子株式会社 filter
CN113597334A (en) * 2019-03-28 2021-11-02 日本碍子株式会社 Porous composite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198626B2 (en) * 2018-10-12 2023-01-04 イビデン株式会社 honeycomb structure
JP6940787B2 (en) 2019-07-31 2021-09-29 株式会社デンソー Exhaust gas purification filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001029A (en) * 2001-06-18 2003-01-07 Hitachi Metals Ltd Porous ceramic honeycomb filter
WO2004076027A1 (en) * 2003-02-28 2004-09-10 Ibiden Co., Ltd. Ceramic honeycomb structure
JP2004255377A (en) * 2003-02-07 2004-09-16 Hitachi Metals Ltd Ceramic honeycomb structure
WO2004111398A1 (en) * 2003-06-05 2004-12-23 Ibiden Co., Ltd. Honeycomb structure body
JP2005324154A (en) * 2004-05-17 2005-11-24 Hitachi Metals Ltd Ceramic honeycomb structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001029A (en) * 2001-06-18 2003-01-07 Hitachi Metals Ltd Porous ceramic honeycomb filter
JP2004255377A (en) * 2003-02-07 2004-09-16 Hitachi Metals Ltd Ceramic honeycomb structure
WO2004076027A1 (en) * 2003-02-28 2004-09-10 Ibiden Co., Ltd. Ceramic honeycomb structure
WO2004111398A1 (en) * 2003-06-05 2004-12-23 Ibiden Co., Ltd. Honeycomb structure body
JP2005324154A (en) * 2004-05-17 2005-11-24 Hitachi Metals Ltd Ceramic honeycomb structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103951A (en) * 2017-12-08 2019-06-27 日本碍子株式会社 filter
CN113597334A (en) * 2019-03-28 2021-11-02 日本碍子株式会社 Porous composite

Also Published As

Publication number Publication date
JP2013039513A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5502000B2 (en) Honeycomb structure and particulate filter
WO2013024745A1 (en) Honeycomb structure
JP5491558B2 (en) Honeycomb structure
JP4769978B2 (en) Manufacturing method of aluminum titanate ceramic fired body
WO2012157421A1 (en) Honeycomb filter
JP4965734B1 (en) Method for manufacturing green molded body and honeycomb structure
US20110287921A1 (en) Process for producing aluminum titanate-based fired body
WO2011037177A1 (en) Method for producing ceramic fired article
WO2011027783A1 (en) Method for producing fired ceramic body
WO2013024744A1 (en) Honeycomb filter
WO2011111666A1 (en) Green compact and method for producing aluminum titanate sintered body.
WO2012157420A1 (en) Honeycomb filter
WO2011027904A1 (en) Method for producing aluminum titanate baked body and aluminum titanate baked body
WO2012014684A1 (en) Green compact
WO2012141034A1 (en) Honeycomb structure
WO2012157422A1 (en) Honeycomb filter
WO2012176888A1 (en) Aluminum titanate ceramic and molded body
JP2011241116A (en) Method for producing aluminum titanate sintered compact and aluminum titanate sintered compact
JP2013129583A (en) Honeycomb structure and honeycomb filter
WO2013027570A1 (en) Honeycomb structure manufacturing method
WO2012014683A1 (en) Honeycomb structural body
WO2013073532A1 (en) Honeycomb structure and honeycomb filter
WO2012157423A1 (en) Honeycomb filter
WO2012014681A1 (en) Green compact
JP2013136479A (en) Opening sealing material and honeycomb molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824033

Country of ref document: EP

Kind code of ref document: A1