WO2012157421A1 - Honeycomb filter - Google Patents

Honeycomb filter Download PDF

Info

Publication number
WO2012157421A1
WO2012157421A1 PCT/JP2012/061125 JP2012061125W WO2012157421A1 WO 2012157421 A1 WO2012157421 A1 WO 2012157421A1 JP 2012061125 W JP2012061125 W JP 2012061125W WO 2012157421 A1 WO2012157421 A1 WO 2012157421A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
honeycomb filter
flow paths
flow
cross
Prior art date
Application number
PCT/JP2012/061125
Other languages
French (fr)
Japanese (ja)
Inventor
照夫 小森
健太郎 岩崎
明欣 根本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012157421A1 publication Critical patent/WO2012157421A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb filter.
  • the honeycomb filter is used as a ceramic filter for removing the collected matter from the fluid containing the collected matter, for example, for purifying exhaust gas exhausted from an internal combustion engine such as a diesel engine or a gasoline engine. Used as an exhaust gas filter.
  • a honeycomb filter has a plurality of parallel flow paths partitioned by porous partition walls (see, for example, Patent Document 1 below).
  • the honeycomb filter As the fluid containing the collected matter is supplied into the honeycomb filter, the collected matter is deposited on the surface of the partition wall or inside the partition wall in the honeycomb filter. In this case, if the collected material is excessively accumulated in the honeycomb filter, the movement of the fluid in the honeycomb filter is hindered and the purification performance of the honeycomb filter is deteriorated. Therefore, after depositing a certain amount of collected matter in the honeycomb filter, the honeycomb filter is subjected to combustion regeneration in order to burn and remove the collected matter.
  • the honeycomb filter may be thermally damaged or melted. Therefore, it is required for the honeycomb filter to reduce the thermal stress generated in the combustion regeneration.
  • the honeycomb filter it is required to sufficiently suppress an increase in pressure loss as the collected object is collected in the honeycomb filter. Therefore, the honeycomb filter is required to reduce the thermal stress generated in the combustion regeneration while reducing the pressure loss.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a honeycomb filter capable of reducing thermal stress generated in combustion regeneration while reducing pressure loss.
  • a honeycomb filter according to the present invention is a honeycomb filter having a plurality of parallel flow paths partitioned by a porous partition wall, wherein the plurality of flow paths includes a first flow path and the first flow path.
  • the end of one end of the honeycomb filter in the channel is sealed, and the end of the other end of the honeycomb filter in the second channel is sealed, and is perpendicular to the axial direction of the second channel.
  • the cross section of the second channel has a first side and second sides respectively disposed on both sides of the first side, and the second channel is perpendicular to the axial direction of the first channel.
  • Each of the sides forming the cross section of the first channel is opposed to the first side of the second channel, and each of the second sides of the second channel is Opposite to the second side of the adjacent second flow path, a plurality of first flow paths are arranged, and each of the second flow paths has a side that forms a cross section of the second flow path.
  • the honeycomb filter according to the present invention can reduce thermal stress generated in the honeycomb filter during combustion regeneration while reducing pressure loss.
  • the reason why the above effect is obtained in the present invention is unknown in detail, but the present inventor presumes as follows. However, the cause is not limited to the following contents.
  • the plurality of flow paths include a first flow path and a plurality of second flow paths adjacent to the first flow path.
  • first flow path one second flow path and the other second flow path are adjacent to each other, and an end portion on one end side of the honeycomb filter in the first flow path is sealed, The end portion of the other end side of the honeycomb filter in the flow path is sealed, and the cross section of the second flow path perpendicular to the axial direction of the second flow path is the first side and the first side.
  • Each of the sides forming a cross section of the first flow path perpendicular to the axial direction of the first flow path is formed on each side of the second flow path.
  • Each of the second sides of the second flow channel is opposed to the second side of the adjacent second flow channel.
  • the trapped substance when a fluid containing a trapped substance flows into the second flow path from one end side of the honeycomb filter, the trapped substance is It accumulates on the inner wall and deposits on each of the first side and the second side in the cross section of the second channel perpendicular to the axial direction of the second channel.
  • a combustion-supporting gas such as oxygen gas that has flowed into the honeycomb filter is supplied to a portion where the collected matter is accumulated. Then, the collected material burns in the presence of the combustion-supporting gas, thereby generating carbon dioxide gas, carbon monoxide gas or the like (hereinafter simply referred to as “carbon dioxide gas or the like”).
  • the burning rate of the collected matter tends to depend on the ease of diffusion to the flow path on the gas outflow side such as carbon dioxide gas generated by the burning of the collected matter. Guessed. That is, in the present invention, the pressure difference between the first flow path and the second flow path adjacent to each other tends to be larger than the pressure difference between the second flow paths adjacent to each other. Thereby, the carbon dioxide gas etc. which generate
  • side have the 1st partition which has a cross section which shares the cross section of a 2nd flow path, and a 1st edge
  • the carbon dioxide gas, etc. generated by the combustion of the collected matter deposited on the second side tends to reach the first flow path through the inside of the second flow path. There is a tendency to move along the partition wall in the second partition wall having a cross section sharing the same to reach the first flow path.
  • the carbon dioxide gas generated by the combustion of the collected matter accumulated on the first side etc.
  • the burning rate of the collected matter differs depending on the portion where the collected matter is accumulated, the burning of the collected matter is abruptly generated in many portions during the combustion regeneration. A sudden change in the temperature in the honeycomb filter is suppressed. Such a phenomenon is presumably caused by the fact that the total sum S of the products in all the second flow paths included in 1 liter of honeycomb filter is 1.1 m 2 or more. The Thereby, the thermal stress which arises in a honeycomb filter in combustion regeneration can be reduced.
  • the total sum of the products S in all the second flow paths included per liter of the honeycomb filter is 1.1 m 2 or more, so that the collected matter is included. It is possible to reduce the thermal stress generated in the honeycomb filter during combustion regeneration while reducing the pressure loss when the fluid is supplied into the honeycomb filter. The reason why such an effect can be obtained is unknown in detail, but the present inventor will ensure that the filtration area is sufficiently secured, and that the collected substances will accumulate locally and block the flow path. It is speculated that the pressure loss is reduced due to the suppression of the pressure. However, the cause is not limited to the content.
  • the partition preferably contains aluminum titanate. In this case, it is easy to reduce the thermal stress generated in the honeycomb filter during combustion regeneration while reducing the pressure loss.
  • the cross section of the first flow path and the cross section of the second flow path may be hexagonal.
  • a configuration in which one second flow path is disposed between adjacent first flow paths may be employed.
  • the thermal stress generated in the honeycomb filter during combustion regeneration can be further reduced.
  • the lengths of the sides facing each other in the cross section of the second flow path may be equal to each other.
  • the cross section of the second flow path may have two long sides having the same length and four short sides having the same length.
  • the two second flow paths are disposed between the first flow paths adjacent to each other and are adjacent to each other in a direction orthogonal to the arrangement direction of the first flow paths.
  • An aspect may be sufficient.
  • the thermal stress generated in the honeycomb filter during combustion regeneration can be further reduced, and the pressure loss can be easily reduced because the area for filtering the collected matter (effective filtration area) increases.
  • the cross section of the second flow path has three long sides having the same length and three short sides having the same length, and the long side and the short side are mutually different. You may face each other.
  • the honeycomb filter according to the present invention can reduce thermal stress generated in the honeycomb filter during combustion regeneration while reducing pressure loss. By reducing the thermal stress, it is possible to prevent the honeycomb filter from being damaged or melted during combustion regeneration.
  • FIG. 1 is a drawing schematically showing a honeycomb filter according to a first embodiment of the present invention.
  • FIG. 2 is a view taken along the line II-II in FIG.
  • FIG. 3 is a drawing schematically showing a honeycomb filter according to a second embodiment of the present invention.
  • 4 is a view taken in the direction of arrows IV-IV in FIG.
  • FIG. 5 is a drawing schematically showing a honeycomb filter according to another embodiment of the present invention.
  • FIG. 6 is a drawing schematically showing the covering portion disposed in the flow path.
  • FIG. 7 is a drawing schematically showing the covering portion disposed in the flow path.
  • FIG. 8 is a drawing schematically showing the shape of the wall surface of the partition wall.
  • FIG. 9 is a drawing schematically showing the filter used in the comparative example.
  • FIG. 10 is a drawing schematically showing a pressure loss measuring apparatus.
  • FIG. 11 is a drawing showing the measurement results of pressure loss.
  • FIG. 1 is a drawing schematically showing the honeycomb filter according to the first embodiment, and FIG. 1 (b) is an enlarged view of a region A1 in FIG. 1 (a).
  • FIG. 2 is a view taken along the line II-II in FIG.
  • the honeycomb filter 100 is a cylindrical body having a plurality of flow paths 110 arranged substantially parallel to each other.
  • the plurality of flow paths 110 are partitioned by partition walls 120 that extend substantially parallel to the central axis of the honeycomb filter 100.
  • the plurality of channels 110 have a plurality of channels (first channels) 110a and a plurality of channels (second channels) 110b adjacent to the channels 110a.
  • the flow path 110 a and the flow path 110 b extend substantially perpendicular to both end faces of the honeycomb filter 100.
  • One end of the flow path 110a constituting a part of the flow path 110 is sealed by the sealing portion 130 on the one end face 100a of the honeycomb filter 100, and the other end of the flow path 110a is the other end face 100b of the honeycomb filter 100. Is open.
  • one end of the flow path 110b that constitutes the remaining part of the plurality of flow paths 110 is open at the one end face 100a, and the other end of the flow path 110b is sealed by the sealing portion 130 at the other end face 100b.
  • the end on the one end face 100a side of the flow path 110b is opened as a gas inlet
  • the end on the other end face 100b side of the flow path 110a is opened as a gas outlet.
  • the cross section substantially perpendicular to the axial direction (longitudinal direction) of the flow path 110a and the flow path 110b has a hexagonal shape.
  • the cross section of the flow path 110a is easy to reduce the pressure loss at the time of deposition of the collected substances by allowing the fluid containing the collected substances to easily flow from the flow path on the gas inflow side to the flow path on the gas outflow side.
  • a regular hexagonal shape in which the lengths of the sides 140 forming the cross section are substantially equal to each other is preferable, but a flat hexagonal shape may be used.
  • the cross section of the channel 110b is, for example, a flat hexagonal shape, but may be a regular hexagonal shape.
  • the lengths of the sides facing each other in the cross section of the channel 110b are substantially equal to each other.
  • the cross section of the channel 110b has two long sides (first side) 150a having approximately the same length as the side 150 forming the cross section, and four (two pairs) having substantially the same length. ) Short side (second side) 150b.
  • the short side 150b is disposed on each side of the long side 150a.
  • the long sides 150a face each other substantially in parallel, and the short sides 150b face each other substantially in parallel.
  • the length of the long side 150a is adjusted to be longer than the length of the short side 150b.
  • the partition 120 has the partition 120a as a part which partitions off the flow path 110a and the flow path 110b. That is, the channel 110a and the channel 110b are adjacent to each other through the partition wall 120a. By disposing one flow path 110b between adjacent flow paths 110a, the flow paths 110a are alternately arranged with the flow paths 110b in the arrangement direction of the flow paths 110a (a direction substantially orthogonal to the side 140). Yes.
  • Each of the sides 140 of the flow channel 110a faces the long side 150a of any one of the plurality of flow channels 110b substantially in parallel. That is, each of the wall surfaces that form the flow channel 110a is opposed substantially parallel to the one wall surface that forms the flow channel 110b in the partition wall 120a located between the flow channel 110a and the flow channel 110b.
  • the flow path 110 has a structural unit including one flow path 110a and six flow paths 110b surrounding the flow path 110a, and in the structural unit, all the sides 140 of the flow path 110a are included. It faces the long side 150a of the flow path 110b.
  • the honeycomb filter 100 from the viewpoint of further improving the collection efficiency of the collected object, it is preferable that at least one length of the side 140 of the flow path 110a is substantially equal to the length of the opposing long side 150a. It is more preferable that the length of each of these is substantially equal to the length of the opposing long side 150a.
  • the partition 120 has the partition 120b as a part which partitions the mutually adjacent flow paths 110b. That is, the flow paths 110b surrounding the flow path 110a are adjacent to each other through the partition wall 120b.
  • Each of the short sides 150b of the flow path 110b is opposed substantially parallel to the short side 150b of the adjacent flow path 110b. That is, the wall surfaces forming the flow path 110b face each other substantially in parallel in the partition wall 120b located between the adjacent flow paths 110b.
  • at least one length of the short side 150b of the flow path 110b is between the adjacent short sides 150b between the adjacent flow paths 110b. It is preferable that the length is approximately equal to the length, and it is more preferable that each length of the short side 150b is approximately equal to the length of the opposing short side 150b.
  • the length of the honeycomb filter 100 in the longitudinal direction of the flow paths 110a and 110b is, for example, 50 to 300 mm.
  • the outer diameter of the honeycomb filter 100 is, for example, 50 to 250 mm.
  • the density (cell density) of the channels 110a and 110b is, for example, 50 to 400 cpsi (cell per square inch). “Cpsi” represents the number of flow paths (cells) per square inch.
  • the total area of the gas inflow side flow paths is preferably larger than the total area of the gas outflow side flow paths, that is, the total of the flow paths 110b.
  • the area is preferably larger than the total area of the flow paths 110a.
  • the length of the side 140 is 0.2 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • 0.4 mm or more is more preferable, and 0.6 mm or more is still more preferable.
  • the length of the side 140 is preferably 2.0 mm or less, and more preferably 1.6 mm or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the length of the long side 150a of the flow path 110b in the structural unit is preferably 0.4 mm or more, and more preferably 0.6 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the length of the long side 150a of the channel 110b is preferably 2.0 mm or less, and more preferably 1.6 mm or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the length of the short side 150b of the flow path 110b in the structural unit is preferably 0.3 mm or more, and more preferably 0.5 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. From the viewpoint of further reducing the pressure loss, the length of the short side 150b of the channel 110b is preferably 2.0 mm or less, and more preferably 1.0 mm or less.
  • the thickness (cell wall thickness) of the partition wall 120 in the structural unit is preferably 0.8 mm or less, more preferably 0.5 mm or less, from the viewpoint of further reducing the pressure loss.
  • the thickness of the partition 120 is preferably 0.1 mm or more, and more preferably 0.2 mm or more, from the viewpoint of maintaining the collection efficiency of the collected object and the strength of the honeycomb filter 100 at a high level.
  • the porosity of the partition wall 120 in the above structural unit is preferably 20% by volume or more, more preferably 30% by volume or more, and still more preferably 40% by volume or more from the viewpoint of further reducing pressure loss.
  • the porosity of the partition walls 120 is preferably 60% by volume or less, and more preferably 50% by volume or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the porosity of the partition wall 120 can be adjusted by the particle diameter of the raw material, the amount of the pore-forming agent added, the kind of the pore-forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
  • the pore diameter (pore diameter) of the partition wall 120 in the above structural unit is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of further reducing the pressure loss. From the viewpoint of improving the soot collection performance, the pore diameter of the partition wall 120 is preferably 30 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the pore diameter of the partition wall 120 can be adjusted by the particle diameter of the raw material, the added amount of the pore forming agent, the kind of the pore forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
  • Effective filtration area of the honeycomb filter 100 from the viewpoint of reducing pressure loss while reducing the thermal stress generated in the honeycomb filter in the combustion regeneration, and a 1.1 m 2 / L or more, preferably at least 1.2 m 2 / L, 1.3 m 2 / L or more is more preferable.
  • the sum of products with the length of S is S
  • the total product S in the honeycomb filter 100 is the product of the length of the long side 150a of the flow path 110b and the length in the longitudinal direction of the flow path 110b, and the length of the short side 150b of the flow path 110b and the length of the flow path 110b. It means the sum of the product with the length in the longitudinal direction.
  • the upper limit of an effective filtration area is 2.0 m ⁇ 2 > / L, for example.
  • Fig. 3 is a drawing schematically showing the honeycomb filter according to the second embodiment, and Fig. 3 (b) is an enlarged view of a region A2 in Fig. 3 (a). 4 is a view taken in the direction of arrows IV-IV in FIG.
  • the honeycomb filter 200 is a cylindrical body having a plurality of flow paths 210 arranged substantially parallel to each other. The plurality of flow paths 210 are partitioned by partition walls 220 extending substantially parallel to the central axis of the honeycomb filter 200.
  • the plurality of flow paths 210 include a plurality of flow paths (first flow paths) 210a and a plurality of flow paths (second flow paths) 210b adjacent to the flow paths 210a.
  • the flow path 210 a and the flow path 210 b extend substantially perpendicular to both end faces of the honeycomb filter 200.
  • One end of the flow path 210a that forms a part of the flow path 210 is sealed by the sealing portion 230 at the one end face 200a of the honeycomb filter 200, and the other end of the flow path 210a is the other end face 200b of the honeycomb filter 200. Is open.
  • one end of the flow path 210b forming the remaining part of the plurality of flow paths 210 is open at the one end face 200a, and the other end of the flow path 210b is sealed by the sealing portion 230 at the other end face 200b.
  • the end on the one end face 200a side of the flow path 210b is opened as a gas inlet
  • the end on the other end face 200b side of the flow path 210a is opened as a gas outlet.
  • the cross section substantially perpendicular to the axial direction (longitudinal direction) of the flow path 210a and the flow path 210b is hexagonal.
  • the cross section of the flow path 210a makes it easy to reduce the pressure loss at the time of deposition of the collected substances by allowing the fluid containing the collected substances to easily flow from the flow path on the gas inflow side to the flow path on the gas outflow side.
  • a regular hexagonal shape in which the lengths of the sides 240 forming the cross section are substantially equal to each other is preferable, but a flat hexagonal shape may be used.
  • the cross section of the channel 210b is, for example, a flat hexagonal shape, but may be a regular hexagonal shape.
  • the lengths of the sides facing each other in the cross section of the flow path 210b are different from each other.
  • the cross section of the flow path 210b includes three long sides (first sides) 250a having substantially the same length as the sides 250 forming the cross section, and three short sides (second sides) having the substantially same length. ) 250b.
  • the long side 250a and the short side 250b face each other substantially in parallel, and the short side 250b is disposed on each side of the long side 250a.
  • the length of the long side 250a is adjusted to be longer than the length of the short side 250b.
  • the partition 220 has the partition 220a as a part which partitions off the flow path 210a and the flow path 210b. That is, the flow path 210a and the flow path 210b are adjacent to each other through the partition wall 220a. Between the adjacent flow paths 210a, two flow paths 210b adjacent to each other in a direction substantially orthogonal to the arrangement direction of the flow paths 210a are arranged, and the two adjacent flow paths 210b are adjacent to each other. They are arranged symmetrically across a line connecting the centers of the sections of 210a.
  • Each of the sides 240 of the flow path 210a faces the long side 250a of any one of the plurality of flow paths 210b substantially in parallel. That is, each of the wall surfaces forming the flow path 210a is opposed substantially parallel to the one wall surface forming the flow path 210b in the partition wall 220a located between the flow path 210a and the flow path 210b.
  • the flow path 210 has a structural unit including one flow path 210a and six flow paths 210b surrounding the flow path 210a. In the structural unit, all the sides 240 of the flow path 210a are included. It faces the long side 250a of the flow path 210b.
  • each vertex of the cross section of the flow path 210a is opposed to the apex of the adjacent flow path 210a in the arrangement direction of the flow paths 210a.
  • at least one length of the side 240 of the flow path 210a is substantially equal to the length of the opposing long side 250a, from the viewpoint of further improving the collection efficiency of the collection target. It is preferable that the length of each is substantially equal to the length of the opposing long side 250a.
  • the partition 220 has the partition 220b as a part which partitions off the mutually adjacent flow paths 210b. That is, the flow paths 210b surrounding the flow path 210a are adjacent to each other through the partition 220b.
  • Each of the short sides 250b of the flow path 210b is opposed substantially parallel to the short side 250b of the adjacent flow path 210b. That is, the wall surfaces forming the flow path 210b face each other substantially in parallel in the partition 220b located between the adjacent flow paths 210b.
  • One flow path 210b is surrounded by three flow paths 210a.
  • at least one length of the short side 250b of the flow path 210b is between the adjacent short sides 250b between the adjacent flow paths 210b. It is preferable that the length is approximately equal to the length, and it is more preferable that each length of the short side 250b is approximately equal to the length of the opposing short side 250b.
  • the length of the honeycomb filter 200 in the longitudinal direction of the flow paths 210a and 210b is, for example, 50 to 300 mm.
  • the outer diameter of the honeycomb filter 200 is, for example, 50 to 250 mm.
  • the density (cell density) of the flow paths 210a and 210b is, for example, 50 to 400 cpsi.
  • the total area of the gas inflow side flow paths is preferably larger than the total area of the gas outflow side flow paths, that is, the total of the flow paths 210b.
  • the area is preferably larger than the total area of the channels 210a.
  • the length of the side 240 is 0.2 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • 0.4 mm or more is more preferable, and 0.6 mm or more is still more preferable.
  • the length of the side 240 is preferably 2.0 mm or less and more preferably 1.6 mm or less from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the length of the long side 250a of the flow path 210b in the structural unit is preferably 0.4 mm or more, and more preferably 0.6 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the length of the long side 250a of the flow path 210b is preferably 2.0 mm or less, and more preferably 1.6 mm or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the length of the short side 250b of the flow path 210b in the structural unit is preferably 0.3 mm or more, and more preferably 0.5 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. From the viewpoint of further reducing the pressure loss, the length of the short side 250b of the flow path 210b is preferably 2.0 mm or less, and more preferably 1.0 mm or less.
  • the thickness (cell wall thickness) of the partition wall 220 in the structural unit is preferably 0.8 mm or less, and more preferably 0.5 mm or less, from the viewpoint of further reducing the pressure loss.
  • the thickness of the partition 220 is preferably 0.1 mm or more, and more preferably 0.2 mm or more, from the viewpoint of maintaining the collection efficiency of the object to be collected and the strength of the honeycomb filter 200 at a high level.
  • the porosity of the partition wall 220 in the above structural unit is preferably 20% by volume or more, more preferably 30% by volume or more, and still more preferably 40% by volume or more from the viewpoint of further reducing pressure loss.
  • the porosity of the partition walls 220 is preferably 60% by volume or less, and more preferably 50% by volume or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration.
  • the porosity of the partition 220 can be adjusted by the particle diameter of the raw material, the amount of the pore-forming agent added, the type of the pore-forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
  • the pore diameter (pore diameter) of the partition wall 220 in the above structural unit is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more, from the viewpoint of further reducing the pressure loss. From the viewpoint of improving the soot collection performance, the pore size of the partition 220 is preferably 30 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the pore diameter of the partition wall 220 can be adjusted by the particle diameter of the raw material, the amount of the pore-forming agent added, the kind of the pore-forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
  • Effective filtration area of the honeycomb filter 200 from the viewpoint of reducing pressure loss while reducing the thermal stress generated in the honeycomb filter in the combustion regeneration, and a 1.1 m 2 / L or more, preferably at least 1.2 m 2 / L, 1.3 m 2 / L or more is more preferable.
  • the upper limit of an effective filtration area is 2.0 m ⁇ 2 > / L, for example.
  • the partition walls are porous, and include, for example, porous ceramics (porous ceramic sintered body).
  • the partition wall has a structure that allows fluid (for example, exhaust gas containing fine particles such as soot) to pass therethrough. Specifically, a large number of communication holes (flow channels) through which fluid can pass are formed in the partition wall.
  • the partition preferably contains aluminum titanate, and may further contain magnesium or silicon.
  • the partition walls are made of, for example, porous ceramics mainly made of an aluminum titanate crystal. “Mainly composed of an aluminum titanate-based crystal” means that the main crystal phase constituting the aluminum titanate-based ceramic fired body is an aluminum titanate-based crystal phase. An aluminum titanate crystal phase, an aluminum magnesium titanate crystal phase, or the like may be used.
  • the composition formula of the partition wall is, for example, Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is preferably 0.03 or more, and 0.03 to 0 20 is more preferable, and 0.03 to 0.18 is still more preferable.
  • the partition walls may contain trace components derived from raw materials or trace components inevitably included in the production process.
  • the partition may contain a glass phase derived from a silicon source powder.
  • the glass phase refers to an amorphous phase in which SiO 2 is the main component.
  • the glass phase content is preferably 4% by mass or less.
  • an aluminum titanate-based ceramic fired body that satisfies the pore characteristics required for a ceramic filter such as a particulate filter is easily obtained.
  • the glass phase content is preferably 2% by mass or more.
  • the partition may contain a phase (crystal phase) other than the aluminum titanate crystal phase or the glass phase.
  • the phase other than the aluminum titanate-based crystal phase include a phase derived from a raw material used for producing an aluminum titanate-based ceramic fired body. More specifically, the phase derived from the raw material is a phase derived from an aluminum source powder, a titanium source powder and / or a magnesium source powder that remains without forming an aluminum titanate-based crystal phase during the manufacture of the honeycomb filter.
  • the phase derived from the raw material include phases such as alumina and titania.
  • the crystal phase forming the partition can be confirmed by an X-ray diffraction spectrum.
  • the honeycomb filter is suitable, for example, as a particulate filter that collects collected matter such as soot contained in exhaust gas from an internal combustion engine such as a diesel engine or a gasoline engine.
  • the honeycomb filter 100 as shown in FIG. 2, the gas G supplied from the one end face 100a to the flow path 110b passes through the communication hole in the partition wall 120 and reaches the adjacent flow path 110a, and the other end face 100b. Discharged from.
  • the collected matter in the gas G is collected on the surface of the partition wall 120 or in the communication hole and removed from the gas G, whereby the honeycomb filter 100 functions as a filter.
  • the honeycomb filter 200 functions as a filter.
  • the honeycomb filter In the conventional honeycomb filter, once the trapped material is deposited on the surface of the partition wall or inside the partition wall (in the communication hole), a new trapped substance is placed in the same channel as the channel on which the trapped material is deposited. Is likely to accumulate. In this case, in the flow path in which a large amount of collected material is accumulated, when the honeycomb filter is combusted and regenerated, the collected material is easily burned in a short time and the amount of generated heat tends to increase. Stress is applied.
  • the honeycomb filters 100 and 200 as described below, thermal stress generated in the honeycomb filter during combustion regeneration can be reduced.
  • the burning rate of the collected matter tends to depend on the ease of diffusion into the channel 110a on the gas outflow side such as carbon dioxide gas generated by the burning of the collected matter. It is guessed. That is, in the honey-comb filter 100, the pressure difference between the mutually adjacent flow paths 110a and 110b tends to be larger than the pressure difference between the adjacent flow paths 110b. Thereby, the carbon dioxide gas etc. which generate
  • the route R 11 passing through the partition wall 120a is, since shorter than the path R 12 passing through the partition wall 120b, towards the carbon dioxide gas and the like generated by the combustion of the collected matter accumulated on the long side 150a
  • the honeycomb filter 100 Due to the pressure difference between the flow paths and the difference in the length of the flow path in the partition wall, in the honeycomb filter 100, carbon dioxide gas or the like generated by the combustion of the collected matter accumulated on the long side 150a is generated. However, it is easier to diffuse into the flow path 110a than carbon dioxide gas or the like generated by combustion of the collected matter deposited on the short side 150b. Therefore, the collected matter deposited on the long side 150a is more easily combusted than the collected matter deposited on the short side 150b, and deposited on the collected matter deposited on the long side 150a and the short side 150b. The burning speed differs depending on the material to be collected.
  • the pressure difference between the flow path 110a and the flow path 110b tends to be larger than the pressure difference between the adjacent flow paths 110b.
  • the combustion-supporting gas is easily supplied to the long side 150a. Therefore, the collected matter deposited on the long side 150a is more easily combusted than the collected matter deposited on the short side 150b, and deposited on the collected matter deposited on the long side 150a and the short side 150b.
  • the burning rate tends to be further different from that of the object to be collected.
  • the burning rate of the collected matter differs depending on the portion (the long side 150a and the short side 150b) where the collected matter is accumulated. It is suppressed that the combustion of the collection occurs suddenly in many parts and the temperature in the honeycomb filter 100 changes rapidly. Such a phenomenon is presumably caused by the fact that the effective filtration area of the honeycomb filter 100 is 1.1 m 2 or more per liter of the honeycomb filter. Thereby, the thermal stress which arises in the honey-comb filter 100 in combustion reproduction
  • the effective filtration area of the honeycomb filter 100 is less than 1.1 m 2 per liter of the honeycomb filter, the length of the path R 11 passing through the partition wall 120a and the length of the path R 12 passing through the partition wall 120b are sufficiently different. However, it is difficult to sufficiently reduce the thermal stress.
  • the effective filtration area of the honeycomb filter 100 is 1.1 m 2 or more per liter of the honeycomb filter, the pressure loss when the fluid containing the trapped material is supplied to the inside of the honeycomb filter is reduced. While reducing, the thermal stress which arises in a honeycomb filter in combustion reproduction
  • honeycomb filter 100 In the honeycomb filter 100 described above, even when the collected matter is burned and regenerated with a large amount of the collected matter accumulated in the honeycomb filter 100, the heat caused by the heat generated at that time is generated. Damage to the honeycomb filter 100 due to stress can be suppressed. Therefore, since it is not necessary to frequently regenerate the honeycomb filter 100, it is possible to use the filter continuously for a long time until a large amount of collected substances accumulates. Therefore, the maintainability can be improved and the collection efficiency of the collected object can be improved.
  • the arrangement configuration and the cross-sectional configuration of the channel 110a and the channel 110b are not limited to the above.
  • the side 140 and the long side 150a face each other, and the short sides 150b face each other in the adjacent flow path 110b, but the side 140 and the short side 150b face each other and are adjacent to each other.
  • the long sides 150a may face each other.
  • the number of the flow paths 110a and 110b is not limited to that shown in FIGS.
  • the lengths of the side 140 and the long side 150a facing each other may be different from each other, and the lengths of the short sides 150b facing each other may be different from each other.
  • the side 140 and the long side 150a facing each other may not extend substantially parallel to each other but may extend in directions intersecting each other.
  • the short sides 150b facing each other may not extend substantially parallel to each other but may extend in directions intersecting each other.
  • the cross section of the flow path 110b has a flat hexagonal shape, the lengths of sides facing each other in the cross section of the flow path 110b may be different from each other.
  • the arrangement configuration and the cross-sectional configuration of the flow path 210a and the flow path 210b are not limited to the above.
  • the side 240 and the long side 250a face each other, and the short sides 250b face each other in the adjacent flow path 210b, but the side 240 and the short side 250b face each other, In the adjacent channel 210b, the long sides 250a may face each other.
  • the number of the flow paths 210a and 210b is not limited to that shown in FIGS.
  • the lengths of the side 240 and the long side 250a facing each other may be different from each other, and the lengths of the short sides 250b facing each other may be different from each other.
  • the sides 240 and the long sides 250a facing each other may not extend substantially in parallel but may extend in directions intersecting each other.
  • the short sides 250b facing each other may not extend substantially in parallel but may extend in directions intersecting each other.
  • the cross section of the flow path 210b has a flat hexagonal shape
  • the lengths of sides facing each other in the cross section of the flow path 210b may be substantially equal to each other.
  • the cross section of the flow channel substantially perpendicular to the axial direction (longitudinal direction) of the flow channel is not limited to a hexagonal shape, and may be a rectangular shape, an octagonal shape, a triangular shape, a circular shape, an elliptical shape, or the like.
  • the honeycomb filter 300 shown in FIG. 5 has a plurality of flow paths 310 arranged substantially in parallel with each other.
  • the flow path 310 includes a plurality of flow paths (first flow paths) 310a and a plurality of flow paths (second flow paths) 310b adjacent to the flow paths 310a.
  • One channel 310b and another channel 310b are adjacent to each other.
  • One flow path 310b is disposed between the flow paths 310a adjacent to each other.
  • An end portion on one end side of the honeycomb filter 300 in the flow path 310 a and an end portion on the other end side of the honeycomb filter 300 in the flow path 310 b are respectively sealed by a sealing portion 330.
  • one end of the flow path 310b is opened as a gas inlet
  • the other end of the flow path 310a is opened as a gas outlet.
  • the flow path 310 is partitioned by a partition wall 320 that extends substantially parallel to the central axis of the honeycomb filter 300.
  • the partition 320 has the partition 320a as a part which partitions off the flow path 310a and the flow path 310b, and has the partition 320b as a part which partitions off the mutually adjacent flow paths 310b.
  • the cross section substantially perpendicular to the axial direction of the flow path 310a is a square shape, and the cross section substantially perpendicular to the axial direction of the flow path 310b is a regular octagon.
  • the cross section of the flow path 310b perpendicular to the axial direction of the flow path 310b has a first side 350a and second sides 350b respectively disposed on both sides of the side 350a.
  • the sides 350a face each other and the sides 350b face each other, and the lengths of the sides facing each other are equal to each other.
  • Each of the sides 340 forming a cross section of the flow channel 310a perpendicular to the axial direction of the flow channel 310a faces the side 350a of any one of the plurality of flow channels 310b.
  • Each of the sides 350b of the channel 310b faces the side 350b of the adjacent channel 310b.
  • the effective filtration area of the honeycomb filter 300 (the total area of the inner walls of the flow path 310) is 1.1 m 2 or more per liter of the honeycomb filter.
  • the total area of the gas inflow side flow paths is preferably larger than the total area of the gas outflow side flow paths. Is preferably larger than the total area of the flow paths 310a.
  • the path R 31 passing through the partition wall 320a is shorter than the path R 32 passing through the partition wall 320b, the direction of the carbon dioxide gas and the like generated by the combustion of the collected matter accumulated on the sides 350a, It is easier to diffuse out of the honeycomb filter than carbon dioxide gas or the like generated by combustion of the collected matter accumulated on the side 350b. Therefore, the collected matter deposited on the side 350a is more easily combusted than the collected matter deposited on the side 350b, and the collected matter deposited on the side 350a and the collected matter deposited on the side 350b The combustion speed will be different.
  • a covering portion that covers at least a part of the surface of the partition wall may be disposed.
  • the covering portion may be disposed on the surface of the partition wall in the gas inflow side flow path, or may be disposed on the surface of the partition wall in the gas outflow side flow path.
  • the covering portion is disposed on at least one surface of a part that partitions the gas inflow side flow paths in the partition walls, or a part that partitions the gas inflow side flow path and the gas outflow side flow paths in the partition walls. May be.
  • coated part may cover all the one wall surfaces of a partition.
  • the covering portion may be formed of a material similar to that of the partition wall, for example, may be porous, or may be formed of a material that shields gas diffusion.
  • the covering portion extends, for example, continuously or intermittently substantially parallel to the central axis and the flow path of the honeycomb filter.
  • the covering portion may be formed in the flow path in advance in a molding process described later, or may be formed in the flow path in a process subsequent to the molding process.
  • the covering portion 160 is disposed on the surface of the partition wall in the flow channel 110b on the gas inflow side. 6A and 6B, the covering portion 160 is disposed on the surface of the partition wall 120a that partitions the flow path 110a and the flow path 110b. 6C and 6D, the covering portion 160 is disposed on the surface of the partition wall 120b that partitions the flow paths 110b. 6A and 6C, the covering portions 160 are respectively disposed on the surfaces of the opposing partition walls, and a cross section substantially perpendicular to the longitudinal direction of the covering portion 160 is rectangular.
  • 6B extends from one partition 120a to the other partition 120a between a pair of opposing partitions 120a.
  • 6D extends from one partition wall 120b to the other partition wall 120b between the opposing partition walls 120b, and the covering portions 160 are connected to each other at substantially the center of the flow path 110b. Yes.
  • the covering portion 360 is disposed on the surface of the partition wall in the gas inflow channel 310 b. 7A and 7B, the covering portion 360 is disposed on the surface of the partition 320b that partitions the flow paths 310b. 7C and 7D, the covering portion 360 is disposed on the surface of the partition 320a that partitions the flow path 310a and the flow path 310b. 7A and 7C, the covering portions 360 are respectively disposed on the surfaces of the opposing partition walls, and a cross section substantially perpendicular to the longitudinal direction of the covering portions 360 is rectangular.
  • the covering portions 360 in FIGS. 7B and 7D extend from one partition wall to the other partition wall between the opposing partition walls, and the covering portions 360 are connected to each other at substantially the center of the flow path 310b. ing.
  • the covering part When the covering part is disposed on the surface of the partition wall, it is estimated that the following phenomenon occurs.
  • a diffusion path of carbon dioxide gas or the like generated by the combustion of the collected matter deposited on the covering portion 160 is formed in the partition wall 120a covered by the covering portion 160.
  • the diffusion path in the covering portion 160 tends to be longer than the diffusion path of carbon dioxide gas or the like generated by the combustion of the collected matter deposited on the wall surface.
  • the burning rate of the collected matter deposited on the covering portion 160 is different from the burning rate of the collected matter deposited on the wall surface of the partition wall 120a, and the burning rate of the collected matter is changed in the flow path 110b. It becomes easy to adjust to a different thing according to the deposition location. Therefore, it becomes easy to reduce the thermal stress generated in the honeycomb filter 100 during combustion regeneration.
  • the burning rate of the collected matter deposited on the covering portion 160 is different from the burning rate of the collected matter deposited on the wall surface of the partition wall 120b. It becomes easy to adjust the burning rate of the collected material to a different one depending on the accumulation location in the flow path 110b. Therefore, it becomes easy to reduce the thermal stress generated in the honeycomb filter 100 during combustion regeneration.
  • the wall surface (surface) of the partition wall is not limited to a flat surface, and may be an uneven surface. In this case, it is possible to increase the effective filtration area of the partition wall, and the pressure loss can be further reduced.
  • the partition 400 includes a partition body 400a and a plurality of protrusions 400b formed on the surface of the partition body 400a.
  • the protrusion 400b has, for example, a cone shape (conical shape, quadrangular pyramid shape, etc.) (FIG. 8A), a spherical shape (FIG. 8B), or a wave shape (FIG. 8C).
  • the partition wall body 400a and the protrusion 400b may be formed as separate bodies or may be formed as a single unit.
  • the partition wall having the concavo-convex surface may be formed in advance in a molding process described later, or may be formed in a process subsequent to the molding process.
  • the manufacturing method of the honeycomb filter includes (a) a raw material preparation step of preparing a raw material mixture containing ceramic powder and a pore-forming agent, and (b) a forming step of forming the raw material mixture to obtain a formed body having a flow path, (C) a firing step of firing the molded body, and (d) a sealing step of sealing one end of each flow path between the molding step and the firing step or after the firing step.
  • a raw material preparation step of preparing a raw material mixture containing ceramic powder and a pore-forming agent
  • a forming step of forming the raw material mixture to obtain a formed body having a flow path
  • C a firing step of firing the molded body
  • sealing step of sealing one end of each flow path between the molding step and the firing step or after the firing step.
  • the ceramic powder and the hole forming agent are mixed and then kneaded to prepare a raw material mixture.
  • various additives are mixed in the raw material mixture.
  • the additive is, for example, a binder, a plasticizer, a dispersant, or a solvent.
  • the ceramic powder includes at least an aluminum source powder and a titanium source powder, and may further include a magnesium source powder and a silicon source powder.
  • the aluminum source powder is a powder of a compound that becomes an aluminum component constituting the partition wall.
  • Examples of the aluminum source powder include alumina (aluminum oxide) powder.
  • Examples of the crystal type of alumina include ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ -type, and may be indefinite (amorphous).
  • the crystal type of alumina is preferably ⁇ type.
  • the aluminum source powder may be a powder of a compound that is led to alumina by firing alone in air.
  • a compound that is led to alumina by firing alone in air.
  • examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, metal aluminum and the like.
  • the aluminum salt may be an aluminum inorganic salt with an inorganic acid or an aluminum organic salt with an organic acid.
  • the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate; aluminum carbonates such as ammonium carbonate aluminum and the like.
  • the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
  • aluminum alkoxide examples include, for example, aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide and the like.
  • Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous).
  • Examples of amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
  • the aluminum source powder may be one type or two or more types.
  • the aluminum source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
  • the aluminum source powder is preferably alumina powder, more preferably ⁇ -type alumina powder.
  • the particle size (center particle size, D50) equivalent to a volume-based cumulative percentage of 50% measured by a laser diffraction method is preferably 20 to 60 ⁇ m.
  • D50 of the aluminum source powder is more preferably 25 to 60 ⁇ m.
  • titanium source powder is a powder of a compound that becomes a titanium component constituting the partition walls, and is, for example, a titanium oxide powder.
  • Titanium oxide is, for example, titanium (IV) oxide, titanium (III) oxide, or titanium (II) oxide, and preferably titanium (IV) oxide.
  • the crystal forms of titanium (IV) oxide are anatase, rutile, and brookite.
  • the titanium oxide may be amorphous (amorphous).
  • the titanium oxide is more preferably anatase type or rutile type titanium (IV) oxide.
  • the titanium source powder may be a powder of a compound that is led to titania (titanium oxide) by firing alone in the air.
  • titania titanium oxide
  • titanium salt titanium alkoxide, titanium hydroxide, titanium nitride, titanium sulfide, titanium It is a metal.
  • titanium salt examples include titanium trichloride, titanium tetrachloride, titanium (IV) sulfide, titanium sulfide (VI), and titanium sulfate (IV).
  • Titanium alkoxides include, for example, titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) t-butoxide, titanium (IV) isobutoxide, titanium (IV) n-propoxide, titanium (IV) tetraisopropoxide, And these chelating products.
  • the titanium source powder may be one type or two or more types.
  • the titanium source powder may contain a trace component derived from the raw material or unavoidably contained in the production process.
  • the titanium source powder is preferably a titanium oxide powder, more preferably a titanium (IV) oxide powder.
  • the volume-based cumulative particle diameter (D50) measured by laser diffraction method is preferably 0.1 to 25 ⁇ m.
  • the D50 of the titanium source powder is more preferably 1 to 20 ⁇ m in order to achieve a sufficiently low firing shrinkage rate.
  • the titanium source powder may show a bimodal particle size distribution.
  • the particle size of the particles forming the peak having the larger particle size measured by the laser diffraction method is preferably 20 to 50 ⁇ m.
  • the mode diameter of the titanium source powder measured by the laser diffraction method is usually 0.1 to 60 ⁇ m.
  • the molar ratio of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania) in the raw material mixture is preferably 35:65 to 45 : 55, more preferably 40:60 to 45:55.
  • titanium source powder excessively with respect to the aluminum source powder, it becomes possible to more effectively reduce the firing shrinkage rate of the molded body of the raw material mixture.
  • the raw material mixture may further contain a magnesium source powder.
  • the obtained aluminum titanate ceramic fired body is a fired body containing aluminum magnesium titanate crystals.
  • the magnesium source powder is not only magnesia (magnesium oxide) powder but also a powder of a compound introduced into magnesia by firing alone in air. Such compounds are, for example, magnesium salts, magnesium alkoxides, magnesium hydroxide, magnesium nitride, and metallic magnesium.
  • Magnesium salts include, for example, magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, magnesium stearate, magnesium salicylate , Magnesium myristate, magnesium gluconate, magnesium dimethacrylate, and magnesium benzoate.
  • magnesium alkoxide examples include magnesium methoxide and magnesium ethoxide.
  • the magnesium source powder a powder of a compound serving both as a magnesium source and an aluminum source can be used.
  • a compound is, for example, magnesia spinel (MgAl 2 O 4 ).
  • the magnesium source powder When using a powder of a compound that serves as both a magnesium source and an aluminum source as the magnesium source powder, it is included in the amount of Al 2 O 3 (alumina) equivalent of the aluminum source powder and a compound powder that serves as both the magnesium source and the aluminum source.
  • the molar ratio between the total amount of Al 2 O 3 (alumina) equivalent of the Al component and the amount of TiO 2 (titania) equivalent of the titanium source powder is adjusted to be within the above range in the raw material mixture.
  • the magnesium source powder may be one type or two or more types.
  • the magnesium source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
  • the particle size (D50) equivalent to a volume-based cumulative percentage of 50% as measured by a laser diffraction method is preferably 0.5 to 30 ⁇ m.
  • the D50 of the magnesium source powder is more preferably 3 to 20 ⁇ m from the viewpoint of reducing the firing shrinkage of the molded body.
  • the content of magnesium source powder in terms of MgO (magnesia) in the raw material mixture is based on the total amount of aluminum source powder in terms of Al 2 O 3 (alumina) and titanium source powder in terms of TiO 2 (titania).
  • the molar ratio is preferably 0.03 to 0.15, more preferably 0.03 to 0.12.
  • the raw material mixture may further contain a silicon source powder.
  • the silicon source powder is a powder of a compound that becomes a silicon component and is contained in the aluminum titanate ceramic fired body. By using the silicon source powder in combination, a heat-resistant aluminum titanate ceramic fired body is obtained. Is possible.
  • the silicon source powder is, for example, a powder of silicon oxide (silica) such as silicon dioxide or silicon monoxide.
  • the silicon source powder may be a powder of a compound led to silica by firing alone in air.
  • Such compounds are, for example, silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, glass frit, preferably feldspar, glass frit, industrial Glass frit is more preferable because it is easily available and has a stable composition.
  • Glass frit refers to flakes or powdery glass obtained by pulverizing glass. It is also preferable to use a powder made of a mixture of feldspar and glass frit as the silicon source powder.
  • the yield point of the glass frit is 600 ° C. or higher from the viewpoint of further improving the thermal decomposition resistance of the obtained aluminum titanate ceramic fired body.
  • the yield point of the glass frit is determined by measuring the expansion of the glass frit from a low temperature using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis). It is defined as
  • a general silicate glass containing silicate [SiO 2 ] as a main component (50 mass% or more in all components) can be used.
  • the glass constituting the glass frit includes, as other components, alumina [Al 2 O 3 ], sodium oxide [Na 2 O], potassium oxide [K 2 O], calcium oxide [ CaO], magnesia [MgO] and the like may be included.
  • the glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself.
  • the silicon source powder may be one type or two or more types.
  • the silicon source powder may contain a trace component derived from the raw material or inevitably contained in the production process.
  • the particle size (D50) equivalent to a 50% cumulative percentage on a volume basis measured by a laser diffraction method is preferably 0.5 to 30 ⁇ m.
  • the D50 of the silicon source powder is more preferably 1 to 20 ⁇ m in order to obtain a fired body having higher mechanical strength by further improving the filling factor of the molded body.
  • the content of the silicon source powder in the raw material mixture is the sum of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania).
  • the amount is usually 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass in terms of SiO 2 (silica) with respect to 100 parts by mass.
  • a compound containing two or more metal elements among titanium, aluminum, silicon and magnesium as a raw material powder such as a composite oxide such as magnesia spinel (MgAl 2 O 4 )
  • the compound can be considered to be the same as the raw material in which the respective metal source compounds are mixed. Based on such an idea, the content of the aluminum source, the titanium source, the magnesium source and the silicon source in the raw material mixture is adjusted within the above range.
  • the raw material mixture may contain aluminum titanate or aluminum magnesium titanate.
  • the aluminum magnesium titanate corresponds to a raw material mixture having a titanium source, an aluminum source, and a magnesium source.
  • Aluminum titanate or aluminum magnesium titanate may be prepared from a honeycomb filter obtained by this production method.
  • the honeycomb filter obtained by the present manufacturing method is damaged, the damaged honeycomb filter or its fragments can be pulverized and used.
  • the powder obtained by pulverization can be aluminum magnesium titanate powder.
  • pore-forming agent those formed by a material that disappears at or below the firing temperature at which the molded body is fired in step (c) can be used.
  • the hole forming agent disappears due to combustion or the like.
  • a space is created at the location where the pore-forming agent was present, and the ceramic powder located between the spaces shrinks during firing, so that the communication holes through which the fluid can flow are formed in the honeycomb filter. It can be formed in the partition wall.
  • a hole forming agent can be used to form a predetermined communication hole.
  • the pore-forming agent include corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, coral starch, canna starch, and potato starch (potato starch).
  • the average particle diameter of the pore forming agent is preferably 5 to 25 ⁇ m.
  • the content of the pore-forming agent in the raw material mixture is preferably 1 to 25 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • the content of the pore-forming agent is within this range, it becomes easy to prevent the leakage of the collected material while keeping the initial pressure loss low.
  • the content of the pore forming agent is less than 1 part by mass with respect to 100 parts by mass of the ceramic powder, the pressure loss tends to increase because the number of pores formed in the partition walls decreases.
  • the content of the pore-forming agent is more than 25 parts by mass with respect to 100 parts by mass of the ceramic powder, the proportion of pores formed in the partition walls becomes too large, and the collected material tends to leak.
  • an organic component such as a binder, a plasticizer, a dispersant, and a solvent may be blended in the raw material mixture in addition to the ceramic powder and the hole forming agent described above.
  • the binder is, for example, celluloses such as methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax.
  • the content of the binder in the raw material mixture is usually 20 parts by mass or less, preferably 15 parts by mass or less with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. .
  • plasticizer examples include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; stearic acid metal salts such as Al stearate; polyoxyalkylene alkyl ethers .
  • the content of the plasticizer in the raw material mixture is usually 0 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. Part.
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; interfaces such as ammonium polycarboxylate It is an activator.
  • the content of the dispersant in the raw material mixture is usually 0 to 20 parts by mass, preferably 2 to 8 parts by mass with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. Part.
  • the solvent is usually water, and is preferably ion-exchanged water from the viewpoint of few impurities.
  • the content of the solvent in the raw material mixture is usually 10 to 100 parts by mass, preferably 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. .
  • step (b) Molding process
  • a honeycomb structure having a plurality of flow paths is obtained as a ceramic molded body.
  • a so-called extrusion molding method in which the raw material mixture is extruded from a die while being kneaded by a single screw extruder can be employed.
  • plasticizers When a plasticizer is added to the raw material mixture as an additive, most of the plasticizers can function as a lubricant for reducing friction between the raw material mixture and the die when the raw material mixture is extruded from the die.
  • each plasticizer described above can function as a lubricant.
  • degreasing for removing a hole forming agent or the like contained in the molded body (in the raw material mixture) may be performed before firing the molded body.
  • Degreasing is performed in an atmosphere having an oxygen concentration of 0.1% or less.
  • % used as a unit of oxygen concentration means “volume%”.
  • an atmosphere examples include an inert gas atmosphere such as nitrogen gas and argon gas, a reducing gas atmosphere such as carbon monoxide gas and hydrogen gas, and a vacuum.
  • firing may be performed in an atmosphere with a low water vapor partial pressure, or steaming with charcoal may reduce the oxygen concentration.
  • the maximum temperature for degreasing is preferably 700 to 1100 ° C, more preferably 800 to 1000 ° C.
  • the maximum degreasing temperature is preferably 700 to 1100 ° C, more preferably 800 to 1000 ° C.
  • Degreasing is used for normal firing of tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. A similar furnace is used. Degreasing may be performed batchwise or continuously. Moreover, degreasing may be performed by a stationary method or a fluid method.
  • the time required for degreasing may be a time sufficient for a part of the organic component contained in the ceramic molded body to disappear, and preferably 90 to 99% by mass of the organic component contained in the ceramic molded body. It is time to disappear. Specifically, although it varies depending on the amount of the raw material mixture, the type of furnace used for degreasing, temperature conditions, atmosphere, etc., the time for keeping at the maximum temperature is usually 1 minute to 10 hours, preferably 1 to 7 hours. is there.
  • the ceramic molded body is fired after the above degreasing.
  • the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
  • a calcination temperature is 1650 degrees C or less normally, Preferably it is 1550 degrees C or less.
  • the rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 to 500 ° C./hour.
  • the silicon source powder it is preferable to provide a step of holding at a temperature range of 1100 to 1300 ° C. for 3 hours or more before the firing step. Thereby, melting and diffusion of the silicon source powder can be promoted.
  • Calcination is preferably performed in an atmosphere having an oxygen concentration of 1 to 6%.
  • oxygen concentration is preferably 1% or more because carbide (soot) derived from organic components does not remain in the obtained aluminum titanate-based ceramic fired body.
  • the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder it may be fired in an inert gas such as nitrogen gas or argon gas, or carbon monoxide You may bake in reducing gas, such as gas and hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
  • an inert gas such as nitrogen gas or argon gas, or carbon monoxide
  • reducing gas such as gas and hydrogen gas.
  • Firing is usually performed using conventional equipment such as a tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. Done. Firing may be performed batchwise or continuously. Moreover, baking may be performed by a stationary type or may be performed by a fluid type.
  • the firing time may be a time sufficient for the ceramic molded body to transition to the aluminum titanate-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but usually 10 minutes to 24 hours.
  • Step (d) is performed between step (b) and step (c) or after step (c).
  • step (d) is performed between step (b) and step (c) or after step (c).
  • the sealing material is fired together with the ceramic molded body to obtain a sealing portion that seals one end of the flow path.
  • the sealing material is baked together with the ceramic molded body. By doing so, the sealing part which seals one edge part of a flow path is obtained.
  • the sealing material the same mixture as the raw material mixture can be used.
  • a honeycomb filter can be obtained through the above steps.
  • the honeycomb filter has a shape that substantially maintains the shape of the molded body immediately after the molding in the step (b), but after the step (b), the step (c) or the step (d), a grinding process or the like is performed, It can also be processed into a desired shape.
  • Example 1 Preparation of raw material mixture>
  • a raw material mixture containing water (solvent) was prepared. The content of each component in the raw material mixture was adjusted to the following values.
  • the above raw material mixture was kneaded and extruded.
  • the cylindrical columnar body (DPF) which has a structure shown in FIG.1, 2 was produced by baking after sealing one edge part of each flow path of a molded object with a sealing material.
  • the length of the columnar body in the longitudinal direction of the flow path (through hole) was 153 mm.
  • the outer diameter of the end face of the columnar body was 144 mm.
  • the density of the flow path (cell density) was 290 cpsi.
  • the length of one side of the regular hexagonal channel was 0.9 mm. In the flat hexagonal channel, the long side length was 0.9 mm, and the short side length was 0.6 mm.
  • the thickness of the partition between flow paths was 12 mil (milli-inch, 0.30 mm).
  • the porosity of the partition walls was 45% by volume.
  • the pore diameter of the partition wall was 15 ⁇ m.
  • the effective filtration area (the area of the inner wall of the gas inflow side channel (flat hexagonal channel) per 1 L of the columnar body) was 1.30 m 2 / L.
  • Example 1 The same raw material mixture as in Example 1 was kneaded and then extruded. And the columnar body (DPF) 500 which has the structure shown in FIG. 9 was produced by baking after sealing one edge part of each flow path of a molded object with a sealing material. In the columnar body 500, in the flow paths P2 and P3 adjacent to the flow path P1, the side of the flow path P2 and the side of the flow path P3 do not face each other.
  • each channel (through hole) 510 had a square cross section, and the ends of the adjacent channels 510 were alternately sealed by the sealing portions 530.
  • the length of the columnar body in the longitudinal direction of the flow path was 153 mm.
  • the outer diameter of the end face of the columnar body was 144 mm.
  • the cell density was 290 cpsi.
  • the length of one side of the square channel was 1.1 mm.
  • the partition wall thickness between the channels was 13 mil (0.33 mm).
  • the effective filtration area was 1.07 m 2 / L.
  • FIG. 10 shows a schematic diagram of a pressure loss measuring apparatus.
  • a soot generator (trade name: REXS, manufactured by Matter Engineering Co., Ltd.) 600 and a large compressor device 610 were used.
  • One end face of the DPF was connected to the soot generator 600, and the compressor device 610 was connected to a pipe connecting the DPF and the soot generator 600.
  • soot generator 600 propane gas was supplied at a flow rate of 2 L / min, nitrogen gas was supplied at a flow rate of 2 L / min, and air was supplied at a flow rate of 1000 L / min.
  • the soot generated from the soot generator 600 is artificial soot generated by incomplete combustion of propane gas.
  • the average particle diameter of soot is controlled by the air flow rate, oxygen concentration, and the like. can do. In the measurement, the average particle diameter of the soot was adjusted to about 90 nm.
  • the flow rate of air containing soot was adjusted to 200 Nm 3 h ⁇ 1 by the compressor device 610.
  • FIG. 11A shows the result of measuring the pressure loss accompanying the increase in the soot deposition amount using the DPFs of Example 1 and Comparative Example 1.
  • FIG. 11A it is confirmed that the pressure loss value is smaller in Example 1 than in Comparative Example 1.
  • Example 1 it is confirmed that the increase amount of the pressure loss accompanying the increase in the amount of soot deposition is small compared with the comparative example 1.
  • FIG. 11B shows the result of measuring the pressure loss accompanying the increase in gas flow rate using the DPFs of Example 1 and Comparative Example 1. As shown in FIG. 11B, it is confirmed that the pressure loss value is smaller in Example 1 than in Comparative Example 1. Moreover, in Example 1, it is confirmed that the increase amount of the pressure loss accompanying the increase in gas flow rate is small compared with the comparative example 1.
  • honeycomb filter 100a, 100b, 200a, 200b ... End of honeycomb filter, 110a, 210a, 310a ... Channel (first channel), 110b, 210b, 310b ... Channel (second) , 120, 220, 320 ... partition walls, 140, 240, 340 ... sides forming the cross section of the flow path (first flow path), 150a, 250a, 350a ... flow paths (second flow path). Sides forming the cross section (first side), 150b, 250b, 350b,..., Sides forming the cross section of the flow path (second flow path) (second side).

Abstract

A honeycomb filter (100) has flow paths (110) separated by partition walls (120); the flow paths (110) have a plurality of flow paths (110a) and a plurality of flow paths (110b); of the plurality of flow paths (110b), one flow path (110b) and another flow path (110b) are adjacent to each other; the cross section of flow paths (110b) has long sides (150a) and short sides (150b); each of the sides (140) of flow paths (110a) faces a long side (150a) of a flow path (110b); each of the short sides (150b) of flow paths (110b) faces a short side (150b) of an adjacent flow path (110b); and when the sum of the products of the length of each side forming the cross section of a flow path (110b) and the length in the axial direction of flow paths (110b) is taken to be S, the total sum of S of all the flow paths (110b) contained in the honeycomb filter (100) is at least a predetermined value.

Description

ハニカムフィルタHoneycomb filter
 本発明は、ハニカムフィルタに関する。 The present invention relates to a honeycomb filter.
 ハニカムフィルタは、被捕集物を含む流体から当該被捕集物を除去するセラミックスフィルタとして用いられており、例えば、ディーゼルエンジンやガソリンエンジン等の内燃機関から排気される排気ガスを浄化するための排ガスフィルタとして用いられている。このようなハニカムフィルタは、多孔質の隔壁により仕切られた互いに平行な複数の流路を有している(例えば、下記特許文献1参照)。 The honeycomb filter is used as a ceramic filter for removing the collected matter from the fluid containing the collected matter, for example, for purifying exhaust gas exhausted from an internal combustion engine such as a diesel engine or a gasoline engine. Used as an exhaust gas filter. Such a honeycomb filter has a plurality of parallel flow paths partitioned by porous partition walls (see, for example, Patent Document 1 below).
特表2009-537741号公報JP 2009-537741 A
 ところで、被捕集物を含む流体がハニカムフィルタ内に供給されるに伴い、ハニカムフィルタにおける隔壁の表面や隔壁の内部に被捕集物が堆積する。この場合、被捕集物がハニカムフィルタ内に過剰に堆積すると、ハニカムフィルタ内における流体の移動が妨げられてハニカムフィルタの浄化性能が低下する。そのため、ハニカムフィルタ内に一定量の被捕集物を堆積させた後に、被捕集物を燃焼除去するためにハニカムフィルタの燃焼再生が行われる。 By the way, as the fluid containing the collected matter is supplied into the honeycomb filter, the collected matter is deposited on the surface of the partition wall or inside the partition wall in the honeycomb filter. In this case, if the collected material is excessively accumulated in the honeycomb filter, the movement of the fluid in the honeycomb filter is hindered and the purification performance of the honeycomb filter is deteriorated. Therefore, after depositing a certain amount of collected matter in the honeycomb filter, the honeycomb filter is subjected to combustion regeneration in order to burn and remove the collected matter.
 ここで、燃焼再生においてハニカムフィルタに過度の熱応力が負荷されると、ハニカムフィルタの熱破損や溶損が引き起こる場合がある。そのため、ハニカムフィルタに対しては、燃焼再生において生じる熱応力を低減することが求められている。 Here, if excessive thermal stress is applied to the honeycomb filter during combustion regeneration, the honeycomb filter may be thermally damaged or melted. Therefore, it is required for the honeycomb filter to reduce the thermal stress generated in the combustion regeneration.
 また、ハニカムフィルタに対しては、当該ハニカムフィルタ内に被捕集物が捕集されるに伴い圧力損失が増加することを充分に抑制することが求められている。そのため、ハニカムフィルタに対しては、圧力損失を低減しつつ、燃焼再生において生じる熱応力を低減することが求められている。 Also, for the honeycomb filter, it is required to sufficiently suppress an increase in pressure loss as the collected object is collected in the honeycomb filter. Therefore, the honeycomb filter is required to reduce the thermal stress generated in the combustion regeneration while reducing the pressure loss.
 本発明は、このような実情に鑑みてなされたものであり、圧力損失を低減しつつ、燃焼再生において生じる熱応力を低減することが可能なハニカムフィルタを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a honeycomb filter capable of reducing thermal stress generated in combustion regeneration while reducing pressure loss.
 本発明に係るハニカムフィルタは、多孔質の隔壁により仕切られた互いに平行な複数の流路を有するハニカムフィルタであって、複数の流路が、第1の流路と、当該第1の流路に隣接する複数の第2の流路とを有しており、複数の第2の流路における一の第2の流路と他の第2の流路とが互いに隣接しており、第1の流路におけるハニカムフィルタの一端側の端部が封口されており、第2の流路におけるハニカムフィルタの他端側の端部が封口されており、第2の流路の軸方向に垂直な第2の流路の断面が、第1の辺と、当該第1の辺の両側にそれぞれ配置された第2の辺とを有しており、第1の流路の軸方向に垂直な第1の流路の断面を形成する辺のそれぞれが、第2の流路の第1の辺と対向しており、第2の流路の第2の辺のそれぞれが、隣接する第2の流路の第2の辺と対向しており、第1の流路が複数配置されており、各第2の流路における、第2の流路の断面を形成する辺のそれぞれの長さと、第2の流路の軸方向における第2の流路の長さとの積の合計をSとしたときに、ハニカムフィルタ1リットルあたりに含まれる全ての第2の流路におけるSの総和が1.1m以上である。 A honeycomb filter according to the present invention is a honeycomb filter having a plurality of parallel flow paths partitioned by a porous partition wall, wherein the plurality of flow paths includes a first flow path and the first flow path. A plurality of second flow paths adjacent to each other, one second flow path and the other second flow paths in the plurality of second flow paths being adjacent to each other, the first The end of one end of the honeycomb filter in the channel is sealed, and the end of the other end of the honeycomb filter in the second channel is sealed, and is perpendicular to the axial direction of the second channel. The cross section of the second channel has a first side and second sides respectively disposed on both sides of the first side, and the second channel is perpendicular to the axial direction of the first channel. Each of the sides forming the cross section of the first channel is opposed to the first side of the second channel, and each of the second sides of the second channel is Opposite to the second side of the adjacent second flow path, a plurality of first flow paths are arranged, and each of the second flow paths has a side that forms a cross section of the second flow path. When the sum of the product of each length and the length of the second flow path in the axial direction of the second flow path is S, S in all the second flow paths included per liter of the honeycomb filter. Is a total of 1.1 m 2 or more.
 本発明に係るハニカムフィルタでは、圧力損失を低減しつつ、燃焼再生においてハニカムフィルタに生じる熱応力を低減することができる。本発明において上記効果が得られる原因は詳細には不明であるが、本発明者は以下のように推測している。但し、原因が以下の内容に限定されるものではない。 The honeycomb filter according to the present invention can reduce thermal stress generated in the honeycomb filter during combustion regeneration while reducing pressure loss. The reason why the above effect is obtained in the present invention is unknown in detail, but the present inventor presumes as follows. However, the cause is not limited to the following contents.
 すなわち、本発明に係るハニカムフィルタでは、複数の流路が、第1の流路と、当該第1の流路に隣接する複数の第2の流路とを有しており、複数の第2の流路における一の第2の流路と他の第2の流路とが互いに隣接しており、第1の流路におけるハニカムフィルタの一端側の端部が封口されており、第2の流路におけるハニカムフィルタの他端側の端部が封口されており、第2の流路の軸方向に垂直な第2の流路の断面が、第1の辺と、当該第1の辺の両側にそれぞれ配置された第2の辺とを有しており、第1の流路の軸方向に垂直な第1の流路の断面を形成する辺のそれぞれが、第2の流路の第1の辺と対向しており、第2の流路の第2の辺のそれぞれが、隣接する第2の流路の第2の辺と対向している。このような構成を備える本発明では、例えば、被捕集物を含む流体をハニカムフィルタの一端側から第2の流路内に流入させた場合、被捕集物は、第2の流路の内壁に堆積し、第2の流路の軸方向に垂直な第2の流路の断面における第1の辺及び第2の辺のそれぞれに堆積する。このように被捕集物が堆積した状態においてハニカムフィルタの燃焼再生を行う場合、ハニカムフィルタ内に流入した酸素ガス等の支燃性ガスが、被捕集物が堆積した部分に供給される。そして、支燃性ガスの存在下で被捕集物が燃焼することにより、二酸化炭素ガスや一酸化炭素ガス等(以下、単に「二酸化炭素ガス等」という)が発生する。 That is, in the honeycomb filter according to the present invention, the plurality of flow paths include a first flow path and a plurality of second flow paths adjacent to the first flow path. In the first flow path, one second flow path and the other second flow path are adjacent to each other, and an end portion on one end side of the honeycomb filter in the first flow path is sealed, The end portion of the other end side of the honeycomb filter in the flow path is sealed, and the cross section of the second flow path perpendicular to the axial direction of the second flow path is the first side and the first side. Each of the sides forming a cross section of the first flow path perpendicular to the axial direction of the first flow path is formed on each side of the second flow path. Each of the second sides of the second flow channel is opposed to the second side of the adjacent second flow channel. In the present invention having such a configuration, for example, when a fluid containing a trapped substance flows into the second flow path from one end side of the honeycomb filter, the trapped substance is It accumulates on the inner wall and deposits on each of the first side and the second side in the cross section of the second channel perpendicular to the axial direction of the second channel. When combustion recovery of the honeycomb filter is performed in a state where the collected matter is accumulated in this way, a combustion-supporting gas such as oxygen gas that has flowed into the honeycomb filter is supplied to a portion where the collected matter is accumulated. Then, the collected material burns in the presence of the combustion-supporting gas, thereby generating carbon dioxide gas, carbon monoxide gas or the like (hereinafter simply referred to as “carbon dioxide gas or the like”).
 ここで、本発明では、被捕集物の燃焼速度が、被捕集物の燃焼により発生する二酸化炭素ガス等のガス流出側の流路への拡散し易さに依存する傾向があるものと推測される。すなわち、本発明では、互いに隣接する第2の流路間の圧力差に比して、互いに隣接する第1の流路及び第2の流路間の圧力差が大きくなる傾向がある。これにより、一の第2の流路において被捕集物の燃焼により発生した二酸化炭素ガス等は、隣接する他の第2の流路に比して、隣接する第1の流路へ流れ易い。 Here, in the present invention, the burning rate of the collected matter tends to depend on the ease of diffusion to the flow path on the gas outflow side such as carbon dioxide gas generated by the burning of the collected matter. Guessed. That is, in the present invention, the pressure difference between the first flow path and the second flow path adjacent to each other tends to be larger than the pressure difference between the second flow paths adjacent to each other. Thereby, the carbon dioxide gas etc. which generate | occur | produced by combustion of the to-be-collected substance in one 2nd flow path are easy to flow into the adjacent 1st flow path compared with the 2nd adjacent 2nd flow path. .
 そして、本発明では、第1の辺に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等は、第2の流路の断面と第1の辺を共有する断面を有する第1の隔壁内を移動して第1の流路へ達する傾向があり、第2の辺に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等は、第2の流路の断面と第2の辺を共有する断面を有する第2の隔壁内を当該隔壁に沿って移動して第1の流路へ達する傾向がある。この場合、第1の隔壁を通過する経路が第2の隔壁を通過する経路に比して短いことから、第1の辺に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等の方が、第2の辺に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等よりもガス流出側の流路へ拡散し易い。 And in this invention, the carbon dioxide gas etc. which generate | occur | produced by the combustion of the to-be-collected material deposited on the 1st edge | side have the 1st partition which has a cross section which shares the cross section of a 2nd flow path, and a 1st edge | side. The carbon dioxide gas, etc. generated by the combustion of the collected matter deposited on the second side tends to reach the first flow path through the inside of the second flow path. There is a tendency to move along the partition wall in the second partition wall having a cross section sharing the same to reach the first flow path. In this case, since the path passing through the first partition is shorter than the path passing through the second partition, the carbon dioxide gas generated by the combustion of the trapped material deposited on the first side However, it is easier to diffuse into the flow path on the gas outflow side than carbon dioxide gas or the like generated by the combustion of the collected matter deposited on the second side.
 このような流路間の圧力差及び隔壁内の流通経路の長さの差に起因して、本発明では、第1の辺に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等の方が、第2の辺に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等よりもガス流出側の流路へ拡散し易い。したがって、第1の辺に堆積した被捕集物が、第2の辺に堆積した被捕集物に比して燃焼し易くなり、第1の辺に堆積した被捕集物と第2の辺に堆積した被捕集物とで燃焼速度が異なるものとなる。 Due to the pressure difference between the flow paths and the difference in the length of the flow path in the partition wall, in the present invention, the carbon dioxide gas generated by the combustion of the collected matter accumulated on the first side, etc. However, it is easier to diffuse to the flow path on the gas outflow side than the carbon dioxide gas generated by the combustion of the collected matter accumulated on the second side. Therefore, the collected matter deposited on the first side becomes easier to burn than the collected matter deposited on the second side, and the collected matter deposited on the first side and the second The burning speed differs depending on the collected matter deposited on the side.
 以上の本発明では、被捕集物が堆積した部位に応じて被捕集物の燃焼速度が異なるものとなることから、燃焼再生に際し被捕集物の燃焼が多くの部位において急激に生じてハニカムフィルタ内の温度が急激に変化することが抑制されている。そして、このような現象は、ハニカムフィルタ1リットルあたりに含まれる全ての第2の流路における上記積の合計Sの総和が1.1m以上であることにより顕著に生じているものと推測される。これにより、燃焼再生においてハニカムフィルタに生じる熱応力を低減することができる。 In the present invention described above, since the burning rate of the collected matter differs depending on the portion where the collected matter is accumulated, the burning of the collected matter is abruptly generated in many portions during the combustion regeneration. A sudden change in the temperature in the honeycomb filter is suppressed. Such a phenomenon is presumably caused by the fact that the total sum S of the products in all the second flow paths included in 1 liter of honeycomb filter is 1.1 m 2 or more. The Thereby, the thermal stress which arises in a honeycomb filter in combustion regeneration can be reduced.
 また、本発明に係るハニカムフィルタでは、ハニカムフィルタ1リットルあたりに含まれる全ての第2の流路における上記積の合計Sの総和が1.1m以上であることにより、被捕集物を含む流体を当該ハニカムフィルタの内部に供給した場合における圧力損失を低減しつつ、燃焼再生においてハニカムフィルタに生じる熱応力を低減することができる。このような効果が得られる原因は詳細には不明であるが、本発明者は、濾過面積が充分に確保されると共に、被捕集物が局所的に堆積して流路を塞いでしまうことが抑制されていることに起因して、圧力損失が低減されているものと推測している。但し、原因が当該内容に限定されるものではない。 Further, in the honeycomb filter according to the present invention, the total sum of the products S in all the second flow paths included per liter of the honeycomb filter is 1.1 m 2 or more, so that the collected matter is included. It is possible to reduce the thermal stress generated in the honeycomb filter during combustion regeneration while reducing the pressure loss when the fluid is supplied into the honeycomb filter. The reason why such an effect can be obtained is unknown in detail, but the present inventor will ensure that the filtration area is sufficiently secured, and that the collected substances will accumulate locally and block the flow path. It is speculated that the pressure loss is reduced due to the suppression of the pressure. However, the cause is not limited to the content.
 隔壁は、チタン酸アルミニウムを含むことが好ましい。この場合、圧力損失を低減しつつ、燃焼再生においてハニカムフィルタに生じる熱応力を低減し易くなる。 The partition preferably contains aluminum titanate. In this case, it is easy to reduce the thermal stress generated in the honeycomb filter during combustion regeneration while reducing the pressure loss.
 第1の流路の断面及び第2の流路の断面は、六角形状であってもよい。 The cross section of the first flow path and the cross section of the second flow path may be hexagonal.
 第1の態様として、一つの第2の流路が、互いに隣接する第1の流路の間に配置されている構成であってもよい。この場合、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減することができる。 As a first aspect, a configuration in which one second flow path is disposed between adjacent first flow paths may be employed. In this case, the thermal stress generated in the honeycomb filter during combustion regeneration can be further reduced.
 上記第1態様では、第2の流路の断面において互いに対向する辺の長さが互いに等しくてもよい。また、第2の流路の断面は、互いに長さの等しい二つの長辺と、互いに長さの等しい四つの短辺と、を有していてもよい。 In the first aspect, the lengths of the sides facing each other in the cross section of the second flow path may be equal to each other. Further, the cross section of the second flow path may have two long sides having the same length and four short sides having the same length.
 第2の態様として、二つの第2の流路が、互いに隣接する第1の流路の間に配置されていると共に当該第1の流路の配列方向に直交する方向に互いに隣接している態様であってもよい。この場合、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減することができると共に、被捕集物を濾過する面積(有効濾過面積)が増加するために圧力損失を低減し易くなる。 As a second aspect, the two second flow paths are disposed between the first flow paths adjacent to each other and are adjacent to each other in a direction orthogonal to the arrangement direction of the first flow paths. An aspect may be sufficient. In this case, the thermal stress generated in the honeycomb filter during combustion regeneration can be further reduced, and the pressure loss can be easily reduced because the area for filtering the collected matter (effective filtration area) increases.
 上記第2態様において、第2の流路の断面は、互いに長さの等しい三つの長辺と、互いに長さの等しい三つの短辺と、を有しており、長辺及び短辺が互いに対向していてもよい。 In the second aspect, the cross section of the second flow path has three long sides having the same length and three short sides having the same length, and the long side and the short side are mutually different. You may face each other.
 本発明に係るハニカムフィルタによれば、圧力損失を低減しつつ、燃焼再生においてハニカムフィルタに生じる熱応力を低減することができる。熱応力を低減することにより、燃焼再生においてハニカムフィルタの熱破損や溶損が生じることを抑制することができる。 The honeycomb filter according to the present invention can reduce thermal stress generated in the honeycomb filter during combustion regeneration while reducing pressure loss. By reducing the thermal stress, it is possible to prevent the honeycomb filter from being damaged or melted during combustion regeneration.
図1は、本発明の第1実施形態に係るハニカムフィルタを模式的に示す図面である。FIG. 1 is a drawing schematically showing a honeycomb filter according to a first embodiment of the present invention. 図2は、図1のII-II矢視図である。FIG. 2 is a view taken along the line II-II in FIG. 図3は、本発明の第2実施形態に係るハニカムフィルタを模式的に示す図面である。FIG. 3 is a drawing schematically showing a honeycomb filter according to a second embodiment of the present invention. 図4は、図3のIV-IV矢視図である。4 is a view taken in the direction of arrows IV-IV in FIG. 図5は、本発明の他の実施形態に係るハニカムフィルタを模式的に示す図面である。FIG. 5 is a drawing schematically showing a honeycomb filter according to another embodiment of the present invention. 図6は、流路内に配置された被覆部を模式的に示す図面である。FIG. 6 is a drawing schematically showing the covering portion disposed in the flow path. 図7は、流路内に配置された被覆部を模式的に示す図面である。FIG. 7 is a drawing schematically showing the covering portion disposed in the flow path. 図8は、隔壁の壁面の形状を模式的に示す図面である。FIG. 8 is a drawing schematically showing the shape of the wall surface of the partition wall. 図9は、比較例で用いたフィルタを模式的に示す図面である。FIG. 9 is a drawing schematically showing the filter used in the comparative example. 図10は、圧力損失測定装置を模式的に示す図面である。FIG. 10 is a drawing schematically showing a pressure loss measuring apparatus. 図11は、圧力損失の測定結果を示す図面である。FIG. 11 is a drawing showing the measurement results of pressure loss.
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
<ハニカムフィルタ>
(第1実施形態)
 図1は、第1実施形態に係るハニカムフィルタを模式的に示す図面であり、図1(b)は、図1(a)における領域A1の拡大図である。図2は、図1のII-II矢視図である。ハニカムフィルタ100は、図1,2に示すように、互いに略平行に配置された複数の流路110を有する円柱体である。複数の流路110は、ハニカムフィルタ100の中心軸に略平行に伸びる隔壁120により仕切られている。複数の流路110は、複数の流路(第1の流路)110aと、流路110aに隣接する複数の流路(第2の流路)110bとを有している。流路110a及び流路110bは、ハニカムフィルタ100の両端面に略垂直に伸びている。
<Honeycomb filter>
(First embodiment)
FIG. 1 is a drawing schematically showing the honeycomb filter according to the first embodiment, and FIG. 1 (b) is an enlarged view of a region A1 in FIG. 1 (a). FIG. 2 is a view taken along the line II-II in FIG. As shown in FIGS. 1 and 2, the honeycomb filter 100 is a cylindrical body having a plurality of flow paths 110 arranged substantially parallel to each other. The plurality of flow paths 110 are partitioned by partition walls 120 that extend substantially parallel to the central axis of the honeycomb filter 100. The plurality of channels 110 have a plurality of channels (first channels) 110a and a plurality of channels (second channels) 110b adjacent to the channels 110a. The flow path 110 a and the flow path 110 b extend substantially perpendicular to both end faces of the honeycomb filter 100.
 流路110のうちの一部を構成する流路110aの一端は、ハニカムフィルタ100の一端面100aにおいて封口部130により封口されており、流路110aの他端は、ハニカムフィルタ100の他端面100bにおいて開口している。一方、複数の流路110のうちの残部を構成する流路110bの一端は、一端面100aにおいて開口しており、流路110bの他端は、他端面100bにおいて封口部130により封口されている。ハニカムフィルタ100において、例えば、流路110bにおける一端面100a側の端部はガス流入口として開口しており、流路110aにおける他端面100b側の端部はガス流出口として開口している。 One end of the flow path 110a constituting a part of the flow path 110 is sealed by the sealing portion 130 on the one end face 100a of the honeycomb filter 100, and the other end of the flow path 110a is the other end face 100b of the honeycomb filter 100. Is open. On the other hand, one end of the flow path 110b that constitutes the remaining part of the plurality of flow paths 110 is open at the one end face 100a, and the other end of the flow path 110b is sealed by the sealing portion 130 at the other end face 100b. . In the honeycomb filter 100, for example, the end on the one end face 100a side of the flow path 110b is opened as a gas inlet, and the end on the other end face 100b side of the flow path 110a is opened as a gas outlet.
 流路110a及び流路110bの軸方向(長手方向)に略垂直な断面は、六角形状である。流路110aの断面は、被捕集物を含む流体がガス流入側の流路からガス流出側の流路へ均等に流れ易くなることにより被捕集物の堆積時の圧力損失を低減し易くなる観点から、当該断面を形成する辺140の長さが互いに略等しい正六角形状が好ましいが、扁平六角形状であってもよい。流路110bの断面は、例えば扁平六角形状であるが、正六角形状であってもよい。流路110bの断面において互いに対向する辺の長さは、互いに略等しい。流路110bの断面は、当該断面を形成する辺150として、互いに長さの略等しい二つ(一対)の長辺(第1の辺)150aと、互いに長さの略等しい四つ(二対)の短辺(第2の辺)150bと、を有している。短辺150bは、長辺150aの両側にそれぞれ配置されている。長辺150a同士は、互いに略平行に対向しており、短辺150b同士は、互いに略平行に対向している。長辺150aの長さは、短辺150bの長さよりも長く調整されている。 The cross section substantially perpendicular to the axial direction (longitudinal direction) of the flow path 110a and the flow path 110b has a hexagonal shape. The cross section of the flow path 110a is easy to reduce the pressure loss at the time of deposition of the collected substances by allowing the fluid containing the collected substances to easily flow from the flow path on the gas inflow side to the flow path on the gas outflow side. From this point of view, a regular hexagonal shape in which the lengths of the sides 140 forming the cross section are substantially equal to each other is preferable, but a flat hexagonal shape may be used. The cross section of the channel 110b is, for example, a flat hexagonal shape, but may be a regular hexagonal shape. The lengths of the sides facing each other in the cross section of the channel 110b are substantially equal to each other. The cross section of the channel 110b has two long sides (first side) 150a having approximately the same length as the side 150 forming the cross section, and four (two pairs) having substantially the same length. ) Short side (second side) 150b. The short side 150b is disposed on each side of the long side 150a. The long sides 150a face each other substantially in parallel, and the short sides 150b face each other substantially in parallel. The length of the long side 150a is adjusted to be longer than the length of the short side 150b.
 隔壁120は、流路110a及び流路110bを仕切る部分として隔壁120aを有している。すなわち、流路110a及び流路110bは、隔壁120aを介して互いに隣接している。隣接する流路110aの間に一つの流路110bが配置されることにより、流路110aは、流路110aの配列方向(辺140に略直交する方向)において流路110bと交互に配置されている。 The partition 120 has the partition 120a as a part which partitions off the flow path 110a and the flow path 110b. That is, the channel 110a and the channel 110b are adjacent to each other through the partition wall 120a. By disposing one flow path 110b between adjacent flow paths 110a, the flow paths 110a are alternately arranged with the flow paths 110b in the arrangement direction of the flow paths 110a (a direction substantially orthogonal to the side 140). Yes.
 流路110aの辺140のそれぞれは、複数の流路110bのいずれか一つの流路の長辺150aと略平行に対向している。すなわち、流路110aを形成する壁面のそれぞれは、流路110a及び流路110bの間に位置する隔壁120aにおいて、流路110bを形成する一壁面と略平行に対向している。また、流路110は、1つの流路110aと、当該流路110aを囲む6つの流路110bとを含む構成単位を有しており、当該構成単位において、流路110aの辺140の全てが流路110bの長辺150aと対向している。ハニカムフィルタ100では、被捕集物の捕集効率を更に向上させる観点から、流路110aの辺140の少なくとも一つの長さが、対向する長辺150aの長さと略等しいことが好ましく、辺140のそれぞれの長さが、対向する長辺150aの長さと略等しいことがより好ましい。 Each of the sides 140 of the flow channel 110a faces the long side 150a of any one of the plurality of flow channels 110b substantially in parallel. That is, each of the wall surfaces that form the flow channel 110a is opposed substantially parallel to the one wall surface that forms the flow channel 110b in the partition wall 120a located between the flow channel 110a and the flow channel 110b. Further, the flow path 110 has a structural unit including one flow path 110a and six flow paths 110b surrounding the flow path 110a, and in the structural unit, all the sides 140 of the flow path 110a are included. It faces the long side 150a of the flow path 110b. In the honeycomb filter 100, from the viewpoint of further improving the collection efficiency of the collected object, it is preferable that at least one length of the side 140 of the flow path 110a is substantially equal to the length of the opposing long side 150a. It is more preferable that the length of each of these is substantially equal to the length of the opposing long side 150a.
 隔壁120は、互いに隣接する流路110b同士を仕切る部分として隔壁120bを有している。すなわち、流路110aを囲む流路110b同士は、隔壁120bを介して互いに隣接している。 The partition 120 has the partition 120b as a part which partitions the mutually adjacent flow paths 110b. That is, the flow paths 110b surrounding the flow path 110a are adjacent to each other through the partition wall 120b.
 流路110bの短辺150bのそれぞれは、隣接する流路110bの短辺150bと略平行に対向している。すなわち、流路110bを形成する壁面は、隣接する流路110bの間に位置する隔壁120bにおいて互いに略平行に対向している。ハニカムフィルタ100では、被捕集物の捕集効率を更に向上させる観点から、隣接する流路110bの間において、流路110bの短辺150bの少なくとも一つの長さが、対向する短辺150bの長さと略等しいことが好ましく、短辺150bのそれぞれの長さが、対向する短辺150bの長さと略等しいことがより好ましい。 Each of the short sides 150b of the flow path 110b is opposed substantially parallel to the short side 150b of the adjacent flow path 110b. That is, the wall surfaces forming the flow path 110b face each other substantially in parallel in the partition wall 120b located between the adjacent flow paths 110b. In the honeycomb filter 100, from the viewpoint of further improving the collection efficiency of the collected object, at least one length of the short side 150b of the flow path 110b is between the adjacent short sides 150b between the adjacent flow paths 110b. It is preferable that the length is approximately equal to the length, and it is more preferable that each length of the short side 150b is approximately equal to the length of the opposing short side 150b.
 流路110a,110bの長手方向におけるハニカムフィルタ100の長さは、例えば50~300mmである。ハニカムフィルタ100の外径は、例えば50~250mmである。流路110a,110bの密度(セル密度)は、例えば50~400cpsi(cell per square inch)である。なお、「cpsi」は、1平方インチ当たりの流路(セル)の数を表す。流路110a,110bの軸方向に略垂直なハニカムフィルタ100の断面において、ガス流入側流路の合計面積はガス流出側流路の合計面積よりも大きいことが好ましく、すなわち、流路110bの合計面積は、流路110aの合計面積よりも大きいことが好ましい。 The length of the honeycomb filter 100 in the longitudinal direction of the flow paths 110a and 110b is, for example, 50 to 300 mm. The outer diameter of the honeycomb filter 100 is, for example, 50 to 250 mm. The density (cell density) of the channels 110a and 110b is, for example, 50 to 400 cpsi (cell per square inch). “Cpsi” represents the number of flow paths (cells) per square inch. In the cross section of the honeycomb filter 100 substantially perpendicular to the axial direction of the flow paths 110a and 110b, the total area of the gas inflow side flow paths is preferably larger than the total area of the gas outflow side flow paths, that is, the total of the flow paths 110b. The area is preferably larger than the total area of the flow paths 110a.
 1つの流路110aと当該流路110aを囲む流路110bとを含む構成単位において、辺140の長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、0.2mm以上が好ましく、0.4mm以上がより好ましく、0.6mm以上が更に好ましい。辺140の長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、2.0mm以下が好ましく、1.6mm以下がより好ましい。上記構成単位における流路110bの長辺150aの長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、0.4mm以上が好ましく、0.6mm以上がより好ましい。流路110bの長辺150aの長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、2.0mm以下が好ましく、1.6mm以下がより好ましい。上記構成単位における流路110bの短辺150bの長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、0.3mm以上が好ましく、0.5mm以上がより好ましい。流路110bの短辺150bの長さは、圧力損失を更に低減させる観点から、2.0mm以下が好ましく、1.0mm以下がより好ましい。 In the structural unit including one flow path 110a and the flow path 110b surrounding the flow path 110a, the length of the side 140 is 0.2 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. Preferably, 0.4 mm or more is more preferable, and 0.6 mm or more is still more preferable. The length of the side 140 is preferably 2.0 mm or less, and more preferably 1.6 mm or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The length of the long side 150a of the flow path 110b in the structural unit is preferably 0.4 mm or more, and more preferably 0.6 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The length of the long side 150a of the channel 110b is preferably 2.0 mm or less, and more preferably 1.6 mm or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The length of the short side 150b of the flow path 110b in the structural unit is preferably 0.3 mm or more, and more preferably 0.5 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. From the viewpoint of further reducing the pressure loss, the length of the short side 150b of the channel 110b is preferably 2.0 mm or less, and more preferably 1.0 mm or less.
 上記構成単位における隔壁120の厚み(セル壁厚)は、圧力損失を更に低減する観点から、0.8mm以下が好ましく、0.5mm以下がより好ましい。隔壁120の厚みは、被捕集物の捕集効率及びハニカムフィルタ100の強度を高く維持する観点から、0.1mm以上が好ましく、0.2mm以上がより好ましい。 The thickness (cell wall thickness) of the partition wall 120 in the structural unit is preferably 0.8 mm or less, more preferably 0.5 mm or less, from the viewpoint of further reducing the pressure loss. The thickness of the partition 120 is preferably 0.1 mm or more, and more preferably 0.2 mm or more, from the viewpoint of maintaining the collection efficiency of the collected object and the strength of the honeycomb filter 100 at a high level.
 上記構成単位における隔壁120の気孔率は、圧力損失を更に低減する観点から、20体積%以上が好ましく、30体積%以上がより好ましく、40体積%以上が更に好ましい。隔壁120の気孔率は、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、60体積%以下が好ましく、50体積%以下がより好ましい。隔壁120の気孔率は、原料の粒子径、孔形成剤の添加量、孔形成剤の種類、焼成条件により調整可能であり、水銀圧入法により測定することができる。 The porosity of the partition wall 120 in the above structural unit is preferably 20% by volume or more, more preferably 30% by volume or more, and still more preferably 40% by volume or more from the viewpoint of further reducing pressure loss. The porosity of the partition walls 120 is preferably 60% by volume or less, and more preferably 50% by volume or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The porosity of the partition wall 120 can be adjusted by the particle diameter of the raw material, the amount of the pore-forming agent added, the kind of the pore-forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
 上記構成単位における隔壁120の気孔径(細孔直径)は、圧力損失を更に低減させる観点から、5μm以上が好ましく、10μm以上がより好ましい。隔壁120の気孔径は、すすの捕集性能を向上させる観点から、30μm以下が好ましく、20μm以下がより好ましい。隔壁120の気孔径は、原料の粒子径、孔形成剤の添加量、孔形成剤の種類、焼成条件により調整可能であり、水銀圧入法により測定することができる。 The pore diameter (pore diameter) of the partition wall 120 in the above structural unit is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of further reducing the pressure loss. From the viewpoint of improving the soot collection performance, the pore diameter of the partition wall 120 is preferably 30 μm or less, and more preferably 20 μm or less. The pore diameter of the partition wall 120 can be adjusted by the particle diameter of the raw material, the added amount of the pore forming agent, the kind of the pore forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
 ハニカムフィルタ100の有効濾過面積は、燃焼再生においてハニカムフィルタに生じる熱応力を低減すると共に圧力損失を低減する観点から、1.1m/L以上であり、1.2m/L以上が好ましく、1.3m/L以上がより好ましい。「ハニカムフィルタの有効濾過面積」とは、ハニカムフィルタ1L(1リットル=10-3:例えば10cm×10cm×10cmの立方体)あたりのガス流入側流路の内壁の面積の合計(封口部に接している部分を除く)を意味し、各ガス流入側流路における、ガス流入側流路の断面を形成する辺のそれぞれの長さと、ガス流入側流路の軸方向におけるガス流入側流路の長さとの積の合計をSとしたときに、ハニカムフィルタ1リットルあたりに含まれる全てのガス流入側流路における上記Sの総和を意味する。例えば、ハニカムフィルタ100における積の合計Sは、流路110bの長辺150aの長さと流路110bの長手方向の長さとの積、及び、流路110bの短辺150bの長さと流路110bの長手方向の長さとの積の合計を意味する。なお、有効濾過面積の上限値は、例えば2.0m/Lである。 Effective filtration area of the honeycomb filter 100, from the viewpoint of reducing pressure loss while reducing the thermal stress generated in the honeycomb filter in the combustion regeneration, and a 1.1 m 2 / L or more, preferably at least 1.2 m 2 / L, 1.3 m 2 / L or more is more preferable. “Effective filtration area of the honeycomb filter” means the total area of the inner wall of the gas inflow channel per honeycomb filter 1L (1 liter = 10 −3 m 3 : for example, 10 cm × 10 cm × 10 cm cube) The gas inflow side flow path in the axial direction of the gas inflow side flow path, and the length of each side forming the cross section of the gas inflow side flow path in each gas inflow side flow path. When the sum of products with the length of S is S, it means the sum of S in all the gas inflow channels included per liter of the honeycomb filter. For example, the total product S in the honeycomb filter 100 is the product of the length of the long side 150a of the flow path 110b and the length in the longitudinal direction of the flow path 110b, and the length of the short side 150b of the flow path 110b and the length of the flow path 110b. It means the sum of the product with the length in the longitudinal direction. In addition, the upper limit of an effective filtration area is 2.0 m < 2 > / L, for example.
(第2実施形態)
 図3は、第2実施形態に係るハニカムフィルタを模式的に示す図面であり、図3(b)は、図3(a)における領域A2の拡大図である。図4は、図3のIV-IV矢視図である。ハニカムフィルタ200は、図3,4に示すように、互いに略平行に配置された複数の流路210を有する円柱体である。複数の流路210は、ハニカムフィルタ200の中心軸に略平行に伸びる隔壁220により仕切られている。複数の流路210は、複数の流路(第1の流路)210aと、流路210aに隣接する複数の流路(第2の流路)210bとを有している。流路210a及び流路210bは、ハニカムフィルタ200の両端面に略垂直に伸びている。
(Second Embodiment)
Fig. 3 is a drawing schematically showing the honeycomb filter according to the second embodiment, and Fig. 3 (b) is an enlarged view of a region A2 in Fig. 3 (a). 4 is a view taken in the direction of arrows IV-IV in FIG. As shown in FIGS. 3 and 4, the honeycomb filter 200 is a cylindrical body having a plurality of flow paths 210 arranged substantially parallel to each other. The plurality of flow paths 210 are partitioned by partition walls 220 extending substantially parallel to the central axis of the honeycomb filter 200. The plurality of flow paths 210 include a plurality of flow paths (first flow paths) 210a and a plurality of flow paths (second flow paths) 210b adjacent to the flow paths 210a. The flow path 210 a and the flow path 210 b extend substantially perpendicular to both end faces of the honeycomb filter 200.
 流路210のうちの一部を形成する流路210aの一端は、ハニカムフィルタ200の一端面200aにおいて封口部230により封口されており、流路210aの他端は、ハニカムフィルタ200の他端面200bにおいて開口している。一方、複数の流路210のうちの残部を形成する流路210bの一端は、一端面200aにおいて開口しており、流路210bの他端は、他端面200bにおいて封口部230により封口されている。ハニカムフィルタ200において、例えば、流路210bにおける一端面200a側の端部はガス流入口として開口しており、流路210aにおける他端面200b側の端部はガス流出口として開口している。 One end of the flow path 210a that forms a part of the flow path 210 is sealed by the sealing portion 230 at the one end face 200a of the honeycomb filter 200, and the other end of the flow path 210a is the other end face 200b of the honeycomb filter 200. Is open. On the other hand, one end of the flow path 210b forming the remaining part of the plurality of flow paths 210 is open at the one end face 200a, and the other end of the flow path 210b is sealed by the sealing portion 230 at the other end face 200b. . In the honeycomb filter 200, for example, the end on the one end face 200a side of the flow path 210b is opened as a gas inlet, and the end on the other end face 200b side of the flow path 210a is opened as a gas outlet.
 流路210a及び流路210bの軸方向(長手方向)に略垂直な断面は、六角形状である。流路210aの断面は、被捕集物を含む流体がガス流入側の流路からガス流出側の流路へ均等に流れ易くなることにより被捕集物の堆積時の圧力損失を低減し易くなる観点から、当該断面を形成する辺240の長さが互いに略等しい正六角形状が好ましいが、扁平六角形状であってもよい。流路210bの断面は、例えば扁平六角形状であるが、正六角形状であってもよい。流路210bの断面において互いに対向する辺の長さは、互いに異なっている。流路210bの断面は、当該断面を形成する辺250として、互いに長さの略等しい三つの長辺(第1の辺)250aと、互いに長さの略等しい三つの短辺(第2の辺)250bと、を有している。長辺250a及び短辺250bは、互いに略平行に対向しており、短辺250bは、長辺250aの両側にそれぞれ配置されている。長辺250aの長さは、短辺250bの長さよりも長く調整されている。 The cross section substantially perpendicular to the axial direction (longitudinal direction) of the flow path 210a and the flow path 210b is hexagonal. The cross section of the flow path 210a makes it easy to reduce the pressure loss at the time of deposition of the collected substances by allowing the fluid containing the collected substances to easily flow from the flow path on the gas inflow side to the flow path on the gas outflow side. From the viewpoint, a regular hexagonal shape in which the lengths of the sides 240 forming the cross section are substantially equal to each other is preferable, but a flat hexagonal shape may be used. The cross section of the channel 210b is, for example, a flat hexagonal shape, but may be a regular hexagonal shape. The lengths of the sides facing each other in the cross section of the flow path 210b are different from each other. The cross section of the flow path 210b includes three long sides (first sides) 250a having substantially the same length as the sides 250 forming the cross section, and three short sides (second sides) having the substantially same length. ) 250b. The long side 250a and the short side 250b face each other substantially in parallel, and the short side 250b is disposed on each side of the long side 250a. The length of the long side 250a is adjusted to be longer than the length of the short side 250b.
 隔壁220は、流路210a及び流路210bを仕切る部分として隔壁220aを有している。すなわち、流路210a及び流路210bは、隔壁220aを介して互いに隣接している。隣接する流路210aの間には、当該流路210aの配列方向に略直交する方向に隣接する二つの流路210bが配置されており、当該隣接する二つの流路210bは、隣接する流路210aの断面の中心同士を結ぶ線を挟んで対称に配置されている。 The partition 220 has the partition 220a as a part which partitions off the flow path 210a and the flow path 210b. That is, the flow path 210a and the flow path 210b are adjacent to each other through the partition wall 220a. Between the adjacent flow paths 210a, two flow paths 210b adjacent to each other in a direction substantially orthogonal to the arrangement direction of the flow paths 210a are arranged, and the two adjacent flow paths 210b are adjacent to each other. They are arranged symmetrically across a line connecting the centers of the sections of 210a.
 流路210aの辺240のそれぞれは、複数の流路210bのいずれか一つの流路の長辺250aと略平行に対向している。すなわち、流路210aを形成する壁面のそれぞれは、流路210a及び流路210bの間に位置する隔壁220aにおいて、流路210bを形成する一壁面と略平行に対向している。また、流路210は、1つの流路210aと、当該流路210aを囲む6つの流路210bとを含む構成単位を有しており、当該構成単位において、流路210aの辺240の全てが流路210bの長辺250aと対向している。流路210aの断面の各頂点は、隣接する流路210aの頂点と流路210aの配列方向に対向している。ハニカムフィルタ200では、被捕集物の捕集効率を更に向上させる観点から、流路210aの辺240の少なくとも一つの長さが、対向する長辺250aの長さと略等しいことが好ましく、辺240のそれぞれの長さが、対向する長辺250aの長さと略等しいことが好ましい。 Each of the sides 240 of the flow path 210a faces the long side 250a of any one of the plurality of flow paths 210b substantially in parallel. That is, each of the wall surfaces forming the flow path 210a is opposed substantially parallel to the one wall surface forming the flow path 210b in the partition wall 220a located between the flow path 210a and the flow path 210b. The flow path 210 has a structural unit including one flow path 210a and six flow paths 210b surrounding the flow path 210a. In the structural unit, all the sides 240 of the flow path 210a are included. It faces the long side 250a of the flow path 210b. Each vertex of the cross section of the flow path 210a is opposed to the apex of the adjacent flow path 210a in the arrangement direction of the flow paths 210a. In the honeycomb filter 200, it is preferable that at least one length of the side 240 of the flow path 210a is substantially equal to the length of the opposing long side 250a, from the viewpoint of further improving the collection efficiency of the collection target. It is preferable that the length of each is substantially equal to the length of the opposing long side 250a.
 隔壁220は、互いに隣接する流路210b同士を仕切る部分として隔壁220bを有している。すなわち、流路210aを囲む流路210b同士は、隔壁220bを介して互いに隣接している。 The partition 220 has the partition 220b as a part which partitions off the mutually adjacent flow paths 210b. That is, the flow paths 210b surrounding the flow path 210a are adjacent to each other through the partition 220b.
 流路210bの短辺250bのそれぞれは、隣接する流路210bの短辺250bと略平行に対向している。すなわち、流路210bを形成する壁面は、隣接する流路210bの間に位置する隔壁220bにおいて互いに略平行に対向している。また、1つの流路210bは、3つの流路210aに囲まれている。ハニカムフィルタ200では、被捕集物の捕集効率を更に向上させる観点から、隣接する流路210bの間において、流路210bの短辺250bの少なくとも一つの長さが、対向する短辺250bの長さと略等しいことが好ましく、短辺250bのそれぞれの長さが、対向する短辺250bの長さと略等しいことがより好ましい。 Each of the short sides 250b of the flow path 210b is opposed substantially parallel to the short side 250b of the adjacent flow path 210b. That is, the wall surfaces forming the flow path 210b face each other substantially in parallel in the partition 220b located between the adjacent flow paths 210b. One flow path 210b is surrounded by three flow paths 210a. In the honeycomb filter 200, from the viewpoint of further improving the collection efficiency of the collected object, at least one length of the short side 250b of the flow path 210b is between the adjacent short sides 250b between the adjacent flow paths 210b. It is preferable that the length is approximately equal to the length, and it is more preferable that each length of the short side 250b is approximately equal to the length of the opposing short side 250b.
 流路210a,210bの長手方向におけるハニカムフィルタ200の長さは、例えば50~300mmである。ハニカムフィルタ200の外径は、例えば50~250mmである。流路210a,210bの密度(セル密度)は、例えば50~400cpsiである。流路210a,210bの軸方向に略垂直なハニカムフィルタ200の断面において、ガス流入側流路の合計面積はガス流出側流路の合計面積よりも大きいことが好ましく、すなわち、流路210bの合計面積は、流路210aの合計面積よりも大きいことが好ましい。 The length of the honeycomb filter 200 in the longitudinal direction of the flow paths 210a and 210b is, for example, 50 to 300 mm. The outer diameter of the honeycomb filter 200 is, for example, 50 to 250 mm. The density (cell density) of the flow paths 210a and 210b is, for example, 50 to 400 cpsi. In the cross section of the honeycomb filter 200 substantially perpendicular to the axial direction of the flow paths 210a and 210b, the total area of the gas inflow side flow paths is preferably larger than the total area of the gas outflow side flow paths, that is, the total of the flow paths 210b. The area is preferably larger than the total area of the channels 210a.
 1つの流路210aと当該流路210aを囲む流路210bとを含む構成単位において、辺240の長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、0.2mm以上が好ましく、0.4mm以上がより好ましく、0.6mm以上が更に好ましい。辺240の長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、2.0mm以下が好ましく、1.6mm以下がより好ましい。上記構成単位における流路210bの長辺250aの長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、0.4mm以上が好ましく、0.6mm以上がより好ましい。流路210bの長辺250aの長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、2.0mm以下が好ましく、1.6mm以下がより好ましい。上記構成単位における流路210bの短辺250bの長さは、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、0.3mm以上が好ましく、0.5mm以上がより好ましい。流路210bの短辺250bの長さは、圧力損失を更に低減させる観点から、2.0mm以下が好ましく、1.0mm以下がより好ましい。 In the structural unit including one flow path 210a and the flow path 210b surrounding the flow path 210a, the length of the side 240 is 0.2 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. Preferably, 0.4 mm or more is more preferable, and 0.6 mm or more is still more preferable. The length of the side 240 is preferably 2.0 mm or less and more preferably 1.6 mm or less from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The length of the long side 250a of the flow path 210b in the structural unit is preferably 0.4 mm or more, and more preferably 0.6 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The length of the long side 250a of the flow path 210b is preferably 2.0 mm or less, and more preferably 1.6 mm or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The length of the short side 250b of the flow path 210b in the structural unit is preferably 0.3 mm or more, and more preferably 0.5 mm or more from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. From the viewpoint of further reducing the pressure loss, the length of the short side 250b of the flow path 210b is preferably 2.0 mm or less, and more preferably 1.0 mm or less.
 上記構成単位における隔壁220の厚み(セル壁厚)は、圧力損失を更に低減する観点から、0.8mm以下が好ましく、0.5mm以下がより好ましい。隔壁220の厚みは、被捕集物の捕集効率及びハニカムフィルタ200の強度を高く維持する観点から、0.1mm以上が好ましく、0.2mm以上がより好ましい。 The thickness (cell wall thickness) of the partition wall 220 in the structural unit is preferably 0.8 mm or less, and more preferably 0.5 mm or less, from the viewpoint of further reducing the pressure loss. The thickness of the partition 220 is preferably 0.1 mm or more, and more preferably 0.2 mm or more, from the viewpoint of maintaining the collection efficiency of the object to be collected and the strength of the honeycomb filter 200 at a high level.
 上記構成単位における隔壁220の気孔率は、圧力損失を更に低減する観点から、20体積%以上が好ましく、30体積%以上がより好ましく、40体積%以上が更に好ましい。隔壁220の気孔率は、燃焼再生においてハニカムフィルタに生じる熱応力を更に低減する観点から、60体積%以下が好ましく、50体積%以下がより好ましい。隔壁220の気孔率は、原料の粒子径、孔形成剤の添加量、孔形成剤の種類、焼成条件により調整可能であり、水銀圧入法により測定することができる。 The porosity of the partition wall 220 in the above structural unit is preferably 20% by volume or more, more preferably 30% by volume or more, and still more preferably 40% by volume or more from the viewpoint of further reducing pressure loss. The porosity of the partition walls 220 is preferably 60% by volume or less, and more preferably 50% by volume or less, from the viewpoint of further reducing the thermal stress generated in the honeycomb filter during combustion regeneration. The porosity of the partition 220 can be adjusted by the particle diameter of the raw material, the amount of the pore-forming agent added, the type of the pore-forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
 上記構成単位における隔壁220の気孔径(細孔直径)は、圧力損失を更に低減させる観点から、5μm以上が好ましく、10μm以上がより好ましい。隔壁220の気孔径は、すすの捕集性能を向上させる観点から、30μm以下が好ましく、20μm以下がより好ましい。隔壁220の気孔径は、原料の粒子径、孔形成剤の添加量、孔形成剤の種類、焼成条件により調整可能であり、水銀圧入法により測定することができる。 The pore diameter (pore diameter) of the partition wall 220 in the above structural unit is preferably 5 μm or more, and more preferably 10 μm or more, from the viewpoint of further reducing the pressure loss. From the viewpoint of improving the soot collection performance, the pore size of the partition 220 is preferably 30 μm or less, and more preferably 20 μm or less. The pore diameter of the partition wall 220 can be adjusted by the particle diameter of the raw material, the amount of the pore-forming agent added, the kind of the pore-forming agent, and the firing conditions, and can be measured by a mercury intrusion method.
 ハニカムフィルタ200の有効濾過面積は、燃焼再生においてハニカムフィルタに生じる熱応力を低減すると共に圧力損失を低減する観点から、1.1m/L以上であり、1.2m/L以上が好ましく、1.3m/L以上がより好ましい。なお、有効濾過面積の上限値は、例えば2.0m/Lである。 Effective filtration area of the honeycomb filter 200, from the viewpoint of reducing pressure loss while reducing the thermal stress generated in the honeycomb filter in the combustion regeneration, and a 1.1 m 2 / L or more, preferably at least 1.2 m 2 / L, 1.3 m 2 / L or more is more preferable. In addition, the upper limit of an effective filtration area is 2.0 m < 2 > / L, for example.
 上記ハニカムフィルタ100,200において隔壁は、多孔質であり、例えば多孔質セラミックス(多孔質セラミックス焼結体)を含んでいる。隔壁は、流体(例えば、すす等の微粒子を含む排ガス)が透過できるような構造を有している。具体的には、流体が通過し得る多数の連通孔(流通経路)が隔壁内に形成されている。 In the honeycomb filters 100 and 200, the partition walls are porous, and include, for example, porous ceramics (porous ceramic sintered body). The partition wall has a structure that allows fluid (for example, exhaust gas containing fine particles such as soot) to pass therethrough. Specifically, a large number of communication holes (flow channels) through which fluid can pass are formed in the partition wall.
 隔壁は、チタン酸アルミニウムを含むことが好ましく、マグネシウムやケイ素を更に含んでいてもよい。隔壁は、例えば、主にチタン酸アルミニウム系結晶からなる多孔性のセラミックスから形成されている。「主にチタン酸アルミニウム系結晶からなる」とは、チタン酸アルミニウム系セラミックス焼成体を構成する主結晶相がチタン酸アルミニウム系結晶相であることを意味し、チタン酸アルミニウム系結晶相は、例えば、チタン酸アルミニウム結晶相、チタン酸アルミニウムマグネシウム結晶相等であってもよい。 The partition preferably contains aluminum titanate, and may further contain magnesium or silicon. The partition walls are made of, for example, porous ceramics mainly made of an aluminum titanate crystal. “Mainly composed of an aluminum titanate-based crystal” means that the main crystal phase constituting the aluminum titanate-based ceramic fired body is an aluminum titanate-based crystal phase. An aluminum titanate crystal phase, an aluminum magnesium titanate crystal phase, or the like may be used.
 隔壁がマグネシウムを含有する場合、隔壁の組成式は、例えばAl2(1-x)MgTi(1+x)であり、xの値は、0.03以上が好ましく、0.03~0.20がより好ましく、0.03~0.18が更に好ましい。隔壁は、原料由来の微量成分又は製造工程において不可避的に含まれる微量成分を含有し得る。 When the partition wall contains magnesium, the composition formula of the partition wall is, for example, Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is preferably 0.03 or more, and 0.03 to 0 20 is more preferable, and 0.03 to 0.18 is still more preferable. The partition walls may contain trace components derived from raw materials or trace components inevitably included in the production process.
 隔壁がケイ素を含有する場合、隔壁は、ケイ素源粉末由来のガラス相を含んでいてもよい。ガラス相は、SiOが主要成分である非晶質相を指す。この場合、ガラス相の含有量は、4質量%以下であることが好ましい。ガラス相の含有量が4質量%以下であることにより、パティキュレートフィルタ等のセラミックスフィルタに要求される細孔特性を充足するチタン酸アルミニウム系セラミックス焼成体が得られ易くなる。ガラス相の含有量は、2質量%以上であることが好ましい。 When the partition contains silicon, the partition may contain a glass phase derived from a silicon source powder. The glass phase refers to an amorphous phase in which SiO 2 is the main component. In this case, the glass phase content is preferably 4% by mass or less. When the glass phase content is 4% by mass or less, an aluminum titanate-based ceramic fired body that satisfies the pore characteristics required for a ceramic filter such as a particulate filter is easily obtained. The glass phase content is preferably 2% by mass or more.
 隔壁は、チタン酸アルミニウム系結晶相やガラス相以外の相(結晶相)を含んでいてもよい。このようなチタン酸アルミニウム系結晶相以外の相としては、チタン酸アルミニウム系セラミックス焼成体の作製に用いる原料由来の相等を挙げることができる。原料由来の相とは、より具体的には、ハニカムフィルタの製造に際してチタン酸アルミニウム系結晶相を形成することなく残存したアルミニウム源粉末、チタン源粉末及び/又はマグネシウム源粉末由来の相である。原料由来の相としては、アルミナ、チタニア等の相が挙げられる。隔壁を形成する結晶相は、X線回折スペクトルにより確認することができる。 The partition may contain a phase (crystal phase) other than the aluminum titanate crystal phase or the glass phase. Examples of the phase other than the aluminum titanate-based crystal phase include a phase derived from a raw material used for producing an aluminum titanate-based ceramic fired body. More specifically, the phase derived from the raw material is a phase derived from an aluminum source powder, a titanium source powder and / or a magnesium source powder that remains without forming an aluminum titanate-based crystal phase during the manufacture of the honeycomb filter. Examples of the phase derived from the raw material include phases such as alumina and titania. The crystal phase forming the partition can be confirmed by an X-ray diffraction spectrum.
 上記ハニカムフィルタは、例えば、ディーゼルエンジン、ガソリンエンジン等の内燃機関からの排ガス中に含まれるすす等の被捕集物を捕集するパティキュレートフィルタとして適する。例えば、ハニカムフィルタ100では、図2に示すように、一端面100aから流路110bに供給されたガスGが隔壁120内の連通孔を通過して隣の流路110aに到達し、他端面100bから排出される。このとき、ガスG中の被捕集物が隔壁120の表面や連通孔内に捕集されてガスGから除去されることにより、ハニカムフィルタ100はフィルタとして機能する。ハニカムフィルタ200についても、同様にフィルタとして機能する。 The honeycomb filter is suitable, for example, as a particulate filter that collects collected matter such as soot contained in exhaust gas from an internal combustion engine such as a diesel engine or a gasoline engine. For example, in the honeycomb filter 100, as shown in FIG. 2, the gas G supplied from the one end face 100a to the flow path 110b passes through the communication hole in the partition wall 120 and reaches the adjacent flow path 110a, and the other end face 100b. Discharged from. At this time, the collected matter in the gas G is collected on the surface of the partition wall 120 or in the communication hole and removed from the gas G, whereby the honeycomb filter 100 functions as a filter. Similarly, the honeycomb filter 200 functions as a filter.
 従来のハニカムフィルタでは、隔壁の表面や隔壁の内部(連通孔内)に被捕集物が一旦堆積すると、被捕集物が堆積した流路と同一の流路に、新たな被捕集物が堆積し易いと考えられる。この場合、被捕集物が大量に堆積した流路では、ハニカムフィルタを燃焼再生させたときに被捕集物が短時間に燃焼して発熱量が大きくなり易いため、ハニカムフィルタに過度の熱応力が負荷されてしまう。 In the conventional honeycomb filter, once the trapped material is deposited on the surface of the partition wall or inside the partition wall (in the communication hole), a new trapped substance is placed in the same channel as the channel on which the trapped material is deposited. Is likely to accumulate. In this case, in the flow path in which a large amount of collected material is accumulated, when the honeycomb filter is combusted and regenerated, the collected material is easily burned in a short time and the amount of generated heat tends to increase. Stress is applied.
 一方、ハニカムフィルタ100,200では、以下で述べるように、燃焼再生においてハニカムフィルタに生じる熱応力を低減することができる。例えば、ハニカムフィルタ100では、被捕集物の燃焼速度が、被捕集物の燃焼により発生する二酸化炭素ガス等のガス流出側の流路110aへの拡散し易さに依存する傾向があるものと推測される。すなわち、ハニカムフィルタ100では、互いに隣接する流路110b間の圧力差に比して、互いに隣接する流路110a及び流路110b間の圧力差が大きくなる傾向がある。これにより、一の流路110bにおいて被捕集物の燃焼により発生した二酸化炭素ガス等は、隣接する他の流路110bに比して、隣接する流路110aへ流れ易い。 On the other hand, in the honeycomb filters 100 and 200, as described below, thermal stress generated in the honeycomb filter during combustion regeneration can be reduced. For example, in the honeycomb filter 100, the burning rate of the collected matter tends to depend on the ease of diffusion into the channel 110a on the gas outflow side such as carbon dioxide gas generated by the burning of the collected matter. It is guessed. That is, in the honey-comb filter 100, the pressure difference between the mutually adjacent flow paths 110a and 110b tends to be larger than the pressure difference between the adjacent flow paths 110b. Thereby, the carbon dioxide gas etc. which generate | occur | produced by combustion of the to-be-collected substance in one flow path 110b are easy to flow into the adjacent flow path 110a compared with the other adjacent flow paths 110b.
 そして、ハニカムフィルタ100では、流路110bの軸方向に垂直な流路110bの断面において、長辺150aに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等は、流路110bの断面と長辺150aを共有する断面を有する隔壁120a内を移動して流路110aへ達する傾向があり(図1(b)中の経路R11)、短辺150bに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等は、流路110bの断面と短辺150bを共有する断面を有する隔壁120b内を当該隔壁に沿って移動して流路110aへ達する傾向がある(図1(b)中の経路R12)。この場合、隔壁120aを通過する経路R11が、隔壁120bを通過する経路R12に比して短いことから、長辺150aに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等の方が、短辺150bに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等よりもガス流出側の流路110aへ拡散し易い。 In the honeycomb filter 100, carbon dioxide gas or the like generated by the combustion of the collected matter accumulated on the long side 150a in the cross section of the flow path 110b perpendicular to the axial direction of the flow path 110b is separated from the cross section of the flow path 110b. There is a tendency to move in the partition wall 120a having a cross section sharing the long side 150a and reach the flow path 110a (path R 11 in FIG. 1B), and by burning the collected matter accumulated on the short side 150b. The generated carbon dioxide gas or the like tends to move along the partition 120b having a section sharing the short side 150b with the section of the flow path 110b and reach the flow path 110a (in FIG. 1B). Route R 12 ). In this case, the route R 11 passing through the partition wall 120a is, since shorter than the path R 12 passing through the partition wall 120b, towards the carbon dioxide gas and the like generated by the combustion of the collected matter accumulated on the long side 150a However, it is easier to diffuse into the flow path 110a on the gas outflow side than the carbon dioxide gas generated by the combustion of the collected matter accumulated on the short side 150b.
 このような流路間の圧力差及び隔壁内の流通経路の長さの差に起因して、ハニカムフィルタ100では、長辺150aに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等の方が、短辺150bに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等よりも流路110aへ拡散し易い。したがって、長辺150aに堆積した被捕集物が、短辺150bに堆積した被捕集物に比して燃焼し易くなり、長辺150aに堆積した被捕集物と短辺150bに堆積した被捕集物とで燃焼速度が異なるものとなる。 Due to the pressure difference between the flow paths and the difference in the length of the flow path in the partition wall, in the honeycomb filter 100, carbon dioxide gas or the like generated by the combustion of the collected matter accumulated on the long side 150a is generated. However, it is easier to diffuse into the flow path 110a than carbon dioxide gas or the like generated by combustion of the collected matter deposited on the short side 150b. Therefore, the collected matter deposited on the long side 150a is more easily combusted than the collected matter deposited on the short side 150b, and deposited on the collected matter deposited on the long side 150a and the short side 150b. The burning speed differs depending on the material to be collected.
 また、ハニカムフィルタ100では、隣接する流路110b間の圧力差に比して流路110a及び流路110b間の圧力差が大きくなる傾向があることから、流路110bの断面において短辺150bに比して長辺150aに支燃性ガスが供給され易い。そのため、長辺150aに堆積した被捕集物が、短辺150bに堆積した被捕集物に比して燃焼し易くなり、長辺150aに堆積した被捕集物と短辺150bに堆積した被捕集物とで燃焼速度が更に異なるものとなり易い。 Further, in the honeycomb filter 100, the pressure difference between the flow path 110a and the flow path 110b tends to be larger than the pressure difference between the adjacent flow paths 110b. In comparison, the combustion-supporting gas is easily supplied to the long side 150a. Therefore, the collected matter deposited on the long side 150a is more easily combusted than the collected matter deposited on the short side 150b, and deposited on the collected matter deposited on the long side 150a and the short side 150b. The burning rate tends to be further different from that of the object to be collected.
 以上のように、ハニカムフィルタ100では、被捕集物が堆積した部位(長辺150a及び短辺150b)に応じて被捕集物の燃焼速度が異なるものとなることから、燃焼再生に際し被捕集物の燃焼が多くの部位において急激に生じてハニカムフィルタ100内の温度が急激に変化することが抑制されている。そして、このような現象は、ハニカムフィルタ100の有効濾過面積がハニカムフィルタ1リットルあたり1.1m以上であることにより顕著に生じているものと推測される。これにより、燃焼再生においてハニカムフィルタ100に生じる熱応力を低減することができる。なお、ハニカムフィルタ100の有効濾過面積がハニカムフィルタ1リットルあたり1.1m未満であると、隔壁120aを通過する経路R11の長さと隔壁120bを通過する経路R12の長さとが充分に異なるものとはならず、熱応力を充分に低減し難くなる。 As described above, in the honeycomb filter 100, the burning rate of the collected matter differs depending on the portion (the long side 150a and the short side 150b) where the collected matter is accumulated. It is suppressed that the combustion of the collection occurs suddenly in many parts and the temperature in the honeycomb filter 100 changes rapidly. Such a phenomenon is presumably caused by the fact that the effective filtration area of the honeycomb filter 100 is 1.1 m 2 or more per liter of the honeycomb filter. Thereby, the thermal stress which arises in the honey-comb filter 100 in combustion reproduction | regeneration can be reduced. When the effective filtration area of the honeycomb filter 100 is less than 1.1 m 2 per liter of the honeycomb filter, the length of the path R 11 passing through the partition wall 120a and the length of the path R 12 passing through the partition wall 120b are sufficiently different. However, it is difficult to sufficiently reduce the thermal stress.
 また、ハニカムフィルタ100では、ハニカムフィルタ100の有効濾過面積がハニカムフィルタ1リットルあたり1.1m以上であることにより、被捕集物を含む流体をハニカムフィルタの内部に供給した場合における圧力損失を低減しつつ、燃焼再生においてハニカムフィルタに生じる熱応力を低減することができる。濾過面積が充分に確保されると共に、被捕集物が局所的に堆積して流路を塞いでしまうことが抑制されていることに起因して、圧力損失が低減されているものと推測される。なお、ハニカムフィルタ100の有効濾過面積がハニカムフィルタ1リットルあたり1.1m未満であると、圧力損失を充分に低減し難くなる。 Further, in the honeycomb filter 100, since the effective filtration area of the honeycomb filter 100 is 1.1 m 2 or more per liter of the honeycomb filter, the pressure loss when the fluid containing the trapped material is supplied to the inside of the honeycomb filter is reduced. While reducing, the thermal stress which arises in a honeycomb filter in combustion reproduction | regeneration can be reduced. It is presumed that the pressure loss is reduced due to the fact that the filtration area is sufficiently secured and the trapped substances are prevented from being deposited locally and blocking the flow path. The Note that when the effective filtration area of the honeycomb filter 100 is less than 1.1 m 2 per liter of the honeycomb filter, it is difficult to sufficiently reduce the pressure loss.
 上記のハニカムフィルタ100では、ハニカムフィルタ100内に大量に被捕集物が堆積している状態で被捕集物を燃焼再生させた場合であっても、その際に発生する熱に起因する熱応力によってハニカムフィルタ100が損傷することを抑制することができる。そのため、ハニカムフィルタ100を頻繁に燃焼再生させる必要がないことから、被捕集物が大量に堆積するまで長時間連続してフィルタを使用することができる。したがって、メンテナンス性を向上させると共に、被捕集物の捕集効率を向上させることもできる。 In the honeycomb filter 100 described above, even when the collected matter is burned and regenerated with a large amount of the collected matter accumulated in the honeycomb filter 100, the heat caused by the heat generated at that time is generated. Damage to the honeycomb filter 100 due to stress can be suppressed. Therefore, since it is not necessary to frequently regenerate the honeycomb filter 100, it is possible to use the filter continuously for a long time until a large amount of collected substances accumulates. Therefore, the maintainability can be improved and the collection efficiency of the collected object can be improved.
 なお、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 In addition, this invention is not necessarily limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the summary.
 例えば、ハニカムフィルタ100において流路110a及び流路110bの配置構成や断面構成は上記に限られるものではない。上記ハニカムフィルタ100では、辺140と長辺150aとが対向すると共に、隣接する流路110bにおいて短辺150b同士が互いに対向しているが、辺140と短辺150bとが対向すると共に、隣接する流路110bにおいて長辺150a同士が互いに対向していてもよい。また、流路110a,110bの数は図1,2に示すものに限定されない。 For example, in the honeycomb filter 100, the arrangement configuration and the cross-sectional configuration of the channel 110a and the channel 110b are not limited to the above. In the honeycomb filter 100, the side 140 and the long side 150a face each other, and the short sides 150b face each other in the adjacent flow path 110b, but the side 140 and the short side 150b face each other and are adjacent to each other. In the channel 110b, the long sides 150a may face each other. Further, the number of the flow paths 110a and 110b is not limited to that shown in FIGS.
 さらに、互いに対向する辺140及び長辺150aの長さが互いに異なっていてもよく、互いに対向する短辺150bの長さが互いに異なっていてもよい。互いに対向する辺140及び長辺150aが略平行に対向しておらず、互いに交差する方向にそれぞれ伸びていてもよい。互いに対向する短辺150bが略平行に対向しておらず、互いに交差する方向にそれぞれ伸びていてもよい。流路110bの断面が扁平六角形状である場合、当該流路110bの断面において、互いに対向する辺の長さが互いに異なっていてもよい。 Furthermore, the lengths of the side 140 and the long side 150a facing each other may be different from each other, and the lengths of the short sides 150b facing each other may be different from each other. The side 140 and the long side 150a facing each other may not extend substantially parallel to each other but may extend in directions intersecting each other. The short sides 150b facing each other may not extend substantially parallel to each other but may extend in directions intersecting each other. When the cross section of the flow path 110b has a flat hexagonal shape, the lengths of sides facing each other in the cross section of the flow path 110b may be different from each other.
 ハニカムフィルタ200において流路210a及び流路210bの配置構成や断面構成は上記に限られるものではない。例えば、上記ハニカムフィルタ200では、辺240と長辺250aとが対向すると共に、隣接する流路210bにおいて短辺250b同士が互いに対向しているが、辺240と短辺250bとが対向すると共に、隣接する流路210bにおいて長辺250a同士が互いに対向していてもよい。また、流路210a,210bの数は図3,4に示すものに限定されない。 In the honeycomb filter 200, the arrangement configuration and the cross-sectional configuration of the flow path 210a and the flow path 210b are not limited to the above. For example, in the honeycomb filter 200, the side 240 and the long side 250a face each other, and the short sides 250b face each other in the adjacent flow path 210b, but the side 240 and the short side 250b face each other, In the adjacent channel 210b, the long sides 250a may face each other. Further, the number of the flow paths 210a and 210b is not limited to that shown in FIGS.
 さらに、互いに対向する辺240及び長辺250aの長さが互いに異なっていてもよく、互いに対向する短辺250bの長さが互いに異なっていてもよい。互いに対向する辺240及び長辺250aが略平行に対向しておらず、互いに交差する方向にそれぞれ伸びていてもよい。互いに対向する短辺250bが略平行に対向しておらず、互いに交差する方向にそれぞれ伸びていてもよい。流路210bの断面が扁平六角形状である場合、当該流路210bの断面において、互いに対向する辺の長さが互いに略等しくてもよい。 Furthermore, the lengths of the side 240 and the long side 250a facing each other may be different from each other, and the lengths of the short sides 250b facing each other may be different from each other. The sides 240 and the long sides 250a facing each other may not extend substantially in parallel but may extend in directions intersecting each other. The short sides 250b facing each other may not extend substantially in parallel but may extend in directions intersecting each other. When the cross section of the flow path 210b has a flat hexagonal shape, the lengths of sides facing each other in the cross section of the flow path 210b may be substantially equal to each other.
 また、流路の軸方向(長手方向)に略垂直な当該流路の断面は六角形状であることに限定されず、矩形状、八角形状、三角形状、円形状、楕円形状等であってもよい。例えば、図5に示すハニカムフィルタ300は、互いに略平行に配置された複数の流路310を有している。流路310は、複数の流路(第1の流路)310aと、流路310aと隣接する複数の流路(第2の流路)310bとを有しており、複数の流路310bにおける一の流路310bと他の流路310bとが互いに隣接している。一つの流路310bは、互いに隣接する流路310aの間に配置されている。流路310aにおけるハニカムフィルタ300の一端側の端部、及び、流路310bにおけるハニカムフィルタ300の他端側の端部は、封口部330によりそれぞれ封口されている。ハニカムフィルタ300において、例えば、流路310bにおける一端側の端部はガス流入口として開口しており、流路310aにおける他端側の端部はガス流出口として開口している。流路310は、ハニカムフィルタ300の中心軸に略平行に伸びる隔壁320により仕切られている。隔壁320は、流路310a及び流路310bを仕切る部分として隔壁320aを有しており、互いに隣接する流路310b同士を仕切る部分として隔壁320bを有している。 Further, the cross section of the flow channel substantially perpendicular to the axial direction (longitudinal direction) of the flow channel is not limited to a hexagonal shape, and may be a rectangular shape, an octagonal shape, a triangular shape, a circular shape, an elliptical shape, or the like. Good. For example, the honeycomb filter 300 shown in FIG. 5 has a plurality of flow paths 310 arranged substantially in parallel with each other. The flow path 310 includes a plurality of flow paths (first flow paths) 310a and a plurality of flow paths (second flow paths) 310b adjacent to the flow paths 310a. One channel 310b and another channel 310b are adjacent to each other. One flow path 310b is disposed between the flow paths 310a adjacent to each other. An end portion on one end side of the honeycomb filter 300 in the flow path 310 a and an end portion on the other end side of the honeycomb filter 300 in the flow path 310 b are respectively sealed by a sealing portion 330. In the honeycomb filter 300, for example, one end of the flow path 310b is opened as a gas inlet, and the other end of the flow path 310a is opened as a gas outlet. The flow path 310 is partitioned by a partition wall 320 that extends substantially parallel to the central axis of the honeycomb filter 300. The partition 320 has the partition 320a as a part which partitions off the flow path 310a and the flow path 310b, and has the partition 320b as a part which partitions off the mutually adjacent flow paths 310b.
 流路310aの軸方向に略垂直な断面は正方形状であり、流路310bの軸方向に略垂直な断面は正八角形状である。流路310bの軸方向に垂直な流路310bの断面は、第1の辺350aと、辺350aの両側にそれぞれ配置された第2の辺350bとを有している。流路310bの断面において、辺350a同士が互いに対向していると共に辺350b同士が互いに対向しており、互いに対向する辺の長さが互いに等しい。流路310aの軸方向に垂直な流路310aの断面を形成する辺340のそれぞれは、複数の流路310bのいずれか一つの流路の辺350aと対向している。流路310bの辺350bのそれぞれは、隣接する流路310bの辺350bと対向している。ハニカムフィルタ300の有効濾過面積(流路310の内壁の面積の合計)は、ハニカムフィルタ1リットルあたり1.1m以上である。また、流路310a,310bの軸方向に略垂直なハニカムフィルタ300の断面において、ガス流入側流路の合計面積はガス流出側流路の合計面積よりも大きいことが好ましく、すなわち、流路310bの合計面積は、流路310aの合計面積よりも大きいことが好ましい。 The cross section substantially perpendicular to the axial direction of the flow path 310a is a square shape, and the cross section substantially perpendicular to the axial direction of the flow path 310b is a regular octagon. The cross section of the flow path 310b perpendicular to the axial direction of the flow path 310b has a first side 350a and second sides 350b respectively disposed on both sides of the side 350a. In the cross section of the channel 310b, the sides 350a face each other and the sides 350b face each other, and the lengths of the sides facing each other are equal to each other. Each of the sides 340 forming a cross section of the flow channel 310a perpendicular to the axial direction of the flow channel 310a faces the side 350a of any one of the plurality of flow channels 310b. Each of the sides 350b of the channel 310b faces the side 350b of the adjacent channel 310b. The effective filtration area of the honeycomb filter 300 (the total area of the inner walls of the flow path 310) is 1.1 m 2 or more per liter of the honeycomb filter. Further, in the cross section of the honeycomb filter 300 substantially perpendicular to the axial direction of the flow paths 310a and 310b, the total area of the gas inflow side flow paths is preferably larger than the total area of the gas outflow side flow paths. Is preferably larger than the total area of the flow paths 310a.
 ハニカムフィルタ300では、流路310bの断面において、辺350aに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等は、流路310bの断面と辺350aを共有する断面を有する隔壁320a内を移動して流路310aへ達する傾向があり(図5中の経路R31)、辺350bに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等は、流路310bの断面と辺350bを共有する断面を有する隔壁320b内を当該隔壁に沿って移動して流路310aへ達する傾向がある(図5中の経路R32)。この場合、隔壁320aを通過する経路R31が隔壁320bを通過する経路R32に比して短いことから、辺350aに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等の方が、辺350bに堆積した被捕集物の燃焼により発生した二酸化炭素ガス等よりもハニカムフィルタ外部へ拡散し易い。したがって、辺350aに堆積した被捕集物が辺350bに堆積した被捕集物に比して燃焼し易くなり、辺350aに堆積した被捕集物と辺350bに堆積した被捕集物とで燃焼速度が異なるものとなる。 In the honeycomb filter 300, carbon dioxide gas or the like generated by combustion of the trapped material deposited on the side 350a in the cross section of the flow path 310b passes through the partition 320a having a cross section that shares the cross section of the flow path 310b and the side 350a. There is a tendency to move and reach the flow path 310a (path R 31 in FIG. 5), and carbon dioxide gas or the like generated by the combustion of the collected matter accumulated on the side 350b passes through the cross section of the flow path 310b and the side 350b. The partition 320b having a shared cross section tends to move along the partition and reach the flow path 310a (path R 32 in FIG. 5). In this case, since the path R 31 passing through the partition wall 320a is shorter than the path R 32 passing through the partition wall 320b, the direction of the carbon dioxide gas and the like generated by the combustion of the collected matter accumulated on the sides 350a, It is easier to diffuse out of the honeycomb filter than carbon dioxide gas or the like generated by combustion of the collected matter accumulated on the side 350b. Therefore, the collected matter deposited on the side 350a is more easily combusted than the collected matter deposited on the side 350b, and the collected matter deposited on the side 350a and the collected matter deposited on the side 350b The combustion speed will be different.
 さらに、上記ハニカムフィルタでは、隔壁の表面の少なくとも一部を覆う被覆部が配置されていてもよい。被覆部は、ガス流入側の流路において隔壁の表面上に配置されていてもよく、ガス流出側の流路において隔壁の表面上に配置されていてもよい。また、被覆部は、隔壁におけるガス流入側の流路同士を仕切る部分、又は、隔壁におけるガス流入側の流路とガス流出側の流路とを仕切る部分の少なくとも一方の表面上に配置されていてもよい。被覆部は、隔壁の一壁面の全てを覆っていてもよい。被覆部は、例えば、隔壁と同様の材料により形成されて多孔質であってもよく、ガスの拡散を遮蔽する材料により形成されていてもよい。被覆部は、例えば、ハニカムフィルタの中心軸や流路に略平行に連続的に又は断続的に伸びている。被覆部は、後述する成形工程において予め流路内に形成されてもよく、成形工程の後続の工程において流路内に形成されてもよい。 Furthermore, in the honeycomb filter, a covering portion that covers at least a part of the surface of the partition wall may be disposed. The covering portion may be disposed on the surface of the partition wall in the gas inflow side flow path, or may be disposed on the surface of the partition wall in the gas outflow side flow path. The covering portion is disposed on at least one surface of a part that partitions the gas inflow side flow paths in the partition walls, or a part that partitions the gas inflow side flow path and the gas outflow side flow paths in the partition walls. May be. The coating | coated part may cover all the one wall surfaces of a partition. The covering portion may be formed of a material similar to that of the partition wall, for example, may be porous, or may be formed of a material that shields gas diffusion. The covering portion extends, for example, continuously or intermittently substantially parallel to the central axis and the flow path of the honeycomb filter. The covering portion may be formed in the flow path in advance in a molding process described later, or may be formed in the flow path in a process subsequent to the molding process.
 ハニカムフィルタ100に配置される被覆部の構成としては、例えば、図6に示す構成が挙げられる。図6において、被覆部160は、ガス流入側の流路110bにおいて隔壁の表面上に配置されている。図6(a),(b)において、被覆部160は、流路110aと流路110bとを仕切る隔壁120aの表面に配置されている。図6(c),(d)において、被覆部160は、流路110b同士を仕切る隔壁120bの表面に配置されている。図6(a),(c)では、対向する隔壁の表面上にそれぞれ被覆部160が配置されており、被覆部160における長手方向に略垂直な断面は矩形状である。図6(b)における被覆部160は、一対の対向する隔壁120a間において、一方の隔壁120aから他方の隔壁120aに伸びている。図6(d)における被覆部160は、対向する隔壁120b間のそれぞれにおいて、一方の隔壁120bから他方の隔壁120bに伸びており、被覆部160同士は流路110bの略中央において互いに接続している。 As a structure of the coating | coated part arrange | positioned at the honey-comb filter 100, the structure shown in FIG. 6 is mentioned, for example. In FIG. 6, the covering portion 160 is disposed on the surface of the partition wall in the flow channel 110b on the gas inflow side. 6A and 6B, the covering portion 160 is disposed on the surface of the partition wall 120a that partitions the flow path 110a and the flow path 110b. 6C and 6D, the covering portion 160 is disposed on the surface of the partition wall 120b that partitions the flow paths 110b. 6A and 6C, the covering portions 160 are respectively disposed on the surfaces of the opposing partition walls, and a cross section substantially perpendicular to the longitudinal direction of the covering portion 160 is rectangular. The covering portion 160 in FIG. 6B extends from one partition 120a to the other partition 120a between a pair of opposing partitions 120a. 6D extends from one partition wall 120b to the other partition wall 120b between the opposing partition walls 120b, and the covering portions 160 are connected to each other at substantially the center of the flow path 110b. Yes.
 ハニカムフィルタ300に配置される被覆部の構成としては、例えば、図7に示す構成が挙げられる。図7において、被覆部360は、ガス流入側の流路310bにおいて隔壁の表面上に配置されている。図7(a),(b)において、被覆部360は、流路310b同士を仕切る隔壁320bの表面に配置されている。図7(c),(d)において、被覆部360は、流路310aと流路310bとを仕切る隔壁320aの表面に配置されている。図7(a),(c)では、対向する隔壁の表面上にそれぞれ被覆部360が配置されており、被覆部360における長手方向に略垂直な断面は矩形状である。図7(b),(d)における被覆部360は、対向する隔壁間のそれぞれにおいて、一方の隔壁から他方の隔壁に伸びており、被覆部360同士は流路310bの略中央において互いに接続している。 As a structure of the coating | coated part arrange | positioned at the honey-comb filter 300, the structure shown in FIG. 7 is mentioned, for example. In FIG. 7, the covering portion 360 is disposed on the surface of the partition wall in the gas inflow channel 310 b. 7A and 7B, the covering portion 360 is disposed on the surface of the partition 320b that partitions the flow paths 310b. 7C and 7D, the covering portion 360 is disposed on the surface of the partition 320a that partitions the flow path 310a and the flow path 310b. 7A and 7C, the covering portions 360 are respectively disposed on the surfaces of the opposing partition walls, and a cross section substantially perpendicular to the longitudinal direction of the covering portions 360 is rectangular. The covering portions 360 in FIGS. 7B and 7D extend from one partition wall to the other partition wall between the opposing partition walls, and the covering portions 360 are connected to each other at substantially the center of the flow path 310b. ing.
 被覆部を隔壁の表面上に配置した場合、以下の現象が生じるものと推測される。例えば、ハニカムフィルタ100における図6(a)の構成では、被覆部160に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等の拡散経路が、当該被覆部160に被覆された隔壁120aの壁面に堆積した被捕集物の燃焼により発生した二酸化炭素ガス等の拡散経路よりも、被覆部160内の拡散経路が加わることにより長くなる傾向がある。これにより、被覆部160に堆積した被捕集物の燃焼速度が、隔壁120aの壁面に堆積した被捕集物の燃焼速度とは異なるものとなり、被捕集物の燃焼速度を流路110b内の堆積箇所に応じて異なるものに調整し易くなる。そのため、燃焼再生においてハニカムフィルタ100に生じる熱応力を低減し易くなる。 When the covering part is disposed on the surface of the partition wall, it is estimated that the following phenomenon occurs. For example, in the configuration of FIG. 6A in the honeycomb filter 100, a diffusion path of carbon dioxide gas or the like generated by the combustion of the collected matter deposited on the covering portion 160 is formed in the partition wall 120a covered by the covering portion 160. The diffusion path in the covering portion 160 tends to be longer than the diffusion path of carbon dioxide gas or the like generated by the combustion of the collected matter deposited on the wall surface. Thereby, the burning rate of the collected matter deposited on the covering portion 160 is different from the burning rate of the collected matter deposited on the wall surface of the partition wall 120a, and the burning rate of the collected matter is changed in the flow path 110b. It becomes easy to adjust to a different thing according to the deposition location. Therefore, it becomes easy to reduce the thermal stress generated in the honeycomb filter 100 during combustion regeneration.
 ハニカムフィルタ100における図6(c)の構成では、被覆部160に堆積した被捕集物の燃焼速度が、隔壁120bの壁面に堆積した被捕集物の燃焼速度とは異なるものとなり、被捕集物の燃焼速度を流路110b内の堆積箇所に応じて異なるものに調整し易くなる。そのため、燃焼再生においてハニカムフィルタ100に生じる熱応力を低減し易くなる。 In the configuration of FIG. 6C in the honeycomb filter 100, the burning rate of the collected matter deposited on the covering portion 160 is different from the burning rate of the collected matter deposited on the wall surface of the partition wall 120b. It becomes easy to adjust the burning rate of the collected material to a different one depending on the accumulation location in the flow path 110b. Therefore, it becomes easy to reduce the thermal stress generated in the honeycomb filter 100 during combustion regeneration.
 また、隔壁の壁面(表面)は平坦面であることに限られず、凹凸面であってもよい。この場合、隔壁の有効濾過面積を増加させることが可能であり、圧力損失を更に低減することができる。例えば、図8に示すように、隔壁400は、隔壁本体400aと、隔壁本体400aの表面に形成された複数の突起部400bとを有している。突起部400bは、例えば、錐状(円錐状や四角錐状等)(図8(a))、球状(図8(b))又は波状(図8(c))である。隔壁本体400a及び突起部400bは、別体として形成されていてもよく、一体として形成されていてもよい。凹凸面を有する隔壁は、後述する成形工程において予め形成されてもよく、成形工程の後続の工程において形成されてもよい。 Further, the wall surface (surface) of the partition wall is not limited to a flat surface, and may be an uneven surface. In this case, it is possible to increase the effective filtration area of the partition wall, and the pressure loss can be further reduced. For example, as shown in FIG. 8, the partition 400 includes a partition body 400a and a plurality of protrusions 400b formed on the surface of the partition body 400a. The protrusion 400b has, for example, a cone shape (conical shape, quadrangular pyramid shape, etc.) (FIG. 8A), a spherical shape (FIG. 8B), or a wave shape (FIG. 8C). The partition wall body 400a and the protrusion 400b may be formed as separate bodies or may be formed as a single unit. The partition wall having the concavo-convex surface may be formed in advance in a molding process described later, or may be formed in a process subsequent to the molding process.
<ハニカムフィルタの製造方法>
 ハニカムフィルタの製造方法は、(a)セラミックス粉末と孔形成剤を含む原料混合物を調製する原料調製工程と、(b)原料混合物を成形して、流路を有する成形体を得る成形工程と、(c)成形体を焼成する焼成工程と、を備え、(d)成形工程と焼成工程の間、又は、焼成工程の後に、各流路の一端を封口する封口工程を更に備える。以下、各工程について説明する。
<Honeycomb filter manufacturing method>
The manufacturing method of the honeycomb filter includes (a) a raw material preparation step of preparing a raw material mixture containing ceramic powder and a pore-forming agent, and (b) a forming step of forming the raw material mixture to obtain a formed body having a flow path, (C) a firing step of firing the molded body, and (d) a sealing step of sealing one end of each flow path between the molding step and the firing step or after the firing step. Hereinafter, each step will be described.
(工程(a):原料調製工程)
 工程(a)では、セラミックス粉末と孔形成剤とを混合した後に混練して原料混合物を調製する。原料混合物には、セラミックス粉末と孔形成剤の他、種々の添加剤が混合される。添加剤は、例えばバインダ、可塑剤、分散剤、溶媒である。
(Process (a): Raw material preparation process)
In the step (a), the ceramic powder and the hole forming agent are mixed and then kneaded to prepare a raw material mixture. In addition to the ceramic powder and the hole forming agent, various additives are mixed in the raw material mixture. The additive is, for example, a binder, a plasticizer, a dispersant, or a solvent.
 以下、チタン酸アルミニウムを含む隔壁を備えるハニカムフィルタの製造方法を例として説明する。セラミックス粉末は、アルミニウム源粉末及びチタン源粉末を少なくとも含み、マグネシウム源粉末及びケイ素源粉末等を更に含んでいてもよい。 Hereinafter, a method for manufacturing a honeycomb filter having partition walls containing aluminum titanate will be described as an example. The ceramic powder includes at least an aluminum source powder and a titanium source powder, and may further include a magnesium source powder and a silicon source powder.
(アルミニウム源粉末)
 アルミニウム源粉末は、隔壁を構成するアルミニウム成分となる化合物の粉末である。アルミニウム源粉末としては、例えば、アルミナ(酸化アルミニウム)の粉末が挙げられる。アルミナの結晶型としては、γ型、δ型、θ型、α型等が挙げられ、不定形(アモルファス)であってもよい。アルミナの結晶型は、α型が好ましい。
(Aluminum source powder)
The aluminum source powder is a powder of a compound that becomes an aluminum component constituting the partition wall. Examples of the aluminum source powder include alumina (aluminum oxide) powder. Examples of the crystal type of alumina include γ-type, δ-type, θ-type, and α-type, and may be indefinite (amorphous). The crystal type of alumina is preferably α type.
 アルミニウム源粉末は、単独で空気中で焼成することによりアルミナに導かれる化合物の粉末であってもよい。かかる化合物としては、例えばアルミニウム塩、アルミニウムアルコキシド、水酸化アルミニウム、金属アルミニウム等が挙げられる。 The aluminum source powder may be a powder of a compound that is led to alumina by firing alone in air. Examples of such a compound include an aluminum salt, aluminum alkoxide, aluminum hydroxide, metal aluminum and the like.
 アルミニウム塩は、無機酸とのアルミニウム無機塩であってもよく、有機酸とのアルミニウム有機塩であってもよい。アルミニウム無機塩の具体例としては、例えば、硝酸アルミニウム、硝酸アンモニウムアルミニウム等のアルミニウム硝酸塩;炭酸アンモニウムアルミニウム等のアルミニウム炭酸塩などが挙げられる。アルミニウム有機塩としては、例えば、蓚酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、乳酸アルミニウム、ラウリン酸アルミニウム等が挙げられる。 The aluminum salt may be an aluminum inorganic salt with an inorganic acid or an aluminum organic salt with an organic acid. Specific examples of the aluminum inorganic salt include aluminum nitrates such as aluminum nitrate and ammonium aluminum nitrate; aluminum carbonates such as ammonium carbonate aluminum and the like. Examples of the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, aluminum lactate, and aluminum laurate.
 アルミニウムアルコキシドの具体例としては、例えば、アルミニウムイソプロポキシド、アルミニウムエトキシド、アルミニウムsec-ブトキシド、アルミニウムtert-ブトキシド等が挙げられる。 Specific examples of the aluminum alkoxide include, for example, aluminum isopropoxide, aluminum ethoxide, aluminum sec-butoxide, aluminum tert-butoxide and the like.
 水酸化アルミニウムの結晶型としては、例えば、ギブサイト型、バイヤライト型、ノロソトランダイト型、ベーマイト型、擬ベーマイト型等が挙げられ、不定形(アモルファス)であってもよい。アモルファスの水酸化アルミニウムとしては、例えば、アルミニウム塩、アルミニウムアルコキシド等のような水溶性アルミニウム化合物の水溶液を加水分解して得られるアルミニウム加水分解物が挙げられる。 Examples of the aluminum hydroxide crystal type include a gibbsite type, a bayerite type, a norosotrandite type, a boehmite type, and a pseudo-boehmite type, and may be amorphous (amorphous). Examples of amorphous aluminum hydroxide include an aluminum hydrolyzate obtained by hydrolyzing an aqueous solution of a water-soluble aluminum compound such as an aluminum salt or an aluminum alkoxide.
 アルミニウム源粉末は、1種又は2種以上のいずれでもよい。アルミニウム源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The aluminum source powder may be one type or two or more types. The aluminum source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
 アルミニウム源粉末は、好ましくはアルミナ粉末であり、より好ましくはα型のアルミナ粉末である。 The aluminum source powder is preferably alumina powder, more preferably α-type alumina powder.
 アルミニウム源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(中心粒径、D50)は、好ましくは20~60μmである。アルミニウム源粉末のD50をこの範囲内に調整することにより、優れた多孔性を示すチタン酸アルミニウム系セラミックス焼成体が得られると共に、焼成収縮率をより効果的に低減させることができる。アルミニウム源粉末のD50は、より好ましくは25~60μmである。 In the aluminum source powder, the particle size (center particle size, D50) equivalent to a volume-based cumulative percentage of 50% measured by a laser diffraction method is preferably 20 to 60 μm. By adjusting D50 of the aluminum source powder within this range, an aluminum titanate ceramic fired body exhibiting excellent porosity can be obtained, and the firing shrinkage rate can be more effectively reduced. The D50 of the aluminum source powder is more preferably 25 to 60 μm.
(チタン源粉末)
 チタン源粉末は、隔壁を構成するチタン成分となる化合物の粉末であり、例えば酸化チタンの粉末である。酸化チタンは、例えば、酸化チタン(IV)、酸化チタン(III)、酸化チタン(II)であり、好ましくは酸化チタン(IV)である。酸化チタン(IV)の結晶型は、アナターゼ型、ルチル型、ブルッカイト型である。酸化チタンは不定形(アモルファス)であってもよい。酸化チタンは、より好ましくはアナターゼ型やルチル型の酸化チタン(IV)である。
(Titanium source powder)
The titanium source powder is a powder of a compound that becomes a titanium component constituting the partition walls, and is, for example, a titanium oxide powder. Titanium oxide is, for example, titanium (IV) oxide, titanium (III) oxide, or titanium (II) oxide, and preferably titanium (IV) oxide. The crystal forms of titanium (IV) oxide are anatase, rutile, and brookite. The titanium oxide may be amorphous (amorphous). The titanium oxide is more preferably anatase type or rutile type titanium (IV) oxide.
 チタン源粉末は、単独で空気中で焼成することによりチタニア(酸化チタン)に導かれる化合物の粉末であってもよく、例えば、チタニウム塩、チタニウムアルコキシド、水酸化チタニウム、窒化チタン、硫化チタン、チタン金属である。 The titanium source powder may be a powder of a compound that is led to titania (titanium oxide) by firing alone in the air. For example, titanium salt, titanium alkoxide, titanium hydroxide, titanium nitride, titanium sulfide, titanium It is a metal.
 チタニウム塩は、例えば三塩化チタン、四塩化チタン、硫化チタン(IV)、硫化チタン(VI)、硫酸チタン(IV)である。チタニウムアルコキシドは、例えばチタン(IV)エトキシド、チタン(IV)メトキシド、チタン(IV)t-ブトキシド、チタン(IV)イソブトキシド、チタン(IV)n-プロポキシド、チタン(IV)テトライソプロポキシド、及び、これらのキレート化物である。 Examples of the titanium salt include titanium trichloride, titanium tetrachloride, titanium (IV) sulfide, titanium sulfide (VI), and titanium sulfate (IV). Titanium alkoxides include, for example, titanium (IV) ethoxide, titanium (IV) methoxide, titanium (IV) t-butoxide, titanium (IV) isobutoxide, titanium (IV) n-propoxide, titanium (IV) tetraisopropoxide, And these chelating products.
 チタン源粉末は、1種又は2種以上のいずれでもよい。チタン源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The titanium source powder may be one type or two or more types. The titanium source powder may contain a trace component derived from the raw material or unavoidably contained in the production process.
 チタン源粉末は、好ましくは酸化チタン粉末であり、より好ましくは酸化チタン(IV)粉末である。 The titanium source powder is preferably a titanium oxide powder, more preferably a titanium (IV) oxide powder.
 チタン源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、好ましくは0.1~25μmである。チタン源粉末のD50は、充分に低い焼成収縮率を達成するため、より好ましくは1~20μmである。 In the titanium source powder, the volume-based cumulative particle diameter (D50) measured by laser diffraction method is preferably 0.1 to 25 μm. The D50 of the titanium source powder is more preferably 1 to 20 μm in order to achieve a sufficiently low firing shrinkage rate.
 チタン源粉末は、バイモーダルな粒径分布を示すことがある。このようなバイモーダルな粒径分布を示すチタニウム源粉末を用いる場合、レーザ回折法により測定される粒径が大きい方のピークを形成する粒子の粒径は、好ましくは20~50μmである。 The titanium source powder may show a bimodal particle size distribution. When the titanium source powder having such a bimodal particle size distribution is used, the particle size of the particles forming the peak having the larger particle size measured by the laser diffraction method is preferably 20 to 50 μm.
 レーザ回折法により測定されるチタン源粉末のモード径は、通常0.1~60μmである。 The mode diameter of the titanium source powder measured by the laser diffraction method is usually 0.1 to 60 μm.
 原料混合物中におけるAl23(アルミナ)換算でのアルミニウム源粉末とTiO2(チタニア)換算でのチタン源粉末のモル比(アルミニウム源粉末:チタン源粉末)は、好ましくは35:65~45:55であり、より好ましくは40:60~45:55である。このような範囲内で、チタン源粉末をアルミニウム源粉末に対して過剰に用いることにより、原料混合物の成形体の焼成収縮率をより効果的に低減させることが可能となる。 The molar ratio of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania) in the raw material mixture (aluminum source powder: titanium source powder) is preferably 35:65 to 45 : 55, more preferably 40:60 to 45:55. Within such a range, by using the titanium source powder excessively with respect to the aluminum source powder, it becomes possible to more effectively reduce the firing shrinkage rate of the molded body of the raw material mixture.
(マグネシウム源粉末)
 原料混合物は、マグネシウム源粉末を更に含有していてもよい。原料混合物がマグネシウム源粉末を含む場合、得られるチタン酸アルミニウム系セラミックス焼成体は、チタン酸アルミニウムマグネシウム結晶を含む焼成体である。マグネシウム源粉末は、マグネシア(酸化マグネシウム)の粉末のほか、単独で空気中で焼成することによりマグネシアに導かれる化合物の粉末である。このような化合物は、例えば、マグネシウム塩、マグネシウムアルコキシド、水酸化マグネシウム、窒化マグネシウム、金属マグネシウムである。
(Magnesium source powder)
The raw material mixture may further contain a magnesium source powder. When the raw material mixture contains a magnesium source powder, the obtained aluminum titanate ceramic fired body is a fired body containing aluminum magnesium titanate crystals. The magnesium source powder is not only magnesia (magnesium oxide) powder but also a powder of a compound introduced into magnesia by firing alone in air. Such compounds are, for example, magnesium salts, magnesium alkoxides, magnesium hydroxide, magnesium nitride, and metallic magnesium.
 マグネシウム塩は、例えば塩化マグネシウム、過塩素酸マグネシウム、リン酸マグネシウム、ピロりん酸マグネシウム、蓚酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、クエン酸マグネシウム、乳酸マグネシウム、ステアリン酸マグネシウム、サリチル酸マグネシウム、ミリスチン酸マグネシウム、グルコン酸マグネシウム、ジメタクリル酸マグネシウム、安息香酸マグネシウムである。 Magnesium salts include, for example, magnesium chloride, magnesium perchlorate, magnesium phosphate, magnesium pyrophosphate, magnesium oxalate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium sulfate, magnesium citrate, magnesium lactate, magnesium stearate, magnesium salicylate , Magnesium myristate, magnesium gluconate, magnesium dimethacrylate, and magnesium benzoate.
 マグネシウムアルコキシドは、例えばマグネシウムメトキシド、マグネシウムエトキシド等である。 Examples of the magnesium alkoxide include magnesium methoxide and magnesium ethoxide.
 マグネシウム源粉末として、マグネシウム源とアルミニウム源とを兼ねた化合物の粉末を用いることができる。このような化合物は、例えば、マグネシアスピネル(MgAl24)である。 As the magnesium source powder, a powder of a compound serving both as a magnesium source and an aluminum source can be used. Such a compound is, for example, magnesia spinel (MgAl 2 O 4 ).
 マグネシウム源粉末として、マグネシウム源とアルミニウム源とを兼ねた化合物の粉末を用いる場合、アルミニウム源粉末のAl23(アルミナ)換算量、及び、マグネシウム源とアルミニウム源とを兼ねた化合物粉末に含まれるAl成分のAl23(アルミナ)換算量の合計量と、チタニウム源粉末のTiO2(チタニア)換算量とのモル比が、原料混合物中において上記範囲内となるように調整される。 When using a powder of a compound that serves as both a magnesium source and an aluminum source as the magnesium source powder, it is included in the amount of Al 2 O 3 (alumina) equivalent of the aluminum source powder and a compound powder that serves as both the magnesium source and the aluminum source. The molar ratio between the total amount of Al 2 O 3 (alumina) equivalent of the Al component and the amount of TiO 2 (titania) equivalent of the titanium source powder is adjusted to be within the above range in the raw material mixture.
 マグネシウム源粉末は、1種又は2種以上のいずれでもよい。マグネシウム源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The magnesium source powder may be one type or two or more types. The magnesium source powder may contain trace components that are derived from the raw materials or inevitably contained in the production process.
 マグネシウム源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、好ましくは0.5~30μmである。マグネシウム源粉末のD50は、成形体の焼成収縮率を低減する観点から、より好ましくは3~20μmである。 In the magnesium source powder, the particle size (D50) equivalent to a volume-based cumulative percentage of 50% as measured by a laser diffraction method is preferably 0.5 to 30 μm. The D50 of the magnesium source powder is more preferably 3 to 20 μm from the viewpoint of reducing the firing shrinkage of the molded body.
 原料混合物中におけるMgO(マグネシア)換算でのマグネシウム源粉末の含有量は、Al(アルミナ)換算でのアルミニウム源粉末とTiO(チタニア)換算でのチタニウム源粉末との合計量に対して、モル比で、好ましくは0.03~0.15であり、より好ましくは0.03~0.12である。マグネシウム源粉末の含有量をこの範囲内に調整することにより、耐熱性がより向上された、大きい気孔径及び気孔率を有するチタン酸アルミニウム系セラミックス焼成体を比較的容易に得ることができる。 The content of magnesium source powder in terms of MgO (magnesia) in the raw material mixture is based on the total amount of aluminum source powder in terms of Al 2 O 3 (alumina) and titanium source powder in terms of TiO 2 (titania). The molar ratio is preferably 0.03 to 0.15, more preferably 0.03 to 0.12. By adjusting the content of the magnesium source powder within this range, an aluminum titanate-based ceramic fired body having a large pore diameter and porosity with improved heat resistance can be obtained relatively easily.
(ケイ素源粉末)
 原料混合物は、ケイ素源粉末を更に含有していてもよい。ケイ素源粉末は、シリコン成分となってチタン酸アルミニウム系セラミックス焼成体に含まれる化合物の粉末であり、ケイ素源粉末の併用により、耐熱性がより向上されたチタン酸アルミニウム系セラミックス焼成体を得ることが可能となる。ケイ素源粉末は、例えば、二酸化ケイ素、一酸化ケイ素等の酸化ケイ素(シリカ)の粉末である。
(Silicon source powder)
The raw material mixture may further contain a silicon source powder. The silicon source powder is a powder of a compound that becomes a silicon component and is contained in the aluminum titanate ceramic fired body. By using the silicon source powder in combination, a heat-resistant aluminum titanate ceramic fired body is obtained. Is possible. The silicon source powder is, for example, a powder of silicon oxide (silica) such as silicon dioxide or silicon monoxide.
 ケイ素源粉末は、単独で空気中で焼成することによりシリカに導かれる化合物の粉末であってもよい。かかる化合物は、例えば、ケイ酸、炭化ケイ素、窒化ケイ素、硫化ケイ素、四塩化ケイ素、酢酸ケイ素、ケイ酸ナトリウム、オルトケイ酸ナトリウム、長石、ガラスフリットであり、好ましくは長石、ガラスフリットであり、工業的に入手が容易であると共に組成が安定している点で、より好ましくはガラスフリットである。ガラスフリットは、ガラスを粉砕して得られるフレーク又は粉末状のガラスをいう。ケイ素源粉末として、長石とガラスフリットとの混合物からなる粉末を用いることも好ましい。 The silicon source powder may be a powder of a compound led to silica by firing alone in air. Such compounds are, for example, silicic acid, silicon carbide, silicon nitride, silicon sulfide, silicon tetrachloride, silicon acetate, sodium silicate, sodium orthosilicate, feldspar, glass frit, preferably feldspar, glass frit, industrial Glass frit is more preferable because it is easily available and has a stable composition. Glass frit refers to flakes or powdery glass obtained by pulverizing glass. It is also preferable to use a powder made of a mixture of feldspar and glass frit as the silicon source powder.
 ガラスフリットを用いる場合、得られるチタン酸アルミニウム系セラミックス焼成体の耐熱分解性をより向上させるという観点から、ガラスフリットの屈伏点は、600℃以上であることが好ましい。本明細書において、ガラスフリットの屈伏点は、熱機械分析装置(TMA:Thermo Mechanical Analysis)を用いて、低温からガラスフリットの膨張を測定し、膨張が止まり、次に収縮が始まる温度(℃)と定義される。 When using a glass frit, it is preferable that the yield point of the glass frit is 600 ° C. or higher from the viewpoint of further improving the thermal decomposition resistance of the obtained aluminum titanate ceramic fired body. In this specification, the yield point of the glass frit is determined by measuring the expansion of the glass frit from a low temperature using a thermomechanical analyzer (TMA: Thermo Mechanical Analysis). It is defined as
 ガラスフリットを構成するガラスには、ケイ酸〔SiO2〕を主成分(全成分中50質量%以上)とする一般的なケイ酸ガラスを用いることができる。ガラスフリットを構成するガラスは、その他の含有成分として、一般的なケイ酸ガラスと同様、アルミナ〔Al23〕、酸化ナトリウム〔Na2O〕、酸化カリウム〔K2O〕、酸化カルシウム〔CaO〕、マグネシア〔MgO〕等を含んでいてもよい。また、ガラスフリットを構成するガラスは、ガラス自体の耐熱水性を向上させるために、ZrO2を含有していてもよい。 As the glass constituting the glass frit, a general silicate glass containing silicate [SiO 2 ] as a main component (50 mass% or more in all components) can be used. The glass constituting the glass frit includes, as other components, alumina [Al 2 O 3 ], sodium oxide [Na 2 O], potassium oxide [K 2 O], calcium oxide [ CaO], magnesia [MgO] and the like may be included. The glass constituting the glass frit may contain ZrO 2 in order to improve the hot water resistance of the glass itself.
 ケイ素源粉末は、1種又は2種以上のいずれでもよい。ケイ素源粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。 The silicon source powder may be one type or two or more types. The silicon source powder may contain a trace component derived from the raw material or inevitably contained in the production process.
 ケイ素源粉末において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、好ましくは0.5~30μmである。ケイ素源粉末のD50は、成形体の充填率をより向上させて機械的強度が更に高い焼成体を得るため、より好ましくは1~20μmである。 In the silicon source powder, the particle size (D50) equivalent to a 50% cumulative percentage on a volume basis measured by a laser diffraction method is preferably 0.5 to 30 μm. The D50 of the silicon source powder is more preferably 1 to 20 μm in order to obtain a fired body having higher mechanical strength by further improving the filling factor of the molded body.
 原料混合物がケイ素源粉末を含む場合、原料混合物中におけるケイ素源粉末の含有量は、Al(アルミナ)換算でのアルミニウム源粉末とTiO(チタニア)換算でのチタニウム源粉末との合計量100質量部に対して、SiO(シリカ)換算で、通常0.1~10質量部であり、好ましくは0.1~5質量部である。 When the raw material mixture includes a silicon source powder, the content of the silicon source powder in the raw material mixture is the sum of the aluminum source powder in terms of Al 2 O 3 (alumina) and the titanium source powder in terms of TiO 2 (titania). The amount is usually 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass in terms of SiO 2 (silica) with respect to 100 parts by mass.
 ハニカムフィルタの製造では、上記マグネシアスピネル(MgAl24)等の複合酸化物のように、チタニウム、アルミニウム、ケイ素及びマグネシウムのうち、2つ以上の金属元素を成分とする化合物を原料粉末として用いることができる。この場合、化合物は、それぞれの金属源化合物を混合した原料と同じであると考えることができる。このような考えに基づき、原料混合物中におけるアルミニウム源、チタニウム源、マグネシウム源及びケイ素源の含有量が上記範囲内に調整される。 In the manufacture of a honeycomb filter, a compound containing two or more metal elements among titanium, aluminum, silicon and magnesium as a raw material powder, such as a composite oxide such as magnesia spinel (MgAl 2 O 4 ), is used. be able to. In this case, the compound can be considered to be the same as the raw material in which the respective metal source compounds are mixed. Based on such an idea, the content of the aluminum source, the titanium source, the magnesium source and the silicon source in the raw material mixture is adjusted within the above range.
 原料混合物にはチタン酸アルミニウムやチタン酸アルミニウムマグネシウムが含まれていてもよい。例えば、原料混合物の構成成分としてチタン酸アルミニウムマグネシウムを使用する場合、チタン酸アルミニウムマグネシウムは、チタニウム源、アルミニウム源及びマグネシウム源を兼ね備えた原料混合物に相当する。 The raw material mixture may contain aluminum titanate or aluminum magnesium titanate. For example, when aluminum magnesium titanate is used as a constituent of the raw material mixture, the aluminum magnesium titanate corresponds to a raw material mixture having a titanium source, an aluminum source, and a magnesium source.
 チタン酸アルミニウムやチタン酸アルミニウムマグネシウムは、本製造方法により得られるハニカムフィルタから調製してもよい。例えば、本製造方法により得られたハニカムフィルタが破損した場合、破損したハニカムフィルタやその破片等を粉砕して使用することができる。粉砕して得られる粉末をチタン酸アルミニウムマグネシウム粉末とすることができる。 Aluminum titanate or aluminum magnesium titanate may be prepared from a honeycomb filter obtained by this production method. For example, when the honeycomb filter obtained by the present manufacturing method is damaged, the damaged honeycomb filter or its fragments can be pulverized and used. The powder obtained by pulverization can be aluminum magnesium titanate powder.
(孔形成剤)
 孔形成剤としては、工程(c)において成形体を焼成する焼成温度以下で消失する素材によって形成されたものを使用することができる。脱脂や焼成において、孔形成剤を含有する成形体が加熱されると、孔形成剤は燃焼等によって消滅する。これにより、孔形成剤が存在していた箇所に空間ができると共に、この空間同士の間に位置するセラミックス粉末が焼成の際に収縮することにより、流体を流すことができる連通孔をハニカムフィルタの隔壁内に形成することができる。
(Pore forming agent)
As the pore-forming agent, those formed by a material that disappears at or below the firing temperature at which the molded body is fired in step (c) can be used. In degreasing and firing, when a molded body containing a hole forming agent is heated, the hole forming agent disappears due to combustion or the like. As a result, a space is created at the location where the pore-forming agent was present, and the ceramic powder located between the spaces shrinks during firing, so that the communication holes through which the fluid can flow are formed in the honeycomb filter. It can be formed in the partition wall.
 ハニカムフィルタの製造方法では、所定の連通孔を形成するために、孔形成剤を使用することができる。孔形成剤は、例えば、トウモロコシ澱粉、大麦澱粉、小麦澱粉、タピオカ澱粉、豆澱粉、米澱粉、エンドウ澱粉、サンゴヤシ澱粉、カンナ澱粉、ポテト澱粉(馬鈴薯デンプン)である。孔形成剤の平均粒径は、好ましくは5~25μmである。 In the method for manufacturing a honeycomb filter, a hole forming agent can be used to form a predetermined communication hole. Examples of the pore-forming agent include corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, coral starch, canna starch, and potato starch (potato starch). The average particle diameter of the pore forming agent is preferably 5 to 25 μm.
 原料混合物における孔形成剤の含有量は、セラミックス粉末100質量部に対して、好ましくは1~25質量部である。孔形成剤の含有量がこの範囲であると、初期圧力損失を低く抑えつつ被捕集物の漏れの発生を防ぐことが容易となる。孔形成剤の含有量がセラミックス粉末100質量部に対して1質量部より少ないと、隔壁に形成される気孔が少なくなるため圧力損失が大きくなる傾向がある。一方、孔形成剤の含有量がセラミックス粉末100質量部に対して25質量部より多いと、隔壁に形成される気孔の割合が大きくなりすぎ、被捕集物の漏れが発生する傾向がある。 The content of the pore-forming agent in the raw material mixture is preferably 1 to 25 parts by mass with respect to 100 parts by mass of the ceramic powder. When the content of the pore-forming agent is within this range, it becomes easy to prevent the leakage of the collected material while keeping the initial pressure loss low. When the content of the pore forming agent is less than 1 part by mass with respect to 100 parts by mass of the ceramic powder, the pressure loss tends to increase because the number of pores formed in the partition walls decreases. On the other hand, when the content of the pore-forming agent is more than 25 parts by mass with respect to 100 parts by mass of the ceramic powder, the proportion of pores formed in the partition walls becomes too large, and the collected material tends to leak.
 ハニカムフィルタの製造では、原料混合物に、上述したセラミックス粉末と孔形成剤に加えて、バインダ、可塑剤、分散剤、溶媒等の有機成分(添加剤)が配合されていてもよい。 In manufacturing a honeycomb filter, an organic component (additive) such as a binder, a plasticizer, a dispersant, and a solvent may be blended in the raw material mixture in addition to the ceramic powder and the hole forming agent described above.
 バインダは、例えば、メチルセルロース、カルボキシルメチルセルロース、ナトリウムカルボキシルメチルセルロース等のセルロース類;ポリビニルアルコール等のアルコール類;リグニンスルホン酸塩等の塩;パラフィンワックス、マイクロクリスタリンワックス等のワックスである。原料混合物におけるバインダの含有量は、アルミニウム源粉末、チタン源粉末、マグネシウム源粉末及びケイ素源粉末の合計量100質量部に対して、通常20質量部以下であり、好ましくは15質量部以下である。 The binder is, for example, celluloses such as methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax. The content of the binder in the raw material mixture is usually 20 parts by mass or less, preferably 15 parts by mass or less with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. .
 可塑剤は、例えばグリセリン等のアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸等の高級脂肪酸;ステアリン酸Al等のステアリン酸金属塩;ポリオキシアルキレンアルキルエーテルである。原料混合物における可塑剤の含有量は、アルミニウム源粉末、チタン源粉末、マグネシウム源粉末及びケイ素源粉末の合計量100質量部に対して、通常0~10質量部であり、好ましくは1~5質量部である。 Examples of the plasticizer include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; stearic acid metal salts such as Al stearate; polyoxyalkylene alkyl ethers . The content of the plasticizer in the raw material mixture is usually 0 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. Part.
 分散剤は、例えば、硝酸、塩酸、硫酸等の無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸;メタノール、エタノール、プロパノール等のアルコール類;ポリカルボン酸アンモニウムなどの界面活性剤である。原料混合物における分散剤の含有量は、アルミニウム源粉末、チタン源粉末、マグネシウム源粉末及びケイ素源粉末の合計量100質量部に対して、通常0~20質量部であり、好ましくは2~8質量部である。 Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; interfaces such as ammonium polycarboxylate It is an activator. The content of the dispersant in the raw material mixture is usually 0 to 20 parts by mass, preferably 2 to 8 parts by mass with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. Part.
 溶媒は、通常水であり、不純物が少ない点で、好ましくはイオン交換水である。原料混合物における溶媒の含有量は、アルミニウム源粉末、チタン源粉末、マグネシウム源粉末及びケイ素源粉末の合計量100質量部に対して、通常10~100質量部、好ましくは20~80質量部である。 The solvent is usually water, and is preferably ion-exchanged water from the viewpoint of few impurities. The content of the solvent in the raw material mixture is usually 10 to 100 parts by mass, preferably 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder. .
(工程(b):成形工程)
 工程(b)では、複数の流路が形成されたハニカム構造体をセラミックス成形体として得る。工程(b)では、例えば、一軸押出機により原料混合物を混練しながらダイから押し出す、いわゆる押出成形法を採用することができる。
(Process (b): Molding process)
In the step (b), a honeycomb structure having a plurality of flow paths is obtained as a ceramic molded body. In the step (b), for example, a so-called extrusion molding method in which the raw material mixture is extruded from a die while being kneaded by a single screw extruder can be employed.
 原料混合物に添加剤として可塑剤を添加した場合、可塑剤の多くは、ダイから原料混合物を押し出す際に、原料混合物とダイとの間の摩擦を低減する潤滑剤としても機能させることができる。例えば、上述した各可塑剤であれば、潤滑剤として機能させることができる。 When a plasticizer is added to the raw material mixture as an additive, most of the plasticizers can function as a lubricant for reducing friction between the raw material mixture and the die when the raw material mixture is extruded from the die. For example, each plasticizer described above can function as a lubricant.
(工程(c):焼成工程)
 工程(c)では、成形体の焼成前に、成形体中(原料混合物中)に含まれる孔形成剤等を除去するための脱脂(仮焼)が行われてもよい。脱脂は、酸素濃度0.1%以下の雰囲気下で行われる。
(Process (c): Firing process)
In the step (c), degreasing (calcination) for removing a hole forming agent or the like contained in the molded body (in the raw material mixture) may be performed before firing the molded body. Degreasing is performed in an atmosphere having an oxygen concentration of 0.1% or less.
 本明細書において酸素濃度の単位として用いられる「%」は、「体積%」を意味する。脱脂工程(昇温時)の酸素濃度を0.1%以下の濃度に管理することにより、有機物の発熱が抑えられ、脱脂後の割れを抑制することができる。脱脂においては、脱脂が酸素濃度0.1%以下の雰囲気中で行われることにより、孔形成剤等の有機成分の一部が除去され、残部が炭化されてセラミック成形体中に残存することが好ましい。このように、セラミックス成形体中に微量のカーボンが残存することで、成形体の強度が向上し、セラミックス成形体の焼成工程への仕込みが容易になる。このような雰囲気としては、窒素ガス、アルゴンガス等の不活性ガス雰囲気や、一酸化炭素ガス、水素ガス等のような還元性ガス雰囲気、真空中等が挙げられる。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよく、炭と一緒に蒸し込んで酸素濃度を低減させてもよい。 In this specification, “%” used as a unit of oxygen concentration means “volume%”. By controlling the oxygen concentration in the degreasing step (at the time of temperature rise) to a concentration of 0.1% or less, heat generation of the organic matter can be suppressed and cracking after degreasing can be suppressed. In degreasing, degreasing is performed in an atmosphere having an oxygen concentration of 0.1% or less, whereby a part of organic components such as a pore-forming agent is removed, and the remainder is carbonized and remains in the ceramic molded body. preferable. Thus, the trace amount of carbon remains in the ceramic molded body, so that the strength of the molded body is improved and the ceramic molded body can be easily charged into the firing step. Examples of such an atmosphere include an inert gas atmosphere such as nitrogen gas and argon gas, a reducing gas atmosphere such as carbon monoxide gas and hydrogen gas, and a vacuum. In addition, firing may be performed in an atmosphere with a low water vapor partial pressure, or steaming with charcoal may reduce the oxygen concentration.
 脱脂の最高温度は、好ましくは700~1100℃であり、より好ましくは800~1000℃である。脱脂の最高温度を従来の600~700℃程度から、700~1100℃に上昇させることで、粒成長によって、脱脂後のセラミックス成形体の強度が向上するため、セラミックス成形体の焼成への仕込みが容易になる。また、脱脂は、セラミックス成形体の割れを防止するために、最高温度に到達するまでの昇温速度を極力抑えることが好ましい。 The maximum temperature for degreasing is preferably 700 to 1100 ° C, more preferably 800 to 1000 ° C. By increasing the maximum degreasing temperature from about 600 to 700 ° C to 700 to 1100 ° C, the strength of the ceramic body after degreasing is improved by grain growth. It becomes easy. In addition, degreasing preferably suppresses the rate of temperature rise until reaching the maximum temperature as much as possible in order to prevent cracking of the ceramic molded body.
 脱脂は、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉、ガス燃焼炉等の通常の焼成に用いられるものと同様の炉を用いて行なわれる。脱脂は回分式で行なってもよいし、連続式で行なってもよい。また、脱脂は静置式で行なってもよいし、流動式で行なってもよい。 Degreasing is used for normal firing of tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. A similar furnace is used. Degreasing may be performed batchwise or continuously. Moreover, degreasing may be performed by a stationary method or a fluid method.
 脱脂に要する時間は、セラミックス成形体中に含まれる有機成分の一部が消失するのに充分な時間であればよく、好ましくは、セラミックス成形体中に含まれる有機成分の90~99質量%が消失する時間である。具体的には、原料混合物の量、脱脂に用いる炉の形式、温度条件、雰囲気等により異なるが、最高温度でキープする時間は、通常1分~10時間であり、好ましくは1~7時間である。 The time required for degreasing may be a time sufficient for a part of the organic component contained in the ceramic molded body to disappear, and preferably 90 to 99% by mass of the organic component contained in the ceramic molded body. It is time to disappear. Specifically, although it varies depending on the amount of the raw material mixture, the type of furnace used for degreasing, temperature conditions, atmosphere, etc., the time for keeping at the maximum temperature is usually 1 minute to 10 hours, preferably 1 to 7 hours. is there.
 セラミックス成形体は、上記の脱脂後、焼成される。焼成温度は、通常1300℃以上であり、好ましくは1400℃以上である。また、焼成温度は、通常1650℃以下であり、好ましくは1550℃以下である。焼成温度までの昇温速度は特に限定されるものではないが、通常1~500℃/時間である。ケイ素源粉末を用いる場合には、焼成工程の前に、1100~1300℃の温度範囲で3時間以上保持する工程を設けることが好ましい。これにより、ケイ素源粉末の融解、拡散を促進させることができる。 The ceramic molded body is fired after the above degreasing. The firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, a calcination temperature is 1650 degrees C or less normally, Preferably it is 1550 degrees C or less. The rate of temperature increase up to the firing temperature is not particularly limited, but is usually 1 to 500 ° C./hour. When the silicon source powder is used, it is preferable to provide a step of holding at a temperature range of 1100 to 1300 ° C. for 3 hours or more before the firing step. Thereby, melting and diffusion of the silicon source powder can be promoted.
 焼成は、酸素濃度1~6%の雰囲気下で行われることが好ましい。酸素濃度を6%以下とすることによって脱脂で発生した残存炭化物の燃焼を抑制することができるため、焼成におけるセラミックス成形体の割れが生じにくくなる。また、適度な酸素が存在するため、最終的に得られるチタン酸アルミニウム系セラミックス成形体の有機成分を完全に除去することができる。酸素濃度は、得られるチタン酸アルミニウム系セラミックス焼成体中に有機成分に由来する炭化物(すす)が残存しないことから、1%以上が好ましい。原料混合物、すなわちアルミニウム源粉末、チタン源粉末、マグネシウム源粉末及びケイ素源粉末の種類や使用量比によっては、窒素ガス、アルゴンガス等の不活性ガス中で焼成してもよいし、一酸化炭素ガス、水素ガス等のような還元性ガス中で焼成してもよい。また、水蒸気分圧を低くした雰囲気中で焼成を行なってもよい。 Calcination is preferably performed in an atmosphere having an oxygen concentration of 1 to 6%. By setting the oxygen concentration to 6% or less, combustion of residual carbides generated by degreasing can be suppressed, so that the ceramic molded body is less likely to crack during firing. Moreover, since moderate oxygen exists, the organic component of the finally obtained aluminum titanate ceramic molded body can be completely removed. The oxygen concentration is preferably 1% or more because carbide (soot) derived from organic components does not remain in the obtained aluminum titanate-based ceramic fired body. Depending on the type and usage ratio of the raw material mixture, that is, the aluminum source powder, titanium source powder, magnesium source powder and silicon source powder, it may be fired in an inert gas such as nitrogen gas or argon gas, or carbon monoxide You may bake in reducing gas, such as gas and hydrogen gas. Further, the firing may be performed in an atmosphere in which the water vapor partial pressure is lowered.
 焼成は、通常、管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、シャフト炉、反射炉、ロータリー炉、ローラーハース炉、ガス燃焼炉等の従来の装置を用いて行なわれる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また、焼成は静置式で行なってもよいし、流動式で行なってもよい。 Firing is usually performed using conventional equipment such as a tubular electric furnace, box-type electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, shaft furnace, reflection furnace, rotary furnace, roller hearth furnace, gas combustion furnace, etc. Done. Firing may be performed batchwise or continuously. Moreover, baking may be performed by a stationary type or may be performed by a fluid type.
 焼成時間は、セラミックス成形体がチタン酸アルミニウム系結晶に遷移するのに充分な時間であればよく、原料の量、焼成炉の形式、焼成温度、焼成雰囲気等により異なるが、通常は10分~24時間である。 The firing time may be a time sufficient for the ceramic molded body to transition to the aluminum titanate-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but usually 10 minutes to 24 hours.
(工程(d):封口工程)
 工程(d)は、工程(b)と工程(c)の間、又は、工程(c)の後に行われる。工程(b)と工程(c)の間に工程(d)を行う場合、工程(b)において得られた未焼成のセラミックス成形体の各流路の一方の端部を封口物で封口した後、工程(c)においてセラミックス成形体と共に封口物を焼成することにより、流路の一方の端部を封口する封口部が得られる。工程(c)の後に工程(d)を行う場合、工程(c)において得られたセラミックス成形体の各流路の一方の端部を封口物で封口した後、セラミックス成形体と共に封口物を焼成することにより、流路の一方の端部を封口する封口部が得られる。封口物としては、上記原料混合物と同様の混合物を用いることができる。
(Process (d): Sealing process)
Step (d) is performed between step (b) and step (c) or after step (c). When performing step (d) between step (b) and step (c), after sealing one end of each flow path of the unfired ceramic molded body obtained in step (b) with a sealing material In the step (c), the sealing material is fired together with the ceramic molded body to obtain a sealing portion that seals one end of the flow path. When the step (d) is performed after the step (c), one end of each flow path of the ceramic molded body obtained in the step (c) is sealed with a sealing body, and then the sealing body is baked together with the ceramic molded body. By doing so, the sealing part which seals one edge part of a flow path is obtained. As the sealing material, the same mixture as the raw material mixture can be used.
 以上の工程によって、ハニカムフィルタを得ることができる。なお、ハニカムフィルタは、工程(b)における成形直後の成形体の形状をほぼ維持した形状を有するが、工程(b)、工程(c)又は工程(d)の後に研削加工等を行って、所望の形状に加工することもできる。 A honeycomb filter can be obtained through the above steps. The honeycomb filter has a shape that substantially maintains the shape of the molded body immediately after the molding in the step (b), but after the step (b), the step (c) or the step (d), a grinding process or the like is performed, It can also be processed into a desired shape.
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
<原料混合物の調製>
 チタン酸アルミニウムマグネシウムの原料粉末(Al粉末、TiO粉末、MgO粉末)、SiO粉末、チタン酸アルミニウムマグネシウムとアルミナとアルミノシリケートガラスとの複合相をもつセラミックス粉末(仕込み時の組成式:41.4Al-49.9TiO-5.4MgO-3.3SiO、式中の数値はモル比を表す。)、造孔剤、有機バインダ、潤滑剤、可塑剤、分散剤及び水(溶媒)を含む原料混合物を調製した。原料混合物中の各成分の含有量は下記の値に調整した。
Example 1
<Preparation of raw material mixture>
Raw material powder of aluminum magnesium titanate (Al 2 O 3 powder, TiO 2 powder, MgO powder), SiO 2 powder, ceramic powder having a composite phase of aluminum magnesium titanate, alumina and aluminosilicate glass (composition formula at the time of preparation) : 41.4Al 2 O 3 -49.9TiO 2 -5.4MgO-3.3SiO 2 , the numerical values in the formula represent molar ratios), pore formers, organic binders, lubricants, plasticizers, dispersants and A raw material mixture containing water (solvent) was prepared. The content of each component in the raw material mixture was adjusted to the following values.
[原料混合物の成分]
 Al粉末:37.3質量部
 TiO粉末:37.0質量部
 MgO粉末:1.9質量部
 SiO粉末:3.0質量部
 セラミックス粉末:8.8質量部
 造孔剤:馬鈴薯から得た平均粒径25μmの澱粉、12.0質量部
 有機バインダ1:メチルセルロース(三星精密化学社製:MC-40H)、5.5質量部
 有機バインダ2:ヒドロキシプロピルメチルセルロース(三星精密化学社製:PMB-40H)、2.4質量部
[Components of raw material mixture]
Al 2 O 3 powder: 37.3 parts by mass TiO 2 powder: 37.0 parts by mass MgO powder: 1.9 parts by mass SiO 2 powder: 3.0 parts by mass Ceramic powder: 8.8 parts by mass Porous agent: potato 12.0 parts by weight of organic binder 1: methylcellulose (manufactured by Samsung Precision Chemical Co., Ltd .: MC-40H), 5.5 parts by weight of organic binder 2: hydroxypropylmethylcellulose (manufactured by Samsung Precision Chemical Co., Ltd.) : PMB-40H), 2.4 parts by mass
 上記の原料混合物を混練した後に押出成形した。そして、成形体の各流路の一方の端部を封口物で封口した後に焼成することにより、図1,2に示す構造を有する円柱状の柱状体(DPF)を作製した。 The above raw material mixture was kneaded and extruded. And the cylindrical columnar body (DPF) which has a structure shown in FIG.1, 2 was produced by baking after sealing one edge part of each flow path of a molded object with a sealing material.
 流路(貫通孔)の長手方向における柱状体の長さは153mmであった。柱状体の端面の外径は144mmであった。流路の密度(セル密度)は290cpsiであった。正六角形状の流路の一辺の長さは0.9mmであった。扁平六角形状の流路における長辺の長さは0.9mmであり、短辺の長さは0.6mmであった。流路間の隔壁の厚みは12mil(milli-inch、0.30mm)であった。隔壁の気孔率は45体積%であった。隔壁の気孔径は15μmであった。有効濾過面積(柱状体1Lあたりのガス流入側流路(扁平六角形状の流路)の内壁の面積)は1.30m/Lであった。 The length of the columnar body in the longitudinal direction of the flow path (through hole) was 153 mm. The outer diameter of the end face of the columnar body was 144 mm. The density of the flow path (cell density) was 290 cpsi. The length of one side of the regular hexagonal channel was 0.9 mm. In the flat hexagonal channel, the long side length was 0.9 mm, and the short side length was 0.6 mm. The thickness of the partition between flow paths was 12 mil (milli-inch, 0.30 mm). The porosity of the partition walls was 45% by volume. The pore diameter of the partition wall was 15 μm. The effective filtration area (the area of the inner wall of the gas inflow side channel (flat hexagonal channel) per 1 L of the columnar body) was 1.30 m 2 / L.
(比較例1)
 実施例1と同様の原料混合物を混練した後に押出成形した。そして、成形体の各流路の一方の端部を封口物で封口した後に焼成することにより、図9に示す構造を有する柱状体(DPF)500を作製した。なお、柱状体500では、流路P1に隣接する流路P2,P3において、流路P2の辺と流路P3の辺とは対向していない。
(Comparative Example 1)
The same raw material mixture as in Example 1 was kneaded and then extruded. And the columnar body (DPF) 500 which has the structure shown in FIG. 9 was produced by baking after sealing one edge part of each flow path of a molded object with a sealing material. In the columnar body 500, in the flow paths P2 and P3 adjacent to the flow path P1, the side of the flow path P2 and the side of the flow path P3 do not face each other.
 比較例1の柱状体において、各流路(貫通孔)510の断面は正方形状であり、隣接する流路510の端部を交互に封口部530により封口した。流路の長手方向における柱状体の長さは153mmであった。柱状体の端面の外径は144mmであった。セル密度は290cpsiであった。正方形状の流路の一辺の長さは1.1mmであった。流路間の隔壁の厚みは13mil(0.33mm)であった。有効濾過面積は1.07m/Lであった。 In the columnar body of Comparative Example 1, each channel (through hole) 510 had a square cross section, and the ends of the adjacent channels 510 were alternately sealed by the sealing portions 530. The length of the columnar body in the longitudinal direction of the flow path was 153 mm. The outer diameter of the end face of the columnar body was 144 mm. The cell density was 290 cpsi. The length of one side of the square channel was 1.1 mm. The partition wall thickness between the channels was 13 mil (0.33 mm). The effective filtration area was 1.07 m 2 / L.
<圧力損失測定>
(スス堆積時の圧力損失測定)
 DPFの圧力損失測定を以下のとおり実施した。図10に、圧力損失測定装置の概略図を示す。圧力損失測定には、スス発生装置(Matter Engineering社製、商品名:REXS)600、及び、大型コンプレッサー装置610を用いた。DPFの一方の端面をスス発生装置600に接続し、DPFとスス発生装置600とを接続する配管にコンプレッサー装置610を接続した。
<Pressure loss measurement>
(Measurement of pressure loss during soot deposition)
DPF pressure loss measurement was performed as follows. FIG. 10 shows a schematic diagram of a pressure loss measuring apparatus. For the pressure loss measurement, a soot generator (trade name: REXS, manufactured by Matter Engineering Co., Ltd.) 600 and a large compressor device 610 were used. One end face of the DPF was connected to the soot generator 600, and the compressor device 610 was connected to a pipe connecting the DPF and the soot generator 600.
 スス発生装置600には、プロパンガスを流量2L/minで供給し、窒素ガスを流量2L/minで供給し、空気を流量1000L/minで供給した。スス発生装置600から発生する“スス”は、プロパンガスを不完全燃焼することによって生成する人工的なススであり、スス発生装置600では、空気流量や酸素濃度等によってススの平均粒子径を制御することができる。測定に際しては、ススの平均粒子径を約90nmに調整した。ススを含む空気の流量はコンプレッサー装置610により200Nm-1に調整した。 To the soot generator 600, propane gas was supplied at a flow rate of 2 L / min, nitrogen gas was supplied at a flow rate of 2 L / min, and air was supplied at a flow rate of 1000 L / min. The soot generated from the soot generator 600 is artificial soot generated by incomplete combustion of propane gas. In the soot generator 600, the average particle diameter of soot is controlled by the air flow rate, oxygen concentration, and the like. can do. In the measurement, the average particle diameter of the soot was adjusted to about 90 nm. The flow rate of air containing soot was adjusted to 200 Nm 3 h −1 by the compressor device 610.
 スス堆積時の圧力損失挙動を把握するため、DPF内部にススを供給しつつDPF前後の差圧(図10中の圧力P1と圧力P2の差圧ΔP)を記録した。実施例1及び比較例1のDPFを用いてスス堆積量の増加に伴う圧力損失を測定した結果を図11(a)に示す。図11(a)に示されるように、実施例1では、比較例1に比して圧力損失の値が小さいことが確認される。また、実施例1では、比較例1に比してスス堆積量の増加に伴う圧力損失の増加量が小さいことが確認される。 In order to grasp the pressure loss behavior during the soot deposition, the pressure difference before and after the DPF (the pressure difference ΔP between the pressure P1 and the pressure P2 in FIG. 10) was recorded while supplying soot inside the DPF. FIG. 11A shows the result of measuring the pressure loss accompanying the increase in the soot deposition amount using the DPFs of Example 1 and Comparative Example 1. FIG. As shown in FIG. 11A, it is confirmed that the pressure loss value is smaller in Example 1 than in Comparative Example 1. Moreover, in Example 1, it is confirmed that the increase amount of the pressure loss accompanying the increase in the amount of soot deposition is small compared with the comparative example 1.
(スス堆積後の圧力損失測定)
 スス堆積量がDPF1リットル当たり8gに到達した時点で、スス発生装置600を停止した。そして、コンプレッサー装置610から排出されるガス流量を200Nm-1から600Nm-1まで増加させつつDPF前後の差圧(図10中の差圧ΔP)を記録した。実施例1及び比較例1のDPFを用いてガス流量の増加に伴う圧力損失を測定した結果を図11(b)に示す。図11(b)に示されるように、実施例1では、比較例1に比して圧力損失の値が小さいことが確認される。また、実施例1では、比較例1に比してガス流量の増加に伴う圧力損失の増加量が小さいことが確認される。
(Measurement of pressure loss after soot deposition)
When the soot accumulation amount reached 8 g per liter of DPF, the soot generator 600 was stopped. Then, the differential pressure before and after the DPF (the differential pressure ΔP in FIG. 10) was recorded while increasing the flow rate of the gas discharged from the compressor device 610 from 200 Nm 3 h −1 to 600 Nm 3 h −1 . FIG. 11B shows the result of measuring the pressure loss accompanying the increase in gas flow rate using the DPFs of Example 1 and Comparative Example 1. As shown in FIG. 11B, it is confirmed that the pressure loss value is smaller in Example 1 than in Comparative Example 1. Moreover, in Example 1, it is confirmed that the increase amount of the pressure loss accompanying the increase in gas flow rate is small compared with the comparative example 1.
 100,200,300…ハニカムフィルタ、100a,100b,200a,200b…ハニカムフィルタの端部、110a,210a,310a…流路(第1の流路)、110b,210b,310b…流路(第2の流路)、120,220,320…隔壁、140,240,340…流路(第1の流路)の断面を形成する辺、150a,250a,350a…流路(第2の流路)の断面を形成する辺(第1の辺)、150b,250b,350b…流路(第2の流路)の断面を形成する辺(第2の辺)。 100, 200, 300 ... Honeycomb filter, 100a, 100b, 200a, 200b ... End of honeycomb filter, 110a, 210a, 310a ... Channel (first channel), 110b, 210b, 310b ... Channel (second) , 120, 220, 320 ... partition walls, 140, 240, 340 ... sides forming the cross section of the flow path (first flow path), 150a, 250a, 350a ... flow paths (second flow path). Sides forming the cross section (first side), 150b, 250b, 350b,..., Sides forming the cross section of the flow path (second flow path) (second side).

Claims (8)

  1.  多孔質の隔壁により仕切られた互いに平行な複数の流路を有するハニカムフィルタであって、
     前記複数の流路が、第1の流路と、当該第1の流路に隣接する複数の第2の流路とを有しており、
     前記複数の第2の流路における一の第2の流路と他の第2の流路とが互いに隣接しており、
     前記第1の流路における前記ハニカムフィルタの一端側の端部が封口されており、
     前記第2の流路における前記ハニカムフィルタの他端側の端部が封口されており、
     前記第2の流路の軸方向に垂直な前記第2の流路の断面が、第1の辺と、当該第1の辺の両側にそれぞれ配置された第2の辺とを有しており、
     前記第1の流路の軸方向に垂直な前記第1の流路の断面を形成する辺のそれぞれが、前記第2の流路の前記第1の辺と対向しており、
     前記第2の流路の前記第2の辺のそれぞれが、隣接する前記第2の流路の前記第2の辺と対向しており、
     前記第1の流路が複数配置されており、
     各前記第2の流路における、前記第2の流路の前記断面を形成する辺のそれぞれの長さと、前記第2の流路の軸方向における前記第2の流路の長さとの積の合計をSとしたときに、前記ハニカムフィルタ1リットルあたりに含まれる全ての前記第2の流路における前記Sの総和が1.1m以上である、ハニカムフィルタ。
    A honeycomb filter having a plurality of parallel flow paths partitioned by a porous partition wall,
    The plurality of channels have a first channel and a plurality of second channels adjacent to the first channel,
    One second flow path and the other second flow path in the plurality of second flow paths are adjacent to each other,
    An end of one end of the honeycomb filter in the first flow path is sealed;
    The end of the other end side of the honeycomb filter in the second flow path is sealed,
    A cross section of the second flow path perpendicular to the axial direction of the second flow path has a first side and second sides respectively disposed on both sides of the first side. ,
    Each of the sides forming the cross section of the first channel perpendicular to the axial direction of the first channel is opposed to the first side of the second channel,
    Each of the second sides of the second flow path is opposed to the second side of the adjacent second flow path;
    A plurality of the first flow paths are disposed;
    The product of the length of each side forming the cross section of the second flow path in each second flow path and the length of the second flow path in the axial direction of the second flow path. A honeycomb filter in which the total sum of S in all the second flow paths included per liter of the honeycomb filter is 1.1 m 2 or more, where S is a total.
  2.  前記隔壁がチタン酸アルミニウムを含む、請求項1に記載のハニカムフィルタ。 The honeycomb filter according to claim 1, wherein the partition wall includes aluminum titanate.
  3.  前記第1の流路の前記断面及び前記第2の流路の前記断面が六角形状である、請求項1又は2に記載のハニカムフィルタ。 The honeycomb filter according to claim 1 or 2, wherein the cross section of the first flow path and the cross section of the second flow path are hexagonal.
  4.  一つの前記第2の流路が、互いに隣接する前記第1の流路の間に配置されている、請求項1~3のいずれか一項に記載のハニカムフィルタ。 The honeycomb filter according to any one of claims 1 to 3, wherein one of the second flow paths is disposed between the first flow paths adjacent to each other.
  5.  前記第2の流路の前記断面において互いに対向する辺の長さが互いに等しい、請求項4に記載のハニカムフィルタ。 The honeycomb filter according to claim 4, wherein lengths of sides facing each other in the cross section of the second flow path are equal to each other.
  6.  前記第2の流路の前記断面が、互いに長さの等しい二つの長辺と、互いに長さの等しい四つの短辺と、を有している、請求項5に記載のハニカムフィルタ。 The honeycomb filter according to claim 5, wherein the cross section of the second flow path has two long sides having the same length and four short sides having the same length.
  7.  二つの前記第2の流路が、互いに隣接する前記第1の流路の間に配置されていると共に当該第1の流路の配列方向に直交する方向に互いに隣接している、請求項1~3のいずれか一項に記載のハニカムフィルタ。 The two second flow paths are disposed between the first flow paths adjacent to each other and are adjacent to each other in a direction orthogonal to the arrangement direction of the first flow paths. The honeycomb filter according to any one of items 1 to 3.
  8.  前記第2の流路の前記断面が、互いに長さの等しい三つの長辺と、互いに長さの等しい三つの短辺と、を有しており、前記長辺及び前記短辺が互いに対向している、請求項7に記載のハニカムフィルタ。 The cross section of the second flow path has three long sides having the same length and three short sides having the same length, and the long side and the short side face each other. The honeycomb filter according to claim 7.
PCT/JP2012/061125 2011-05-17 2012-04-25 Honeycomb filter WO2012157421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011110675 2011-05-17
JP2011-110675 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012157421A1 true WO2012157421A1 (en) 2012-11-22

Family

ID=47176757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061125 WO2012157421A1 (en) 2011-05-17 2012-04-25 Honeycomb filter

Country Status (2)

Country Link
JP (1) JP2012254441A (en)
WO (1) WO2012157421A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108404A (en) * 2012-12-03 2014-06-12 Ngk Insulators Ltd Honeycomb catalyst body
US9540977B2 (en) 2013-08-14 2017-01-10 Sumitomo Chemical Company, Limited Particulate filter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6140509B2 (en) 2013-04-04 2017-05-31 日本碍子株式会社 Wall flow type exhaust gas purification filter
EP3173138B1 (en) 2014-07-23 2018-12-05 Ibiden Co., Ltd. Honeycomb filter
WO2016013513A1 (en) 2014-07-23 2016-01-28 イビデン株式会社 Honeycomb filter
JP6409544B2 (en) * 2014-12-10 2018-10-24 株式会社デンソー Honeycomb structure
JP6451275B2 (en) * 2014-12-10 2019-01-16 株式会社デンソー Honeycomb structure
JP6602028B2 (en) * 2015-03-13 2019-11-06 日本碍子株式会社 Honeycomb structure
JP6639978B2 (en) * 2016-03-23 2020-02-05 日本碍子株式会社 Honeycomb filter
JP6639977B2 (en) 2016-03-23 2020-02-05 日本碍子株式会社 Honeycomb filter
JP7002393B2 (en) * 2018-03-30 2022-02-10 日本碍子株式会社 Honeycomb structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079165A2 (en) * 2004-02-23 2005-09-01 Ibiden Co Ltd Honeycomb structural body and exhaust gas purifying apparatus
JP2011513059A (en) * 2008-03-11 2011-04-28 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Gas filter structure with variable wall thickness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079165A2 (en) * 2004-02-23 2005-09-01 Ibiden Co Ltd Honeycomb structural body and exhaust gas purifying apparatus
JP2011513059A (en) * 2008-03-11 2011-04-28 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Gas filter structure with variable wall thickness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108404A (en) * 2012-12-03 2014-06-12 Ngk Insulators Ltd Honeycomb catalyst body
US9540977B2 (en) 2013-08-14 2017-01-10 Sumitomo Chemical Company, Limited Particulate filter

Also Published As

Publication number Publication date
JP2012254441A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2012157421A1 (en) Honeycomb filter
JP5502000B2 (en) Honeycomb structure and particulate filter
WO2013024745A1 (en) Honeycomb structure
JP5491558B2 (en) Honeycomb structure
WO2013047908A1 (en) Honeycomb filter and production method for same
WO2012081580A1 (en) Green formed body, and process for production of honeycomb structure
WO2012157420A1 (en) Honeycomb filter
JP2018183709A (en) Honeycomb filter and method for producing honeycomb filter
US20240116819A1 (en) Cordierite-indialite-pseudobrookite structured ceramic bodies, batch composition mixtures, and methods of manufacturing ceramic bodies therefrom
WO2011027783A1 (en) Method for producing fired ceramic body
WO2012157422A1 (en) Honeycomb filter
WO2013024744A1 (en) Honeycomb filter
CN113272042B (en) Cordierite-containing ceramic bodies, batch composition mixtures, and methods of making cordierite-containing ceramic bodies
WO2012141034A1 (en) Honeycomb structure
WO2012014684A1 (en) Green compact
JP2012110849A (en) Honeycomb filter
JP2012024698A (en) Honeycomb filter
WO2012157423A1 (en) Honeycomb filter
WO2013094518A1 (en) Honeycomb filter
JP5860633B2 (en) Manufacturing method of honeycomb structure
JP2011241116A (en) Method for producing aluminum titanate sintered compact and aluminum titanate sintered compact
JP2011245430A (en) Honeycomb structure
WO2012176888A1 (en) Aluminum titanate ceramic and molded body
WO2012014683A1 (en) Honeycomb structural body
JP2013129583A (en) Honeycomb structure and honeycomb filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785130

Country of ref document: EP

Kind code of ref document: A1