WO2013094518A1 - Honeycomb filter - Google Patents

Honeycomb filter Download PDF

Info

Publication number
WO2013094518A1
WO2013094518A1 PCT/JP2012/082370 JP2012082370W WO2013094518A1 WO 2013094518 A1 WO2013094518 A1 WO 2013094518A1 JP 2012082370 W JP2012082370 W JP 2012082370W WO 2013094518 A1 WO2013094518 A1 WO 2013094518A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
honeycomb filter
face
flow paths
flow
Prior art date
Application number
PCT/JP2012/082370
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 岩崎
山田 陽一
照夫 小森
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013094518A1 publication Critical patent/WO2013094518A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb filter.
  • the honeycomb filter is used as a ceramic filter for removing the collected matter from the fluid containing the collected matter, for example, for purifying exhaust gas exhausted from an internal combustion engine such as a diesel engine or a gasoline engine. Used as an exhaust gas filter.
  • a honeycomb filter has a plurality of parallel flow paths partitioned by partition walls, and one end of a part of the plurality of flow paths and the other end of the remaining part of the plurality of flow paths are sealed. (For example, refer to Patent Document 1 below).
  • the honeycomb filter As the fluid containing the collected matter is supplied into the honeycomb filter, the collected matter is deposited on the surface of the partition wall and / or inside the partition wall in the honeycomb filter. In this case, if the collected material is excessively accumulated in the honeycomb filter, the movement of the fluid in the honeycomb filter is hindered and the purification performance of the honeycomb filter is deteriorated. Therefore, after depositing a certain amount of collected matter in the honeycomb filter, the honeycomb filter is subjected to combustion regeneration in order to burn and remove the collected matter.
  • the amount of collected matter in the honeycomb filter may be estimated based on the pressure loss that increases with the amount of collected matter. In this case, it is effective to use a honeycomb filter in which the pressure loss is easily changed according to the amount of collected material as one of the methods for performing regeneration combustion before the excessive amount of collected material is deposited. .
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a honeycomb filter in which the pressure loss is easily changed according to the amount of collected substances.
  • the honeycomb filter according to the present invention is a honeycomb filter having a plurality of flow paths parallel to each other, and the honeycomb filter has a first end face and a second end face located on the opposite side of the first end face.
  • a sum of opening areas of the plurality of first passages on the first end face is larger than a sum of opening areas of the plurality of second passages on the second end face,
  • the hydraulic diameter (hydraulic equivalent diameter) of the channel is 1.4 mm or less.
  • the “hydraulic diameter of the flow channel” means a cross-sectional area equivalent to a cross-sectional area obtained by cutting the target flow channel perpendicularly to the axial direction (longitudinal direction) of the flow channel.
  • the honeycomb filter according to the present invention when the fluid containing the collected substance is supplied into the honeycomb filter from the first end face side, the pressure loss can be easily changed according to the accumulation amount of the collected substance. it can. As a result, it becomes easy to perform regenerative combustion before an excessive amount of collected matter accumulates, and excessive thermal stress is applied to the honeycomb filter during regenerative combustion, causing thermal damage and melting damage of the honeycomb filter. Can be suppressed.
  • the present inventor presumes the factors that cause the pressure loss to easily change as follows.
  • the factors are not limited to the following. That is, according to the knowledge of the present inventor, when the hydraulic diameter of the first flow path is large, the amount of the trapped material flowing into each first flow path increases, so that It is presumed that the collected matter is likely to be deposited on the end face side of 2, and the pressure loss is less likely to change depending on the amount of collected matter.
  • the hydraulic diameter of the first flow path is 1.4 mm or less, the amount of collected matter flowing into each first flow path can be reduced. Thereby, compared with the case where the hydraulic diameter of the first flow path exceeds 1.4 mm, it is possible to suppress the collection of the collected matter on the second end face side in the first flow path, The pressure loss is likely to change depending on the amount of deposits.
  • the hydraulic diameter of the second flow path is preferably larger than the hydraulic diameter of the first flow path. In this case, the pressure loss can be further easily changed according to the accumulation amount of the collected object.
  • FIG. 2 is a view taken in the direction of arrows II-II in FIG. It is a figure which shows typically the honey-comb filter which concerns on 2nd Embodiment of this invention.
  • FIG. 4 is a view taken along arrow IV-IV in FIG. 3. It is a figure which shows typically the measuring apparatus of a pressure loss. It is a figure which shows the measurement result of a pressure loss.
  • FIG. 1 is a diagram schematically showing the honeycomb filter according to the first embodiment
  • FIG. 1B is an enlarged view of a region R1 in FIG.
  • FIG. 2 is a view taken along the line II-II in FIG.
  • the honeycomb filter 100 has one end face (first end face) 100a and the other end face (second end face) 100b located on the opposite side of the end face 100a.
  • the end surface 100a and the end surface 100b face each other in parallel.
  • the honeycomb filter 100 is a cylindrical body having a plurality of flow paths 110 extending in parallel to each other.
  • the plurality of flow paths 110 are partitioned by partition walls 120 extending in parallel to the central axis of the honeycomb filter 100.
  • the plurality of channels 110 have a plurality of channels (first channels) 110a and a plurality of channels (second channels) 110b adjacent to the channels 110a.
  • the flow path 110a and the flow path 110b extend from the end face 100a to the end face 100b perpendicular to the end faces 100a and 100b.
  • One end of the flow path 110a constituting a part of the flow path 110 is opened at the end face 100a, and the other end of the flow path 110a is sealed by the sealing portion 130 at the end face 100b.
  • One end of the flow path 110b constituting the remaining part of the flow path 110 is sealed by the sealing portion 130 at the end face 100a, and the other end of the flow path 110b is opened at the end face 100b.
  • an end portion on the end surface 100a side of the flow path 110a is opened as a gas inlet
  • an end portion on the end face 100b side of the flow path 110b is opened as a gas outlet.
  • the cross section perpendicular to the axial direction of the flow path 110a and the flow path 110b has a hexagonal shape.
  • the cross section of the flow path 110b is, for example, a regular hexagonal shape in which the lengths of the sides 140 forming the cross section are substantially equal to each other, but may be a flat hexagonal shape.
  • the cross section of the flow path 110a has, for example, a flat hexagonal shape, but may have a regular hexagonal shape.
  • the lengths of the sides facing each other in the cross section of the channel 110a are substantially equal to each other.
  • the cross section of the flow path 110a includes two long sides 150a having substantially the same length as the sides 150 forming the cross section, and four (two pairs) short sides 150b having substantially the same length. ,have.
  • the short side 150b is disposed on each side of the long side 150a.
  • the long sides 150a face each other in parallel, and the short sides 150b face each other in parallel.
  • the partition 120 has the partition 120a as a part which partitions off the flow path 110a and the flow path 110b. That is, the channel 110a and the channel 110b are adjacent to each other through the partition wall 120a. By disposing one channel 110a between adjacent channels 110b, the channels 110b are alternately arranged with the channels 110a in the arrangement direction of the channels 110b (a direction substantially perpendicular to the side 140). Yes.
  • Each of the sides 140 of the flow channel 110b faces the long side 150a of any one of the plurality of flow channels 110a in parallel. That is, each of the wall surfaces forming the flow channel 110b faces the one wall surface forming the flow channel 110a in parallel in the partition wall 120a located between the flow channel 110a and the flow channel 110b.
  • the flow path 110 has a structural unit including one flow path 110b and six flow paths 110a surrounding the flow path 110b. In the structural unit, all the sides 140 of the flow path 110b are included. Opposite the long side 150a of the channel 110a.
  • at least one length of the side 140 of the flow path 110b may be substantially equal to the length of the opposed long side 150a, and each length of the side 140 is equal to the length of the opposed long side 150a. It may be substantially equal.
  • the partition wall 120 has a partition wall 120b as a part for partitioning the adjacent flow paths 110a. That is, the flow paths 110a surrounding the flow path 110b are adjacent to each other via the partition wall 120b.
  • Each of the short side 150b of the flow path 110a is facing in parallel with the short side 150b of the adjacent flow path 110a. That is, the wall surfaces forming the flow path 110a face each other in parallel in the partition wall 120b located between the adjacent flow paths 110a.
  • at least one length of the short side 150b of the flow path 110a may be substantially equal to the length of the opposing short side 150b. May be substantially equal to the length of the opposing short side 150b.
  • Fig. 3 is a diagram schematically showing a honeycomb filter according to the second embodiment
  • Fig. 3 (b) is an enlarged view of a region R2 in Fig. 3 (a).
  • 4 is a view taken in the direction of arrows IV-IV in FIG.
  • the honeycomb filter 200 has one end face (first end face) 200a and the other end face (second end face) 200b located on the opposite side of the end face 200a.
  • the end surface 200a and the end surface 200b face each other in parallel.
  • the honeycomb filter 200 is a cylindrical body having a plurality of flow paths 210 extending in parallel to each other.
  • the plurality of flow paths 210 are partitioned by partition walls 220 extending in parallel with the central axis of the honeycomb filter 200.
  • the plurality of flow paths 210 include a plurality of flow paths (first flow paths) 210a and a plurality of flow paths (second flow paths) 210b adjacent to the flow paths 210a.
  • the channel 210a and the channel 210b extend from the end surface 200a to the end surface 200b perpendicular to the end surfaces 200a and 200b.
  • One end of the flow path 210a constituting a part of the flow path 210 is opened at the end face 200a, and the other end of the flow path 210a is sealed by the sealing portion 230 at the end face 200b.
  • One end of the flow path 210b constituting the remaining part of the flow path 210 is sealed by the sealing portion 230 at the end face 200a, and the other end of the flow path 210b is opened at the end face 200b.
  • an end portion on the end surface 200a side of the flow path 210a is opened as a gas inlet
  • an end portion of the flow path 210b on the end surface 200b side is opened as a gas outlet.
  • the cross section perpendicular to the axial direction of the flow path 210a and the flow path 210b has a hexagonal shape.
  • the cross section of the flow path 210b is, for example, a regular hexagonal shape in which the lengths of the sides 240 forming the cross section are substantially equal to each other, but may be a flat hexagonal shape.
  • the cross section of the flow path 210a is, for example, a flat hexagonal shape, but may be a regular hexagonal shape.
  • the lengths of the sides facing each other in the cross section of the flow path 210a are different from each other.
  • the cross section of the channel 210a has three long sides 250a having substantially the same length and three short sides 250b having substantially the same length as the sides 250 forming the cross section.
  • the long side 250a and the short side 250b face each other in parallel, and the short side 250b is disposed on each side of the long side 250a.
  • the partition 220 has the partition 220a as a part which partitions off the flow path 210a and the flow path 210b. That is, the flow path 210a and the flow path 210b are adjacent to each other through the partition wall 220a. Between the adjacent flow paths 210b, two flow paths 210a adjacent to each other in a direction substantially orthogonal to the arrangement direction of the flow paths 210b are arranged, and the two adjacent flow paths 210a are adjacent to each other. They are arranged symmetrically across a line connecting the centers of the sections of 210b.
  • Each of the sides 240 of the flow path 210b faces the long side 250a of any one of the plurality of flow paths 210a in parallel. That is, each of the wall surfaces forming the flow path 210b faces the one wall surface forming the flow path 210a in parallel in the partition wall 220a positioned between the flow path 210a and the flow path 210b.
  • the flow path 210 includes a structural unit including one flow path 210b and six flow paths 210a surrounding the flow path 210b. In the structural unit, all the sides 240 of the flow path 210b are included. It faces the long side 250a of the flow path 210a.
  • each vertex of the cross section of the flow path 210b is opposed to the apex of the adjacent flow path 210b in the arrangement direction of the flow paths 210b.
  • at least one length of the side 240 of the flow path 210b may be substantially equal to the length of the opposed long side 250a, and each length of the side 240 is equal to the length of the opposed long side 250a. It may be substantially equal.
  • the partition 220 has the partition 220b as a part which partitions off the mutually adjacent flow paths 210a. That is, the flow paths 210a surrounding the flow path 210b are adjacent to each other through the partition 220b.
  • Each of the short side 250b of the flow path 210a is facing in parallel with the short side 250b of the adjacent flow path 210a. That is, the wall surfaces forming the flow path 210a face each other in parallel in the partition 220b located between the adjacent flow paths 210a.
  • One flow path 210a is surrounded by three flow paths 210b.
  • at least one length of the short side 250b of the flow path 210a may be substantially equal to the length of the opposing short side 250b. May be substantially equal to the length of the opposing short side 250b.
  • the length of the honeycomb filters 100 and 200 in the axial direction of the flow path is, for example, 50 to 300 mm.
  • the outer diameter of the honeycomb filters 100 and 200 is, for example, 50 to 250 mm.
  • the length of the side 140 is, for example, 0.4 to 2.0 mm.
  • the length of the long side 150a is, for example, 0.4 to 2.0 mm, and the length of the short side 150b is, for example, 0.3 to 2.0 mm.
  • the length of the side 240 is, for example, 0.4 to 2.0 mm.
  • the length of the long side 250a is, for example, 0.4 to 2.0 mm
  • the length of the short side 250b is, for example, 0.3 to 2.0 mm.
  • the thickness of the partition walls 120 and 220 is, for example, 0.1 to 0.8 mm.
  • the cell density in the honeycomb filters 100 and 200 is preferably 50 to 600 cpsi, and more preferably 100 to 500 cpsi.
  • the total opening area of the plurality of flow paths 110a on the end face 100a is larger than the total opening area of the plurality of flow paths 110b on the end face 100b.
  • the total opening area of the plurality of flow paths 210a on the end face 200a is larger than the total opening area of the plurality of flow paths 210b on the end face 200b.
  • the hydraulic diameters of the flow paths 110a and 210a on the end faces 100a and 200a are 1.4 mm or less from the viewpoint that pressure loss is likely to change according to the amount of collected matter.
  • the hydraulic diameters of the flow paths 110a and 210a are preferably 1.3 mm or less, and more preferably 1.2 mm or less, from the viewpoint that the pressure loss is more likely to change according to the amount of collected substances.
  • the hydraulic diameters of the flow paths 110a and 210a are preferably 0.5 mm or more, and more preferably 0.7 mm or more, from the viewpoint of further suppressing accumulation of collected substances in the region on the end face side in the flow path.
  • the hydraulic diameter of the flow paths 110b and 210b on the end faces 100b and 200b is preferably larger than the hydraulic diameter of the flow paths 110a and 210a on the end faces 100a and 200a.
  • the hydraulic diameters of the flow paths 110b and 210b in the end faces 100b and 200b are preferably 1.7 mm or less, and more preferably 1.6 mm or less, from the viewpoint that the pressure loss is more likely to change depending on the amount of collected matter. .
  • the hydraulic diameters of the flow paths 110b and 210b are preferably 0.5 mm or more, more preferably 0.7 mm or more, from the viewpoint of further suppressing the accumulation of collected substances in the region on the end face side in the flow path. More preferably, it is 9 mm or more.
  • the shape of the honeycomb filter is such that the cross section of the first channel perpendicular to the axial direction of the first channel (channels 110a and 210a) is the first side as in the honeycomb filters 100 and 200 described above. (Long sides 150a, 250a) and second sides (short sides 150b, 250b) respectively disposed on both sides of the first side, and a second channel (channels 110b, 210b). ) Each of the sides (sides 140 and 240) forming a cross section of the second flow path perpendicular to the axial direction of the first flow path are opposed to the first side of the first flow path. Each of the second sides may be in a form facing the second side of the adjacent first flow path, but is not necessarily limited to the shape described above.
  • the cross section of the channel perpendicular to the axial direction of the channel in the honeycomb filter is not limited to the hexagonal shape, and may be a triangular shape, a rectangular shape, an octagonal shape, a circular shape, an elliptical shape, or the like. .
  • those having different diameters may be mixed, or those having different cross-sectional shapes may be mixed.
  • the arrangement of the flow paths is not particularly limited, and the arrangement of the central axes of the flow paths may be an equilateral triangle arrangement, a staggered arrangement, or the like arranged at the apex of the equilateral triangle.
  • the honeycomb filter is not limited to a cylindrical body, and may be a columnar body such as an elliptical column, a triangular column, a quadrangular column, a hexagonal column, or an octagonal column.
  • the partition walls are porous, and include, for example, a porous ceramic sintered body.
  • the partition has a structure that allows fluid to pass therethrough. Specifically, a large number of communication holes (flow channels) through which fluid can pass are formed in the partition wall.
  • the porosity of the partition walls is preferably 20% by volume or more, and more preferably 30% by volume or more, from the viewpoint of further improving the collection efficiency and pressure loss of the honeycomb filter.
  • the porosity of the partition walls is preferably 70% by volume or less, and more preferably 60% by volume or less.
  • the average pore diameter of the partition walls is preferably 5 ⁇ m or more, and more preferably 8 ⁇ m or more from the viewpoint of further improving the collection efficiency and pressure loss of the honeycomb filter.
  • the average pore diameter of the partition walls is preferably 30 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the porosity and average pore diameter of the partition walls can be adjusted by the particle diameter of the raw material, the amount of pore former added, the kind of pore former, and the firing conditions, and can be measured by mercury porosimetry.
  • Examples of the material constituting the partition include oxides such as alumina, silica, mullite, cordierite, glass, and aluminum titanate ceramics; silicon carbide; silicon nitride. Among these, aluminum titanate ceramics are preferable. Aluminum titanate or aluminum magnesium titanate is more preferable.
  • the partition contains an aluminum titanate ceramic
  • the molar ratio of aluminum converted to Al 2 O 3 and titanium converted to TiO 2 is preferably 35:65 to 45:55, and 40 : 60 to 45:55 is more preferable.
  • the partition wall contains aluminum magnesium titanate
  • the composition formula of aluminum magnesium titanate is, for example, Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is preferably 0.03 or more. 0.03-0.20 is more preferable, and 0.03-0.18 is still more preferable.
  • the partition wall containing the aluminum titanate-based ceramics is formed of, for example, porous ceramics mainly made of aluminum titanate-based crystals. “Mainly composed of an aluminum titanate crystal” means that the main crystal phase constituting the ceramic fired body is an aluminum titanate crystal phase.
  • the aluminum titanate crystal phase is, for example, aluminum titanate. Crystal phase, aluminum magnesium titanate crystal phase.
  • the partition containing the aluminum titanate ceramic may contain a glass phase derived from silicon source powder.
  • the glass phase refers to an amorphous phase in which SiO 2 is the main component.
  • the partition containing an aluminum titanate ceramic may contain crystal phases other than an aluminum titanate crystal phase and a glass phase. Examples of such a crystal phase include a phase derived from a raw material used for producing a ceramic fired body.
  • the phase derived from the raw material is, for example, a phase derived from an aluminum source powder, a titanium source powder, a magnesium source powder, or the like remaining without forming an aluminum titanate-based crystal phase during the manufacture of the honeycomb filter, such as alumina, titania, magnesia. And the like.
  • the crystal phase forming the partition can be confirmed by an X-ray diffraction spectrum.
  • Honeycomb filters 100 and 200 are suitable as particulate filters that collect collected materials such as soot contained in exhaust gas from internal combustion engines such as diesel engines and gasoline engines.
  • the honeycomb filter 100 as shown in FIG. 2, the gas G supplied from the end face 100a to the flow path 110a passes through the communication hole in the partition wall 120 and reaches the adjacent flow path 110b, and from the end face 100b. Discharged.
  • the collected matter in the gas G is collected on the surface of the partition wall 120 and / or in the communication hole and removed from the gas G, whereby the honeycomb filter 100 functions as a filter.
  • the honeycomb filter 200 functions as a filter.
  • a method for manufacturing a honeycomb filter includes, for example, a raw material preparation step for preparing a raw material mixture containing an inorganic compound powder and an additive, a forming step for forming a raw material mixture to obtain a formed body having a flow path, and firing the formed body.
  • a sealing step of sealing one end of each flow path between the molding step and the baking step or after the baking step will be described by taking as an example a case where the partition walls include an aluminum titanate ceramic.
  • the inorganic compound powder includes, for example, an aluminum source powder such as ⁇ -alumina powder and a titanium source powder (titanium source powder) such as anatase type or rutile type titania powder, and magnesia powder or magnesia spinel as necessary.
  • a magnesium source powder such as a powder and / or a silicon source powder such as a silicon oxide powder or a glass frit can be further included.
  • Each raw material powder may be one type or two or more types.
  • Each raw material powder may contain a trace component derived from the raw material or inevitably contained in the production process.
  • a volume-based cumulative particle size equivalent to 50% (center particle size, D50) measured by a laser diffraction method is preferably in the following range.
  • D50 of the aluminum source powder is, for example, 20 to 60 ⁇ m.
  • D50 of the titanium source powder is, for example, 0.1 to 25 ⁇ m.
  • the D50 of the magnesium source powder is, for example, 0.5 to 30 ⁇ m.
  • D50 of the silicon source powder is, for example, 0.5 to 30 ⁇ m.
  • the raw material mixture may contain aluminum titanate or aluminum magnesium titanate.
  • the aluminum magnesium titanate corresponds to a raw material mixture having an aluminum source, a titanium source, and a magnesium source.
  • additives examples include a pore-forming agent (pore-forming agent), a binder, a plasticizer, a dispersant, and a solvent.
  • the pore-forming agent one formed by a material that disappears at a temperature lower than the temperature at which the molded body is degreased and fired in the firing process can be used.
  • the pore forming agent disappears due to combustion or the like.
  • a space is created at the location where the pore-forming agent was present, and the communication hole through which the fluid can flow is formed in the partition wall by shrinking the inorganic compound powder located between the spaces during firing. Can be formed.
  • the pore-forming agent is, for example, corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, coral starch, canna starch, potato starch (potato starch).
  • the volume-based cumulative particle size (D50) measured by the laser diffraction method is 50 to 50 ⁇ m, for example.
  • the content of the pore-forming agent is, for example, 1 to 25 parts by mass with respect to 100 parts by mass of the inorganic compound powder.
  • the binder is, for example, celluloses such as methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax.
  • Content of the binder in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.
  • plasticizer examples include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; stearic acid metal salts such as aluminum stearate, polyoxyalkylene alkyl ethers (for example, Polyoxyethylene polyoxypropylene butyl ether).
  • Alcohols such as glycerin
  • higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid
  • stearic acid metal salts such as aluminum stearate
  • polyoxyalkylene alkyl ethers for example, Polyoxyethylene polyoxypropylene butyl ether
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; ammonium polycarboxylate.
  • Content of the dispersing agent in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.
  • the solvent is, for example, water, and ion-exchanged water is preferable in terms of few impurities.
  • the content of the solvent is, for example, 10 to 100 parts by mass with respect to 100 parts by mass of the inorganic compound powder.
  • a green honeycomb formed body having a honeycomb structure is obtained.
  • a so-called extrusion molding method in which the raw material mixture is extruded from a die while being kneaded by a single screw extruder can be employed.
  • the green honeycomb formed body having a honeycomb structure obtained in the forming step is fired to obtain a honeycomb fired body.
  • calcination degreasing for removing a binder or the like contained in the molded body (in the raw material mixture) may be performed before the molded body is fired.
  • the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher.
  • a calcination temperature is 1650 degrees C or less normally, Preferably it is 1550 degrees C or less.
  • the temperature raising rate is not particularly limited, but is usually 1 to 500 ° C./hour.
  • the firing time may be a time sufficient for the inorganic compound powder to transition to the aluminum titanate-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but usually 10 minutes to 24 hours.
  • the sealing step is performed between the molding step and the firing step or after the firing step.
  • a sealing step is performed between the forming step and the firing step, one end of each flow path of the green honeycomb molded body obtained in the forming step is sealed with a sealing material, and then green honeycomb forming is performed in the firing step.
  • a honeycomb filter having a sealing portion that seals one end of the flow path is obtained.
  • the sealing step after the firing step after sealing one end of each flow path of the honeycomb fired body obtained in the firing step with the sealing material, the flow path is obtained by firing the sealing material together with the honeycomb fired body.
  • a honeycomb filter provided with a sealing portion that seals one end of the above is obtained.
  • As the sealing material a mixture similar to the raw material mixture for obtaining the green honeycomb molded body can be used.
  • Example 1 Al 2 O 3 powder, TiO 2 powder, MgO powder, SiO 2 powder, ceramic powder having a composite phase of aluminum magnesium titanate, alumina and aluminosilicate glass (composition formula at the time of preparation: 41.4 Al 2 O 3 -49 .9TiO 2 -5.4MgO-3.3SiO 2 (the numerical values in the formula represent molar ratios), a pore mixture, an organic binder, a plasticizer, and water.
  • the content of main components in the raw material mixture was adjusted to the following values.
  • the raw material mixture was kneaded and then extrusion molded to obtain a green honeycomb molded body.
  • the green honeycomb molded body was sealed and fired to produce a cylindrical honeycomb filter having a structure shown in FIGS.
  • the firing temperature was 1500 ° C.
  • the honeycomb titanate ratio (AT ratio) of the honeycomb filter was measured and found to be 100%.
  • the length of the honeycomb filter in the axial direction of the flow path was 152 mm (6.00 inches).
  • the outer diameter of the honeycomb filter was 144 mm (5.66 inches).
  • the density of the flow path (cell density) was 350 cpsi.
  • the length of one side of the regular hexagonal channel was 1.2 mm.
  • the length of the long side in the flat hexagonal flow path was 1.2 mm, and the length of the short side was 1.1 mm.
  • the partition wall thickness between the channels was 0.31 mm (12.3 mil).
  • the porosity of the partition walls was 45% by volume, and the average pore diameter of the partition walls was 15 ⁇ m.
  • the total opening area of the flat hexagonal channel on one end face of the honeycomb filter was larger than the total opening area of the regular hexagonal channel on the other end face of the honeycomb filter.
  • the hydraulic diameter of each flat hexagonal flow path on one end face of the honeycomb filter was 1.1 mm.
  • the hydraulic diameter of each regular hexagonal flow path on the other end face of the honeycomb filter was 1.2 mm.
  • a cylindrical body having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared as a honeycomb filter.
  • a plurality of flow paths includes a plurality of flow paths A 1, hydraulic diameter and a plurality of flow passages B 1 which is different from the flow path A 1, the flow path A 1 and the flow path B 1 represents arranged alternately It was.
  • the flow path A 1 was open at one end face F 11 of the honeycomb filter, and the flow path A 1 was sealed at the other end face F 12 of the honeycomb filter.
  • Flow path B 1 at the end face F 11 is sealed, a flow path B 1 at the end face F 12 was opened.
  • the length of the honeycomb filter in the axial direction of the flow path was 152 mm (6.00 inches).
  • the outer diameter of the honeycomb filter was 144 mm (5.66 inches).
  • the density of the flow path was 160 cpsi.
  • the partition wall thickness between the channels was 0.38 mm (15 mil).
  • the total opening area of the flow path A 1 at the end face F 11 were those greater than the sum of the opening area of the flow path B 1 at the end face F 12. Hydraulic diameter of the channel A 1 at the end face F 11 was 2.0 mm. Hydraulic diameter of the channel B 1 of the end face F 12 was 1.2 mm.
  • a cylindrical body having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared as a honeycomb filter.
  • a plurality of flow paths includes a plurality of flow paths A 2, hydraulic diameter and a plurality of flow paths B 2 which is different from the flow path A 2, the flow path A 2 and the flow path B 2 are arranged alternately It was.
  • the flow path A 2 was opened at the end face F 21 of the honeycomb filter, and the flow path A 2 was sealed at the end face F 22 of the honeycomb filter.
  • Flow path B 2 in the end face F 21 is sealed, the flow path B 2 at the end face F 22 was opened.
  • the length of the honeycomb filter in the axial direction of the flow path was 152 mm (6.00 inches).
  • the outer diameter of the honeycomb filter was 144 mm (5.66 inches).
  • the density of the flow path was 280 cpsi.
  • the thickness of the partition between the channels was 0.28 mm (10.9 mil).
  • the total opening area of the flow path A 2 at the end face F 21 were those greater than the sum of the opening area of the flow path B 2 at the end face F 22.
  • Hydraulic diameter of the channel A 2 of the end face F 21 was 1.5 mm.
  • Hydraulic diameter of the channel B 2 at the end face F 22 was 0.9 mm.
  • FIG. 5 is a diagram schematically illustrating a pressure loss measuring apparatus.
  • a soot generator product name: REXS
  • a large compressor device 410 were used for the pressure loss measurement.
  • the end face having the larger total opening area of the flow paths in the honeycomb filter was connected to the soot generator 400, and the compressor device 410 was connected to a pipe connecting the honeycomb filter (Diesel particulate filter) and the soot generator 400.
  • soot generator 400 propane gas was supplied at a flow rate of 2 L / min, nitrogen gas was supplied at a flow rate of 2 L / min, and air was supplied at a flow rate of 1000 L / min.
  • the soot generated from the soot generator 400 is artificial soot generated by incomplete combustion of propane gas.
  • the average particle diameter of the soot can be controlled by the air flow rate or the oxygen concentration. In the measurement, the average particle diameter of the soot was adjusted to about 90 nm.
  • the flow rate of air containing soot was adjusted to 200 Nm 3 h ⁇ 1 by the compressor device 410.
  • FIG. 6 shows the result of measuring the pressure loss associated with the increase in the amount of soot deposition using the honeycomb filters of Example 1 and Comparative Examples 1 and 2. As shown in FIG. 6, in Example 1, it was confirmed that the pressure loss was likely to increase in accordance with the amount of collected material compared to Comparative Examples 1 and 2.

Abstract

A honeycomb filter (100) has conduits (110) extending parallel to each other and has end surfaces (100a, 100b). The conduits (110) comprise: conduits (110a), the end surface (100b)-side ends of which are sealed; and conduits (110b), the end surface (100a)-side ends of which are sealed. The sum of the areas of openings of the conduits (110a), the openings being open at the end surface (100a), is greater than the sum of the areas of openings of the conduits (110b), the openings being open at the end surface (100b), and the hydraulic diameter of the conduits (110a) is 1.4 mm or less.

Description

ハニカムフィルタHoneycomb filter
 本発明は、ハニカムフィルタに関する。 The present invention relates to a honeycomb filter.
 ハニカムフィルタは、被捕集物を含む流体から当該被捕集物を除去するセラミックスフィルタとして用いられており、例えば、ディーゼルエンジン又はガソリンエンジン等の内燃機関から排気される排気ガスを浄化するための排ガスフィルタとして用いられている。このようなハニカムフィルタは、隔壁に仕切られた互いに平行な複数の流路を有しており、複数の流路のうちの一部の一端及び複数の流路のうちの残部の他端が封口されている(例えば、下記特許文献1参照)。 The honeycomb filter is used as a ceramic filter for removing the collected matter from the fluid containing the collected matter, for example, for purifying exhaust gas exhausted from an internal combustion engine such as a diesel engine or a gasoline engine. Used as an exhaust gas filter. Such a honeycomb filter has a plurality of parallel flow paths partitioned by partition walls, and one end of a part of the plurality of flow paths and the other end of the remaining part of the plurality of flow paths are sealed. (For example, refer to Patent Document 1 below).
特表2009-537741号公報JP 2009-537741 A
 ところで、被捕集物を含む流体がハニカムフィルタ内に供給されるに伴い、ハニカムフィルタにおける隔壁の表面及び/又は隔壁の内部に被捕集物が堆積する。この場合、被捕集物がハニカムフィルタ内に過剰に堆積すると、ハニカムフィルタ内における流体の移動が妨げられてハニカムフィルタの浄化性能が低下する。そのため、ハニカムフィルタ内に一定量の被捕集物を堆積させた後に、被捕集物を燃焼除去するためにハニカムフィルタの燃焼再生が行われる。 By the way, as the fluid containing the collected matter is supplied into the honeycomb filter, the collected matter is deposited on the surface of the partition wall and / or inside the partition wall in the honeycomb filter. In this case, if the collected material is excessively accumulated in the honeycomb filter, the movement of the fluid in the honeycomb filter is hindered and the purification performance of the honeycomb filter is deteriorated. Therefore, after depositing a certain amount of collected matter in the honeycomb filter, the honeycomb filter is subjected to combustion regeneration in order to burn and remove the collected matter.
 ここで、ハニカムフィルタ内に過剰量の被捕集物が堆積した状態で燃焼再生を行うと、ハニカムフィルタに過度の熱応力が負荷され、ハニカムフィルタの熱破損又は溶損が引き起こる場合がある。このような観点から、過剰量の被捕集物が堆積する前に再生燃焼を行うことが望ましい。 Here, if combustion regeneration is performed in a state where an excessive amount of collected matter is accumulated in the honeycomb filter, an excessive thermal stress is applied to the honeycomb filter, and the honeycomb filter may be thermally damaged or melted. . From this point of view, it is desirable to perform regenerative combustion before an excessive amount of collected matter is deposited.
 ハニカムフィルタ内の被捕集物の堆積量は、被捕集物の堆積に伴い増加する圧力損失に基づき推定されることがある。この場合、過剰量の被捕集物が堆積する前に再生燃焼を行う方法の一つとして、被捕集物の堆積量に応じて圧力損失が変化し易いハニカムフィルタを用いることが有効である。 The amount of collected matter in the honeycomb filter may be estimated based on the pressure loss that increases with the amount of collected matter. In this case, it is effective to use a honeycomb filter in which the pressure loss is easily changed according to the amount of collected material as one of the methods for performing regeneration combustion before the excessive amount of collected material is deposited. .
 本発明は、このような実情に鑑みてなされたものであり、被捕集物の堆積量に応じて圧力損失が変化し易いハニカムフィルタを提供することを目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a honeycomb filter in which the pressure loss is easily changed according to the amount of collected substances.
 すなわち、本発明に係るハニカムフィルタは、互いに平行な複数の流路を有するハニカムフィルタであって、ハニカムフィルタが、第1の端面と、当該第1の端面の反対側に位置する第2の端面と、を有し、複数の流路が、第2の端面側の端部が封口された複数の第1の流路と、第1の端面側の端部が封口された複数の第2の流路と、を有し、第1の端面における複数の第1の流路の開口面積の合計が、第2の端面における複数の第2の流路の開口面積の合計よりも大きく、第1の流路の水力直径(水力相当径、hydraulic diameter)が1.4mm以下である。なお、本明細書において「流路の水力直径」とは、対象となる流路を当該流路の軸方向(長手方向)に対して垂直に切断して得られる断面の断面積と同等の断面積を有する真円の直径をいう。 That is, the honeycomb filter according to the present invention is a honeycomb filter having a plurality of flow paths parallel to each other, and the honeycomb filter has a first end face and a second end face located on the opposite side of the first end face. A plurality of flow paths, a plurality of first flow paths whose end portions on the second end face side are sealed, and a plurality of second flow paths whose end portions on the first end face side are sealed. A sum of opening areas of the plurality of first passages on the first end face is larger than a sum of opening areas of the plurality of second passages on the second end face, The hydraulic diameter (hydraulic equivalent diameter) of the channel is 1.4 mm or less. In the present specification, the “hydraulic diameter of the flow channel” means a cross-sectional area equivalent to a cross-sectional area obtained by cutting the target flow channel perpendicularly to the axial direction (longitudinal direction) of the flow channel. The diameter of a perfect circle having an area.
 流体に含まれる被捕集物を捕集するに際しては、被捕集物の捕集効率を向上させる観点から、被捕集物を含む流体が、流路の開口面積の合計が大きい端面側からハニカムフィルタ内に供給されることがある。本発明に係るハニカムフィルタでは、被捕集物を含む流体を第1の端面側からハニカムフィルタ内に供給する場合において、被捕集物の堆積量に応じて圧力損失を変化し易くすることができる。これにより、過剰量の被捕集物が堆積する前に再生燃焼を行うことが容易となり、再生燃焼に際してハニカムフィルタに過度の熱応力が負荷されてハニカムフィルタの熱破損及び溶損が引き起こることを抑制することができる。 When collecting the collected material contained in the fluid, from the viewpoint of improving the collection efficiency of the collected material, the fluid containing the collected material from the end face side where the total of the opening area of the flow path is large. It may be supplied into the honeycomb filter. In the honeycomb filter according to the present invention, when the fluid containing the collected substance is supplied into the honeycomb filter from the first end face side, the pressure loss can be easily changed according to the accumulation amount of the collected substance. it can. As a result, it becomes easy to perform regenerative combustion before an excessive amount of collected matter accumulates, and excessive thermal stress is applied to the honeycomb filter during regenerative combustion, causing thermal damage and melting damage of the honeycomb filter. Can be suppressed.
 上記のとおり圧力損失が変化し易くなる要因について、本発明者は以下のとおり推測している。但し、要因は下記に限られるものではない。すなわち、本発明者の知見によれば、第1の流路の水力直径が大きい場合には、各第1の流路に流入する被捕集物の量が多くなることにより、流路における第2の端面側に被捕集物が堆積し易くなり、被捕集物の堆積量に応じて圧力損失が変化しにくくなるものと推測される。一方、本発明では、第1の流路の水力直径が1.4mm以下であることにより、各第1の流路に流入する被捕集物の量を少なくすることができる。これにより、第1の流路の水力直径が1.4mmを超える場合に比して、第1の流路における第2の端面側に被捕集物が堆積することが抑制され、被捕集物の堆積量に応じて圧力損失が変化し易くなる。 As described above, the present inventor presumes the factors that cause the pressure loss to easily change as follows. However, the factors are not limited to the following. That is, according to the knowledge of the present inventor, when the hydraulic diameter of the first flow path is large, the amount of the trapped material flowing into each first flow path increases, so that It is presumed that the collected matter is likely to be deposited on the end face side of 2, and the pressure loss is less likely to change depending on the amount of collected matter. On the other hand, in the present invention, when the hydraulic diameter of the first flow path is 1.4 mm or less, the amount of collected matter flowing into each first flow path can be reduced. Thereby, compared with the case where the hydraulic diameter of the first flow path exceeds 1.4 mm, it is possible to suppress the collection of the collected matter on the second end face side in the first flow path, The pressure loss is likely to change depending on the amount of deposits.
 第2の流路の水力直径は、第1の流路の水力直径よりも大きいことが好ましい。この場合、被捕集物の堆積量に応じて圧力損失を更に変化し易くすることができる。 The hydraulic diameter of the second flow path is preferably larger than the hydraulic diameter of the first flow path. In this case, the pressure loss can be further easily changed according to the accumulation amount of the collected object.
 本発明によれば、被捕集物の堆積量に応じて圧力損失が変化し易いハニカムフィルタを提供することができる。 According to the present invention, it is possible to provide a honeycomb filter in which the pressure loss is easily changed according to the amount of collected matter.
本発明の第1実施形態に係るハニカムフィルタを模式的に示す図である。It is a figure showing typically a honeycomb filter concerning a 1st embodiment of the present invention. 図1のII-II矢視図である。FIG. 2 is a view taken in the direction of arrows II-II in FIG. 本発明の第2実施形態に係るハニカムフィルタを模式的に示す図である。It is a figure which shows typically the honey-comb filter which concerns on 2nd Embodiment of this invention. 図3のIV-IV矢視図である。FIG. 4 is a view taken along arrow IV-IV in FIG. 3. 圧力損失の測定装置を模式的に示す図である。It is a figure which shows typically the measuring apparatus of a pressure loss. 圧力損失の測定結果を示す図である。It is a figure which shows the measurement result of a pressure loss.
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments.
<ハニカムフィルタ>
 図1は、第1実施形態に係るハニカムフィルタを模式的に示す図であり、図1(b)は、図1(a)における領域R1の拡大図である。図2は、図1のII-II矢視図である。ハニカムフィルタ100は、一方の端面(第1の端面)100aと、端面100aの反対側に位置する他方の端面(第2の端面)100bと、を有している。端面100a及び端面100bは互いに平行に対向している。
<Honeycomb filter>
FIG. 1 is a diagram schematically showing the honeycomb filter according to the first embodiment, and FIG. 1B is an enlarged view of a region R1 in FIG. FIG. 2 is a view taken along the line II-II in FIG. The honeycomb filter 100 has one end face (first end face) 100a and the other end face (second end face) 100b located on the opposite side of the end face 100a. The end surface 100a and the end surface 100b face each other in parallel.
 ハニカムフィルタ100は、互いに平行に伸びる複数の流路110を有する円柱体である。複数の流路110は、ハニカムフィルタ100の中心軸に平行に伸びる隔壁120により仕切られている。複数の流路110は、複数の流路(第1の流路)110aと、流路110aに隣接する複数の流路(第2の流路)110bとを有している。流路110a及び流路110bは、端面100a,100bに対して垂直に、端面100aから端面100bまで伸びている。 The honeycomb filter 100 is a cylindrical body having a plurality of flow paths 110 extending in parallel to each other. The plurality of flow paths 110 are partitioned by partition walls 120 extending in parallel to the central axis of the honeycomb filter 100. The plurality of channels 110 have a plurality of channels (first channels) 110a and a plurality of channels (second channels) 110b adjacent to the channels 110a. The flow path 110a and the flow path 110b extend from the end face 100a to the end face 100b perpendicular to the end faces 100a and 100b.
 流路110のうちの一部を構成する流路110aの一端は、端面100aにおいて開口しており、流路110aの他端は、端面100bにおいて封口部130により封口されている。流路110のうちの残部を構成する流路110bの一端は、端面100aにおいて封口部130により封口されており、流路110bの他端は、端面100bにおいて開口している。ハニカムフィルタ100において、例えば、流路110aにおける端面100a側の端部はガス流入口として開口しており、流路110bにおける端面100b側の端部はガス流出口として開口している。 One end of the flow path 110a constituting a part of the flow path 110 is opened at the end face 100a, and the other end of the flow path 110a is sealed by the sealing portion 130 at the end face 100b. One end of the flow path 110b constituting the remaining part of the flow path 110 is sealed by the sealing portion 130 at the end face 100a, and the other end of the flow path 110b is opened at the end face 100b. In the honeycomb filter 100, for example, an end portion on the end surface 100a side of the flow path 110a is opened as a gas inlet, and an end portion on the end face 100b side of the flow path 110b is opened as a gas outlet.
 流路110a及び流路110bにおける当該流路の軸方向に垂直な断面は、六角形状である。流路110bの断面は、例えば、当該断面を形成する辺140の長さが互いに略等しい正六角形状であるが、扁平六角形状であってもよい。流路110aの断面は、例えば扁平六角形状であるが、正六角形状であってもよい。流路110aの断面において互いに対向する辺の長さは、互いに略等しい。流路110aの断面は、当該断面を形成する辺150として、互いに長さの略等しい二つ(一対)の長辺150aと、互いに長さの略等しい四つ(二対)の短辺150bと、を有している。短辺150bは、長辺150aの両側にそれぞれ配置されている。長辺150a同士は、互いに平行に対向しており、短辺150b同士は、互いに平行に対向している。 The cross section perpendicular to the axial direction of the flow path 110a and the flow path 110b has a hexagonal shape. The cross section of the flow path 110b is, for example, a regular hexagonal shape in which the lengths of the sides 140 forming the cross section are substantially equal to each other, but may be a flat hexagonal shape. The cross section of the flow path 110a has, for example, a flat hexagonal shape, but may have a regular hexagonal shape. The lengths of the sides facing each other in the cross section of the channel 110a are substantially equal to each other. The cross section of the flow path 110a includes two long sides 150a having substantially the same length as the sides 150 forming the cross section, and four (two pairs) short sides 150b having substantially the same length. ,have. The short side 150b is disposed on each side of the long side 150a. The long sides 150a face each other in parallel, and the short sides 150b face each other in parallel.
 隔壁120は、流路110a及び流路110bを仕切る部分として隔壁120aを有している。すなわち、流路110a及び流路110bは、隔壁120aを介して互いに隣接している。隣接する流路110bの間に一つの流路110aが配置されることにより、流路110bは、流路110bの配列方向(辺140に略直交する方向)において流路110aと交互に配置されている。 The partition 120 has the partition 120a as a part which partitions off the flow path 110a and the flow path 110b. That is, the channel 110a and the channel 110b are adjacent to each other through the partition wall 120a. By disposing one channel 110a between adjacent channels 110b, the channels 110b are alternately arranged with the channels 110a in the arrangement direction of the channels 110b (a direction substantially perpendicular to the side 140). Yes.
 流路110bの辺140のそれぞれは、複数の流路110aのいずれか一つの流路の長辺150aと平行に対向している。すなわち、流路110bを形成する壁面のそれぞれは、流路110a及び流路110bの間に位置する隔壁120aにおいて、流路110aを形成する一壁面と平行に対向している。また、流路110は、1つの流路110bと、当該流路110bを囲む6つの流路110aとを含む構成単位を有しており、当該構成単位において、流路110bの辺140の全てが流路110aの長辺150aと対向している。ハニカムフィルタ100では、流路110bの辺140の少なくとも一つの長さが、対向する長辺150aの長さと略等しくてもよく、辺140のそれぞれの長さが、対向する長辺150aの長さと略等しくてもよい。 Each of the sides 140 of the flow channel 110b faces the long side 150a of any one of the plurality of flow channels 110a in parallel. That is, each of the wall surfaces forming the flow channel 110b faces the one wall surface forming the flow channel 110a in parallel in the partition wall 120a located between the flow channel 110a and the flow channel 110b. Further, the flow path 110 has a structural unit including one flow path 110b and six flow paths 110a surrounding the flow path 110b. In the structural unit, all the sides 140 of the flow path 110b are included. Opposite the long side 150a of the channel 110a. In the honeycomb filter 100, at least one length of the side 140 of the flow path 110b may be substantially equal to the length of the opposed long side 150a, and each length of the side 140 is equal to the length of the opposed long side 150a. It may be substantially equal.
 隔壁120は、互いに隣接する流路110a同士を仕切る部分として隔壁120bを有している。すなわち、流路110bを囲む流路110a同士は、隔壁120bを介して互いに隣接している。 The partition wall 120 has a partition wall 120b as a part for partitioning the adjacent flow paths 110a. That is, the flow paths 110a surrounding the flow path 110b are adjacent to each other via the partition wall 120b.
 流路110aの短辺150bのそれぞれは、隣接する流路110aの短辺150bと平行に対向している。すなわち、流路110aを形成する壁面は、隣接する流路110aの間に位置する隔壁120bにおいて互いに平行に対向している。ハニカムフィルタ100では、隣接する流路110aの間において、流路110aの短辺150bの少なくとも一つの長さが、対向する短辺150bの長さと略等しくてもよく、短辺150bのそれぞれの長さが、対向する短辺150bの長さと略等しくてもよい。 Each of the short side 150b of the flow path 110a is facing in parallel with the short side 150b of the adjacent flow path 110a. That is, the wall surfaces forming the flow path 110a face each other in parallel in the partition wall 120b located between the adjacent flow paths 110a. In the honey-comb filter 100, between the adjacent flow paths 110a, at least one length of the short side 150b of the flow path 110a may be substantially equal to the length of the opposing short side 150b. May be substantially equal to the length of the opposing short side 150b.
 図3は、第2実施形態に係るハニカムフィルタを模式的に示す図であり、図3(b)は、図3(a)における領域R2の拡大図である。図4は、図3のIV-IV矢視図である。ハニカムフィルタ200は、一方の端面(第1の端面)200aと、端面200aの反対側に位置する他方の端面(第2の端面)200bと、を有している。端面200a及び端面200bは互いに平行に対向している。 Fig. 3 is a diagram schematically showing a honeycomb filter according to the second embodiment, and Fig. 3 (b) is an enlarged view of a region R2 in Fig. 3 (a). 4 is a view taken in the direction of arrows IV-IV in FIG. The honeycomb filter 200 has one end face (first end face) 200a and the other end face (second end face) 200b located on the opposite side of the end face 200a. The end surface 200a and the end surface 200b face each other in parallel.
 ハニカムフィルタ200は、互いに平行に伸びる複数の流路210を有する円柱体である。複数の流路210は、ハニカムフィルタ200の中心軸に平行に伸びる隔壁220により仕切られている。複数の流路210は、複数の流路(第1の流路)210aと、流路210aに隣接する複数の流路(第2の流路)210bとを有している。流路210a及び流路210bは、端面200a,200bに対して垂直に、端面200aから端面200bまで伸びている。 The honeycomb filter 200 is a cylindrical body having a plurality of flow paths 210 extending in parallel to each other. The plurality of flow paths 210 are partitioned by partition walls 220 extending in parallel with the central axis of the honeycomb filter 200. The plurality of flow paths 210 include a plurality of flow paths (first flow paths) 210a and a plurality of flow paths (second flow paths) 210b adjacent to the flow paths 210a. The channel 210a and the channel 210b extend from the end surface 200a to the end surface 200b perpendicular to the end surfaces 200a and 200b.
 流路210のうちの一部を構成する流路210aの一端は、端面200aにおいて開口しており、流路210aの他端は、端面200bにおいて封口部230により封口されている。流路210のうちの残部を構成する流路210bの一端は、端面200aにおいて封口部230により封口されており、流路210bの他端は、端面200bにおいて開口している。ハニカムフィルタ200において、例えば、流路210aにおける端面200a側の端部はガス流入口として開口しており、流路210bにおける端面200b側の端部はガス流出口として開口している。 One end of the flow path 210a constituting a part of the flow path 210 is opened at the end face 200a, and the other end of the flow path 210a is sealed by the sealing portion 230 at the end face 200b. One end of the flow path 210b constituting the remaining part of the flow path 210 is sealed by the sealing portion 230 at the end face 200a, and the other end of the flow path 210b is opened at the end face 200b. In the honeycomb filter 200, for example, an end portion on the end surface 200a side of the flow path 210a is opened as a gas inlet, and an end portion of the flow path 210b on the end surface 200b side is opened as a gas outlet.
 流路210a及び流路210bにおける当該流路の軸方向に垂直な断面は、六角形状である。流路210bの断面は、例えば、当該断面を形成する辺240の長さが互いに略等しい正六角形状であるが、扁平六角形状であってもよい。流路210aの断面は、例えば扁平六角形状であるが、正六角形状であってもよい。流路210aの断面において互いに対向する辺の長さは、互いに異なっている。流路210aの断面は、当該断面を形成する辺250として、互いに長さの略等しい三つの長辺250aと、互いに長さの略等しい三つの短辺250bと、を有している。長辺250a及び短辺250bは、互いに平行に対向しており、短辺250bは、長辺250aの両側にそれぞれ配置されている。 The cross section perpendicular to the axial direction of the flow path 210a and the flow path 210b has a hexagonal shape. The cross section of the flow path 210b is, for example, a regular hexagonal shape in which the lengths of the sides 240 forming the cross section are substantially equal to each other, but may be a flat hexagonal shape. The cross section of the flow path 210a is, for example, a flat hexagonal shape, but may be a regular hexagonal shape. The lengths of the sides facing each other in the cross section of the flow path 210a are different from each other. The cross section of the channel 210a has three long sides 250a having substantially the same length and three short sides 250b having substantially the same length as the sides 250 forming the cross section. The long side 250a and the short side 250b face each other in parallel, and the short side 250b is disposed on each side of the long side 250a.
 隔壁220は、流路210a及び流路210bを仕切る部分として隔壁220aを有している。すなわち、流路210a及び流路210bは、隔壁220aを介して互いに隣接している。隣接する流路210bの間には、当該流路210bの配列方向に略直交する方向に隣接する二つの流路210aが配置されており、当該隣接する二つの流路210aは、隣接する流路210bの断面の中心同士を結ぶ線を挟んで対称に配置されている。 The partition 220 has the partition 220a as a part which partitions off the flow path 210a and the flow path 210b. That is, the flow path 210a and the flow path 210b are adjacent to each other through the partition wall 220a. Between the adjacent flow paths 210b, two flow paths 210a adjacent to each other in a direction substantially orthogonal to the arrangement direction of the flow paths 210b are arranged, and the two adjacent flow paths 210a are adjacent to each other. They are arranged symmetrically across a line connecting the centers of the sections of 210b.
 流路210bの辺240のそれぞれは、複数の流路210aのいずれか一つの流路の長辺250aと平行に対向している。すなわち、流路210bを形成する壁面のそれぞれは、流路210a及び流路210bの間に位置する隔壁220aにおいて、流路210aを形成する一壁面と平行に対向している。また、流路210は、1つの流路210bと、当該流路210bを囲む6つの流路210aとを含む構成単位を有しており、当該構成単位において、流路210bの辺240の全てが流路210aの長辺250aと対向している。流路210bの断面の各頂点は、隣接する流路210bの頂点と流路210bの配列方向に対向している。ハニカムフィルタ200では、流路210bの辺240の少なくとも一つの長さが、対向する長辺250aの長さと略等しくてもよく、辺240のそれぞれの長さが、対向する長辺250aの長さと略等しくてもよい。 Each of the sides 240 of the flow path 210b faces the long side 250a of any one of the plurality of flow paths 210a in parallel. That is, each of the wall surfaces forming the flow path 210b faces the one wall surface forming the flow path 210a in parallel in the partition wall 220a positioned between the flow path 210a and the flow path 210b. The flow path 210 includes a structural unit including one flow path 210b and six flow paths 210a surrounding the flow path 210b. In the structural unit, all the sides 240 of the flow path 210b are included. It faces the long side 250a of the flow path 210a. Each vertex of the cross section of the flow path 210b is opposed to the apex of the adjacent flow path 210b in the arrangement direction of the flow paths 210b. In the honeycomb filter 200, at least one length of the side 240 of the flow path 210b may be substantially equal to the length of the opposed long side 250a, and each length of the side 240 is equal to the length of the opposed long side 250a. It may be substantially equal.
 隔壁220は、互いに隣接する流路210a同士を仕切る部分として隔壁220bを有している。すなわち、流路210bを囲む流路210a同士は、隔壁220bを介して互いに隣接している。 The partition 220 has the partition 220b as a part which partitions off the mutually adjacent flow paths 210a. That is, the flow paths 210a surrounding the flow path 210b are adjacent to each other through the partition 220b.
 流路210aの短辺250bのそれぞれは、隣接する流路210aの短辺250bと平行に対向している。すなわち、流路210aを形成する壁面は、隣接する流路210aの間に位置する隔壁220bにおいて互いに平行に対向している。また、1つの流路210aは、3つの流路210bに囲まれている。ハニカムフィルタ200では、隣接する流路210aの間において、流路210aの短辺250bの少なくとも一つの長さが、対向する短辺250bの長さと略等しくてもよく、短辺250bのそれぞれの長さが、対向する短辺250bの長さと略等しくてもよい。 Each of the short side 250b of the flow path 210a is facing in parallel with the short side 250b of the adjacent flow path 210a. That is, the wall surfaces forming the flow path 210a face each other in parallel in the partition 220b located between the adjacent flow paths 210a. One flow path 210a is surrounded by three flow paths 210b. In the honey-comb filter 200, between the adjacent flow paths 210a, at least one length of the short side 250b of the flow path 210a may be substantially equal to the length of the opposing short side 250b. May be substantially equal to the length of the opposing short side 250b.
 流路の軸方向におけるハニカムフィルタ100,200の長さは、例えば50~300mmである。ハニカムフィルタ100,200の外径は、例えば50~250mmである。ハニカムフィルタ100において、辺140の長さは、例えば0.4~2.0mmである。長辺150aの長さは、例えば0.4~2.0mmであり、短辺150bの長さは、例えば0.3~2.0mmである。ハニカムフィルタ200において、辺240の長さは、例えば0.4~2.0mmである。長辺250aの長さは、例えば0.4~2.0mmであり、短辺250bの長さは、例えば0.3~2.0mmである。隔壁120,220の厚み(セル壁厚)は、例えば0.1~0.8mmである。ハニカムフィルタ100,200におけるセル密度(例えば、ハニカムフィルタ100において、端面100aにおける流路110a及び流路110bの密度の合計)は、50~600cpsiが好ましく、100~500cpsiがより好ましい。 The length of the honeycomb filters 100 and 200 in the axial direction of the flow path is, for example, 50 to 300 mm. The outer diameter of the honeycomb filters 100 and 200 is, for example, 50 to 250 mm. In the honeycomb filter 100, the length of the side 140 is, for example, 0.4 to 2.0 mm. The length of the long side 150a is, for example, 0.4 to 2.0 mm, and the length of the short side 150b is, for example, 0.3 to 2.0 mm. In the honeycomb filter 200, the length of the side 240 is, for example, 0.4 to 2.0 mm. The length of the long side 250a is, for example, 0.4 to 2.0 mm, and the length of the short side 250b is, for example, 0.3 to 2.0 mm. The thickness of the partition walls 120 and 220 (cell wall thickness) is, for example, 0.1 to 0.8 mm. The cell density in the honeycomb filters 100 and 200 (for example, in the honeycomb filter 100, the total density of the flow path 110a and the flow path 110b in the end face 100a) is preferably 50 to 600 cpsi, and more preferably 100 to 500 cpsi.
 ハニカムフィルタ100において、端面100aにおける複数の流路110aの開口面積の合計は、端面100bにおける複数の流路110bの開口面積の合計よりも大きい。ハニカムフィルタ200において、端面200aにおける複数の流路210aの開口面積の合計は、端面200bにおける複数の流路210bの開口面積の合計よりも大きい。 In the honeycomb filter 100, the total opening area of the plurality of flow paths 110a on the end face 100a is larger than the total opening area of the plurality of flow paths 110b on the end face 100b. In the honeycomb filter 200, the total opening area of the plurality of flow paths 210a on the end face 200a is larger than the total opening area of the plurality of flow paths 210b on the end face 200b.
 端面100a,200aにおける流路110a,210aの水力直径は、被捕集物の堆積量に応じて圧力損失が変化し易くなる観点から、1.4mm以下である。また、流路110a,210aの水力直径は、被捕集物の堆積量に応じて圧力損失が更に変化し易くなる観点から、1.3mm以下が好ましく、1.2mm以下がより好ましい。流路110a,210aの水力直径は、流路内における端面側の領域に被捕集物が堆積することを更に抑制する観点から、0.5mm以上が好ましく、0.7mm以上がより好ましい。 The hydraulic diameters of the flow paths 110a and 210a on the end faces 100a and 200a are 1.4 mm or less from the viewpoint that pressure loss is likely to change according to the amount of collected matter. In addition, the hydraulic diameters of the flow paths 110a and 210a are preferably 1.3 mm or less, and more preferably 1.2 mm or less, from the viewpoint that the pressure loss is more likely to change according to the amount of collected substances. The hydraulic diameters of the flow paths 110a and 210a are preferably 0.5 mm or more, and more preferably 0.7 mm or more, from the viewpoint of further suppressing accumulation of collected substances in the region on the end face side in the flow path.
 端面100b,200bにおける流路110b,210bの水力直径は、端面100a,200aにおける流路110a,210aの水力直径よりも大きいことが好ましい。端面100b,200bにおける流路110b,210bの水力直径は、被捕集物の堆積量に応じて圧力損失が更に変化し易くなる観点から、1.7mm以下が好ましく、1.6mm以下がより好ましい。流路110b,210bの水力直径は、流路内における端面側の領域に被捕集物が堆積することを更に抑制する観点から、0.5mm以上が好ましく、0.7mm以上がより好ましく、0.9mm以上が更に好ましい。 The hydraulic diameter of the flow paths 110b and 210b on the end faces 100b and 200b is preferably larger than the hydraulic diameter of the flow paths 110a and 210a on the end faces 100a and 200a. The hydraulic diameters of the flow paths 110b and 210b in the end faces 100b and 200b are preferably 1.7 mm or less, and more preferably 1.6 mm or less, from the viewpoint that the pressure loss is more likely to change depending on the amount of collected matter. . The hydraulic diameters of the flow paths 110b and 210b are preferably 0.5 mm or more, more preferably 0.7 mm or more, from the viewpoint of further suppressing the accumulation of collected substances in the region on the end face side in the flow path. More preferably, it is 9 mm or more.
 なお、ハニカムフィルタの形状は、上記のハニカムフィルタ100,200のように、第1の流路(流路110a,210a)の軸方向に垂直な第1の流路の断面が、第1の辺(長辺150a,250a)と、当該第1の辺の両側にそれぞれ配置された第2の辺(短辺150b,250b)とを有しており、第2の流路(流路110b,210b)の軸方向に垂直な第2の流路の断面を形成する辺(辺140,240)のそれぞれが、第1の流路の第1の辺と対向しており、第1の流路の第2の辺のそれぞれが、隣接する第1の流路の第2の辺と対向している形態であってもよいが、必ずしも上述した形状に限定されるものではない。 The shape of the honeycomb filter is such that the cross section of the first channel perpendicular to the axial direction of the first channel ( channels 110a and 210a) is the first side as in the honeycomb filters 100 and 200 described above. ( Long sides 150a, 250a) and second sides ( short sides 150b, 250b) respectively disposed on both sides of the first side, and a second channel ( channels 110b, 210b). ) Each of the sides (sides 140 and 240) forming a cross section of the second flow path perpendicular to the axial direction of the first flow path are opposed to the first side of the first flow path. Each of the second sides may be in a form facing the second side of the adjacent first flow path, but is not necessarily limited to the shape described above.
 また、ハニカムフィルタにおける流路の軸方向に垂直な当該流路の断面は、六角形状であることに限定されず、三角形状、矩形状、八角形状、円形状、楕円形状等であってもよい。また、流路には、径の異なるものが混在していてもよく、断面形状の異なるものが混在していてもよい。また、流路の配置は特に限定されるものではなく、流路の中心軸の配置は、正三角形の頂点に配置される正三角形配置、千鳥配置等であってもよい。さらに、ハニカムフィルタは円柱体であることに限られず、楕円柱、三角柱、四角柱、六角柱、八角柱等の柱状体であってもよい。 Further, the cross section of the channel perpendicular to the axial direction of the channel in the honeycomb filter is not limited to the hexagonal shape, and may be a triangular shape, a rectangular shape, an octagonal shape, a circular shape, an elliptical shape, or the like. . Moreover, in the flow path, those having different diameters may be mixed, or those having different cross-sectional shapes may be mixed. In addition, the arrangement of the flow paths is not particularly limited, and the arrangement of the central axes of the flow paths may be an equilateral triangle arrangement, a staggered arrangement, or the like arranged at the apex of the equilateral triangle. Furthermore, the honeycomb filter is not limited to a cylindrical body, and may be a columnar body such as an elliptical column, a triangular column, a quadrangular column, a hexagonal column, or an octagonal column.
 上記ハニカムフィルタ100,200において隔壁は、多孔質であり、例えば多孔質セラミックス焼結体を含んでいる。隔壁は、流体が透過できるような構造を有している。具体的には、流体が通過し得る多数の連通孔(流通経路)が隔壁内に形成されている。 In the honeycomb filters 100 and 200, the partition walls are porous, and include, for example, a porous ceramic sintered body. The partition has a structure that allows fluid to pass therethrough. Specifically, a large number of communication holes (flow channels) through which fluid can pass are formed in the partition wall.
 隔壁の気孔率は、ハニカムフィルタの捕集効率及び圧力損失を更に向上させる観点から、20体積%以上が好ましく、30体積%以上がより好ましい。隔壁の気孔率は、70体積%以下が好ましく、60体積%以下がより好ましい。隔壁の平均気孔径は、ハニカムフィルタの捕集効率及び圧力損失を更に向上させる観点から、5μm以上が好ましく、8μm以上がより好ましい。隔壁の平均気孔径は、30μm以下が好ましく、25μm以下がより好ましい。隔壁の気孔率及び平均気孔径は、原料の粒子径、造孔剤の添加量、造孔剤の種類、焼成条件により調整可能であり、水銀圧入法により測定することができる。 The porosity of the partition walls is preferably 20% by volume or more, and more preferably 30% by volume or more, from the viewpoint of further improving the collection efficiency and pressure loss of the honeycomb filter. The porosity of the partition walls is preferably 70% by volume or less, and more preferably 60% by volume or less. The average pore diameter of the partition walls is preferably 5 μm or more, and more preferably 8 μm or more from the viewpoint of further improving the collection efficiency and pressure loss of the honeycomb filter. The average pore diameter of the partition walls is preferably 30 μm or less, and more preferably 25 μm or less. The porosity and average pore diameter of the partition walls can be adjusted by the particle diameter of the raw material, the amount of pore former added, the kind of pore former, and the firing conditions, and can be measured by mercury porosimetry.
 隔壁の構成材料は、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム系セラミックス等の酸化物;シリコンカーバイド;窒化珪素が挙げられ、これらの中でも、チタン酸アルミニウム系セラミックスが好ましく、チタン酸アルミニウム又はチタン酸アルミニウムマグネシウムがより好ましい。 Examples of the material constituting the partition include oxides such as alumina, silica, mullite, cordierite, glass, and aluminum titanate ceramics; silicon carbide; silicon nitride. Among these, aluminum titanate ceramics are preferable. Aluminum titanate or aluminum magnesium titanate is more preferable.
 隔壁がチタン酸アルミニウム系セラミックスを含有する場合、Al23に換算したアルミニウムと、TiO2に換算したチタンとのモル比(アルミニウム:チタン)は、35:65~45:55が好ましく、40:60~45:55がより好ましい。隔壁がチタン酸アルミニウムマグネシウムを含有する場合、チタン酸アルミニウムマグネシウムの組成式は、例えばAl2(1-x)MgTi(1+x)であり、xの値は、0.03以上が好ましく、0.03~0.20がより好ましく、0.03~0.18が更に好ましい。 When the partition contains an aluminum titanate ceramic, the molar ratio of aluminum converted to Al 2 O 3 and titanium converted to TiO 2 (aluminum: titanium) is preferably 35:65 to 45:55, and 40 : 60 to 45:55 is more preferable. When the partition wall contains aluminum magnesium titanate, the composition formula of aluminum magnesium titanate is, for example, Al 2 (1-x) Mg x Ti (1 + x) O 5 , and the value of x is preferably 0.03 or more. 0.03-0.20 is more preferable, and 0.03-0.18 is still more preferable.
 チタン酸アルミニウム系セラミックスを含有する隔壁は、例えば、主にチタン酸アルミニウム系結晶からなる多孔性セラミックスから形成されている。「主にチタン酸アルミニウム系結晶からなる」とは、セラミックス焼成体を構成する主結晶相がチタン酸アルミニウム系結晶相であることを意味し、チタン酸アルミニウム系結晶相は、例えば、チタン酸アルミニウム結晶相、チタン酸アルミニウムマグネシウム結晶相である。 The partition wall containing the aluminum titanate-based ceramics is formed of, for example, porous ceramics mainly made of aluminum titanate-based crystals. “Mainly composed of an aluminum titanate crystal” means that the main crystal phase constituting the ceramic fired body is an aluminum titanate crystal phase. The aluminum titanate crystal phase is, for example, aluminum titanate. Crystal phase, aluminum magnesium titanate crystal phase.
 チタン酸アルミニウム系セラミックスを含有する隔壁は、ケイ素源粉末由来のガラス相を含んでいてもよい。ガラス相は、SiOが主要成分である非晶質相を指す。また、チタン酸アルミニウム系セラミックスを含有する隔壁は、チタン酸アルミニウム系結晶相及びガラス相以外の結晶相を含んでいてもよい。このような結晶相としては、セラミックス焼成体の作製に用いる原料由来の相等を挙げることができる。原料由来の相は、例えば、ハニカムフィルタの製造に際してチタン酸アルミニウム系結晶相を形成することなく残存したアルミニウム源粉末、チタン源粉末、マグネシウム源粉末等に由来する相であり、アルミナ、チタニア、マグネシア等の相が挙げられる。隔壁を形成する結晶相は、X線回折スペクトルにより確認することができる。 The partition containing the aluminum titanate ceramic may contain a glass phase derived from silicon source powder. The glass phase refers to an amorphous phase in which SiO 2 is the main component. Moreover, the partition containing an aluminum titanate ceramic may contain crystal phases other than an aluminum titanate crystal phase and a glass phase. Examples of such a crystal phase include a phase derived from a raw material used for producing a ceramic fired body. The phase derived from the raw material is, for example, a phase derived from an aluminum source powder, a titanium source powder, a magnesium source powder, or the like remaining without forming an aluminum titanate-based crystal phase during the manufacture of the honeycomb filter, such as alumina, titania, magnesia. And the like. The crystal phase forming the partition can be confirmed by an X-ray diffraction spectrum.
 ハニカムフィルタ100,200は、例えば、ディーゼルエンジン、ガソリンエンジン等の内燃機関からの排ガス中に含まれるすす等の被捕集物を捕集するパティキュレートフィルタとして適する。例えば、ハニカムフィルタ100では、図2に示すように、端面100aから流路110aに供給されたガスGが、隔壁120内の連通孔を通過して隣の流路110bに到達し、端面100bから排出される。このとき、ガスG中の被捕集物が隔壁120の表面及び/又は連通孔内に捕集されてガスGから除去されることにより、ハニカムフィルタ100はフィルタとして機能する。ハニカムフィルタ200についても、同様にフィルタとして機能する。 Honeycomb filters 100 and 200 are suitable as particulate filters that collect collected materials such as soot contained in exhaust gas from internal combustion engines such as diesel engines and gasoline engines. For example, in the honeycomb filter 100, as shown in FIG. 2, the gas G supplied from the end face 100a to the flow path 110a passes through the communication hole in the partition wall 120 and reaches the adjacent flow path 110b, and from the end face 100b. Discharged. At this time, the collected matter in the gas G is collected on the surface of the partition wall 120 and / or in the communication hole and removed from the gas G, whereby the honeycomb filter 100 functions as a filter. Similarly, the honeycomb filter 200 functions as a filter.
<ハニカムフィルタの製造方法>
 次に、ハニカムフィルタの製造方法について説明する。ハニカムフィルタの製造方法は、例えば、無機化合物粉末及び添加剤を含む原料混合物を調製する原料調製工程と、原料混合物を成形して、流路を有する成形体を得る成形工程と、成形体を焼成する焼成工程と、を備え、成形工程と焼成工程の間、又は、焼成工程の後に、各流路の一端を封口する封口工程を更に備える。以下、隔壁がチタン酸アルミニウム系セラミックスを含む場合を一例として、ハニカムフィルタの製造方法を説明する。
<Honeycomb filter manufacturing method>
Next, a method for manufacturing a honeycomb filter will be described. A method for manufacturing a honeycomb filter includes, for example, a raw material preparation step for preparing a raw material mixture containing an inorganic compound powder and an additive, a forming step for forming a raw material mixture to obtain a formed body having a flow path, and firing the formed body. A sealing step of sealing one end of each flow path between the molding step and the baking step or after the baking step. Hereinafter, a method for manufacturing a honeycomb filter will be described by taking as an example a case where the partition walls include an aluminum titanate ceramic.
[原料調製工程]
 原料調製工程では、無機化合物粉末と添加剤とを混合した後に混練して原料混合物を調製する。無機化合物粉末は、例えば、α-アルミナ粉末等のアルミニウム源粉末、及び、アナターゼ型又はルチル型のチタニア粉末等のチタン源粉末(チタニウム源粉末)を含み、必要に応じて、マグネシア粉末又はマグネシアスピネル粉末等のマグネシウム源粉末、及び/又は、酸化ケイ素粉末又はガラスフリット等のケイ素源粉末を更に含むことができる。各原料粉末は、1種又は2種以上のいずれでもよい。各原料粉末は、その原料由来又は製造工程において不可避的に含まれる微量成分を含有し得る。
[Raw material preparation process]
In the raw material preparation step, the inorganic compound powder and the additive are mixed and then kneaded to prepare a raw material mixture. The inorganic compound powder includes, for example, an aluminum source powder such as α-alumina powder and a titanium source powder (titanium source powder) such as anatase type or rutile type titania powder, and magnesia powder or magnesia spinel as necessary. A magnesium source powder such as a powder and / or a silicon source powder such as a silicon oxide powder or a glass frit can be further included. Each raw material powder may be one type or two or more types. Each raw material powder may contain a trace component derived from the raw material or inevitably contained in the production process.
 各原料粉末について、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(中心粒径、D50)は下記の範囲が好ましい。アルミニウム源粉末のD50は、例えば20~60μmである。チタン源粉末のD50は、例えば0.1~25μmである。マグネシウム源粉末のD50は、例えば0.5~30μmである。ケイ素源粉末のD50は、例えば0.5~30μmである。 For each raw material powder, a volume-based cumulative particle size equivalent to 50% (center particle size, D50) measured by a laser diffraction method is preferably in the following range. D50 of the aluminum source powder is, for example, 20 to 60 μm. D50 of the titanium source powder is, for example, 0.1 to 25 μm. The D50 of the magnesium source powder is, for example, 0.5 to 30 μm. D50 of the silicon source powder is, for example, 0.5 to 30 μm.
 原料混合物には、チタン酸アルミニウム又はチタン酸アルミニウムマグネシウムが含まれていてもよい。例えば、原料混合物の構成成分としてチタン酸アルミニウムマグネシウムを使用する場合、チタン酸アルミニウムマグネシウムは、アルミニウム源、チタン源及びマグネシウム源を兼ね備えた原料混合物に相当する。 The raw material mixture may contain aluminum titanate or aluminum magnesium titanate. For example, when aluminum magnesium titanate is used as a constituent of the raw material mixture, the aluminum magnesium titanate corresponds to a raw material mixture having an aluminum source, a titanium source, and a magnesium source.
 添加剤としては、例えば、造孔剤(孔形成剤)、バインダ、可塑剤、分散剤、溶媒が挙げられる。 Examples of additives include a pore-forming agent (pore-forming agent), a binder, a plasticizer, a dispersant, and a solvent.
 造孔剤としては、焼成工程において成形体を脱脂・焼成する温度以下で消失する素材によって形成されたものを使用することができる。脱脂又は焼成において、造孔剤を含有する成形体が加熱されると、造孔剤は燃焼等によって消滅する。これにより、造孔剤が存在していた箇所に空間ができると共に、この空間同士の間に位置する無機化合物粉末が焼成の際に収縮することにより、流体を流すことができる連通孔を隔壁内に形成することができる。 As the pore-forming agent, one formed by a material that disappears at a temperature lower than the temperature at which the molded body is degreased and fired in the firing process can be used. In degreasing or firing, when a molded body containing a pore forming agent is heated, the pore forming agent disappears due to combustion or the like. As a result, a space is created at the location where the pore-forming agent was present, and the communication hole through which the fluid can flow is formed in the partition wall by shrinking the inorganic compound powder located between the spaces during firing. Can be formed.
 造孔剤は、例えば、トウモロコシ澱粉、大麦澱粉、小麦澱粉、タピオカ澱粉、豆澱粉、米澱粉、エンドウ澱粉、サンゴヤシ澱粉、カンナ澱粉、ポテト澱粉(馬鈴薯デンプン)である。造孔剤において、レーザ回折法により測定される体積基準の累積百分率50%相当粒径(D50)は、例えば5~50μmである。原料混合物が造孔剤を含有する場合、造孔剤の含有量は、例えば、無機化合物粉末100質量部に対して1~25質量部である。 The pore-forming agent is, for example, corn starch, barley starch, wheat starch, tapioca starch, bean starch, rice starch, pea starch, coral starch, canna starch, potato starch (potato starch). In the pore-forming agent, the volume-based cumulative particle size (D50) measured by the laser diffraction method is 50 to 50 μm, for example. When the raw material mixture contains a pore-forming agent, the content of the pore-forming agent is, for example, 1 to 25 parts by mass with respect to 100 parts by mass of the inorganic compound powder.
 バインダは、例えば、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシルメチルセルロース、ナトリウムカルボキシルメチルセルロース等のセルロース類;ポリビニルアルコール等のアルコール類;リグニンスルホン酸塩等の塩;パラフィンワックス、マイクロクリスタリンワックス等のワックスである。原料混合物におけるバインダの含有量は、例えば、無機化合物粉末100質量部に対して20質量部以下である。 The binder is, for example, celluloses such as methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose; alcohols such as polyvinyl alcohol; salts such as lignin sulfonate; waxes such as paraffin wax and microcrystalline wax. Content of the binder in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.
 可塑剤は、例えばグリセリン等のアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸等の高級脂肪酸;ステアリン酸アルミニウム等のステアリン酸金属塩、ポリオキシアルキレンアルキルエーテル(例えばポリオキシエチレンポリオキシプロピレンブチルエーテル)である。原料混合物における可塑剤の含有量は、例えば、無機化合物粉末100質量部に対して10質量部以下である。 Examples of the plasticizer include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, alginic acid, oleic acid and stearic acid; stearic acid metal salts such as aluminum stearate, polyoxyalkylene alkyl ethers (for example, Polyoxyethylene polyoxypropylene butyl ether). Content of the plasticizer in a raw material mixture is 10 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.
 分散剤は、例えば、硝酸、塩酸、硫酸等の無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸;メタノール、エタノール、プロパノール等のアルコール類;ポリカルボン酸アンモニウムである。原料混合物における分散剤の含有量は、例えば、無機化合物粉末100質量部に対して20質量部以下である。 Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid; alcohols such as methanol, ethanol, and propanol; ammonium polycarboxylate. Content of the dispersing agent in a raw material mixture is 20 mass parts or less with respect to 100 mass parts of inorganic compound powder, for example.
 溶媒は、例えば水であり、不純物が少ない点で、イオン交換水が好ましい。原料混合物が溶媒を含有する場合、溶媒の含有量は、例えば、無機化合物粉末100質量部に対して10~100質量部である。 The solvent is, for example, water, and ion-exchanged water is preferable in terms of few impurities. When the raw material mixture contains a solvent, the content of the solvent is, for example, 10 to 100 parts by mass with respect to 100 parts by mass of the inorganic compound powder.
[成形工程]
 成形工程では、ハニカム構造を有するグリーンハニカム成形体を得る。成形工程では、例えば、一軸押出機により原料混合物を混練しながらダイから押出す、いわゆる押出成形法を採用することができる。
[Molding process]
In the forming step, a green honeycomb formed body having a honeycomb structure is obtained. In the molding step, for example, a so-called extrusion molding method in which the raw material mixture is extruded from a die while being kneaded by a single screw extruder can be employed.
[焼成工程]
 焼成工程では、成形工程において得られた、ハニカム構造を有するグリーンハニカム成形体を焼成してハニカム焼成体を得る。焼成工程では、成形体の焼成前に、成形体中(原料混合物中)に含まれるバインダ等を除去するための仮焼(脱脂)が行われてもよい。成形体の焼成において、焼成温度は、通常1300℃以上であり、好ましくは1400℃以上である。また、焼成温度は、通常1650℃以下であり、好ましくは1550℃以下である。昇温速度は特に限定されるものではないが、通常1~500℃/時間である。焼成時間は、無機化合物粉末がチタン酸アルミニウム系結晶に遷移するのに充分な時間であればよく、原料の量、焼成炉の形式、焼成温度、焼成雰囲気等により異なるが、通常は10分~24時間である。
[Baking process]
In the firing step, the green honeycomb formed body having a honeycomb structure obtained in the forming step is fired to obtain a honeycomb fired body. In the firing step, calcination (degreasing) for removing a binder or the like contained in the molded body (in the raw material mixture) may be performed before the molded body is fired. In the firing of the molded body, the firing temperature is usually 1300 ° C. or higher, preferably 1400 ° C. or higher. Moreover, a calcination temperature is 1650 degrees C or less normally, Preferably it is 1550 degrees C or less. The temperature raising rate is not particularly limited, but is usually 1 to 500 ° C./hour. The firing time may be a time sufficient for the inorganic compound powder to transition to the aluminum titanate-based crystal, and varies depending on the amount of raw material, type of firing furnace, firing temperature, firing atmosphere, etc., but usually 10 minutes to 24 hours.
[封口工程]
 封口工程は、成形工程と焼成工程の間、又は、焼成工程の後に行われる。成形工程と焼成工程の間に封口工程を行う場合、成形工程において得られた未焼成のグリーンハニカム成形体の各流路の一方の端部を封口材で封口した後、焼成工程においてグリーンハニカム成形体と共に封口材を焼成することにより、流路の一方の端部を封口する封口部を備えるハニカムフィルタが得られる。焼成工程の後に封口工程を行う場合、焼成工程において得られたハニカム焼成体の各流路の一方の端部を封口材で封口した後、ハニカム焼成体と共に封口材を焼成することにより、流路の一方の端部を封口する封口部を備えるハニカムフィルタが得られる。封口材としては、上記グリーンハニカム成形体を得るための原料混合物と同様の混合物を用いることができる。
[Sealing process]
The sealing step is performed between the molding step and the firing step or after the firing step. When a sealing step is performed between the forming step and the firing step, one end of each flow path of the green honeycomb molded body obtained in the forming step is sealed with a sealing material, and then green honeycomb forming is performed in the firing step. By firing the sealing material together with the body, a honeycomb filter having a sealing portion that seals one end of the flow path is obtained. When performing the sealing step after the firing step, after sealing one end of each flow path of the honeycomb fired body obtained in the firing step with the sealing material, the flow path is obtained by firing the sealing material together with the honeycomb fired body. A honeycomb filter provided with a sealing portion that seals one end of the above is obtained. As the sealing material, a mixture similar to the raw material mixture for obtaining the green honeycomb molded body can be used.
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<ハニカムフィルタの作製>
(実施例1)
 Al粉末、TiO粉末、MgO粉末、SiO粉末、チタン酸アルミニウムマグネシウムとアルミナとアルミノシリケートガラスとの複合相をもつセラミックス粉末(仕込み時の組成式:41.4Al-49.9TiO-5.4MgO-3.3SiO、式中の数値はモル比を表す)、造孔剤、有機バインダ、可塑剤及び水を含む原料混合物を調製した。原料混合物中の主な成分の含有量は下記の値に調整した。
<Production of honeycomb filter>
Example 1
Al 2 O 3 powder, TiO 2 powder, MgO powder, SiO 2 powder, ceramic powder having a composite phase of aluminum magnesium titanate, alumina and aluminosilicate glass (composition formula at the time of preparation: 41.4 Al 2 O 3 -49 .9TiO 2 -5.4MgO-3.3SiO 2 (the numerical values in the formula represent molar ratios), a pore mixture, an organic binder, a plasticizer, and water. The content of main components in the raw material mixture was adjusted to the following values.
[原料混合物の成分]
 Al粉末:37.3質量部
 TiO粉末:37.0質量部
 MgO粉末:1.9質量部
 SiO粉末:3.0質量部
 セラミックス粉末:8.8質量部
 造孔剤:D50が25μmの馬鈴薯澱粉、12.0質量部
 有機バインダ1:メチルセルロース(三星精密化学社製:MC-40H)、5.5質量部
 有機バインダ2:ヒドロキシプロピルメチルセルロース(三星精密化学社製:PMB-40H)、2.4質量部
 可塑剤1:グリセリン、0.4質量部
 可塑剤2:ポリオキシエチレンポリオキシプロピレンブチルエーテル、4.6質量部
 水:28.4質量部
[Components of raw material mixture]
Al 2 O 3 powder: 37.3 parts by mass TiO 2 powder: 37.0 parts by mass MgO powder: 1.9 parts by mass SiO 2 powder: 3.0 parts by mass Ceramic powder: 8.8 parts by mass Porogen: D50 Potato starch having a particle size of 25 μm, 12.0 parts by mass Organic binder 1: methylcellulose (manufactured by Samsung Seimitsu Chemical Co., Ltd .: MC-40H), 5.5 parts by mass ) 2.4 parts by mass Plasticizer 1: Glycerin, 0.4 parts by mass Plasticizer 2: Polyoxyethylene polyoxypropylene butyl ether, 4.6 parts by mass Water: 28.4 parts by mass
 上記の原料混合物を混練した後に押出成形してグリーンハニカム成形体を得た。次に、グリーンハニカム成形体を封口・焼成することにより、図3,4に示す構造を有する円柱状のハニカムフィルタ(Diesel particulate filter)を作製した。焼成温度は、1500℃であった。ハニカムフィルタのチタン酸アルミニウム化率(AT化率)を測定したところ100%であった。なお、AT化率は、ハニカムフィルタを乳鉢にて解砕して得られる粉末の粉末X線回折スペクトルにおける2θ=27.4°の位置に現れるピーク(チタニア・ルチル相(110)面)の積分強度(I)と、2θ=33.7°の位置に現れるピーク(チタン酸アルミニウムマグネシウム相(230)面)の積分強度(IAT)とから、下記式により算出した。
  AT化率(%)=IAT/(I+IAT)×100
The raw material mixture was kneaded and then extrusion molded to obtain a green honeycomb molded body. Next, the green honeycomb molded body was sealed and fired to produce a cylindrical honeycomb filter having a structure shown in FIGS. The firing temperature was 1500 ° C. The honeycomb titanate ratio (AT ratio) of the honeycomb filter was measured and found to be 100%. The AT conversion rate is the integral of the peak (titania / rutile phase (110) plane) appearing at 2θ = 27.4 ° in the powder X-ray diffraction spectrum of the powder obtained by crushing the honeycomb filter with a mortar. From the intensity (I T ) and the integrated intensity (I AT ) of the peak (aluminum magnesium titanate phase (230) plane) appearing at 2θ = 33.7 °, the calculation was performed according to the following formula.
AT conversion rate (%) = I AT / (I T + I AT ) × 100
 流路の軸方向におけるハニカムフィルタの長さは152mm(6.00インチ)であった。ハニカムフィルタの外径は144mm(5.66インチ)であった。流路の密度(セル密度)は350cpsiであった。正六角形状の流路の一辺の長さは1.2mmであった。扁平六角形状の流路における長辺の長さは1.2mmであり、短辺の長さは1.1mmであった。流路間の隔壁の厚みは0.31mm(12.3mil)であった。隔壁の気孔率は45体積%であり、隔壁の平均気孔径は、15μmであった。 The length of the honeycomb filter in the axial direction of the flow path was 152 mm (6.00 inches). The outer diameter of the honeycomb filter was 144 mm (5.66 inches). The density of the flow path (cell density) was 350 cpsi. The length of one side of the regular hexagonal channel was 1.2 mm. The length of the long side in the flat hexagonal flow path was 1.2 mm, and the length of the short side was 1.1 mm. The partition wall thickness between the channels was 0.31 mm (12.3 mil). The porosity of the partition walls was 45% by volume, and the average pore diameter of the partition walls was 15 μm.
 ハニカムフィルタの一端面における扁平六角形状の流路の開口面積の合計は、ハニカムフィルタの他端面における正六角形状の流路の開口面積の合計よりも大きいものであった。ハニカムフィルタの一端面における扁平六角形状の各流路の水力直径は、1.1mmであった。ハニカムフィルタの他端面における正六角形状の各流路の水力直径は、1.2mmであった。 The total opening area of the flat hexagonal channel on one end face of the honeycomb filter was larger than the total opening area of the regular hexagonal channel on the other end face of the honeycomb filter. The hydraulic diameter of each flat hexagonal flow path on one end face of the honeycomb filter was 1.1 mm. The hydraulic diameter of each regular hexagonal flow path on the other end face of the honeycomb filter was 1.2 mm.
(比較例1)
 SiCからなる隔壁により仕切られた互いに平行な複数の流路を有する円柱体をハニカムフィルタとして準備した。複数の流路は、複数の流路Aと、水力直径が流路Aと異なる複数の流路Bとを有しており、流路A及び流路Bは交互に配置されていた。ハニカムフィルタの一方の端面F11において流路Aは開口しており、ハニカムフィルタの他方の端面F12において流路Aは封口されていた。端面F11において流路Bは封口されており、端面F12において流路Bは開口していた。
(Comparative Example 1)
A cylindrical body having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared as a honeycomb filter. A plurality of flow paths includes a plurality of flow paths A 1, hydraulic diameter and a plurality of flow passages B 1 which is different from the flow path A 1, the flow path A 1 and the flow path B 1 represents arranged alternately It was. The flow path A 1 was open at one end face F 11 of the honeycomb filter, and the flow path A 1 was sealed at the other end face F 12 of the honeycomb filter. Flow path B 1 at the end face F 11 is sealed, a flow path B 1 at the end face F 12 was opened.
 流路の軸方向におけるハニカムフィルタの長さは152mm(6.00インチ)であった。ハニカムフィルタの外径は144mm(5.66インチ)であった。流路の密度(セル密度)は160cpsiであった。流路間の隔壁の厚みは0.38mm(15mil)であった。 The length of the honeycomb filter in the axial direction of the flow path was 152 mm (6.00 inches). The outer diameter of the honeycomb filter was 144 mm (5.66 inches). The density of the flow path (cell density) was 160 cpsi. The partition wall thickness between the channels was 0.38 mm (15 mil).
 端面F11における流路Aの開口面積の合計は、端面F12における流路Bの開口面積の合計よりも大きいものであった。端面F11における流路Aの水力直径は、2.0mmであった。端面F12における流路Bの水力直径は、1.2mmであった。 The total opening area of the flow path A 1 at the end face F 11 were those greater than the sum of the opening area of the flow path B 1 at the end face F 12. Hydraulic diameter of the channel A 1 at the end face F 11 was 2.0 mm. Hydraulic diameter of the channel B 1 of the end face F 12 was 1.2 mm.
(比較例2)
 SiCからなる隔壁により仕切られた互いに平行な複数の流路を有する円柱体をハニカムフィルタとして準備した。複数の流路は、複数の流路Aと、水力直径が流路Aと異なる複数の流路Bとを有しており、流路A及び流路Bは交互に配置されていた。ハニカムフィルタの端面F21において流路Aは開口しており、ハニカムフィルタの端面F22において流路Aは封口されていた。端面F21において流路Bは封口されており、端面F22において流路Bは開口していた。
(Comparative Example 2)
A cylindrical body having a plurality of parallel flow paths partitioned by partition walls made of SiC was prepared as a honeycomb filter. A plurality of flow paths includes a plurality of flow paths A 2, hydraulic diameter and a plurality of flow paths B 2 which is different from the flow path A 2, the flow path A 2 and the flow path B 2 are arranged alternately It was. The flow path A 2 was opened at the end face F 21 of the honeycomb filter, and the flow path A 2 was sealed at the end face F 22 of the honeycomb filter. Flow path B 2 in the end face F 21 is sealed, the flow path B 2 at the end face F 22 was opened.
 流路の軸方向におけるハニカムフィルタの長さは152mm(6.00インチ)であった。ハニカムフィルタの外径は144mm(5.66インチ)であった。流路の密度(セル密度)は280cpsiであった。流路間の隔壁の厚みは0.28mm(10.9mil)であった。 The length of the honeycomb filter in the axial direction of the flow path was 152 mm (6.00 inches). The outer diameter of the honeycomb filter was 144 mm (5.66 inches). The density of the flow path (cell density) was 280 cpsi. The thickness of the partition between the channels was 0.28 mm (10.9 mil).
 端面F21における流路Aの開口面積の合計は、端面F22における流路Bの開口面積の合計よりも大きいものであった。端面F21における流路Aの水力直径は、1.5mmであった。端面F22における流路Bの水力直径は、0.9mmであった。 The total opening area of the flow path A 2 at the end face F 21 were those greater than the sum of the opening area of the flow path B 2 at the end face F 22. Hydraulic diameter of the channel A 2 of the end face F 21 was 1.5 mm. Hydraulic diameter of the channel B 2 at the end face F 22 was 0.9 mm.
<圧力損失測定>
 スス堆積時の圧力損失測定を以下のとおり実施した。図5は、圧力損失の測定装置を模式的に示す図である。圧力損失測定には、スス発生装置(Matter Engineering社製、商品名:REXS)400、及び、大型コンプレッサー装置410を用いた。ハニカムフィルタにおける流路の開口面積の合計が大きい方の端面をスス発生装置400に接続し、ハニカムフィルタ(Diesel particulate filter)とスス発生装置400とを接続する配管にコンプレッサー装置410を接続した。
<Pressure loss measurement>
The pressure loss measurement during soot deposition was performed as follows. FIG. 5 is a diagram schematically illustrating a pressure loss measuring apparatus. For the pressure loss measurement, a soot generator (product name: REXS) 400 and a large compressor device 410 were used. The end face having the larger total opening area of the flow paths in the honeycomb filter was connected to the soot generator 400, and the compressor device 410 was connected to a pipe connecting the honeycomb filter (Diesel particulate filter) and the soot generator 400.
 スス発生装置400には、プロパンガスを流量2L/minで供給し、窒素ガスを流量2L/minで供給し、空気を流量1000L/minで供給した。スス発生装置400から発生するススは、プロパンガスを不完全燃焼することによって生成する人工的なススである。スス発生装置400では、空気流量又は酸素濃度等によってススの平均粒子径を制御することができる。測定に際しては、ススの平均粒子径を約90nmに調整した。ススを含む空気の流量はコンプレッサー装置410により200Nm-1に調整した。 To the soot generator 400, propane gas was supplied at a flow rate of 2 L / min, nitrogen gas was supplied at a flow rate of 2 L / min, and air was supplied at a flow rate of 1000 L / min. The soot generated from the soot generator 400 is artificial soot generated by incomplete combustion of propane gas. In the soot generator 400, the average particle diameter of the soot can be controlled by the air flow rate or the oxygen concentration. In the measurement, the average particle diameter of the soot was adjusted to about 90 nm. The flow rate of air containing soot was adjusted to 200 Nm 3 h −1 by the compressor device 410.
 スス堆積時の圧力損失挙動を把握するため、ハニカムフィルタ内部にススを供給しつつハニカムフィルタ前後の差圧(図5中の圧力P1と圧力P2の差圧ΔP)を記録した。実施例1及び比較例1,2のハニカムフィルタを用いてスス堆積量の増加に伴う圧力損失を測定した結果を図6に示す。図6に示されるように、実施例1では、比較例1,2に比して、被捕集物の堆積量に応じて圧力損失が増加し易いことが確認された。 In order to grasp the pressure loss behavior during soot deposition, the pressure difference before and after the honeycomb filter (the pressure difference ΔP between the pressure P1 and the pressure P2 in FIG. 5) was recorded while supplying soot inside the honeycomb filter. FIG. 6 shows the result of measuring the pressure loss associated with the increase in the amount of soot deposition using the honeycomb filters of Example 1 and Comparative Examples 1 and 2. As shown in FIG. 6, in Example 1, it was confirmed that the pressure loss was likely to increase in accordance with the amount of collected material compared to Comparative Examples 1 and 2.
 100,200…ハニカムフィルタ、100a,200a…一方の端面(第1の端面)、100b,200b…他方の端面(第2の端面)、110,210…流路、110a,210a…流路(第1の流路)、110b,210b…流路(第2の流路)、120,220…隔壁。
 
DESCRIPTION OF SYMBOLS 100,200 ... Honeycomb filter, 100a, 200a ... One end surface (1st end surface), 100b, 200b ... The other end surface (2nd end surface), 110, 210 ... Channel, 110a, 210a ... Channel (first) 1 channel), 110b, 210b... Channel (second channel), 120, 220.

Claims (2)

  1.  互いに平行な複数の流路を有するハニカムフィルタであって、
     前記ハニカムフィルタが、第1の端面と、当該第1の端面の反対側に位置する第2の端面と、を有し、
     前記複数の流路が、前記第2の端面側の端部が封口された複数の第1の流路と、前記第1の端面側の端部が封口された複数の第2の流路と、を有し、
     前記第1の端面における前記複数の第1の流路の開口面積の合計が、前記第2の端面における前記複数の第2の流路の開口面積の合計よりも大きく、
     前記第1の流路の水力直径が1.4mm以下である、ハニカムフィルタ。
    A honeycomb filter having a plurality of flow paths parallel to each other,
    The honeycomb filter has a first end face and a second end face located on the opposite side of the first end face;
    The plurality of flow paths include a plurality of first flow paths whose end portions on the second end face side are sealed, and a plurality of second flow paths whose end portions on the first end face side are sealed. Have
    A sum of opening areas of the plurality of first flow paths in the first end face is larger than a sum of opening areas of the plurality of second flow paths in the second end face;
    A honeycomb filter having a hydraulic diameter of the first flow path of 1.4 mm or less.
  2.  前記第2の流路の水力直径が前記第1の流路の前記水力直径よりも大きい、請求項1に記載のハニカムフィルタ。
     
    The honeycomb filter according to claim 1, wherein a hydraulic diameter of the second flow path is larger than the hydraulic diameter of the first flow path.
PCT/JP2012/082370 2011-12-22 2012-12-13 Honeycomb filter WO2013094518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-282036 2011-12-22
JP2011282036A JP2013128913A (en) 2011-12-22 2011-12-22 Honeycomb filter

Publications (1)

Publication Number Publication Date
WO2013094518A1 true WO2013094518A1 (en) 2013-06-27

Family

ID=48668409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082370 WO2013094518A1 (en) 2011-12-22 2012-12-13 Honeycomb filter

Country Status (2)

Country Link
JP (1) JP2013128913A (en)
WO (1) WO2013094518A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022937A1 (en) * 2013-08-14 2015-02-19 住友化学株式会社 Particulate filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160847A (en) 2015-03-03 2016-09-05 株式会社デンソー Exhaust emission control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095827A (en) * 2007-09-26 2009-05-07 Denso Corp Exhaust gas cleaning filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095827A (en) * 2007-09-26 2009-05-07 Denso Corp Exhaust gas cleaning filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022937A1 (en) * 2013-08-14 2015-02-19 住友化学株式会社 Particulate filter
US9540977B2 (en) 2013-08-14 2017-01-10 Sumitomo Chemical Company, Limited Particulate filter
JPWO2015022937A1 (en) * 2013-08-14 2017-03-02 住友化学株式会社 Particulate filter

Also Published As

Publication number Publication date
JP2013128913A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5981854B2 (en) Honeycomb filter and manufacturing method thereof
US8512433B2 (en) Low back pressure porous honeycomb and method
US8323557B2 (en) Method for manufacturing honeycomb structure
WO2012157421A1 (en) Honeycomb filter
JP6110751B2 (en) Plugged honeycomb structure
WO2017051800A1 (en) Honeycomb filter, and method for producing honeycomb filter
WO2013024745A1 (en) Honeycomb structure
JP2014195783A (en) Method for manufacturing honeycomb structure and honeycomb structure
JP2011161425A (en) Method for manufacturing honeycomb filter
US20240116819A1 (en) Cordierite-indialite-pseudobrookite structured ceramic bodies, batch composition mixtures, and methods of manufacturing ceramic bodies therefrom
JP5351678B2 (en) Honeycomb structure
WO2012157420A1 (en) Honeycomb filter
WO2013094518A1 (en) Honeycomb filter
JP5897140B2 (en) Manufacturing method of honeycomb structure
WO2013024744A1 (en) Honeycomb filter
JP7232908B2 (en) Cordierite-containing ceramic bodies, batch composition mixtures, and methods of making cordierite-containing ceramic bodies
WO2012157422A1 (en) Honeycomb filter
WO2012014684A1 (en) Green compact
KR20090030310A (en) Filter comprising a plurality of honeycomb elements joined together in an offset assembly
JP5860633B2 (en) Manufacturing method of honeycomb structure
WO2012157423A1 (en) Honeycomb filter
WO2012157425A1 (en) Renewal method for honeycomb filter
WO2012014683A1 (en) Honeycomb structural body
JP2014018768A (en) Exhaust gas purifying system
JP2013136479A (en) Opening sealing material and honeycomb molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860474

Country of ref document: EP

Kind code of ref document: A1