WO2005068396A1 - Honeycomb structure and method for producing the same - Google Patents

Honeycomb structure and method for producing the same Download PDF

Info

Publication number
WO2005068396A1
WO2005068396A1 PCT/JP2005/000112 JP2005000112W WO2005068396A1 WO 2005068396 A1 WO2005068396 A1 WO 2005068396A1 JP 2005000112 W JP2005000112 W JP 2005000112W WO 2005068396 A1 WO2005068396 A1 WO 2005068396A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
pore diameter
average pore
cordierite
less
Prior art date
Application number
PCT/JP2005/000112
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Suenobu
Yasushi Noguchi
Tomoo Nakamura
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to DE112005000172T priority Critical patent/DE112005000172B4/en
Priority to US10/585,190 priority patent/US7897099B2/en
Priority to JP2005517014A priority patent/JPWO2005068396A1/en
Publication of WO2005068396A1 publication Critical patent/WO2005068396A1/en
Priority to US12/659,491 priority patent/US20100215898A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Definitions

  • the present invention relates to a honeycomb structure and a method for producing the same, and more particularly, to a honeycomb structure that can be used as a filter, a catalyst carrier, and the like, and a method for suitably producing the honeycomb structure. About the method.
  • a honeycomb structure has been used as a filter (DPF) for capturing fine particles emitted from the power of a diesel engine in order to comply with the increasingly stricter vehicle emission regulations.
  • DPF filter
  • a catalyst-supported two-cam structure is used. I have.
  • honeycomb structure In such a honeycomb structure, it is required to increase the pore diameter or increase the porosity for the purpose of reducing pressure loss and the like. In addition, there is a need for larger honeycomb structures for purifying exhaust gas from large vehicles.
  • the conventional method for manufacturing a honeycomb structure has a problem in that, when the average pore diameter of the honeycomb structure is increased, for example, when the honeycomb structure is used for a DPF, the collection efficiency is reduced. Was. This problem tended to be even greater when trying to increase the porosity or size. Also, if the isostatic strength and the thermal shock resistance were reduced due to the increase in porosity and size, there was also a problem.
  • a heating rate of 400 to 1200 ° C is controlled within a predetermined range for the purpose of improving isostatic strength and reducing pressure loss.
  • Patent Document 1 a heating rate of 400 to 1200 ° C is controlled within a predetermined range for the purpose of improving isostatic strength and reducing pressure loss.
  • the temperature was raised between 1100 and 1200 ° C at a rate of 60 ° C or less, and the temperature between 1200 ° C and 1300 ° C was reduced to 80 ° C. It is disclosed that the temperature is raised at a rate of not less than ° CZhr (for example, see Patent Document 2).
  • a predetermined it is disclosed that using a raw material having a particle size of 1 to 100 ° C, a heating rate of 250 ° CZhr or less up to 1100 ° C and a heating rate of 30 to 300 ° CZhr at 1100 ° C or more (for example, Patent Reference 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-277162
  • Patent Document 2 Japanese Patent No. 2981034
  • Patent Document 3 Japanese Patent Publication No. 57-28390
  • the present invention provides a method for manufacturing a honeycomb structure capable of increasing the overall average pore diameter and reducing dispersion depending on the location of the pore diameter.
  • a feature is to provide a nod-cam structure in which variation in the hole diameter depending on the place is reduced.
  • the present inventors have investigated the cause of a decrease in the collection efficiency of a cordierite-made no-cam structure having a high porosity used in a DPF. As a result, it was found that the pore diameter at the center of the honeycomb structure became larger than the pore diameter at the outer periphery, soot and the like leaked from the center, and the collection efficiency was reduced. .
  • honeycomb structure having a small variation in pore diameter depending on the location, a small thermal expansion coefficient in the central portion and a small outer peripheral portion, and a small variation in the A-axis compression strength depending on the location and a high isostatic strength are obtained. Succeeded.
  • the present invention is a method for producing a cordierite-made honeycomb structure, comprising a step of firing a molded body in a shape of a cordierite, wherein in the firing step, the temperature of the atmosphere is increased.
  • the rate of temperature rise from 1200 ° C to 1250 ° C is 40 ° CZhr or more
  • the rate of temperature rise from 1250 ° C to 1300 ° C is 2 ° C-40 ° CZhr
  • An object of the present invention is to provide a method for manufacturing a honeycomb structure including a heating step in which a heating rate up to C is 40 ° CZhr or more.
  • a honeycomb structure having a porosity of 50% to 70%, an average pore diameter of 15 to 30 ⁇ m, and a difference in average pore diameter between a central portion and an outer peripheral portion of 5 ⁇ m or less is manufactured. It is preferable to do so. It is also preferable to manufacture a honeycomb structure having a diameter of 100 mm or more and a length of 100 mm or more. Furthermore, A-axis compression strength of the central portion and it is preferable that the thermal expansion coefficient of the outer peripheral portion to produce a hard second cam structure is not more than 1. OX 10- 6 Z ° C instrument center portion and the peripheral portion is 1. It is more preferable to manufacture a honeycomb structure having a pressure of 5 MPa or more, and it is particularly preferable to manufacture a honeycomb structure having an isostatic strength of 1. OMPa or more.
  • the plugging slurry is pressed into a molded body before firing and then fired.
  • the present invention relates to a cordierite honeycomb structure having a porosity of 50 to 70%, an average pore diameter of 15 to 30 m, and a difference in average pore diameter between the center portion and the outer peripheral portion of 5 to 5. m or less, the thermal expansion coefficient of the center portion and the peripheral portion 1. OX 10- 6 Z ° C or less, and a-axis compression strength of the central portion and the peripheral portion Ha 1. is 5MPa or more - providing a cam structure Things. More preferably, the honeycomb structure has an isostatic strength of 1. OMPa or more.
  • the average pore diameter of the honeycomb structure can be increased, and the difference in pore diameter between the central portion and the outer peripheral portion can be reduced. Further, even if the porosity of the honeycomb structure is increased or the size thereof is increased, it is possible to suppress the variation of the pore diameter depending on the location. Furthermore, thermal expansion over the entire honeycomb structure A smaller coefficient A-axis compressive strength can be improved, and isostatic strength can be improved.
  • the porosity of the honeycomb structure, the average pore diameter, the difference between the average pore diameter of the central part and the average pore diameter, the thermal expansion coefficient of the central part and the peripheral part, and the A-axis compressive strength of the central part and the peripheral part Preferably, by further setting the isostatic strength within a predetermined range, for example, when used as a DPF, pressure loss can be reduced, collection efficiency can be increased, and durability against heat and pressure can be improved.
  • FIG. 1 (a) is a schematic perspective view showing one example of a honeycomb structure according to the present invention.
  • FIG. 1 (b) is a partially enlarged plan view enlarging a portion b in FIG. 1 (a).
  • FIG. 1 (c) is a partially enlarged view schematically showing a part of a cross section parallel to the axial direction of the honeycomb structure shown in FIG. 1 (a).
  • FIG. 2 is a schematic sectional view parallel to the axial direction showing another example of the honeycomb structure according to the present invention.
  • the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these specific examples.
  • the present invention will be described by taking a honeycomb structure for a DPF as an example.
  • the features of the present invention are that the average pore diameter can be increased and the variation of the pore diameter depending on the location can be suppressed. It is possible to reduce the coefficient of thermal expansion, improve the material strength represented by A-axis compressive strength, improve the static strength, and improve the static strength over the entire honeycomb structure.
  • This feature can be suitably applied to all cordierite porous honeycomb structures, such as a catalyst carrier that is not limited to a DPF honeycomb structure.
  • FIG. 1 (a) is a schematic perspective view showing an example of a cordierite-made honeycomb structure for a DPF
  • FIG. 1 (b) is an enlarged view of a portion b in FIG. 1 (a).
  • Fig. 1 (c) is a partially enlarged plan view.
  • FIG. 2 is a partially enlarged view schematically showing a part of a cross section parallel to the axial direction of the honeycomb structure shown in FIG. 1 (a).
  • the two-cam structure 1 shown in FIGS. 1 (a)-(c) includes a partition wall 2 arranged to form a plurality of cells 3 extending in an axial direction from one end face 42 to another end face 44. .
  • a plugging portion 4 is provided so as to plug the cell 3 on one of the end faces.
  • the exhaust gas flowing into the cell 3 from one end face 42 passes through the porous partition 2, passes through the adjacent cell 3, and is discharged from the other end face 44.
  • the partition 2 serves as a filter to capture PM such as soot.
  • a plugging portion is not required.
  • the present invention provides a honeycomb structure having a plugging portion and a no-camera having no plugging portion. It is intended for both structures.
  • a cordierite honeycomb structure means that 50% by mass or more of the substance constituting the partition walls is cordierite, and 70% by mass or more, particularly 90% by mass or more is cordierite. Is preferred.
  • Such a cordierite-made honeycomb structure can be manufactured by firing a honeycomb-shaped formed body containing a cordierite-shaped raw material as a firing raw material.
  • the raw material for forming cordierite is a raw material that becomes cordierite upon firing, and has a SiO content of 42 to 56 mass
  • MgO has a chemical composition within the range of 12-16% by mass
  • talc, kaolin, calcining power, alumina, aluminum hydroxide, silica, and the like include those containing a plurality of inorganic raw materials selected in proportions such that the above chemical composition is obtained. .
  • the honeycomb shaped body usually contains a processing aid and a dispersion medium in addition to the cordierite-forming raw material.
  • processing aids include binders such as hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylinoleanol, polyethylene terephthalate, polyethylene, and glycerin, ethylene blender, dextrin, fatty acid stone, and polyalcohol.
  • pore-forming agents such as graphite, wheat flour, starch, phenolic resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, unfoamed foamed resin, unfoamed foamed resin, and water-absorbing polymer.
  • Water is usually used as the dispersion medium.
  • Drying is performed to remove water, a dispersion medium, and the like contained in the molded body.
  • drying method There is no particular limitation on the drying method.
  • drying can be performed by hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, etc.
  • hot air drying is particularly preferred in that the whole can be dried quickly and uniformly.
  • the drying temperature of hot air drying is preferably in the range of 80-150 ° C because it can be dried quickly!
  • the firing can be performed by placing the honeycomb-shaped formed body in a firing furnace, raising the ambient temperature, and maintaining the temperature at a predetermined temperature for a predetermined time.
  • the temperature range from the temperature starting temperature to 1200 ° C the effect of the heating rate on the pore diameter is small.There is no particular limitation on the heating rate, and there is no firing crack. Good,.
  • Such a heating rate varies depending on the shape of the molded body and the like, and can be appropriately selected by those skilled in the art.
  • the heating rate is 500 ° CZhr or less, further 300 ° CZhr or less, particularly 200 ° CZhr or less. It is preferable to set the heating rate.
  • it is preferably 2 ° CZhr or more, more preferably 5 ° CZhr or more, particularly preferably 10 ° CZhr or more.
  • the temperature is raised from 1200 to 1250 ° C at a rate of 40 ° CZhr or more, and the temperature is raised from 1250 to 1300 ° C at a rate of 2 ° C to 40 ° CZhr. Then, the temperature is raised from 1300 to 1400 ° C at a rate of 40 ° C or more.
  • the heating rate in the temperature range of 1250 to 1300 ° C to 40 ° CZhr or less, the difference in pore diameter between the central portion and the outer peripheral portion of the honeycomb structure can be reduced. it can.
  • the heating rate should be less than 40 ° CZhr, more preferably 30 ° CZhr or less, particularly preferably 20 ° CZhr or less. preferable.
  • the heating rate must be 2 ° C Zhr or more, preferably 3 ° C Zhr or more, and 5 ° CZhr or more. Is more preferred.
  • the pore diameter can be increased as a whole by setting the heating rate in the temperature range of 1200-1250 ° C and 1300-1400 ° C to 40 ° CZhr or more.
  • the heating rate in the temperature range of 1250-1300 ° C was set to 40 ° C
  • Zhr By setting Zhr or less, it is possible to obtain a honeycomb structure with less variation in pore diameter depending on the location.For example, when such a honeycomb structure is used as a DPF, low pressure loss and high It is possible to achieve both the collection efficiency.
  • the heating rate in the temperature range of 1200 to 1250 ° C and 1300 to 1400 ° C is preferably 45 ° CZhr or more, more preferably 50 ° CZhr or more. Is more preferable.
  • the material strength represented by the A-axis compressive strength which reduces the thermal expansion coefficient over the entire honeycomb structure, is improved, and the isostatic strength is improved. Can be improved. This is because by suppressing the rapid rise in temperature due to the exothermic reaction in the cordierite generation process, it is possible to suppress the formation of pores of non-uniform diameter due to non-uniform temperature distribution and the formation of non-uniform cordierite crystals. It is considered possible. Accordingly, pores having a more uniform diameter and cordierite in a better crystalline state can be formed, the thermal expansion coefficient is reduced over the entire honeycomb structure, the A-axis compressive strength is improved, and It is considered that the static strength can be improved.
  • the maximum temperature of firing is preferably about 1400 to 1440 ° C, and it is preferable to maintain the maximum temperature in this range for 2 to 20 hours. 1400 ° C—There is no particular limitation on the heating rate in the maximum temperature range. However, if the heating rate is too high, melting of the honeycomb structure may occur due to overshooting. It is preferable to be not more than ° CZhr. In addition, the heating rate means an average heating rate in each temperature range.
  • honeycomb structure having a relatively high porosity When a honeycomb structure having a relatively high porosity is manufactured, the problem of variation depending on the pore diameter tends to increase. However, such a sintering process increases the average pore diameter and increases the central portion. And a honeycomb structure having a small difference in average pore diameter between the outer peripheral portion and the outer peripheral portion.
  • the porosity of the honeycomb structure manufactured by the present invention is preferably 50 to 70%, the average pore diameter is 15 to 30 m, and the difference between the average pore diameter at the center and the average pore diameter at the outer periphery is 5 m or less. This range is preferable, particularly in the case of a honeycomb structure for a DPF, since both low pressure loss and high collection efficiency can be achieved.
  • c having the characteristics of such a range - the cam structure, the thermal expansion coefficient of the center portion and the peripheral portion 1. 0 X 10- 6 Z ° C or less, the A-axis compressive strength 1. 5 MPa or more, ⁇
  • the isostatic strength can be set to 1. OMPa or more, and it is preferable to manufacture such a honeycomb structure.
  • the average pore diameter and porosity of the honeycomb structure mean the average pore diameter and porosity of the entire partition 2 shown in FIG. 1 (c), respectively.
  • the average pore diameter, porosity, coefficient of thermal expansion, and A-axis compressive strength at the center of the honeycomb structure 1 are shown in FIG.
  • FIG. 2 is a cross-sectional view schematically showing a cross section parallel to the axial direction of the honeycomb structure.
  • the porosity and the pore diameter are values measured with a mercury intrusion porosimeter, and are values measured in the range of 40 to 800 ° C in accordance with the thermal expansion coefficient miS R1618.
  • the A-axis compressive strength is a value measured by a compression tester conforming to JIS B7733 in accordance with the automotive standard JASO standard M505-87 issued by the Society of Automotive Engineers of Japan.
  • the isostatic strength is indicated by a pressure value when the honeycomb structure is broken, and is a value measured according to JASO standard M505-87.
  • Another preferred embodiment to which the present invention is applied is a large honeycomb structure. Even when the size of the honeycomb structure is increased, the difference in the pore size, the coefficient of thermal expansion, and the material strength represented by the A-axis compressive strength between the central part and the outer peripheral part tends to increase. It is preferable to reduce the difference.
  • examples of a preferable application object include a diameter of 100 mm or more, a length of 100 mm or more, more preferably a diameter of 140 mm or more, and a length of 150 mm or more, particularly preferably a diameter of 140 mm to 350 mm and a length of 150 mm to 400 mm.
  • the method for forming a honeycomb-shaped formed body in the present invention is not particularly limited. However, it can be formed by, for example, the following method.
  • the above-mentioned raw material, processing aid and dispersion medium are mixed and kneaded to obtain a kneaded material, which is then formed into a honeycomb shape.
  • Mixing can be performed using a general mixer.
  • the kneading can be performed using a kneading machine such as a general kneader, a pressure kneader, a single-screw continuous extruder, a twin-screw continuous kneading extruder, a vacuum kneader and the like. it can.
  • the molding may be performed by any known method such as extrusion molding, injection molding, and press molding. However, extrusion molding is preferred for forming the honeycomb structure. It is also preferable that the kneading step and the forming step are continuously performed by an extruder such as a biaxial continuous kneading extruder.
  • a plugging portion is formed.
  • the plugging portion can be formed as follows. A ceramic powder is prepared, and a binder, a dispersant, and a dispersion medium such as water or glycerin are added to the mixture to form a slurry, which is placed in a container having an open top. At one end face of the molded body in the shape of a honeycomb, openings of predetermined cells are masked with a film or the like.
  • the slurry can be packed at a predetermined depth in the unmasked cell.
  • the plugging portions are arranged on both ends of the respective cells so that the cells have a checkered pattern at both end surfaces, and the cells do not have the plugging portions at both end surfaces.
  • the ceramic constituting the plugging portion but in consideration of the adhesiveness to the surrounding partition walls, it is preferable that the material be a raw material.
  • such a step is preferably performed on the formed body rather than on the honeycomb structure after firing. In the case of performing on a molded body, a plugging portion is formed in a subsequent firing step.
  • the sealing structure In the case of performing the honeycomb structure after firing, the sealing structure must be formed by further heating the honeycomb structure, and the number of steps is increased as compared with the case of performing the formed body. Further, in the case of performing on a molded body, since firing is performed in a state in which the end face portion is reinforced, occurrence of breakage in the firing step is suppressed. Furthermore, after the firing, the honeycomb structure and the plugged portion are more strongly bonded by the cordierite-dyeing reaction, so that the plugged portion is pressed by the exhaust gas from the engine or the pressure exerted during backwashing. The hardness of the cam structure can be prevented from falling off.
  • a honeycomb structure that can be suitably manufactured by the above-described manufacturing method has a porosity of 50 to 70%, an average pore diameter of 15 to 30 m, and a difference in average pore diameter between the central portion and the outer peripheral portion of 5 m.
  • Ri der hereinafter, further center and the thermal expansion coefficient of the outer peripheral portion are both 1. 0 X 10- 6 Z ° C or less, preferably 0. 9 X 10- 6 Z ° C or less, more preferably 0. 8 X the honeycomb structure is less than 10- 6 Z ° C can be mentioned.
  • Such a honeycomb structure exhibits low pressure loss, high collection efficiency, and good Shows thermal shock resistance.
  • the A-axis compressive strength of both the central portion and the outer peripheral portion is preferably 1.5 MPa or more, more preferably 1.7 MPa or more, and particularly preferably OMPa or more.
  • Such a honeycomb structure exhibits a high isostatic strength because there is no particularly weak portion in the structure.
  • the isostatic strength is preferably 1.OMPa or more, more preferably 1.2 MPa, particularly preferably 1.5 MPa.
  • Such a honeycomb structure suppresses breakage during cabling and actual use, and exhibits good durability.
  • the shape of the honeycomb structure of the present invention can be any shape such as a circle, an ellipse, a racetrack, and a polygon.
  • the shape of the cell is not particularly limited.
  • the cross-sectional shape may be any of a polygon such as a triangle, a quadrangle, and a hexagon, a circle, or an ellipse.
  • the cell density is not particularly limited, but is, for example, about 50-600 cells Z square inch (7.8-93 cells Zcm 2 ), preferably about 100-500 cells Z square inch (15.5-77.5 cells Zcm 2 ). It can be.
  • the thickness of the partition wall is not particularly limited, but may be, for example, about 50 to 650 ⁇ m, preferably about 75 to 500 m, and more preferably about 100 to 450 ⁇ m.
  • the catalyst may be supported on the porous partition walls of the honeycomb structure.
  • the catalyst include non-metallic perovskite-type catalysts such as noble metal-based Pt, Pd, and Rh. At least one of these can be supported on a no- or two-cam structure.
  • the catalyst can be supported by a conventionally known method such as a push coat method.
  • Average pore diameter measured with a mercury intrusion porosimeter manufactured by Micromeritics.
  • Porosity The total pore volume was measured with a mercury intrusion porosimeter manufactured by Micromeritics Co., and the true specific gravity of cordierite was set to 2.52 gZcc.
  • A-axis compressive strength A sample of A-axis compressive strength is cut out from each of 2a and 2b in Fig. 2 by a method based on JASO standard M505-87, and the breaking load is calculated using a compression tester conforming to JIS B7733. Was divided by the area of the pressed surface to obtain the A-axis compressive strength.
  • Isostatic strength Measured by the following method in accordance with JASO standard M505-87. After covering both end surfaces of the honeycomb structure with metal plates of the same diameter as the end surface of the honeycomb structure, further covering the outer peripheral surface of the two-cam structure with rubber tubes of the same diameter, and fixing the metal plate, the rubber tube Rubber tape was adhered to the surrounding area, and the honeycomb structure was sealed so that water did not enter. In this state, the two-cam structure was submerged in water, and the water pressure was increased until the hard-cam structure was broken, to obtain a broken water pressure isostatic strength.
  • Soot collection efficiency Exhaust gas that generated soot by the soot generator was passed through the no-cam structures obtained in each of the examples and comparative examples until the soot was deposited by lgZL, and then passed through the hard-cam structure. The soot contained in the exhaust gas was collected by filter paper, and the weight of the soot (W was measured.) The exhaust gas that generated the soot was collected by filter paper for the same time without passing through the honeycomb structure. Then, the weight (W 2 ) of the soot was measured, and the obtained weights (W 1 ) and (W 2 ) were substituted into the following equation (1) to determine the collection efficiency.
  • Equation (1) (W 2 — w ⁇ / iw ⁇ x ioo
  • Soot collection pressure loss Rings having an inner diameter of 130 mm were pressed against both end surfaces of the nod-cam structures obtained in the examples and comparative examples. Through this ring, soot generated by the soot generator was allowed to flow into the 130 mm diameter range of the honeycomb structure, and lgZL of soot was collected. Next, with the honeycomb structure cart collected, air of 2.27 Nm 3 Zmin was flown, the pressure difference before and after the honeycomb structure was measured, and the soot was collected. Was evaluated for pressure loss.
  • the cordierite roll raw material, foamed resin, binder, and surfactant shown in Batch No. 1 of Table 1 were mixed with a professional shear mixer while spraying and adding water having a mixing ratio shown in Table 1. This was further kneaded in a single step to obtain a plastic clay.
  • This plastic clay was formed into a cylindrical shape by a vacuum clay kneader, and charged into an extruder to form a honeycomb shape.
  • the obtained molded body was microwave-dried and then completely dried by hot air drying, and both end faces were cut to predetermined dimensions.
  • a slurry composed of a cordierite material having the same composition as that of Notch No. 1 was used, and cells were alternately plugged at both end faces.
  • the temperature was raised from room temperature to 400 ° C under the conditions of 10 ° CZhr, and from 400 ° C to 1200 ° C under the condition of 50 ° CZhr. C-1250.
  • C 1 Raise the temperature from 1400 ° C at 50 ° C / hr, then raise the temperature to the maximum temperature of 1420 ° C at 20 ° C Zhr and then at 1420 ° C to avoid melting of the product due to overshoot.
  • Each honeycomb structure was obtained in the same manner as in Example 1 except that the composition shown in Table 1 and the Z or the heating rate shown in Table 2 were used.
  • the porosity of the central portion and the outer peripheral portion, the average pore diameter of the central portion and the outer peripheral portion, the thermal expansion coefficient of the central portion and the outer peripheral portion, the central portion and the outer portion were determined by the above-described evaluation methods.
  • the A-axis compression strength, isostatic strength, soot collection pressure loss, and soot collection efficiency of the outer periphery were evaluated. Table 2 shows the results.
  • Example 1 1 50 to tn 2 50 66 65 19 18 0.3 0.3 2.9 2.9 1.9 4.7 93
  • Example 2 1 50 15 ° ⁇ 50 66 65 23 21 0.5 0.5 2.3 2.4 1.5 4.4 92
  • Example 3 1 50 30 ⁇ 50 66 65 27 23 0.8 0.7 2.0 2.3 1.3 4.2 91
  • Example 4 1 100 2 100 65 64 23 22 0.4 0.4 2.3 2.4 1.5 4.3 92
  • Example 5 1 100 30 100 65 64 30 26 0.9 0.8 1.7 2.1 1.1 3.7 90
  • Example 6 2 50 15 50 53 53 19 18 0.4 0.4 10.1 10.4 6.7 5.8
  • Example 7 3 50 15 50 45 45 18 18 0.3 0.3 15.6 15.7 10.4 7.0
  • Comparative example 1 1 50 50 50 66 65 43 24 1.2 1.0 0.8 2.3 0.5 3.6 75
  • Comparative example 2 1 30 50 50 66 65 36 19 1.2 1.1 1.1 2.8 0.7 3.5
  • Comparative Example 3 1 30 30 50 66 65 17 14 0.9 0.8 3.0 3.3 2.0 6.0
  • Comparative Example 4 1 30 50 30 66 66 32 14 1.1 1.0 1.4 3.2 0.9 5.6 88
  • Comparative Example 5 1 50 30 30 67 66 16 14 0.8 0.7 3.2 3.4 2.1 6.1
  • Comparative example 6 1 30 30 30 30 67 67 12 1 1
  • the temperature rise rate in the temperature range of 1250-1300 ° C is set to 40 ° C / hr or less, and 1200-1250. C and 1300-1400.
  • the average pore diameter of the entire honeycomb structure is increased, and the difference between the average pore diameter of the central part and the average pore diameter of the peripheral part of the honeycomb structure is increased. It can be seen that can be reduced.
  • the A-axis compressive strength at which the coefficient of thermal expansion is small over the entire honeycomb structure is reduced.
  • a honeycomb structure for a filter which has a high isostatic strength, a small pressure loss, and a high collection efficiency, which can be suitably used as a DPF, was obtained.
  • a cordierite-nodal cam structure having a small variation in the average pore diameter depending on the location and a large overall average pore diameter can be produced.
  • a honeycomb structure can be suitably used in various fields such as a filter such as a DPF and a catalyst carrier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

A honeycomb structure comprises pores having diameters the variation by portion of which is small and an increased average pore diameter. A method for producing a honeycomb structure (1) of cordierite comprises a firing step of firing a honeycomb molding is also disclosed. The firing step includes a temperature rise substep at which the temperature rise rate is 40°C/hr or above from 1200°C to 1250°C, 2-40°C/hr from 1250°C to 1300°C, and 40°C/hr or above from 1300°C to 1400°C when the atmospheric temperature is elevated. The honeycomb structure has a porosity of 50-70%, an average pore diameter of 15-30 μm, an average pore diameter difference of 5 μm or less between the central part and the peripheral part, thermal expansion coefficients of 1.0×10-6/°C or less at the central part and the peripheral part, and A-axis compression strengths of 1.5 Mpa or above at the central part and the peripheral part.

Description

明 細 書  Specification
ハニカム構造体及びその製造方法  Honeycomb structure and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、ハ-カム構造体及びその製造方法に関し、特にフィルターや触媒担体 等として用いることができるハ-カム構造体及びそのハ-カム構造体を好適に製造 することができる製造方法に関する。  The present invention relates to a honeycomb structure and a method for producing the same, and more particularly, to a honeycomb structure that can be used as a filter, a catalyst carrier, and the like, and a method for suitably producing the honeycomb structure. About the method.
背景技術  Background art
[0002] 近年、年々強化される自動車排ガス規制に対応すべく、ディーゼルエンジン力ゝら排 出される微粒子を捕捉するフィルター (DPF)としてハ-カム構造体が使用されてい る。また、自動車排ガス中に含まれる窒素酸ィ匕物、硫黄酸化物、塩化水素、炭化水 素及び一酸ィ匕炭素等を除去するため、触媒を担持したノ、二カム構造体が使用されて いる。  [0002] In recent years, a honeycomb structure has been used as a filter (DPF) for capturing fine particles emitted from the power of a diesel engine in order to comply with the increasingly stricter vehicle emission regulations. In order to remove nitrogen oxides, sulfur oxides, hydrogen chloride, hydrocarbons and carbon oxides contained in automobile exhaust gas, a catalyst-supported two-cam structure is used. I have.
[0003] このようなハ-カム構造体にぉ 、て、圧力損失の低減等を目的として気孔径を大き くしたり、気孔率を高くしたりすることが求められている。また大型自動車の排ガス浄 化を目的としたハ-カム構造体の大型化が求められている。  [0003] In such a honeycomb structure, it is required to increase the pore diameter or increase the porosity for the purpose of reducing pressure loss and the like. In addition, there is a need for larger honeycomb structures for purifying exhaust gas from large vehicles.
[0004] しかし、従来のハニカム構造体の製造方法では、ハニカム構造体の平均気孔径を 大きくすると、例えばハ-カム構造体を DPFに用いた場合に、捕集効率が低下する という問題があった。この問題は、高気孔率化や大型化を図ろうとすると更に大きくな る傾向があった。また、高気孔率化や大型化に伴いアイソスタティック強度や耐熱衝 撃性が低下すると!/、う問題もあった。  [0004] However, the conventional method for manufacturing a honeycomb structure has a problem in that, when the average pore diameter of the honeycomb structure is increased, for example, when the honeycomb structure is used for a DPF, the collection efficiency is reduced. Was. This problem tended to be even greater when trying to increase the porosity or size. Also, if the isostatic strength and the thermal shock resistance were reduced due to the increase in porosity and size, there was also a problem.
[0005] 従来のハ-カム構造体の製造方法における焼成工程において、ァイソスタティック 強度の向上と圧力損失の低減を目的として、 400— 1200°Cの昇温速度を所定の範 囲内に制御することが開示されている (例えば、特許文献 1参照)。また、高い吸水率 と低い熱膨張率のハ-カム構造体を得ることを目的として、 1100— 1200°C間を 60 °CZhr以下の昇温速度とし、 1200°C— 1300°C間を 80°CZhr以上の昇温速度とす ることが開示されている (例えば、特許文献 2参照)。  [0005] In the firing step in the conventional method for manufacturing a honeycomb structure, a heating rate of 400 to 1200 ° C is controlled within a predetermined range for the purpose of improving isostatic strength and reducing pressure loss. (For example, see Patent Document 1). In order to obtain a honeycomb structure having a high water absorption and a low coefficient of thermal expansion, the temperature was raised between 1100 and 1200 ° C at a rate of 60 ° C or less, and the temperature between 1200 ° C and 1300 ° C was reduced to 80 ° C. It is disclosed that the temperature is raised at a rate of not less than ° CZhr (for example, see Patent Document 2).
[0006] 更に、耐熱衝撃性と耐熱性に優れたノヽ-カム構造体を得ることを目的として、所定 の粒子径の原料を用い、 1100°Cまでを 250°CZhr以下の昇温速度とし、 1100°C以 上では 30— 300°CZhrの昇温速度とすることが開示されている(例えば、特許文献 3 参照)。 [0006] Further, in order to obtain a nod-cam structure having excellent thermal shock resistance and heat resistance, a predetermined It is disclosed that using a raw material having a particle size of 1 to 100 ° C, a heating rate of 250 ° CZhr or less up to 1100 ° C and a heating rate of 30 to 300 ° CZhr at 1100 ° C or more (for example, Patent Reference 3).
[0007] しかし、このような従来の製造方法では、例えば DPF等のフィルター用のハ-カム 構造体を製造した場合に、ハ-カム構造体の平均気孔径を大きくすることに伴う捕集 効率の低下を抑制することは困難であった。  [0007] However, in such a conventional manufacturing method, for example, when a honeycomb structure for a filter such as a DPF is manufactured, the trapping efficiency associated with increasing the average pore diameter of the honeycomb structure is increased. It was difficult to suppress the decrease in the amount.
特許文献 1:特開 2003— 277162号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-277162
特許文献 2:特許第 2981034号公報  Patent Document 2: Japanese Patent No. 2981034
特許文献 3:特公昭 57 - 28390号公報  Patent Document 3: Japanese Patent Publication No. 57-28390
発明の開示  Disclosure of the invention
[0008] 本発明は、全体の平均気孔径を大きくすることができ、かつ気孔径の場所によるば らっきを低減することができるハ-カム構造体の製造方法及び気孔径が大きくかつ 気孔径の場所によるばらつきが低減されたノヽ-カム構造体を提供することを特徴とす る。  [0008] The present invention provides a method for manufacturing a honeycomb structure capable of increasing the overall average pore diameter and reducing dispersion depending on the location of the pore diameter. A feature is to provide a nod-cam structure in which variation in the hole diameter depending on the place is reduced.
[0009] 本発明者は、 DPFに用いられる高気孔率のコージヱライト製ノヽ-カム構造体につ いて、捕集効率の低下の原因を調査した。その結果、ハ-カム構造体の中心部の気 孔径が外周部の気孔径よりも大きくなり、中心部からスート等の漏れが発生し、捕集 効率の低下が起こって 、ることを見出した。  [0009] The present inventors have investigated the cause of a decrease in the collection efficiency of a cordierite-made no-cam structure having a high porosity used in a DPF. As a result, it was found that the pore diameter at the center of the honeycomb structure became larger than the pore diameter at the outer periphery, soot and the like leaked from the center, and the collection efficiency was reduced. .
[0010] 更に、気孔径のばらつきの原因を詳細に検討した結果、焼成工程の昇温過程にお いて、 1250— 1300°C間のコージエライト生成過程で大きな発熱反応が起こり、ハニ カム構造体中心部の昇温速度が急に大きくなる現象を見出し、中心部の昇温速度と 外周部の昇温速度の差によって、気孔径、熱膨張係数、及び A軸圧縮強度の違い が発生して 、ることを見出した。  [0010] Furthermore, as a result of a detailed study of the cause of the variation in the pore diameter, a large exothermic reaction occurred in the process of forming cordierite between 1250 and 1300 ° C in the heating process of the firing process, and the center of the honeycomb structure was heated. The temperature rise rate of the central part suddenly increased, and the difference in the pore diameter, the coefficient of thermal expansion, and the A-axis compressive strength occurred due to the difference between the temperature rise rate in the central part and the temperature rise rate in the outer peripheral part. I found that.
[0011] 更に、このような現象を抑制する検討を行ったところ、 1250— 1300°C間の昇温速 度を 40°CZhr以下とすることにより、発熱反応を穏やかに進行させることができ、ハ 二カム構造体の中心部と外周部との昇温速度の差が小さくなり、中心部と外周部との 気孔径の差を小さくできることを見出した。更に、 1200— 1250°C及び 1300— 1400 °C間の昇温速度を 40°CZhr以上とすることにより中心部と外周部の気孔径の差を小 さく保ったまま全体の平均気孔径を大きくできることを見出した。そして、気孔径の場 所によるばらつきが小さぐ中心部と外周部の熱膨張係数が共に小さぐ A軸圧縮強 度の場所によるばらつきが小さぐかつアイソスタティック強度が高いハ-カム構造体 を得ることに成功した。 [0011] Furthermore, when studies were conducted to suppress such a phenomenon, the exothermic reaction was allowed to proceed gently by setting the heating rate between 1250 and 1300 ° C to 40 ° CZhr or less, It has been found that the difference in the rate of temperature rise between the central portion and the outer peripheral portion of the honeycomb structure is reduced, and the difference in the pore diameter between the central portion and the outer peripheral portion can be reduced. Furthermore, by setting the heating rate between 1200-1250 ° C and 1300-1400 ° C to 40 ° CZhr or more, the difference in pore diameter between the center and the outer periphery is reduced. It has been found that it is possible to increase the average pore diameter of the whole while keeping it small. Also, a honeycomb structure having a small variation in pore diameter depending on the location, a small thermal expansion coefficient in the central portion and a small outer peripheral portion, and a small variation in the A-axis compression strength depending on the location and a high isostatic strength are obtained. Succeeded.
[0012] 即ち、本発明は、ハ-カム状の成形体を焼成する工程を含む、コージエライト製の ハ-カム構造体の製造方法であって、前記焼成工程において、雰囲気温度を昇温 する際に、 1200°Cから 1250°Cまでの昇温速度を 40°CZhr以上とし、 1250°Cから 1 300°Cまでの昇温速度を 2°C— 40°CZhrとし、 1300°Cから 1400°Cまでの昇温速度 を 40°CZhr以上とする昇温工程を含むハ-カム構造体の製造方法を提供するもの である。  [0012] That is, the present invention is a method for producing a cordierite-made honeycomb structure, comprising a step of firing a molded body in a shape of a cordierite, wherein in the firing step, the temperature of the atmosphere is increased. In addition, the rate of temperature rise from 1200 ° C to 1250 ° C is 40 ° CZhr or more, and the rate of temperature rise from 1250 ° C to 1300 ° C is 2 ° C-40 ° CZhr, and 1300 ° C to 1400 ° An object of the present invention is to provide a method for manufacturing a honeycomb structure including a heating step in which a heating rate up to C is 40 ° CZhr or more.
[0013] 本発明において、気孔率が 50%— 70%、平均気孔径が 15— 30 μ m、中心部と外 周部の平均気孔径の差が 5 μ m以下であるハニカム構造体を製造することが好まし い。また、直径が 100mm以上、長さが 100mm以上のハ-カム構造体を製造するこ とも好ましい。更に、中心部と外周部の熱膨張係数が 1. O X 10—6Z°C以下であるハ 二カム構造体を製造することが好ましぐ中心部と外周部の A軸圧縮強度が 1. 5MP a以上であるハ-カム構造体を製造することが更に好ましぐァイソスタティック強度が 1. OMPa以上であるハ-カム構造体を製造することが特に好まし 、。 In the present invention, a honeycomb structure having a porosity of 50% to 70%, an average pore diameter of 15 to 30 μm, and a difference in average pore diameter between a central portion and an outer peripheral portion of 5 μm or less is manufactured. It is preferable to do so. It is also preferable to manufacture a honeycomb structure having a diameter of 100 mm or more and a length of 100 mm or more. Furthermore, A-axis compression strength of the central portion and it is preferable that the thermal expansion coefficient of the outer peripheral portion to produce a hard second cam structure is not more than 1. OX 10- 6 Z ° C instrument center portion and the peripheral portion is 1. It is more preferable to manufacture a honeycomb structure having a pressure of 5 MPa or more, and it is particularly preferable to manufacture a honeycomb structure having an isostatic strength of 1. OMPa or more.
[0014] 更に、 目封じ用のスラリーを焼成前の成形体に圧入した後焼成することが好ましい  [0014] Further, it is preferable that the plugging slurry is pressed into a molded body before firing and then fired.
[0015] また、本発明はコージエライト製のハ-カム構造体であって、気孔率が 50— 70%、 平均気孔径が 15— 30 m、中心部と外周部の平均気孔径の差が 5 m以下、中心 部と外周部の熱膨張係数が 1. O X 10— 6Z°C以下、及び中心部と外周部の A軸圧縮 強度が 1. 5MPa以上であるハ-カム構造体を提供するものである。このハ-カム構 造体はァイソスタティック強度が 1. OMPa以上であることが更に好ましい。 Further, the present invention relates to a cordierite honeycomb structure having a porosity of 50 to 70%, an average pore diameter of 15 to 30 m, and a difference in average pore diameter between the center portion and the outer peripheral portion of 5 to 5. m or less, the thermal expansion coefficient of the center portion and the peripheral portion 1. OX 10- 6 Z ° C or less, and a-axis compression strength of the central portion and the peripheral portion Ha 1. is 5MPa or more - providing a cam structure Things. More preferably, the honeycomb structure has an isostatic strength of 1. OMPa or more.
[0016] 焼成工程における昇温速度を上述のように制御することにより、ハ-カム構造体の 平均気孔径を大きくし、かつ中心部と外周部における気孔径の差を小さくすることが できる。また、ハ-カム構造体の高気孔率ィ匕又は大型化を図っても、気孔径の場所 によるばらつきを抑制することができる。更に、ハ-カム構造体全体に渡って熱膨張 係数を小さぐ A軸圧縮強度を向上することができ、ァイソスタティック強度を向上させ ることがでさる。 By controlling the heating rate in the firing step as described above, the average pore diameter of the honeycomb structure can be increased, and the difference in pore diameter between the central portion and the outer peripheral portion can be reduced. Further, even if the porosity of the honeycomb structure is increased or the size thereof is increased, it is possible to suppress the variation of the pore diameter depending on the location. Furthermore, thermal expansion over the entire honeycomb structure A smaller coefficient A-axis compressive strength can be improved, and isostatic strength can be improved.
[0017] また、ハニカム構造体の気孔率、平均気孔径、中心部と外周部の平均気孔径の差 、中心部と外周部の熱膨張係数、及び中心部と外周部の A軸圧縮強度、好ましくは 更にアイソスタティック強度を所定の範囲とすることにより、例えば DPFとして用いた 場合に圧力損失を小さくし、捕集効率を高くし、更に熱や圧力に対する耐久性を向 上させることができる。  [0017] Further, the porosity of the honeycomb structure, the average pore diameter, the difference between the average pore diameter of the central part and the average pore diameter, the thermal expansion coefficient of the central part and the peripheral part, and the A-axis compressive strength of the central part and the peripheral part, Preferably, by further setting the isostatic strength within a predetermined range, for example, when used as a DPF, pressure loss can be reduced, collection efficiency can be increased, and durability against heat and pressure can be improved.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1(a)]本発明に係るハ-カム構造体の一例を示す模式的な斜視図である。 FIG. 1 (a) is a schematic perspective view showing one example of a honeycomb structure according to the present invention.
[図 1(b)]図 1 (a)の b部を拡大した一部拡大平面図である。  FIG. 1 (b) is a partially enlarged plan view enlarging a portion b in FIG. 1 (a).
[図 1(c)]図 1 (a)に示すノヽニカム構造体の軸方向に平行な断面の一部を模式的に示 す一部拡大図である。  FIG. 1 (c) is a partially enlarged view schematically showing a part of a cross section parallel to the axial direction of the honeycomb structure shown in FIG. 1 (a).
[図 2]本発明に係るハニカム構造体の別の例を示す模式的な軸方向に平行な断面 図である。  FIG. 2 is a schematic sectional view parallel to the axial direction showing another example of the honeycomb structure according to the present invention.
符号の説明  Explanation of symbols
[0019] 1…ハ-カム構造体、 2· ··隔壁、 2a…中心部の隔壁、 2b…外周部の隔壁、 3…セル 、 4…目封じ部、 5…重心点、 42· ··端面、 44· ··端面。  [0019] 1 ... honeycomb structure, 2 ... partition, 2a ... partition at center, 2b ... partition at outer periphery, 3 ... cell, 4 ... plugging part, 5 ... center of gravity, 42 ... End face, 44 ··· End face.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、具体例に基づいて本発明を詳細に説明するが、本発明はこれらの具体例に 限定されるものではない。なお、以下において、 DPF用のハ-カム構造体を例に本 発明を説明するが、本発明の特徴は、平均気孔径を大きくし、かつ気孔径の場所に よるばらつきを抑制でき、更にはハ-カム構造体全体に渡って、熱膨張係数を小さく 、 A軸圧縮強度に代表される材料強度を向上でき、ァイソスタティック強度を向上させ ることができること及びこのようなハ-カム構造体を提供することにあり、このような特 徴は、 DPF用のハ-カム構造体だけでなぐ触媒担体等、コージエライト製の多孔質 のハ-カム構造体全般に好適に適用できるものである。 Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these specific examples. In the following, the present invention will be described by taking a honeycomb structure for a DPF as an example.The features of the present invention are that the average pore diameter can be increased and the variation of the pore diameter depending on the location can be suppressed. It is possible to reduce the coefficient of thermal expansion, improve the material strength represented by A-axis compressive strength, improve the static strength, and improve the static strength over the entire honeycomb structure. This feature can be suitably applied to all cordierite porous honeycomb structures, such as a catalyst carrier that is not limited to a DPF honeycomb structure.
[0021] 図 1 (a)は、 DPF用のコージエライト製ハ-カム構造体の一例を示す模式的な斜視 図であり、図 1 (b)は、図 1 (a)の b部を拡大した一部拡大平面図であり、図 1 (c)は、 図 1 (a)に示すノヽニカム構造体の軸方向に平行な断面の一部を模式的に示す一部 拡大図である。図 1 (a)—(c)に示すノ、二カム構造体 1は、一の端面 42から他の端面 44まで軸方向に延びる複数のセル 3を形成するように配置された隔壁 2を備える。そ して、セル 3を何れかの端面にぉ 、て目封じするように配置された目封じ部 4を備える 。このような形態とすることにより、一の端面 42からセル 3内に流入する排ガスは、多 孔質の隔壁 2を通って隣りのセル 3を経て他の端面 44から排出される。この際、隔壁 2がフィルターとなって、スート等の PMを捕捉する。なお、ハ-カム構造体を触媒担 体等に用いる場合には、 目封じ部は必要なぐ本発明は、 目封じ部を有するハ-カム 構造体及び目封じ部を有しな 、ノヽ二カム構造体の両方を対象とするものである。また 、コージエライト製のハ-カム構造体とは、隔壁を構成する物質の 50質量%以上がコ ージエライトであることを意味し、 70%質量%以上、特に 90質量%以上がコージエラ イトであることが好ましい。 FIG. 1 (a) is a schematic perspective view showing an example of a cordierite-made honeycomb structure for a DPF, and FIG. 1 (b) is an enlarged view of a portion b in FIG. 1 (a). Fig. 1 (c) is a partially enlarged plan view. FIG. 2 is a partially enlarged view schematically showing a part of a cross section parallel to the axial direction of the honeycomb structure shown in FIG. 1 (a). The two-cam structure 1 shown in FIGS. 1 (a)-(c) includes a partition wall 2 arranged to form a plurality of cells 3 extending in an axial direction from one end face 42 to another end face 44. . Further, a plugging portion 4 is provided so as to plug the cell 3 on one of the end faces. By adopting such a configuration, the exhaust gas flowing into the cell 3 from one end face 42 passes through the porous partition 2, passes through the adjacent cell 3, and is discharged from the other end face 44. At this time, the partition 2 serves as a filter to capture PM such as soot. In the case where the honeycomb structure is used for a catalyst carrier or the like, a plugging portion is not required. The present invention provides a honeycomb structure having a plugging portion and a no-camera having no plugging portion. It is intended for both structures. A cordierite honeycomb structure means that 50% by mass or more of the substance constituting the partition walls is cordierite, and 70% by mass or more, particularly 90% by mass or more is cordierite. Is preferred.
[0022] このようなコージエライト製のハ-カム構造体は、焼成原料として、コージエライトィ匕 原料を含むハ-カム状の成形体を焼成することにより製造することができる。コージェ ライト化原料とは、焼成によりコージエライトとなる原料を意味し、 SiOが 42— 56質量 [0022] Such a cordierite-made honeycomb structure can be manufactured by firing a honeycomb-shaped formed body containing a cordierite-shaped raw material as a firing raw material. The raw material for forming cordierite is a raw material that becomes cordierite upon firing, and has a SiO content of 42 to 56 mass
2  2
%、 Al O力 30— 45質量%、 MgOが 12— 16質量%の範囲に入る化学組成となる %, Al O power 30-45% by mass, MgO has a chemical composition within the range of 12-16% by mass
2 3 twenty three
ようにように配合されたセラミック原料である。具体的にはタルク、カオリン、仮焼力オリ ン、アルミナ、水酸ィ匕アルミニウム、シリカの中カゝら選ばれた複数の無機原料を上記 化学組成となるような割合で含むものが挙げられる。  It is a ceramic raw material that is blended as follows. Specifically, talc, kaolin, calcining power, alumina, aluminum hydroxide, silica, and the like include those containing a plurality of inorganic raw materials selected in proportions such that the above chemical composition is obtained. .
[0023] ハニカム状の成形体は、通常、コージエライト化原料の他に、加工助剤及び分散媒 を含む。加工助剤の具体例としては、ヒドロキシプロピルメチルセルロース、メチルセ ルロース、ヒドロキシェチルセルロース、カルボキシルメチルセルロース、ポリビニノレア ノレコーノレ、ポリエチレンテレフタレート、ポリエチレン、グリセリン等のバインダー、ェチ レンダリコール、デキストリン、脂肪酸石鹼、ポリアルコール等の分散剤、更にグラファ イト、小麦粉、澱粉、フエノール榭脂、ポリメタクリル酸メチル、ポリエチレン、ポリェチ レンテレフタレート、未発泡の発泡榭脂、既発泡の発泡榭脂、吸水性ポリマー等の造 孔剤を挙げることができ、これらを目的に応じて単独又は複数組み合わせて含むこと が好ましい。分散媒としては、通常は水が用いられる。 [0024] このような成形体を焼成する前に乾燥することが好ま 、。乾燥は、成形体に含ま れる水分や分散媒などを除去するために行われる。乾燥の方法に特に制限はなぐ 一般に熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥等で行うことがで きるが、中でも、全体を迅速かつ均一に乾燥することができる点で、熱風乾燥と、マイ クロ波乾燥又は誘電乾燥とを組み合わせた乾燥工程で行うことが好まし、。熱風乾 燥の乾燥温度は 80— 150°Cの範囲が迅速に乾燥できる点で好まし!/、。 [0023] The honeycomb shaped body usually contains a processing aid and a dispersion medium in addition to the cordierite-forming raw material. Specific examples of processing aids include binders such as hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylinoleanol, polyethylene terephthalate, polyethylene, and glycerin, ethylene blender, dextrin, fatty acid stone, and polyalcohol. And pore-forming agents such as graphite, wheat flour, starch, phenolic resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, unfoamed foamed resin, unfoamed foamed resin, and water-absorbing polymer. These may be included alone or in combination depending on the purpose. Water is usually used as the dispersion medium. [0024] It is preferable to dry such a formed body before firing. Drying is performed to remove water, a dispersion medium, and the like contained in the molded body. There is no particular limitation on the drying method.Generally, drying can be performed by hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, etc. Among them, hot air drying is particularly preferred in that the whole can be dried quickly and uniformly. It is preferable to carry out in a drying step in which drying is combined with microwave drying or dielectric drying. The drying temperature of hot air drying is preferably in the range of 80-150 ° C because it can be dried quickly!
[0025] 焼成は、ハニカム状の成形体を焼成炉内に置き、雰囲気温度を昇温して所定の温 度で所定時間保持することにより行うことができる。昇温開始温度から 1200°Cまでの 温度範囲では昇温速度が気孔径に与える影響が小さいため、昇温速度に特に制限 はなく焼成クラックが生じな 、程度の昇温速度で昇温すれば良 、。このような昇温速 度は成形体の形状等により異なり、当業者であれば適宜選択することができるが、例 えば、 500°CZhr以下、更には 300°CZhr以下、特に 200°CZhr以下の昇温速度 とすることが好ましい。一方、生産性の観点からは、 2°CZhr以上、更には 5°CZhr以 上、特に 10°CZhr以上であることが好ましい。  [0025] The firing can be performed by placing the honeycomb-shaped formed body in a firing furnace, raising the ambient temperature, and maintaining the temperature at a predetermined temperature for a predetermined time. In the temperature range from the temperature starting temperature to 1200 ° C, the effect of the heating rate on the pore diameter is small.There is no particular limitation on the heating rate, and there is no firing crack. Good,. Such a heating rate varies depending on the shape of the molded body and the like, and can be appropriately selected by those skilled in the art.For example, the heating rate is 500 ° CZhr or less, further 300 ° CZhr or less, particularly 200 ° CZhr or less. It is preferable to set the heating rate. On the other hand, from the viewpoint of productivity, it is preferably 2 ° CZhr or more, more preferably 5 ° CZhr or more, particularly preferably 10 ° CZhr or more.
[0026] そして、 1200— 1250°Cの温度範囲を 40°CZhr以上の昇温速度で昇温し、 1250 一 1300°Cの温度範囲を 2°C— 40°CZhrの昇温速度で昇温し、 1300— 1400°Cの 温度範囲を 40°CZhr以上の昇温速度で昇温する。  [0026] Then, the temperature is raised from 1200 to 1250 ° C at a rate of 40 ° CZhr or more, and the temperature is raised from 1250 to 1300 ° C at a rate of 2 ° C to 40 ° CZhr. Then, the temperature is raised from 1300 to 1400 ° C at a rate of 40 ° C or more.
[0027] 上述のように、 1250— 1300°Cの温度範囲における昇温速度を 40°CZhr以下と することにより、ハニカム構造体の中心部と外周部との気孔径の差を小さくすることが できる。気孔径の差をより小さくするためには、昇温速度は、 40°CZhr未満であるこ と力 子ましく、 30°CZhr以下であることが更に好ましぐ特に 20°CZhr以下であるこ とが好ましい。一方、昇温速度が低すぎると生産性が低下するため、昇温速度は 2°C Zhr以上であることが必要であり、 3°CZhr以上であることが好ましぐ 5°CZhr以上 であることが更に好ましい。  [0027] As described above, by setting the heating rate in the temperature range of 1250 to 1300 ° C to 40 ° CZhr or less, the difference in pore diameter between the central portion and the outer peripheral portion of the honeycomb structure can be reduced. it can. In order to make the difference in pore diameter smaller, the heating rate should be less than 40 ° CZhr, more preferably 30 ° CZhr or less, particularly preferably 20 ° CZhr or less. preferable. On the other hand, if the heating rate is too low, the productivity will decrease, so the heating rate must be 2 ° C Zhr or more, preferably 3 ° C Zhr or more, and 5 ° CZhr or more. Is more preferred.
[0028] 一方、 1200— 1400°Cの温度範囲においては、昇温速度を高くすることにより、気 孑し径を大きくすること力 Sできる。従って、 1200— 1250°C及び 1300— 1400°Cの温 度範囲における昇温速度を 40°CZhr以上とすることにより、全体として気孔径を大き くできる。また、上述のように 1250— 1300°Cの温度範囲における昇温速度を 40°C Zhr以下とすることにより、気孔径の場所によるばらつきの少ないハ-カム構造体と することができるため、このようなハ-カム構造体を、例えば DPFとして用いた場合に 、低圧力損失と高捕集効率の両立を図ることができる。全体の気孔径を更に大きくす る観点からは、 1200— 1250°C及び 1300— 1400°Cの温度範囲における昇温速度 は、 45°CZhr以上であることが好ましぐ 50°CZhr以上であることが更に好ましい。 [0028] On the other hand, in a temperature range of 1200 to 1400 ° C, increasing the heating rate can increase the diameter of the shrimp. Therefore, the pore diameter can be increased as a whole by setting the heating rate in the temperature range of 1200-1250 ° C and 1300-1400 ° C to 40 ° CZhr or more. In addition, as mentioned above, the heating rate in the temperature range of 1250-1300 ° C was set to 40 ° C By setting Zhr or less, it is possible to obtain a honeycomb structure with less variation in pore diameter depending on the location.For example, when such a honeycomb structure is used as a DPF, low pressure loss and high It is possible to achieve both the collection efficiency. From the viewpoint of further increasing the overall pore diameter, the heating rate in the temperature range of 1200 to 1250 ° C and 1300 to 1400 ° C is preferably 45 ° CZhr or more, more preferably 50 ° CZhr or more. Is more preferable.
[0029] 更に、このように温度制御することにより、ハ-カム構造体全体に渡って、熱膨張係 数を小さぐ A軸圧縮強度に代表される材料強度を向上させ、かつアイソスタティック 強度を向上させることができる。これは、コージエライト生成過程における発熱反応に よる急激な温度上昇を抑制することにより、不均一な温度分布による不均一な径の気 孔の形成と不均一なコージエライト結晶の形成とを抑制することができるためと考えら れる。従って、より均一な径の気孔とより良好な結晶状態のコージエライトを形成する ことができ、ハ-カム構造体全体に渡って熱膨張係数を小さくし、 A軸圧縮強度を向 上させ、ァイソスタティック強度を向上させることができるものと考えられる。  [0029] Further, by controlling the temperature in this manner, the material strength represented by the A-axis compressive strength, which reduces the thermal expansion coefficient over the entire honeycomb structure, is improved, and the isostatic strength is improved. Can be improved. This is because by suppressing the rapid rise in temperature due to the exothermic reaction in the cordierite generation process, it is possible to suppress the formation of pores of non-uniform diameter due to non-uniform temperature distribution and the formation of non-uniform cordierite crystals. It is considered possible. Accordingly, pores having a more uniform diameter and cordierite in a better crystalline state can be formed, the thermal expansion coefficient is reduced over the entire honeycomb structure, the A-axis compressive strength is improved, and It is considered that the static strength can be improved.
[0030] 焼成の最高温度は、 1400— 1440°C程度力好ましく、この範囲の最高温度で 2— 2 0時間保持することが好ま 、。 1400°C—最高温度の温度範囲における昇温速度 に特に制限はないが、昇温速度が高すぎるとオーバーシユーティングによるハ-カム 構造体の溶損が発生する可能性が生じるため、 50°CZhr以下とすることが好ましい 。なお、昇温速度は、各温度範囲における平均の昇温速度を意味する。  [0030] The maximum temperature of firing is preferably about 1400 to 1440 ° C, and it is preferable to maintain the maximum temperature in this range for 2 to 20 hours. 1400 ° C—There is no particular limitation on the heating rate in the maximum temperature range. However, if the heating rate is too high, melting of the honeycomb structure may occur due to overshooting. It is preferable to be not more than ° CZhr. In addition, the heating rate means an average heating rate in each temperature range.
[0031] 気孔率が比較的高いハニカム構造体を製造する場合に、気孔径の場所によるばら つきの問題が大きくなる傾向にあるが、このような焼成工程により、平均気孔径が大き く、中心部と外周部の平均気孔径の差が小さいハ-カム構造体を得ることができる。 本発明によって製造するハ-カム構造体の好ましい気孔率は 50— 70%、平均気孔 径は 15— 30 m、中心部と外周部の平均気孔径の差は 5 m以下である。この範 囲は、特に DPF用のハ-カム構造体の場合に、低圧力損失と高捕集効率の両立が 図りうるため好ましい。また、このような範囲の特性を有するハ-カム構造体において 、中心部と外周部の熱膨張係数を 1. 0 X 10— 6Z°C以下、 A軸圧縮強度を 1. 5MPa 以上、ァイソスタティック強度を 1. OMPa以上とすることが可能であり、このようなハ- カム構造体を製造することが好まし 、。 [0032] ここで、ハニカム構造体の平均気孔径及び気孔率は図 1 (c)に示す隔壁 2全体の 平均気孔径及び気孔率を各々意味する。また、中心部の平均気孔径、気孔率、熱 膨張係数及び A軸圧縮強度とは、図 2に示すように、ハニカム構造体 1の体積中心点 5を中心として、ハ-カム構造体 1の体積の 1Z64の相似形 Sを描いた際に、この相 似形 Sの中に入る中心部の隔壁 2aの部分の平均気孔径、気孔率、熱膨張係数及び A軸圧縮強度を各々意味し、外周部の平均気孔径、気孔率、熱膨張係数及び A軸 圧縮強度とは同じく図 2に示すノヽ-カム構造体 1の体積中心点 5を中心として、ハ- カム構造体 1の体積の 27Z64の相似形 S 'の外側に位置する外周部の隔壁 2bの部 分の平均気孔径、気孔率、熱膨張係数及び A軸圧縮強度を各々意味する。なお、図 2はハニカム構造体の軸方向に平行な断面を模式的に示す断面図である。 [0031] When a honeycomb structure having a relatively high porosity is manufactured, the problem of variation depending on the pore diameter tends to increase. However, such a sintering process increases the average pore diameter and increases the central portion. And a honeycomb structure having a small difference in average pore diameter between the outer peripheral portion and the outer peripheral portion. The porosity of the honeycomb structure manufactured by the present invention is preferably 50 to 70%, the average pore diameter is 15 to 30 m, and the difference between the average pore diameter at the center and the average pore diameter at the outer periphery is 5 m or less. This range is preferable, particularly in the case of a honeycomb structure for a DPF, since both low pressure loss and high collection efficiency can be achieved. Further, c having the characteristics of such a range - the cam structure, the thermal expansion coefficient of the center portion and the peripheral portion 1. 0 X 10- 6 Z ° C or less, the A-axis compressive strength 1. 5 MPa or more, § The isostatic strength can be set to 1. OMPa or more, and it is preferable to manufacture such a honeycomb structure. Here, the average pore diameter and porosity of the honeycomb structure mean the average pore diameter and porosity of the entire partition 2 shown in FIG. 1 (c), respectively. The average pore diameter, porosity, coefficient of thermal expansion, and A-axis compressive strength at the center of the honeycomb structure 1 are shown in FIG. When a similar shape S with a volume of 1Z64 is drawn, it means the average pore diameter, porosity, coefficient of thermal expansion, and A-axis compressive strength of the part of the bulkhead 2a at the center that enters the similar shape S, The average pore diameter, porosity, coefficient of thermal expansion, and A-axis compressive strength of the outer peripheral portion are the same as the volume of the honeycomb structure 1 at the center of the volume center point 5 of the knob-cam structure 1 shown in FIG. Mean average pore diameter, porosity, coefficient of thermal expansion, and A-axis compressive strength of the part of the partition wall 2b at the outer peripheral portion located outside the similar shape S ′. FIG. 2 is a cross-sectional view schematically showing a cross section parallel to the axial direction of the honeycomb structure.
[0033] 気孔率及び気孔径は水銀圧入式ポロシメーターで測定した値であり、熱膨張係数 miS R1618に準拠して 40— 800°Cの範囲で測定した値である。 A軸圧縮強度は JIS B7733に適合した圧縮試験機によって、社団法人自動車技術会発行の自動 車規格 JASO規格 M505-87に準拠して測定した値である。ァイソスタティック強度 は、ハ-カム構造体が破壊したときの加圧圧力値で示され、 JASO規格 M505— 87 に準拠して測定した値である。  [0033] The porosity and the pore diameter are values measured with a mercury intrusion porosimeter, and are values measured in the range of 40 to 800 ° C in accordance with the thermal expansion coefficient miS R1618. The A-axis compressive strength is a value measured by a compression tester conforming to JIS B7733 in accordance with the automotive standard JASO standard M505-87 issued by the Society of Automotive Engineers of Japan. The isostatic strength is indicated by a pressure value when the honeycomb structure is broken, and is a value measured according to JASO standard M505-87.
[0034] 本発明を適用するのに好ましい別の形態は、大型のハ-カム構造体である。ハニ カム構造体を大型化することによつても、中心部と外周部の気孔径、熱膨張係数及 び A軸圧縮強度に代表される材料強度の差が大きくなりやすいため、上述した方法 によりその差を少なくすることが好ましい。この場合における好ましい適用対象の具体 例として、直径が 100mm以上、長さが 100mm以上、更に好ましくは直径 140mm 以上、長さが 150mm以上、特に好ましくは直径 140mm— 350mm、長さが 150m m— 400mmのハ-カム構造体が挙げられる。  [0034] Another preferred embodiment to which the present invention is applied is a large honeycomb structure. Even when the size of the honeycomb structure is increased, the difference in the pore size, the coefficient of thermal expansion, and the material strength represented by the A-axis compressive strength between the central part and the outer peripheral part tends to increase. It is preferable to reduce the difference. In this case, examples of a preferable application object include a diameter of 100 mm or more, a length of 100 mm or more, more preferably a diameter of 140 mm or more, and a length of 150 mm or more, particularly preferably a diameter of 140 mm to 350 mm and a length of 150 mm to 400 mm. The honeycomb structure of the above.
[0035] 本発明におけるハニカム状の成形体を形成する方法に特に制限はな!/、が、例えば 以下のような方法で形成することができる。上述のコージ ラィトイ匕原料、加工助剤及 び分散媒を混合して混練し、坏土とした後、ハニカム状に成形する。混合は一般的な ミキサーを用いて行うことができる。混練は、一般的な-一ダー、加圧-一ダー、一軸 連続押出機、二軸連続混練押出機、真空土練機等などの混練機を用いて行うことが できる。成形は、押出成形、射出成形、プレス成形等公知のいずれの方法を用いて も良いが、ハニカム構造体の成形には押出成形が好ましい。また、二軸連続混練押 出機等の押出機で坏土ィ匕工程と成形工程とを連続的に行うことも好ましい。 [0035] The method for forming a honeycomb-shaped formed body in the present invention is not particularly limited. However, it can be formed by, for example, the following method. The above-mentioned raw material, processing aid and dispersion medium are mixed and kneaded to obtain a kneaded material, which is then formed into a honeycomb shape. Mixing can be performed using a general mixer. The kneading can be performed using a kneading machine such as a general kneader, a pressure kneader, a single-screw continuous extruder, a twin-screw continuous kneading extruder, a vacuum kneader and the like. it can. The molding may be performed by any known method such as extrusion molding, injection molding, and press molding. However, extrusion molding is preferred for forming the honeycomb structure. It is also preferable that the kneading step and the forming step are continuously performed by an extruder such as a biaxial continuous kneading extruder.
[0036] DPF等のフィルター用のハ-カム構造体を製造する場合には、 目封じ部を形成す る。 目封じ部は以下のようにして形成することができる。セラミックスの粉体を用意し、 これにバインダー、分散剤及び水やグリセリンなどの分散媒を加えて、スラリー状とし 、上部が開口した容器に入れる。ハ-カム状の成形体の一の端面において、所定の セルの開口部をフィルムなどでマスキングする。そして、成形体のマスキングされた端 面を下に向け、容器内のスラリーに浸漬し、更に上力も押圧することにより、マスキン グされていないセル内に所定の深さでスラリーを詰めることができる。  In the case of manufacturing a honeycomb structure for a filter such as a DPF, a plugging portion is formed. The plugging portion can be formed as follows. A ceramic powder is prepared, and a binder, a dispersant, and a dispersion medium such as water or glycerin are added to the mixture to form a slurry, which is placed in a container having an open top. At one end face of the molded body in the shape of a honeycomb, openings of predetermined cells are masked with a film or the like. Then, by immersing the masked end face of the molded body downward, immersing the molded body in the slurry in the container, and further pressing the upper force, the slurry can be packed at a predetermined depth in the unmasked cell. .
[0037] 以上の工程を他の端面についても行うこともできる。 目封じ部は、両端面において 目封じ部を備えるセルと備えな 、セルとが市松模様状を呈するように、両端面にぉ ヽ て互 、違 、に各セルに配置することが好ま 、。 目封じ部を構成するセラミックスに 特に制限はないが、周りの隔壁との接着性を考慮すると、コージエラィトイ匕原料である ことが好ましい。また、このような工程は、焼成後のハ-カム構造体について行うより、 成形体について行った方が好ましい。成形体について行う場合には、その後の焼成 工程により、 目封じ部が形成される。焼成後のハ-カム構造体について行う場合には 、その後、更にハ-カム構造体を加熱することにより、 目封じ部を形成しなくてはなら ず、成形体について行うより工数が増加する。また、成形体について行った場合、端 面部が強化された状態で焼成されるため、焼成工程での切れ発生が抑制される。更 に、焼成後にハ-カム構造部と目封じ部がコージエライトィ匕反応によってより強固に 接着するるため、エンジンからの排気ガスによる圧力又は逆洗時に力かる圧力によつ て、 目封じ部がハ-カム構造部力も抜け落ちることを無くすことができる。  [0037] The above steps can be performed for other end faces. It is preferable that the plugging portions are arranged on both ends of the respective cells so that the cells have a checkered pattern at both end surfaces, and the cells do not have the plugging portions at both end surfaces. There is no particular limitation on the ceramic constituting the plugging portion, but in consideration of the adhesiveness to the surrounding partition walls, it is preferable that the material be a raw material. Further, such a step is preferably performed on the formed body rather than on the honeycomb structure after firing. In the case of performing on a molded body, a plugging portion is formed in a subsequent firing step. In the case of performing the honeycomb structure after firing, the sealing structure must be formed by further heating the honeycomb structure, and the number of steps is increased as compared with the case of performing the formed body. Further, in the case of performing on a molded body, since firing is performed in a state in which the end face portion is reinforced, occurrence of breakage in the firing step is suppressed. Furthermore, after the firing, the honeycomb structure and the plugged portion are more strongly bonded by the cordierite-dyeing reaction, so that the plugged portion is pressed by the exhaust gas from the engine or the pressure exerted during backwashing. The hardness of the cam structure can be prevented from falling off.
[0038] 上述した製造方法で好適に製造できるハ-カム構造体として、気孔率が 50— 70% 、平均気孔径が 15— 30 m、中心部と外周部の平均気孔径の差が 5 m以下であ り、更に中心部と外周部の熱膨張係数が共に 1. 0 X 10— 6Z°C以下、好ましくは 0. 9 X 10— 6Z°C以下、更に好ましくは 0. 8 X 10— 6Z°C以下であるハニカム構造体が挙げ られる。このようなハ-カム構造体は、低圧力損失、高捕集効率を示すと共に良好な 耐熱衝撃性を示す。また、中心部と外周部の A軸圧縮強度は共に 1. 5MPa以上で あることが好ましぐ 1. 7MPa以上であることが更に好ましぐ 2. OMPa以上であるこ とが特に好ましい。このようなハ-カム構造体は、構造体中に特に強度の弱い部位が 無いため、高いァイソスタティック強度を示す。ァイソスタティック強度は 1. OMPa以 上であることが好ましぐ 1. 2MPaであることが更に好ましぐ 1. 5MPaであることが 特に好ましい。このようなハ-カム構造体は、キヤユング時や実使用時の破損が抑制 され、良好な耐久性を示す。 [0038] A honeycomb structure that can be suitably manufactured by the above-described manufacturing method has a porosity of 50 to 70%, an average pore diameter of 15 to 30 m, and a difference in average pore diameter between the central portion and the outer peripheral portion of 5 m. Ri der hereinafter, further center and the thermal expansion coefficient of the outer peripheral portion are both 1. 0 X 10- 6 Z ° C or less, preferably 0. 9 X 10- 6 Z ° C or less, more preferably 0. 8 X the honeycomb structure is less than 10- 6 Z ° C can be mentioned. Such a honeycomb structure exhibits low pressure loss, high collection efficiency, and good Shows thermal shock resistance. Further, the A-axis compressive strength of both the central portion and the outer peripheral portion is preferably 1.5 MPa or more, more preferably 1.7 MPa or more, and particularly preferably OMPa or more. Such a honeycomb structure exhibits a high isostatic strength because there is no particularly weak portion in the structure. The isostatic strength is preferably 1.OMPa or more, more preferably 1.2 MPa, particularly preferably 1.5 MPa. Such a honeycomb structure suppresses breakage during cabling and actual use, and exhibits good durability.
[0039] 本発明のハニカム構造体の形状について特に制限はない。例えば、軸方向に垂直 な断面の形状を円形、楕円形、レーストラック形、多角形等任意の形状とすることが できる。また、セルの形状についても特に制限はなぐ例えば、断面形状が三角形、 四角形、六角形等の多角形、円、又は楕円等何れでも良い。セル密度も特に制限は ないが、例えば 50— 600セル Z平方インチ(7. 8— 93セル Zcm2)、好ましくは 100 一 500セル Z平方インチ(15. 5— 77. 5セル Zcm2)程度とすることができる。隔壁 の厚さにも特に制限はないが、例えば 50— 650 μ m、好ましくは 75— 500 m、更 に好ましくは 100— 450 μ m程度とすることができる。 [0039] There is no particular limitation on the shape of the honeycomb structure of the present invention. For example, the shape of the cross section perpendicular to the axial direction can be any shape such as a circle, an ellipse, a racetrack, and a polygon. The shape of the cell is not particularly limited. For example, the cross-sectional shape may be any of a polygon such as a triangle, a quadrangle, and a hexagon, a circle, or an ellipse. The cell density is not particularly limited, but is, for example, about 50-600 cells Z square inch (7.8-93 cells Zcm 2 ), preferably about 100-500 cells Z square inch (15.5-77.5 cells Zcm 2 ). It can be. The thickness of the partition wall is not particularly limited, but may be, for example, about 50 to 650 μm, preferably about 75 to 500 m, and more preferably about 100 to 450 μm.
[0040] また、ハ-カム構造体の多孔質の隔壁に、触媒を担持させることもできる。触媒とし ては、貴金属系の Pt、 Pd、 Rh等、非金属系のぺロブスカイト型触媒等が挙げられ、 これらのうちの少なくとも 1種をノ、二カム構造体に担持させることができる。触媒は、ゥ ォッシュコート法等、従来公知の方法で担持させることができる。  [0040] Further, the catalyst may be supported on the porous partition walls of the honeycomb structure. Examples of the catalyst include non-metallic perovskite-type catalysts such as noble metal-based Pt, Pd, and Rh. At least one of these can be supported on a no- or two-cam structure. The catalyst can be supported by a conventionally known method such as a push coat method.
実施例  Example
[0041] 以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施 例に限定されるものではない。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[0042] (評価方法) [0042] (Evaluation method)
平均気孔径:マイクロメリティックス社製の水銀圧入式ポロシメーターで測定した。 気孔率:マイクロメリティックス社製の水銀圧入式ポロシメーターで全気孔容積を測 定し、コージエライトの真比重を 2. 52gZccとして、当該全気孔容積から、気孔率を 十异しプ 。  Average pore diameter: measured with a mercury intrusion porosimeter manufactured by Micromeritics. Porosity: The total pore volume was measured with a mercury intrusion porosimeter manufactured by Micromeritics Co., and the true specific gravity of cordierite was set to 2.52 gZcc.
熱膨張係数:図 2の 2a、 2bからそれぞれ切出した試料を JIS R1618に準拠して 4 0— 800°Cの範囲で測定した。 Coefficient of thermal expansion: Samples cut out from 2a and 2b in Fig. 2 were measured according to JIS R1618. It was measured in the range of 0-800 ° C.
A軸圧縮強度: JASO規格 M505— 87に準拠した方法で、図 2の 2a、 2bからそれぞ れ A軸圧縮強度試料を切出し、 JIS B7733に適合した圧縮試験機で破壊荷重を求 め、これを加圧面の面積で除すことで A軸圧縮強度を得た。  A-axis compressive strength: A sample of A-axis compressive strength is cut out from each of 2a and 2b in Fig. 2 by a method based on JASO standard M505-87, and the breaking load is calculated using a compression tester conforming to JIS B7733. Was divided by the area of the pressed surface to obtain the A-axis compressive strength.
ァイソスタティック強度: JASO規格 M505— 87に準拠して以下の方法により測定し た。ハニカム構造体の端面と同一径の金属板でハニカム構造体の両端面を覆い、更 に同一径のゴムチューブでノ、二カム構造体の外周面を覆うと共に金属板を固定した 後、ゴムチューブとその周辺にゴムテープを貼り付け、ハ-カム構造体内に水が入ら ないように密閉した。この状態でノ、二カム構造体を水中に沈め、ハ-カム構造体が破 損するまで水圧を上げ、破損した水圧力 ァイソスタティック強度を得た。  Isostatic strength: Measured by the following method in accordance with JASO standard M505-87. After covering both end surfaces of the honeycomb structure with metal plates of the same diameter as the end surface of the honeycomb structure, further covering the outer peripheral surface of the two-cam structure with rubber tubes of the same diameter, and fixing the metal plate, the rubber tube Rubber tape was adhered to the surrounding area, and the honeycomb structure was sealed so that water did not enter. In this state, the two-cam structure was submerged in water, and the water pressure was increased until the hard-cam structure was broken, to obtain a broken water pressure isostatic strength.
スート捕集効率:スートジェネレータ一によりスートを発生させた排ガスを、各実施例 及び比較例で得られたノヽ-カム構造体に、スートが lgZL堆積するまで通過させ、 ハ-カム構造体を通過した排ガスに含まれるスートを濾紙で捕集し、スートの重量 (W を測定した。また、同じ時間、スートを発生させた排ガスを、ハ-カム構造体を通過 させずに濾紙で捕集し、スートの重量 (W2)を測定した。次いで、得られた各重量 (W1 ) (W2)を以下に示す式(1)に代入して捕集効率を求めた。 Soot collection efficiency: Exhaust gas that generated soot by the soot generator was passed through the no-cam structures obtained in each of the examples and comparative examples until the soot was deposited by lgZL, and then passed through the hard-cam structure. The soot contained in the exhaust gas was collected by filter paper, and the weight of the soot (W was measured.) The exhaust gas that generated the soot was collected by filter paper for the same time without passing through the honeycomb structure. Then, the weight (W 2 ) of the soot was measured, and the obtained weights (W 1 ) and (W 2 ) were substituted into the following equation (1) to determine the collection efficiency.
式(1) : (W2— w^ / iw^ x ioo Equation (1): (W 2 — w ^ / iw ^ x ioo
スート捕集圧力損失:各実施例及び比較例で得られたノヽ-カム構造体の両端面に 、内径 130mmのリングを圧接した。このリングを介して、スートジェネレーターで発生 させたスートを、ハ-カム構造体の 130mmの直径の範囲内に流入させ、 lgZL分の スートを捕集させた。次いで、ハ-カム構造体カ^ートを捕集した状態で、 2. 27Nm3 Zminの空気を流し、ハ-カム構造体前後の圧力差を測定して、スートを捕集した状 態での圧力損失を評価した。 Soot collection pressure loss: Rings having an inner diameter of 130 mm were pressed against both end surfaces of the nod-cam structures obtained in the examples and comparative examples. Through this ring, soot generated by the soot generator was allowed to flow into the 130 mm diameter range of the honeycomb structure, and lgZL of soot was collected. Next, with the honeycomb structure cart collected, air of 2.27 Nm 3 Zmin was flown, the pressure difference before and after the honeycomb structure was measured, and the soot was collected. Was evaluated for pressure loss.
(実施例 1) (Example 1)
表 1のバッチ No. 1に示すコージエライトィ匕原料、発泡榭脂、バインダー、界面活性 剤を、プロ一シェア一ミキサーで、表 1に示す配合比の水を噴霧添加しながら混合し た。これを更に-一ダ一で混練して可塑性の坏土とした。この可塑性の坏土を、真空 土練機でシリンダー状に成形し、押出し成形機に投入してハニカム状に成形した。次 いで、得られた成形体を、マイクロ波乾燥した後、熱風乾燥で絶乾し、所定の寸法に 両端面を切断した。次いで、ノツチ No. 1と同様の組成のコージエライトィ匕原料から なるスラリーを用い、両端面においてセルを互い違いに目封じした。最後に、常温か ら 400°Cまでを 10°CZhr、 400°Cから 1200°Cまでを 50°CZhrの条件で昇温し、表 2の通り 1200。C一 1250。Cを 50。CZhr、 1250°C— 1300°C^2°C/hr, 1300。C一 1400°Cを 50°C/hrの条件で昇温し、その後オーバーシュートによる製品の溶損を 避けるため、最高温度の 1420°Cまで 20°CZhrで昇温した後、 1420°Cで 5hr保持し 焼成して、直径 144mm X長さ 152mmの円柱形であって、隔壁厚さ 300 m、セル 数 300セル Z平方インチ(約 46. 5セル Zcm2)のハ-カム構造体を得た。 The cordierite roll raw material, foamed resin, binder, and surfactant shown in Batch No. 1 of Table 1 were mixed with a professional shear mixer while spraying and adding water having a mixing ratio shown in Table 1. This was further kneaded in a single step to obtain a plastic clay. This plastic clay was formed into a cylindrical shape by a vacuum clay kneader, and charged into an extruder to form a honeycomb shape. Next Then, the obtained molded body was microwave-dried and then completely dried by hot air drying, and both end faces were cut to predetermined dimensions. Next, a slurry composed of a cordierite material having the same composition as that of Notch No. 1 was used, and cells were alternately plugged at both end faces. Finally, the temperature was raised from room temperature to 400 ° C under the conditions of 10 ° CZhr, and from 400 ° C to 1200 ° C under the condition of 50 ° CZhr. C-1250. C 50. CZhr, 1250 ° C—1300 ° C ^ 2 ° C / hr, 1300. C 1 Raise the temperature from 1400 ° C at 50 ° C / hr, then raise the temperature to the maximum temperature of 1420 ° C at 20 ° C Zhr and then at 1420 ° C to avoid melting of the product due to overshoot. After holding for 5 hours and firing, a honeycomb structure with a diameter of 144mm X length of 152mm, a partition wall thickness of 300m, a number of cells of 300 cells Z square inch (about 46.5 cells Zcm 2 ) is obtained. Was.
[0044] (実施例 2— 7及び比較例 1一 6)  (Examples 2 to 7 and Comparative Examples 1 to 6)
表 1に示す配合及び Z又は表 2に示す昇温速度とした以外は、実施例 1と同様にし て、各ハ-カム構造体を得た。  Each honeycomb structure was obtained in the same manner as in Example 1 except that the composition shown in Table 1 and the Z or the heating rate shown in Table 2 were used.
[0045] 得られたノヽニカム構造体について、上記評価方法で、中心部及び外周部の気孔 率、中心部及び外周部の平均気孔径、中心部及び外周部の熱膨張係数、中心部及 び外周部の A軸圧縮強度、ァイソスタティック強度、スート捕集圧力損失、スート捕集 効率の評価を行った。結果を表 2に示す。  [0045] With respect to the obtained honeycomb structure, the porosity of the central portion and the outer peripheral portion, the average pore diameter of the central portion and the outer peripheral portion, the thermal expansion coefficient of the central portion and the outer peripheral portion, the central portion and the outer portion were determined by the above-described evaluation methods. The A-axis compression strength, isostatic strength, soot collection pressure loss, and soot collection efficiency of the outer periphery were evaluated. Table 2 shows the results.
[0046] [表 1] [Table 1]
コージ Iライト化原料 Koji I Lighting raw material
バッチ No. 発泡樹脂 バインダー 界面活性剤 水  Batch No. Foam resin Binder Surfactant Water
水酸化  Hydroxylation
タルク カオリン アルミナ アルミニウム シリカ  Talc kaolin alumina aluminum silica
1 40(25 m) 20(5 / m) 15(5/ m) 15(5j m) 10(30 m) 2.0(40 jUm) 6.0 0.2 34 1 40 (25 m) 20 (5 / m) 15 (5 / m) 15 (5 j m) 10 (30 m) 2.0 (40 jUm) 6.0 0.2 34
2 40(25 m) 20(5 im) 15(5jum) 10(30^ m) 1.0(40 m) 6.0 0.2 332 40 (25 m) 20 (5 im) 15 (5jum) 10 (30 ^ m) 1.0 (40 m) 6.0 0.2 33
3 40(25 / m) 20(5 / m) 15(5/ m) 15(5 m) 10(30 m) 0.5(40 μ m) 6.0 0.2 32 3 40 (25 / m) 20 (5 / m) 15 (5 / m) 15 (5 m) 10 (30 m) 0.5 (40 μm) 6.0 0.2 32
[単位:質量部] [Unit: parts by mass]
※ )内は原料の平均粒径を表す * Figures in parentheses indicate the average particle size of raw materials
[z [ oo] [z [oo]
Zll000/S00Zdf/X3d PI 96C890/S00Z OAV 熱膨張係数 A軸圧縮強度 Zll000 / S00Zdf / X3d PI 96C890 / S00Z OAV Thermal expansion coefficient A-axis compressive strength
昇温速度 (°Cノ hr) 気孔率 (%) 気孔径 ( m)  Heating rate (° C hr) Porosity (%) Pore diameter (m)
(i o"V°o (MPa) ァイソスタティック スート捕集 ス一ト バッチ  (i o "V ° o (MPa) Isostatic soot collection
No. 強度 圧力損失 (kPa) 捕集効率》) No. Strength Pressure loss (kPa) Collection efficiency >>)
1200。C~ (MPa) (スー M g L堆積時) (スー H gZL堆積時) 中心部 1200. C ~ (MPa) (when Sue M g L is deposited) (when Sue H gZL is deposited)
1250°C 外周部中心部外周部中心部外周部中心部外周部  1250 ° C Outer periphery center Outer periphery center Outer periphery center outer periphery
実施例 1 1 50 to tn 2 50 66 65 19 18 0.3 0.3 2.9 2.9 1.9 4.7 93 Example 1 1 50 to tn 2 50 66 65 19 18 0.3 0.3 2.9 2.9 1.9 4.7 93
ο ο  ο ο
実施例 2 1 50 15 ° ι 50 66 65 23 21 0.5 0.5 2.3 2.4 1.5 4.4 92 実施例 3 1 50 30 ο 50 66 65 27 23 0.8 0.7 2.0 2.3 1.3 4.2 91 Example 2 1 50 15 ° ι 50 66 65 23 21 0.5 0.5 2.3 2.4 1.5 4.4 92 Example 3 1 50 30 ο 50 66 65 27 23 0.8 0.7 2.0 2.3 1.3 4.2 91
ο σ  ο σ
実施例 4 1 100 2 100 65 64 23 22 0.4 0.4 2.3 2.4 1.5 4.3 92 実施例 5 1 100 30 100 65 64 30 26 0.9 0.8 1.7 2.1 1.1 3.7 90 実施例 6 2 50 15 50 53 53 19 18 0.4 0.4 10.1 10.4 6.7 5.8 94 実施例 7 3 50 15 50 45 45 18 18 0.3 0.3 15.6 15.7 10.4 7.0 95 比較例 1 1 50 50 50 66 65 43 24 1.2 1.0 0.8 2.3 0.5 3.6 75 比較例 2 1 30 50 50 66 65 36 19 1.2 1.1 1.1 2.8 0.7 3.5 83 比較例 3 1 30 30 50 66 65 17 14 0.9 0.8 3.0 3.3 2.0 6.0 94 比較例 4 1 30 50 30 66 66 32 14 1.1 1.0 1.4 3.2 0.9 5.6 88 比較例 5 1 50 30 30 67 66 16 14 0.8 0.7 3.2 3.4 2.1 6.1 95 比較例 6 1 30 30 30 67 67 12 1 1 0.8 0.8 3.6 3.8 2.4 6.9 96 Example 4 1 100 2 100 65 64 23 22 0.4 0.4 2.3 2.4 1.5 4.3 92 Example 5 1 100 30 100 65 64 30 26 0.9 0.8 1.7 2.1 1.1 3.7 90 Example 6 2 50 15 50 53 53 19 18 0.4 0.4 10.1 10.4 6.7 5.8 94 Example 7 3 50 15 50 45 45 18 18 0.3 0.3 15.6 15.7 10.4 7.0 95 Comparative example 1 1 50 50 50 66 65 43 24 1.2 1.0 0.8 2.3 0.5 3.6 75 Comparative example 2 1 30 50 50 66 65 36 19 1.2 1.1 1.1 2.8 0.7 3.5 83 Comparative Example 3 1 30 30 50 66 65 17 14 0.9 0.8 3.0 3.3 2.0 6.0 94 Comparative Example 4 1 30 50 30 66 66 32 14 1.1 1.0 1.4 3.2 0.9 5.6 88 Comparative Example 5 1 50 30 30 67 66 16 14 0.8 0.7 3.2 3.4 2.1 6.1 95 Comparative example 6 1 30 30 30 67 67 12 1 1 0.8 0.8 3.6 3.8 2.4 6.9 96
[0048] 表 2に示すように、実施例 1一 7の製造方法により、比較的大きな平均気孔径を有し ながら、中心部と外周部の平均気孔径の差が小さいハ-カム構造体を得ることができ た。一方、比較例 1、 2、及び 4の製造方法では、 1250°C— 1300°Cの昇温速度を大 きくすることにより、中心部と外周部との気孔径の差が大きくなつてしまった。また、比 較例 3、 5、及び 6の製造方法では、 1200°C— 1250°Cの昇温速度及び Z又は 130 0°C— 1400°Cの昇温速度を小さくすることにより、ハ-カム構造体全体の気孔径が 小さくなつてしまった。従って、 1250— 1300°Cの温度範囲の昇温速度を 40°C/hr 以下とし、更に 1200— 1250。C及び 1300— 1400。Cの温度範囲の昇温速度を 40 °CZhr以上とすることにより、ハ-カム構造体全体の平均気孔径を大きくし、かつハ 二カム構造体の中心部と外周部の平均気孔径の差を小さくできることがわかる。更に 、実施例 1一 6に示すように、気孔率及び平均気孔径を所定の範囲にコントロールす ることにより、ハ-カム構造体全体に渡って、熱膨張係数が小さぐ A軸圧縮強度が 高ぐァイソスタティック強度が高ぐ圧力損失が小さくかつ捕集効率の高い、 DPFと して好適に用いることができるフィルター用ハ-カム構造体とすることができた。 [0048] As shown in Table 2, the honeycomb structure having a relatively large average pore diameter and a small difference in the average pore diameter between the center portion and the outer peripheral portion was obtained by the manufacturing method of Example 17. I got it. On the other hand, in the production methods of Comparative Examples 1, 2, and 4, by increasing the heating rate from 1250 ° C to 1300 ° C, the difference in pore diameter between the central part and the outer peripheral part increased. . In the production methods of Comparative Examples 3, 5, and 6, the heating rate was reduced from 1200 ° C to 1250 ° C and from Z or 1300 ° C to 1400 ° C. The pore diameter of the entire cam structure has been reduced. Therefore, the temperature rise rate in the temperature range of 1250-1300 ° C is set to 40 ° C / hr or less, and 1200-1250. C and 1300-1400. By increasing the heating rate in the temperature range of C to 40 ° CZhr or more, the average pore diameter of the entire honeycomb structure is increased, and the difference between the average pore diameter of the central part and the average pore diameter of the peripheral part of the honeycomb structure is increased. It can be seen that can be reduced. Further, as shown in Example 16 by controlling the porosity and the average pore diameter within a predetermined range, the A-axis compressive strength at which the coefficient of thermal expansion is small over the entire honeycomb structure is reduced. A honeycomb structure for a filter, which has a high isostatic strength, a small pressure loss, and a high collection efficiency, which can be suitably used as a DPF, was obtained.
産業上の利用可能性  Industrial applicability
[0049] 本発明の製造方法により、場所による平均気孔径のばらつきが小さぐかつ全体の 平均気孔径が大き 、コージエライト製ノヽ-カム構造体を製造することができる。このよ うなハ-カム構造体は、 DPF等のフィルターをはじめ、触媒担体等種々の分野で好 適に用いることができる。 According to the production method of the present invention, a cordierite-nodal cam structure having a small variation in the average pore diameter depending on the location and a large overall average pore diameter can be produced. Such a honeycomb structure can be suitably used in various fields such as a filter such as a DPF and a catalyst carrier.

Claims

請求の範囲 The scope of the claims
[1] ハ-カム状の成形体を焼成する工程を含む、コージエライト製のハ-カム構造体の 製造方法であって、前記焼成工程において、雰囲気温度を昇温する際に、 1200°C から 1250°Cまでの昇温速度を 40°CZhr以上とし、 1250°Cから 1300°Cまでの昇温 速度を 2°C— 40°CZhrとし、 1300°Cから 1400°Cまでの昇温速度を 40°CZhr以上 とする昇温工程を含むハ-カム構造体の製造方法。  [1] A method for producing a cordierite-made honeycomb structure, which comprises a step of firing a molded body in a shape of cordierite, wherein in the firing step, the temperature is increased from 1200 ° C. The rate of temperature rise from 1250 ° C to 40 ° CZhr or more, the rate of temperature rise from 1250 ° C to 1300 ° C is 2 ° C-40 ° CZhr, and the rate of temperature rise from 1300 ° C to 1400 ° C A method for manufacturing a honeycomb structure including a temperature raising step of 40 ° C. Zhr or more.
[2] 気孔率が 50— 70%、平均気孔径が 15— 30 μ m、中心部と外周部の平均気孔径 の差が 5 μ m以下であるハニカム構造体を製造する請求項 1に記載のハニカム構造 体の製造方法。  [2] The honeycomb structure according to claim 1, wherein a honeycomb structure having a porosity of 50 to 70%, an average pore diameter of 15 to 30 μm, and a difference between an average pore diameter of a central part and an average pore diameter of an outer peripheral part of 5 μm or less is manufactured. The method for manufacturing a honeycomb structure of the present invention.
[3] 直径が 100mm以上、長さが 100mm以上のハ-カム構造体を製造する請求項 1 又は 2に記載のハニカム構造体の製造方法。  [3] The method for manufacturing a honeycomb structure according to claim 1 or 2, which manufactures a honeycomb structure having a diameter of 100 mm or more and a length of 100 mm or more.
[4] 中心部と外周部の熱膨張係数が 1. 0 X 10— 6Z°C以下であるハ-カム構造体を製 造する請求項 1一 3の何れかに記載のハニカム構造体の製造方法。 [4] the thermal expansion coefficient of the center portion and the peripheral portion 1. or less 0 X 10- 6 Z ° C ha - the honeycomb structure according to claim 1 one 3 to manufacture the cam structure Production method.
[5] 中心部と外周部の A軸圧縮強度が 1. 5MPa以上であるハ-カム構造体を製造す る請求項 1一 4の何れかに記載のハニカム構造体の製造方法。 [5] The method for manufacturing a honeycomb structure according to any one of claims 14 to 14, which manufactures a honeycomb structure having an A-axis compressive strength of a central portion and an outer peripheral portion of 1.5 MPa or more.
[6] ァイソスタティック強度が 1. OMPa以上であるハ-カム構造体を製造する請求項 1 一 5の何れかに記載のハニカム構造体の製造方法。 [6] The method for manufacturing a honeycomb structure according to any one of claims 15 to 15, which manufactures a honeycomb structure having a static strength of 1. OMPa or more.
[7] 目封じ用のスラリーを成形体に圧入した後焼成する請求項 1一 6の何れかに記載の ハニカム構造体の製造方法。 [7] The method for producing a honeycomb structure according to any one of [16] to [16], wherein the plugging slurry is pressed into a molded body and then fired.
[8] コージヱライト製のハ-カム構造体であって、気孔率が 50— 70%、平均気孔径が 1 5— 30 /ζ πι、中心部と外周部の平均気孔径の差が 5 m以下、中心部と外周部の熱 膨張係数が 1. 0 X 10— 6Z°C以下、及び中心部と外周部の A軸圧縮強度が 1. 5MPa 以上であるハ-カム構造体。 [8] A cordierite honeycomb structure having a porosity of 50-70%, an average pore diameter of 15-30 / ζπι, and a difference in average pore diameter between the center and the outer periphery of 5 m or less , center thermal expansion coefficient of the outer peripheral portion 1. 0 X 10- 6 Z ° C or less, and the center portion and the peripheral portion Ha a-axis compressive strength 1. is 5MPa or more - cam structure.
[9] ァイソスタティック強度が 1. OMPa以上である請求項 8に記載のハ-カム構造体。  [9] The honeycomb structure according to claim 8, which has a static strength of 1. OMPa or more.
PCT/JP2005/000112 2004-01-13 2005-01-07 Honeycomb structure and method for producing the same WO2005068396A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112005000172T DE112005000172B4 (en) 2004-01-13 2005-01-07 Honeycomb structure and method for its production
US10/585,190 US7897099B2 (en) 2004-01-13 2005-01-07 Method for producing honeycomb structure
JP2005517014A JPWO2005068396A1 (en) 2004-01-13 2005-01-07 Honeycomb structure and manufacturing method thereof
US12/659,491 US20100215898A1 (en) 2004-01-13 2010-03-10 Honeycomb structure and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-005596 2004-01-13
JP2004005596 2004-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/659,491 Division US20100215898A1 (en) 2004-01-13 2010-03-10 Honeycomb structure and method for producing the same

Publications (1)

Publication Number Publication Date
WO2005068396A1 true WO2005068396A1 (en) 2005-07-28

Family

ID=34792109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000112 WO2005068396A1 (en) 2004-01-13 2005-01-07 Honeycomb structure and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2005068396A1 (en)
DE (1) DE112005000172B4 (en)
WO (1) WO2005068396A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044508A1 (en) * 2006-09-29 2008-04-17 Hitachi Metals, Ltd. Process for producing cordierite ceramic honeycomb filter
JP2008119663A (en) * 2006-11-15 2008-05-29 Denso Corp Manufacturing method of exhaust gas purifying filter
JP2008119664A (en) * 2006-11-15 2008-05-29 Denso Corp Manufacturing method of exhaust gas purifying filter
WO2008018957A3 (en) * 2006-06-30 2008-06-26 Corning Inc High porosity filters for 4-way exhaust gas treatment
JP2009537741A (en) * 2006-05-23 2009-10-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Filter element
JP2010501468A (en) * 2006-08-25 2010-01-21 コーニング インコーポレイテッド Cordierite ceramic honeycomb article with narrow pore size distribution and method for producing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255576A (en) * 1989-03-29 1990-10-16 Ngk Insulators Ltd Method for calcining ceramics honeycomb structural body
JPH0585813A (en) * 1991-09-30 1993-04-06 Kyocera Corp Production of cordierite ceramic
JPH0585856A (en) * 1991-09-30 1993-04-06 Ngk Insulators Ltd Method for burning ceramics honeycomb structure
JPH1192214A (en) * 1997-07-28 1999-04-06 Corning Inc Production of cordierite product short in sintering time
US6048490A (en) * 1997-07-28 2000-04-11 Corning Incorporated Method of producing cordierite bodies utilizing substantially reduced firing times
JP2001519310A (en) * 1997-10-03 2001-10-23 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2001334154A (en) * 2000-05-30 2001-12-04 Hitachi Metals Ltd Catalyst carrier having cordierite-based ceramic honeycomb structure and method of producing the same
JP2003040687A (en) * 2000-06-30 2003-02-13 Ngk Insulators Ltd Honeycomb structured ceramic compact and its manufacturing method
JP2003212672A (en) * 2002-01-21 2003-07-30 Ngk Insulators Ltd Process for manufacturing porous ceramic structure
JP2003277162A (en) * 2002-01-21 2003-10-02 Ngk Insulators Ltd Porous honeycomb structural body, application thereof and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114644A (en) * 1991-02-13 1992-05-19 Corning Incorporated Fabrication of cordierite bodies

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255576A (en) * 1989-03-29 1990-10-16 Ngk Insulators Ltd Method for calcining ceramics honeycomb structural body
JPH0585813A (en) * 1991-09-30 1993-04-06 Kyocera Corp Production of cordierite ceramic
JPH0585856A (en) * 1991-09-30 1993-04-06 Ngk Insulators Ltd Method for burning ceramics honeycomb structure
JPH1192214A (en) * 1997-07-28 1999-04-06 Corning Inc Production of cordierite product short in sintering time
US6048490A (en) * 1997-07-28 2000-04-11 Corning Incorporated Method of producing cordierite bodies utilizing substantially reduced firing times
JP2001519310A (en) * 1997-10-03 2001-10-23 コーニング インコーポレイテッド Method for firing ceramic honeycomb body
JP2001334154A (en) * 2000-05-30 2001-12-04 Hitachi Metals Ltd Catalyst carrier having cordierite-based ceramic honeycomb structure and method of producing the same
JP2003040687A (en) * 2000-06-30 2003-02-13 Ngk Insulators Ltd Honeycomb structured ceramic compact and its manufacturing method
JP2003212672A (en) * 2002-01-21 2003-07-30 Ngk Insulators Ltd Process for manufacturing porous ceramic structure
JP2003277162A (en) * 2002-01-21 2003-10-02 Ngk Insulators Ltd Porous honeycomb structural body, application thereof and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537741A (en) * 2006-05-23 2009-10-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Filter element
US8252082B2 (en) 2006-05-23 2012-08-28 Robert Bosch Gmbh Filter device in particular for an exhaust system of an internal combustion engine
WO2008018957A3 (en) * 2006-06-30 2008-06-26 Corning Inc High porosity filters for 4-way exhaust gas treatment
US7923093B2 (en) 2006-06-30 2011-04-12 Corning Incorporated High porosity filters for 4-way exhaust gas treatment
CN103482968A (en) * 2006-06-30 2014-01-01 康宁股份有限公司 High porosity filters for 4-way exhaust gas treatment
JP2010501468A (en) * 2006-08-25 2010-01-21 コーニング インコーポレイテッド Cordierite ceramic honeycomb article with narrow pore size distribution and method for producing the same
WO2008044508A1 (en) * 2006-09-29 2008-04-17 Hitachi Metals, Ltd. Process for producing cordierite ceramic honeycomb filter
US8398797B2 (en) 2006-09-29 2013-03-19 Hitachi Metals, Ltd. Production method of cordierite-based ceramic honeycomb filter
JP5338317B2 (en) * 2006-09-29 2013-11-13 日立金属株式会社 Cordierite ceramic honeycomb filter manufacturing method
JP2008119663A (en) * 2006-11-15 2008-05-29 Denso Corp Manufacturing method of exhaust gas purifying filter
JP2008119664A (en) * 2006-11-15 2008-05-29 Denso Corp Manufacturing method of exhaust gas purifying filter

Also Published As

Publication number Publication date
JPWO2005068396A1 (en) 2007-12-27
DE112005000172T5 (en) 2007-01-04
DE112005000172B4 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
US7208108B2 (en) Method for producing porous ceramic article
US11033885B2 (en) Ceramic honeycomb structure and its production method
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
JP5808619B2 (en) Honeycomb structure and honeycomb catalyst body
JP4851760B2 (en) Method for producing porous body
US7897099B2 (en) Method for producing honeycomb structure
JP2007525612A (en) Cordierite filter with reduced pressure loss
WO2007102561A1 (en) Ceramic structure and process for producing the same
JP2012050978A (en) Honeycomb structural body
US7470302B2 (en) Honeycomb structure
EP2236482A2 (en) Ceramic honeycomb structure
JP2007084380A (en) Method for producing porous body
WO2019176868A1 (en) Honeycomb filter and method for manufacturing honeycomb filters
WO2005068396A1 (en) Honeycomb structure and method for producing the same
JP6726148B2 (en) Honeycomb catalyst for exhaust gas purification
US9346003B2 (en) Honeycomb structure
JP2011194342A (en) Honeycomb structure and honeycomb catalytic substance
JP6949019B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
JP2014184356A (en) Honeycomb catalyst carrier
CN114950029B (en) Porous honeycomb structure and method for producing same
CN113426491B (en) honeycomb structure
CN115138397A (en) Honeycomb structure
CN118718583A (en) Honeycomb filter
CN113332810A (en) Method for manufacturing honeycomb filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10585190

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005517014

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050001725

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10585190

Country of ref document: US