JP2008119664A - Manufacturing method of exhaust gas purifying filter - Google Patents

Manufacturing method of exhaust gas purifying filter Download PDF

Info

Publication number
JP2008119664A
JP2008119664A JP2006309642A JP2006309642A JP2008119664A JP 2008119664 A JP2008119664 A JP 2008119664A JP 2006309642 A JP2006309642 A JP 2006309642A JP 2006309642 A JP2006309642 A JP 2006309642A JP 2008119664 A JP2008119664 A JP 2008119664A
Authority
JP
Japan
Prior art keywords
firing
exhaust gas
honeycomb
maximum temperature
formed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006309642A
Other languages
Japanese (ja)
Inventor
Mikio Ishihara
幹男 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006309642A priority Critical patent/JP2008119664A/en
Priority to DE200710000582 priority patent/DE102007000582B4/en
Publication of JP2008119664A publication Critical patent/JP2008119664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B2003/203Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded for multi-channelled structures, e.g. honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an exhaust gas purifying filter capable of reducing the number of pores with respect to the total pore volume of a partition wall. <P>SOLUTION: The manufacturing method of an exhaust gas purifying filter 1, which is constituted by providing plug parts 13 to a honeycomb structure 10 comprising cordierite and having a large number of cells 12 provided by arranging porous partition walls 11 in a honeycomb state, has an extrusion molding process for extruding a ceramic material to mold a honeycomb molded member, a drying process for drying the honeycomb molded member, a baking process for baking the honeycomb molded member a plurality of times and a plugging process for arranging a plugging slurry to the parts to be plugged among the opening parts of the cells provided to the edge surface of the honeycomb molded member on the way of the baking process. In the first baking in the baking process, baking is performed at the highest temperature of 1,300-1,450°C, and in a case that the temperature rising speed to the highest temperature from 1,000°C is set to 50-A°C/hr. (in a case that the mass of the honeycomb molded member after the drying process is set to B kg, A is A=150/B). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ディーゼルエンジン等の内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行う排ガス浄化用フィルタに関する。   The present invention relates to an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine such as a diesel engine and purifies the exhaust gas.

従来から、内燃機関より排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行う排ガス浄化フィルタが知られている。
この排ガス浄化フィルタは、多孔質の隔壁をハニカム状に配して多数のセルを設けた基材としてのハニカム構造体を有するものである(特許文献1参照)。そして、排ガスを導入する導入通路となるセルの下流端と、多孔質の隔壁を通過した排ガスを排出する排出通路となるセルの上流端とは、栓部によって閉塞されるのが一般的である。
2. Description of the Related Art Conventionally, an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine and purifies the exhaust gas is known.
This exhaust gas purification filter has a honeycomb structure as a base material provided with a large number of cells with porous partition walls arranged in a honeycomb shape (see Patent Document 1). Then, the downstream end of the cell serving as the introduction passage for introducing the exhaust gas and the upstream end of the cell serving as the discharge passage for discharging the exhaust gas that has passed through the porous partition walls are generally blocked by the plug portion. .

上記排ガス浄化フィルタを用いて排ガスを浄化する際には、導入通路となるセルに浸入した排ガスが多孔質の隔壁を通過して、隣のセルよりなる排出通路に移動する。このとき、排ガス中のパティキュレートが隔壁に形成されている多数の細孔に捕集され、排ガスが浄化される。また、隔壁に触媒を担持させておくことにより、捕集したパティキュレートを触媒反応により分解除去することができる。   When the exhaust gas is purified using the exhaust gas purification filter, the exhaust gas that has entered the cell that serves as the introduction passage passes through the porous partition wall and moves to the exhaust passage that is formed by the adjacent cell. At this time, the particulates in the exhaust gas are collected in a large number of pores formed in the partition wall, and the exhaust gas is purified. Moreover, by collecting the catalyst on the partition wall, the collected particulate can be decomposed and removed by a catalytic reaction.

上記排ガス浄化フィルタの基材となるハニカム構造体を作製するに当たっては、セラミック材料を押出成形してハニカム成形体を作製し、乾燥させ、その後焼成する。
上記排ガス浄化フィルタの性能としては、上述したように、パティキュレートを捕集して排ガスを効率よく浄化できること、また圧力損失が低いことが必要とされる。そのため、例えばセラミック材料に造孔材を添加し、所定の気孔率、細孔径を有するハニカム構造体を作製していた。
In producing the honeycomb structure that becomes the base material of the exhaust gas purification filter, a ceramic material is extruded to produce a honeycomb formed body, dried, and then fired.
As described above, the performance of the exhaust gas purification filter is required to collect particulates and efficiently purify the exhaust gas, and to have a low pressure loss. Therefore, for example, a pore-forming material is added to a ceramic material to produce a honeycomb structure having a predetermined porosity and pore diameter.

しかしながら、ハニカム構造体の隔壁に形成される細孔は、決して均一ではなく、中には排ガス中のパティキュレートを充分に捕集することができない細孔径が10μm以下の細孔(以下、適宜、微細孔という)が含まれている。さらに、隔壁に触媒を担持させるような場合には、触媒がその微細孔を塞いでしまい、パティキュレート捕集機能がさらに低下する。また、触媒による微細孔の目詰まりによって、圧力損失が高くなってしまうという問題も発生する。   However, the pores formed in the partition walls of the honeycomb structure are never uniform, and pores with a pore diameter of 10 μm or less that cannot sufficiently capture particulates in the exhaust gas (hereinafter, appropriately, (Referred to as micropores). Further, when the catalyst is supported on the partition walls, the catalyst closes the fine holes, and the particulate collection function is further deteriorated. In addition, there is a problem that pressure loss increases due to clogging of the fine holes by the catalyst.

このようなことから、隔壁の全細孔容積に対して、パティキュレートを充分に捕集することができない微細孔の量を低減させることができる排ガス浄化フィルタの製造方法が望まれている。   For this reason, there is a demand for a method for manufacturing an exhaust gas purification filter that can reduce the amount of fine pores that cannot sufficiently collect particulates with respect to the total pore volume of the partition walls.

特開2003−145521号公報JP 2003-145521 A

本発明は、かかる従来の問題点に鑑みてなされたものであり、隔壁の全細孔容積に対する微細孔の量を低減させることができる排ガス浄化フィルタの製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method for manufacturing an exhaust gas purification filter capable of reducing the amount of fine pores with respect to the total pore volume of a partition wall.

本発明は、多孔質の隔壁をハニカム状に配して多数のセルを設けたコーディエライトからなるハニカム構造体を有し、該ハニカム構造体の上記セルのうち、排ガスを導入する導入通路となるセルの下流端と、上記多孔質の隔壁を通過した排ガスを排出する排出通路となるセルの上流端とを栓部によって閉塞してなる排ガス浄化フィルタを製造する方法において、
コーディエライト化原料を含むセラミック材料を押出成形して、多孔質の隔壁をハニカム状に配して多数のセルを設けたハニカム成形体を作製する押出成形工程と、
上記ハニカム成形体を乾燥する乾燥工程と、
上記ハニカム成形体を1又は複数回焼成する焼成工程と、
該焼成工程の前又は途中において、上記ハニカム成形体の端面における上記セルの開口部のうち、上記栓部によって栓詰めすべき部分に栓詰め用スラリーを配置する栓詰め工程とを有し、
上記焼成工程における第1回目の焼成では、最高温度1300〜1450℃で焼成を行い、かつ、1000℃から上記最高温度までの昇温速度が50〜A℃/hr(但し、上記乾燥工程後の上記ハニカム成形体の質量をBkgとした場合、A=150/B。)とすることを特徴とする排ガス浄化フィルタの製造方法にある(請求項1)。
The present invention has a honeycomb structure made of cordierite provided with a large number of cells with porous partition walls arranged in a honeycomb shape, and among the cells of the honeycomb structure, an introduction passage for introducing exhaust gas; In the method for producing an exhaust gas purification filter formed by closing the downstream end of the cell and the upstream end of the cell serving as a discharge passage for discharging the exhaust gas that has passed through the porous partition wall with a plug portion,
Extrusion molding of a ceramic material containing a cordierite forming raw material, and forming a honeycomb molded body provided with a large number of cells by arranging porous partition walls in a honeycomb shape; and
A drying step of drying the honeycomb formed body,
A firing step of firing the honeycomb formed body one or more times;
Before or during the firing step, a plugging step of disposing a plugging slurry in a portion to be plugged by the plug portion of the opening of the cell in the end face of the honeycomb formed body,
In the first firing in the firing step, firing is performed at a maximum temperature of 1300 to 1450 ° C., and a rate of temperature increase from 1000 ° C. to the maximum temperature is 50 to A ° C./hr (however, after the drying step) In the manufacturing method of the exhaust gas purification filter, A = 150 / B when the mass of the honeycomb formed body is set to Bkg (Claim 1).

本発明の排ガス浄化フィルタの製造方法は、上記押出成形工程と上記乾燥工程と上記焼成工程と上記栓詰め工程とを行う。上記焼成工程では、上記ハニカム成形体を1又は複数回焼成する。そして、上記焼成工程における第1回目の焼成では、最高温度1300〜1450℃で焼成を行い、かつ、1000℃から上記最高温度までの昇温速度を50〜A℃/hrとする。   The manufacturing method of the exhaust gas purification filter of the present invention performs the extrusion molding step, the drying step, the firing step, and the plugging step. In the firing step, the honeycomb formed body is fired one or more times. In the first firing in the firing step, firing is performed at a maximum temperature of 1300 to 1450 ° C., and a temperature increase rate from 1000 ° C. to the maximum temperature is set to 50 to A ° C./hr.

すなわち、本発明では、上記ハニカム成形体を最初に焼成する第1回目の焼成においては、上記ハニカム成形体のコーディエライト化が進むと共に細孔が形成される温度領域(約1200℃以上)を含む1000℃から上記最高温度(1300〜1450℃)までという特定の温度範囲において、昇温速度を50〜A℃/hrという特定の範囲に規定したのである。   That is, in the present invention, in the first firing in which the honeycomb formed body is fired for the first time, the temperature range (about 1200 ° C. or higher) where pores are formed as the cordierite of the honeycomb formed body progresses. In a specific temperature range from 1000 ° C. to the maximum temperature (1300 to 1450 ° C.), the rate of temperature rise is defined in a specific range of 50 to A ° C./hr.

このように上記特定の温度範囲において、昇温速度を上記特定の範囲とすることにより、形成される細孔の容積はほぼ一定のままでありながら、細孔径の小さな細孔、特にパティキュレートを充分に捕集することができない細孔径10μm以下の微細孔が形成されることを抑制することができる。これにより、得られる排ガス浄化フィルタは、細孔が形成された上記多孔質の隔壁の全細孔容積に対して、微細孔が占める割合を低減させたものとなる。それ故に、パティキュレートを充分に捕集することができ、圧力損失の低いものとなる。   In this way, in the specific temperature range, by setting the rate of temperature rise to the specific range, the volume of the formed pores remains substantially constant, while pores with a small pore diameter, particularly particulates, are used. It is possible to suppress the formation of fine pores having a pore diameter of 10 μm or less that cannot be sufficiently collected. As a result, the obtained exhaust gas purification filter has a reduced proportion of fine pores with respect to the total pore volume of the porous partition wall in which the pores are formed. Therefore, the particulates can be collected sufficiently and the pressure loss is low.

また、得られた排ガス浄化フィルタについて、上記隔壁に触媒を担持させても、微細孔の量を低減させたことにより、触媒がその微細孔を塞いでパティキュレート捕集機能が低下したり、触媒による微細孔の目詰まりによって圧力損失が高くなったりすることを抑制することができる。これにより、触媒を担持させて用いる場合でも、優れたパティキュレート捕集機能及び低圧力損失を維持することができる。   Further, in the obtained exhaust gas purification filter, even if the catalyst is supported on the partition wall, the amount of fine pores is reduced, so that the catalyst closes the fine pores and the particulate collection function is reduced. It is possible to suppress an increase in pressure loss due to clogging of fine holes due to. Thereby, even when a catalyst is supported and used, an excellent particulate collection function and low pressure loss can be maintained.

なお、本発明においては、第1回目の焼成における昇温速度を規定している。これは、最高温度1300〜1450℃で第1回目の焼成を行うことにより、上記ハニカム成形体のコーディエライト化はほぼ完了する。そのため、複数回の焼成を行う場合、第1回目以降の焼成は、上記ハニカム成形体のコーディエライト化を完了させたり、特性(例えば熱膨張係数)を向上させたり、上記栓詰め用スラリーから上記栓部を形成したりするための焼成となる。したがって、第1回目の焼成によって形成された細孔は、それ以降の焼成による影響をほとんど受けることなく維持される。また、第1回目以降の焼成によって、新たに細孔が形成されることもほとんどない。つまり、第1回目の焼成により、最終的に形成される細孔の容積及び微細孔の量が決定されるのである。このようなことから、第1回目の焼成における昇温速度を規定し、微細孔の量を制御しているのである。   In the present invention, the rate of temperature increase in the first firing is specified. As for this, by performing the first firing at the maximum temperature of 1300 to 1450 ° C., the formation of cordierite of the honeycomb formed body is almost completed. For this reason, when firing a plurality of times, the first and subsequent firings may complete cordierite formation of the honeycomb formed body, improve characteristics (for example, thermal expansion coefficient), or from the plugging slurry. Firing to form the plug portion. Accordingly, the pores formed by the first firing are maintained with little influence from the subsequent firing. Also, new pores are hardly formed by the first and subsequent firings. That is, the volume of fine pores and the amount of fine pores finally formed are determined by the first firing. For this reason, the rate of temperature increase in the first firing is specified, and the amount of micropores is controlled.

また、上述のごとく、上記温度範囲における昇温速度を上記範囲に規定した場合に、微細孔の量を低減させることができるということについては、後述の実施例において確認されているが、その詳細なメカニズムについては未だ解明されていない。しかしながら、次のように推測される。   Further, as described above, when the rate of temperature rise in the above temperature range is defined in the above range, the fact that the amount of micropores can be reduced has been confirmed in Examples described later, but the details This mechanism has not been clarified yet. However, it is estimated as follows.

すなわち、コーディエライト化原料を含むセラミック材料よりなる上記ハニカム成形体を焼成した場合、含有される水酸化アルミニウムの体積収縮によって微細孔が生成され、溶融したタルクや溶融シリカが拡散化反応によってその微細孔を埋めながら、上記ハニカム成形体のコーディエライト化が進む。そのため、昇温速度が速いと拡散化反応も促進され、溶融したタルクや溶融シリカによって微細孔を充分に埋めることができ、微細孔の量を減少させることができる。逆に、昇温速度が遅いと拡散化反応が鈍くなり、微細孔を充分に埋めることができず、多くの微細孔が残留する。   That is, when the above honeycomb formed body made of a ceramic material containing a cordierite forming raw material is fired, fine pores are generated by the volume shrinkage of the contained aluminum hydroxide, and the molten talc and fused silica are dispersed by the diffusion reaction. While filling the micropores, the honeycomb formed body is made into cordierite. Therefore, when the temperature rising rate is high, the diffusion reaction is also promoted, and the fine holes can be sufficiently filled with molten talc or fused silica, and the amount of fine holes can be reduced. On the other hand, when the rate of temperature rise is slow, the diffusion reaction becomes dull, and the fine holes cannot be filled sufficiently, and many fine holes remain.

このように、本発明の製造方法によって得られる排ガス浄化フィルタは、隔壁の全細孔容積に対する微細孔の量を低減させたものとなる。   As described above, the exhaust gas purification filter obtained by the production method of the present invention has a reduced amount of fine pores with respect to the total pore volume of the partition walls.

上記本発明においては、上記焼成工程における第1回目の焼成の上記最高温度が1300℃未満の場合には、上記ハニカム成形体を充分にコーディエライト化することができないおそれがある。一方、1450℃を超える場合には、上記ハニカム成形体の主成分となるコーディエライトの融点を超えて、溶損してしまうおそれがある。   In the present invention, when the maximum temperature of the first firing in the firing step is less than 1300 ° C., the honeycomb formed body may not be sufficiently cordierite. On the other hand, when the temperature exceeds 1450 ° C., the melting point of cordierite which is the main component of the honeycomb formed body may be exceeded, and there is a risk of melting.

また、上記焼成工程における第1回目の焼成の上記昇温速度が50℃/hr未満の場合には、微細孔の形成を充分に抑制することができないおそれがある。また、焼成時間が長くなり、生産性の低下を招くおそれがある。一方、A℃/hrを超える場合には、急激な加熱によって上記ハニカム成形体内の温度差が大きくなり、熱応力が発生して割れが生じるおそれがある。   Moreover, when the said temperature increase rate of the 1st baking in the said baking process is less than 50 degreeC / hr, there exists a possibility that formation of a micropore cannot fully be suppressed. Moreover, there is a possibility that the firing time becomes long and the productivity is lowered. On the other hand, when it exceeds A ° C./hr, the temperature difference in the honeycomb formed body becomes large due to rapid heating, and there is a possibility that thermal stress occurs and cracks occur.

また、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を最高温度T1で仮焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を最高温度T2(≧T1)で本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有する構成とすることができる(請求項2)。
The firing step includes a first firing step of temporarily firing the honeycomb formed body at a maximum temperature T 1 before the plugging step;
After the plugging step, the honeycomb formed body is subjected to main firing at a maximum temperature T 2 (≧ T 1 ) and a second firing step of forming the plug portion at the portion to be plugged. (Claim 2).

この場合には、上記第1焼成工程において、上記ハニカム成形体を焼成(仮焼成)することにより、焼成後の上記ハニカム成形体は、ある程度の強度を有するものとなる。そのため、その後の上記栓詰め工程において、上記栓詰め用スラリーを容易に配置することができる。
また、仮焼成を後の本焼成の最高温度T2以下の温度で行うため、仮焼成後の段階で上記ハニカム成形体のクラック等の確認を行うことにより、この確認作業を短いサイクルで行うことができる。これにより、作業の効率化を図ると共に生産性を向上させることができる。
In this case, in the first firing step, the honeycomb formed body is fired (temporarily fired) so that the fired honeycomb formed body has a certain degree of strength. Therefore, the plugging slurry can be easily arranged in the subsequent plugging process.
In addition, since the preliminary firing is performed at a temperature equal to or lower than the maximum temperature T 2 of the subsequent main firing, the confirmation work is performed in a short cycle by confirming cracks of the honeycomb formed body in the stage after the temporary firing. Can do. Thereby, work efficiency can be improved and productivity can be improved.

また、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を最高温度T2で本焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を最高温度T1(≦T2)で仮焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有する構成とすることができる(請求項3)。
Further, the firing step includes a first firing step of subjecting the honeycomb formed body to main firing at a maximum temperature T 2 before the plugging step;
After the plugging step, the honeycomb formed body is temporarily fired at a maximum temperature T 1 (≦ T 2 ) and has a second firing step of forming the plug portion in the portion to be plugged. (Claim 3).

この場合には、上記第1焼成工程において、上記ハニカム成形体を焼成(本焼成)することにより、焼成後の上記ハニカム成形体は、ある程度の強度を有するものとなる。そのため、その後の上記栓詰め工程において、上記栓詰め用スラリーを容易に配置することができる。
また、本焼成を後の仮焼成の最高温度T1以上の温度で仮焼成よりも先に行うことにより、上記ハニカム成形体は、完全にコーディエライト化し、焼成による収縮や膨張等の寸法変化がほぼ完了した状態となる。そのため、本焼成後のハニカム成形体の寸法は、仮焼成後まで維持される。これにより、本焼成後の段階で所望の寸法となっているかどうかを確認することができる。また、この確認作業を短いサイクルで行うことができ、作業の効率化を図ると共に生産性を向上させることができる。
In this case, in the first firing step, the honeycomb formed body is fired (main fired) so that the honeycomb formed body after firing has a certain degree of strength. Therefore, the plugging slurry can be easily arranged in the subsequent plugging process.
In addition, by performing the main firing at a temperature equal to or higher than the maximum temperature T 1 of the subsequent preliminary firing prior to the preliminary firing, the honeycomb formed body is completely cordierite, and dimensional changes such as shrinkage and expansion due to the firing. Is almost complete. Therefore, the dimensions of the honeycomb formed body after the main firing are maintained until after the preliminary firing. Thereby, it can be confirmed whether it becomes a desired dimension in the stage after this baking. Further, this confirmation work can be performed in a short cycle, so that the work efficiency can be improved and the productivity can be improved.

また、上記焼成工程は、上記栓詰め工程の後に、上記ハニカム成形体を最高温度T2で本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第1焼成工程のみを有する構成とすることができる(請求項4)。
この場合には、上記第1焼成工程における1回の焼成のみで、上記ハニカム成形体と上記栓詰め用スラリーとを同時に焼成することができる。これにより、上記ハニカム構造体に上記栓部を一体的に設けることができる。
Moreover, the firing step is configured to have after the plugged step, as well as the firing the honeycomb molded body at a maximum temperature T 2, only the first firing step of forming the plug portion in a portion to be the plugged (Claim 4).
In this case, the honeycomb formed body and the plugging slurry can be fired simultaneously by only one firing in the first firing step. Thereby, the plug portion can be integrally provided in the honeycomb structure.

また、上記焼成工程における仮焼成の最高温度T1は、1300〜1400℃であることが好ましい(請求項5)。
上記最高温度T1が1300℃未満の場合には、上記ハニカム成形体を充分にコーディエライト化することができないおそれがある。一方、1400℃を超える場合には、その温度に昇温させるために必要な時間だけ焼成時間が長くなるだけであり、生産性の低下を招くおそれがある。
Further, the maximum temperature T 1 of the calcination in the calcination step is preferably 1300-1400 ° C. (Claim 5).
When the maximum temperature T 1 is less than 1300 ° C., the honeycomb formed body may not be sufficiently cordierite. On the other hand, when the temperature exceeds 1400 ° C., the firing time is increased only for the time required to raise the temperature, and the productivity may be reduced.

また、上記焼成工程における本焼成の最高温度T2は、1400〜1450℃であることが好ましい(請求項6)。
上記最高温度T2が1400℃未満の場合には、上記ハニカム成形体を完全にコーディエライト化することができないおそれがあり、焼成による収縮や膨張が起こるおそれがある。一方、1450℃を超える場合には、上記ハニカム成形体の主成分となるコーディエライトの融点を超えて、溶損してしまうおそれがある。
Moreover, the highest temperature T 2 of the main firing in the firing step is preferably 1400-1,450 ° C. (Claim 6).
When the maximum temperature T 2 is less than 1400 ° C., the honeycomb formed body may not be completely cordierite, and shrinkage or expansion due to firing may occur. On the other hand, when the temperature exceeds 1450 ° C., the melting point of cordierite which is the main component of the honeycomb formed body may be exceeded, and there is a risk of melting.

また、得られる排ガス浄化フィルタにおいて、上記多孔質の隔壁は、気孔率が55〜75%であることが好ましい。また、上記多孔質の隔壁は、細孔の平均細孔径が15〜35μmであることが好ましい。
この場合には、上記排ガス浄化フィルタは、パティキュレートの捕集機能に優れ、圧力損失の低いものとなる。
In the obtained exhaust gas purification filter, the porous partition wall preferably has a porosity of 55 to 75%. The porous partition wall preferably has an average pore diameter of 15 to 35 μm.
In this case, the exhaust gas purification filter has an excellent particulate collection function and a low pressure loss.

また、上記隔壁は、全細孔容積に対する細孔径10μm以下の微細孔が占める割合(以下、適宜、微細孔量という)が6%以下であることが好ましい。
この場合には、上記排ガス浄化フィルタのパティキュレート捕集機能を向上させることができると共に、圧力損失を低減させることができる。
The partition wall preferably has a ratio of fine pores having a pore diameter of 10 μm or less to the total pore volume (hereinafter, appropriately referred to as “fine pore amount”) of 6% or less.
In this case, the particulate collection function of the exhaust gas purification filter can be improved and the pressure loss can be reduced.

本発明の実施例につき、図を用いて説明する。
本例において製造する排ガス浄化フィルタ1は、図1、図2に示すごとく、多孔質の隔壁11をハニカム状に配し、断面四角形状のセル12を多数設けてなるハニカム構造体10を有する。ハニカム構造体10は、コーディエライトを主成分とするセラミックより構成されており、円筒形状を呈している。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the exhaust gas purification filter 1 manufactured in this example has a honeycomb structure 10 in which porous partition walls 11 are arranged in a honeycomb shape and a large number of cells 12 having a quadrangular cross section are provided. The honeycomb structure 10 is made of ceramic mainly composed of cordierite, and has a cylindrical shape.

また、同図に示すごとく、ハニカム構造体10のセル12のうち、排ガスGを導入する導入通路121となるセル12の下流端と、多孔質の隔壁11を通過した排ガスGを排出する排出通路122となるセル12の上流端とは、栓部13によって閉塞されている。本例では、隣り合うセル12が交互に導入通路121及び排出通路122となるように、栓部13を配してある。両端面から見ると、それぞれ縦方向及び横方向に交互に、いわゆる市松模様状に栓部13が配された状態となっている。   Further, as shown in the figure, among the cells 12 of the honeycomb structure 10, the downstream end of the cell 12 serving as the introduction passage 121 for introducing the exhaust gas G and the exhaust passage for discharging the exhaust gas G that has passed through the porous partition wall 11 are used. The upstream end of the cell 12 that becomes 122 is closed by the plug portion 13. In this example, the plug portions 13 are arranged so that the adjacent cells 12 alternately become the introduction passage 121 and the discharge passage 122. When viewed from both end surfaces, the plug portions 13 are arranged in a so-called checkered pattern alternately in the vertical and horizontal directions.

本例の排ガス浄化フィルタは、粘土質のセラミック材料を押出成形する押出成形工程と、得られたハニカム成形体を乾燥する乾燥工程と、乾燥後のハニカム成形体を複数回焼成する焼成工程と、該焼成工程の途中において、栓部となる栓詰め用スラリーを配置する栓詰め工程とを行う。
本例の焼成工程としては、ハニカム成形体を仮焼成する第1焼成工程を栓詰め工程の前に行い、ハニカム成形体を仮焼成よりも高い温度で本焼成する第2焼成工程を栓詰め工程の後に行う。すなわち、乾燥工程の後、第1焼成工程、栓詰め工程、第2焼成工程の順に行う。
The exhaust gas purification filter of this example is an extrusion process for extruding a clay-like ceramic material, a drying process for drying the obtained honeycomb molded body, a firing process for firing the honeycomb molded body after drying a plurality of times, In the middle of the firing process, a plugging process is performed in which a plugging slurry serving as a plug part is disposed.
As the firing step of the present example, the first firing step of temporarily firing the honeycomb formed body is performed before the plugging step, and the second firing step of firing the honeycomb formed body at a temperature higher than the temporary firing is the plugging step. After that. That is, after the drying process, the first baking process, the plugging process, and the second baking process are performed in this order.

本例では、まず焼成工程における第1回目の焼成(第1焼成工程における仮焼成)の昇温速度(後述する昇温速度V)を変えて排ガス浄化フィルタ(試料11〜試料17)を作製し、評価を行う。
以下、各試料の製造方法について説明する。
In this example, first, exhaust gas purification filters (sample 11 to sample 17) were prepared by changing the temperature increase rate (temperature increase rate V described later) of the first firing in the firing step (temporary firing in the first firing step). , Evaluate.
Hereinafter, a method for manufacturing each sample will be described.

まず、カオリン、溶融シリカ、水酸化アルミニウム、アルミナ、タルク、造孔材(グラファイト)を含有し、化学組成が重量比にて最終的にSiO2:45〜55%、Al23:33〜42%、MgO:12〜18%よりなるコーディエライトを主成分とする組成となるように調整したコーディエライト化原料を水に混合し、有機バインダーを加えて混練することにより、粘土質のセラミック材料を得た。なお、コーディエライト化原料における造孔材としてのグラファイトの配合量を10〜30重量%、発泡材の配合量を4〜7重量%とした。 First, containing kaolin, fused silica, aluminum hydroxide, alumina, talc, pore former (graphite), finally SiO 2 Chemical composition in weight: 45~55%, Al 2 O 3 : 33~ By mixing a cordierite forming raw material adjusted to have a cordierite composition consisting mainly of 42% and MgO: 12-18% with water, adding an organic binder and kneading, A ceramic material was obtained. In addition, the compounding quantity of the graphite as a pore making material in the cordierite forming raw material was 10 to 30% by weight, and the compounding quantity of the foaming material was 4 to 7% by weight.

次いで、粘土質のセラミック材料を押出機により押出成形し、所望の長さで切断してハニカム成形体を作製した。このハニカム成形体は、最終的なハニカム構造体と同様の形状を呈し、ハニカム状に設けられた隔壁と、これによって仕切られると共に成形体の長手方向を貫通する複数のセルとを有する。本例においては、粘度質のセラミック材料を直径160mm、長さ100mm、隔壁の厚み0.3mm、セル数300メッシュのハニカム成形体に成形した。なお、このハニカム成形体のサイズは、用途に応じて変更することができる。   Next, the clay-like ceramic material was extruded by an extruder and cut to a desired length to prepare a honeycomb formed body. This honeycomb formed body has the same shape as the final honeycomb structure, and has partition walls provided in a honeycomb shape, and a plurality of cells that are partitioned by this and penetrate the longitudinal direction of the formed body. In this example, a viscous ceramic material was formed into a honeycomb formed body having a diameter of 160 mm, a length of 100 mm, a partition wall thickness of 0.3 mm, and a cell count of 300 mesh. The size of the honeycomb formed body can be changed according to the application.

次いで、ハニカム成形体を乾燥させた後、最高温度1390℃で5時間保持することにより、仮焼成を行った。このとき、表1に示すごとく、各試料については、1000℃から最高温度1390℃までの昇温速度(以下、昇温速度Vという)を10〜150℃/hrの範囲で変化させた。
その後、ハニカム成形体の端面における所定のセルの開口部に、いわゆる市松模様状に栓部となる栓詰め用スラリーを配置した。
Next, the honeycomb formed body was dried, and then pre-fired by holding at a maximum temperature of 1390 ° C. for 5 hours. At this time, as shown in Table 1, for each sample, the rate of temperature increase from 1000 ° C. to the maximum temperature of 1390 ° C. (hereinafter referred to as temperature increase rate V) was changed in the range of 10 to 150 ° C./hr.
Thereafter, a plugging slurry serving as a plug portion in a so-called checkered pattern was disposed in an opening of a predetermined cell on the end face of the honeycomb formed body.

次いで、最高温度1440℃で30時間保持することにより、本焼成を行った。本焼成については、各試料とも同じ条件で行った。
これにより、栓部を設けたハニカム構造体を有する排ガス浄化フィルタ(試料11〜試料17)を作製した。
Next, the main calcination was performed by maintaining the maximum temperature at 1440 ° C. for 30 hours. The main firing was performed under the same conditions for each sample.
In this way, exhaust gas purification filters (samples 11 to 17) having a honeycomb structure provided with plug portions were produced.

このようにして得られた排ガス浄化フィルタ(試料11〜試料17)について、隔壁の気孔率及び10μm以下の微細孔量を測定した。さらに圧力損失についても測定した。   With respect to the exhaust gas purification filters (Samples 11 to 17) thus obtained, the porosity of the partition walls and the amount of micropores of 10 μm or less were measured. Furthermore, pressure loss was also measured.

気孔率及び10μm以下の微細孔量は、水銀圧入式のポロシメータを用いて水銀圧入法により測定し、隔壁に存在する全細孔の容積の合計(全細孔容積)と細孔径が10μm以下の微細孔の容積の合計(微細孔容積)とを求めた。そして、気孔率(%)は、{全細孔容積/(全細孔容積+1/2.52)}×100という式に基づいて算出した。また、全細孔容積に対する10μm以下の微細孔が占める割合である微細孔量(%)は、(微細孔容積/全細孔容積)×100という式に基づいて算出した。その結果を表1に示す。   The porosity and the amount of fine pores of 10 μm or less were measured by mercury porosimetry using a mercury intrusion porosimeter, and the total volume of all pores existing in the partition walls (total pore volume) and the pore diameter was 10 μm or less. The total volume of micropores (micropore volume) was determined. The porosity (%) was calculated based on the formula {total pore volume / (total pore volume + 1 / 2.52)} × 100. Moreover, the micropore amount (%), which is the ratio of micropores of 10 μm or less to the total pore volume, was calculated based on the formula (micropore volume / total pore volume) × 100. The results are shown in Table 1.

また、圧力損失は、隔壁に白金等の触媒を担持させた排ガス浄化フィルタに対して、室温空気を9m3/minの流量で流入させ、マノメータを用いて排ガス浄化フィルタの前後における圧力差を求めた。そして、この圧力差から圧力損失(kPa)を算出した。その結果を表1に示す。 For the pressure loss, room temperature air is introduced at a flow rate of 9 m 3 / min into an exhaust gas purification filter having a catalyst such as platinum supported on the partition wall, and the pressure difference before and after the exhaust gas purification filter is obtained using a manometer. It was. And pressure loss (kPa) was computed from this pressure difference. The results are shown in Table 1.

Figure 2008119664
Figure 2008119664

また、表1の結果を基にして、図3に昇温速度V(℃/hr)と10μm以下の微細孔量(%)との関係を、図4に10μm以下の微細孔量(%)と圧力損失(kPa)との関係を示す。
図3から知られるように、昇温速度Vが速いほど、10μm以下の微細孔量は少なくなる。また、図4から知られるように、10μm以下の微細孔量が少なくなるほど、圧力損失は低くなる。すなわち、図3及び図4から知られるように、昇温速度Vが速いほど、10μm以下の微細孔量は少なくなり、圧力損失も低くなる。なお、表1に示すごとく、各試料の気孔率はほぼ一定であり、65%であった。
Further, based on the results of Table 1, FIG. 3 shows the relationship between the heating rate V (° C./hr) and the amount of micropores (%) of 10 μm or less, and FIG. 4 shows the amount of micropores (%) of 10 μm or less. And the pressure loss (kPa).
As is known from FIG. 3, the faster the heating rate V, the smaller the amount of fine pores of 10 μm or less. Further, as is known from FIG. 4, the pressure loss becomes lower as the amount of fine pores of 10 μm or less decreases. That is, as is known from FIGS. 3 and 4, the faster the heating rate V, the smaller the amount of fine pores of 10 μm or less, and the lower the pressure loss. In addition, as shown in Table 1, the porosity of each sample was substantially constant and was 65%.

例えば、この排ガス浄化フィルタを自動車エンジンの排管に搭載した場合、エンジンの出力低下を抑えるために圧力損失を低くしたい。実用上、エンジンの出力低下を最小限に抑えるためには、圧力損失を2.5kPa以下とすることが望ましい。したがって、図3及び図4の結果から、圧力損失を2.5kPa以下とするためには、昇温速度Vを50℃/hr以上とすることが好ましいことがわかる   For example, when this exhaust gas purification filter is mounted on the exhaust pipe of an automobile engine, it is desired to reduce the pressure loss in order to suppress a decrease in engine output. In practice, it is desirable that the pressure loss be 2.5 kPa or less in order to minimize the engine output reduction. Therefore, from the results of FIGS. 3 and 4, it is understood that the temperature rising rate V is preferably 50 ° C./hr or more in order to make the pressure loss 2.5 kPa or less.

次に、乾燥後のハニカム成形体の質量、及び焼成工程における第1回目の焼成(第1焼成工程における仮焼成)の昇温速度Vを変えて排ガス浄化フィルタ(試料21〜試料27、試料31〜試料35)を作製し、評価を行う。
以下、各試料の製造方法について説明する。なお、基本的には上述した製造方法と同様である。
Next, the exhaust gas purification filters (Samples 21 to 27, Sample 31) were changed by changing the mass of the honeycomb formed body after drying and the temperature increase rate V of the first firing in the firing step (temporary firing in the first firing step). Sample 35) is prepared and evaluated.
Hereinafter, a method for manufacturing each sample will be described. In addition, it is basically the same as the manufacturing method described above.

まず、粘土質のセラミック材料を押出成形し、得られたハニカム成形体を乾燥させた。各試料の乾燥後の質量(乾燥質量Bkg)を表2に示す。
次いで、最高温度1390℃で5時間保持することにより、仮焼成を行った。このとき、表2に示すごとく、試料21〜27については、昇温速度VをA℃/hr以下とした。また、試料31〜35については、同じく昇温速度VをA℃/hrよりも速くした。但し、A=150/Bである。
First, a clay-like ceramic material was extruded and the obtained honeycomb formed body was dried. Table 2 shows the mass (dry mass Bkg) of each sample after drying.
Subsequently, temporary baking was performed by holding at a maximum temperature of 1390 ° C. for 5 hours. At this time, as shown in Table 2, with respect to Samples 21 to 27, the heating rate V was set to A ° C./hr or less. Moreover, about the samples 31-35, the temperature increase rate V was similarly made faster than A degree C / hr. However, A = 150 / B.

次いで、ハニカム成形体に栓詰め用スラリーを配置した後、最高温度1440℃で30時間保持することにより、本焼成を行った。本焼成については、各試料とも同じ条件で行った。
これにより、栓部を設けたハニカム構造体を有する排ガス浄化フィルタ(試料21〜試料27、試料31〜試料35)を作製した。
Next, after the plugging slurry was placed on the honeycomb formed body, main firing was performed by maintaining the slurry at a maximum temperature of 1440 ° C. for 30 hours. The main firing was performed under the same conditions for each sample.
Thus, exhaust gas purification filters (sample 21 to sample 27, sample 31 to sample 35) having a honeycomb structure provided with plug portions were produced.

このようにして得られた排ガス浄化フィルタ(試料21〜27、試料31〜試料35)において、仮焼成後の割れの評価を行った。
割れの評価は、仮焼成後のハニカム成形体に光を透過させ、目視にて内部における割れの有無を確認した。その結果を表2に示す。
In the thus obtained exhaust gas purification filters (Samples 21 to 27, Samples 31 to 35), evaluation of cracks after temporary firing was performed.
For evaluation of cracks, light was transmitted through the honeycomb formed body after the temporary firing, and the presence or absence of cracks inside was visually confirmed. The results are shown in Table 2.

Figure 2008119664
Figure 2008119664

表2から知られるように、昇温速度VがA℃/hr以下の試料21〜試料27については、割れの発生は見られなかった。一方、昇温速度VがA℃/hrよりも速い試料31〜試料35については、すべてに割れが発生した。これは、昇温速度Vを速くすることにより、ハニカム成形体内に温度差が生じ、それに伴う熱応力によって割れが発生したと考えられる。したがって、焼成時における割れの発生を抑制するためには、昇温速度VをA℃/hr以下とすることが好ましいことがわかる。   As can be seen from Table 2, no cracks were observed in Samples 21 to 27 having a temperature increase rate V of A ° C./hr or less. On the other hand, all of the samples 31 to 35 having the heating rate V higher than A ° C./hr were cracked. It is considered that this is because the temperature difference is generated in the honeycomb formed body by increasing the temperature rising rate V, and cracks are generated due to the accompanying thermal stress. Therefore, it can be seen that the temperature increase rate V is preferably set to A ° C./hr or less in order to suppress the occurrence of cracks during firing.

以上のことから、焼成工程における第1回目の焼成において、1000℃から最高温度(本例では1390℃)までの昇温速度Vを50〜A℃/hrとすることにより、形成される細孔の容積はほぼ一定のままでありながら、細孔径の小さな細孔、特にパティキュレートを充分に捕集することができない細孔径10μm以下の微細孔が形成されることを抑制することができる。そして、得られる排ガス浄化フィルタは、隔壁の全細孔容積に対する微細孔の量を低減させたものとなり、パティキュレートの捕集機能に優れ、圧力損失の低いものとなる。さらに、焼成時における割れの発生を抑制することができる。   From the above, in the first firing in the firing step, the pores formed by setting the heating rate V from 1000 ° C. to the maximum temperature (1390 ° C. in this example) to 50 to A ° C./hr. Can be suppressed from forming pores having a small pore diameter, in particular, fine pores having a pore diameter of 10 μm or less that cannot sufficiently collect particulates. The obtained exhaust gas purification filter has a reduced amount of fine pores with respect to the total pore volume of the partition wall, and has an excellent particulate collection function and a low pressure loss. Furthermore, generation | occurrence | production of the crack at the time of baking can be suppressed.

なお、焼成工程としては、栓詰め工程の前に、ハニカム成形体を本焼成する第1焼成工程を行い、栓詰め工程の後に、ハニカム成形体を本焼成よりも低い温度で仮焼成する第2焼成工程とを行う構成としてもよい。
また、焼成工程としては、栓詰め工程の後に、ハニカム成形体を本焼成する第1焼成工程のみを行う構成としてもよい。
いずれの場合にも、焼成工程における第1回目の焼成において、1000℃から最高温度までの昇温速度Vを50〜A℃/hrとすることにより、本実施例と同様の効果を得ることができる。
As the firing step, the first firing step of firing the honeycomb formed body is performed before the plugging step, and the honeycomb formed body is temporarily fired at a lower temperature than the firing after the plugging step. It is good also as a structure which performs a baking process.
In addition, the firing process may be configured to perform only the first firing process for main firing the honeycomb formed body after the plugging process.
In any case, in the first firing in the firing step, the same effect as in this example can be obtained by setting the temperature rising rate V from 1000 ° C. to the maximum temperature to 50 to A ° C./hr. it can.

実施例における、排ガス浄化フィルタを示す斜視図。The perspective view which shows the exhaust gas purification filter in an Example. 実施例における、排ガス浄化フィルタを示す断面説明図。Cross-sectional explanatory drawing which shows the exhaust gas purification filter in an Example. 実施例における、昇温速度Vと10μm以下の微細孔量との関係を示す線図。The diagram which shows the relationship between the temperature increase rate V and the amount of micropores of 10 micrometers or less in an Example. 実施例における、10μm以下の微細孔量と圧力損失との関係を示す線図。The diagram which shows the relationship between the amount of micropores of 10 micrometers or less and a pressure loss in an Example.

符号の説明Explanation of symbols

1 排ガス浄化フィルタ
10 ハニカム構造体
11 隔壁
12 セル
13 栓部
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification filter 10 Honeycomb structure 11 Partition 12 Cell 13 Plug part

Claims (6)

多孔質の隔壁をハニカム状に配して多数のセルを設けたコーディエライトからなるハニカム構造体を有し、該ハニカム構造体の上記セルのうち、排ガスを導入する導入通路となるセルの下流端と、上記多孔質の隔壁を通過した排ガスを排出する排出通路となるセルの上流端とを栓部によって閉塞してなる排ガス浄化フィルタを製造する方法において、
コーディエライト化原料を含むセラミック材料を押出成形して、多孔質の隔壁をハニカム状に配して多数のセルを設けたハニカム成形体を作製する押出成形工程と、
上記ハニカム成形体を乾燥する乾燥工程と、
上記ハニカム成形体を1又は複数回焼成する焼成工程と、
該焼成工程の前又は途中において、上記ハニカム成形体の端面における上記セルの開口部のうち、上記栓部によって栓詰めすべき部分に栓詰め用スラリーを配置する栓詰め工程とを有し、
上記焼成工程における第1回目の焼成では、最高温度1300〜1450℃で焼成を行い、かつ、1000℃から上記最高温度までの昇温速度が50〜A℃/hr(但し、上記乾燥工程後の上記ハニカム成形体の質量をBkgとした場合、A=150/B。)とすることを特徴とする排ガス浄化フィルタの製造方法。
It has a honeycomb structure made of cordierite provided with a large number of cells with porous partition walls arranged in a honeycomb shape, and among the cells of the honeycomb structure, downstream of the cells serving as introduction passages for introducing exhaust gas In a method of manufacturing an exhaust gas purification filter in which an end and an upstream end of a cell serving as a discharge passage for discharging exhaust gas that has passed through the porous partition wall are closed by a plug portion,
Extrusion molding of a ceramic material containing a cordierite forming raw material, and forming a honeycomb molded body provided with a large number of cells by arranging porous partition walls in a honeycomb shape; and
A drying step of drying the honeycomb formed body,
A firing step of firing the honeycomb formed body one or more times;
Before or during the firing step, the plugging step of placing a plugging slurry in a portion to be plugged by the plug portion of the opening of the cell in the end face of the honeycomb molded body,
In the first firing in the firing step, firing is performed at a maximum temperature of 1300 to 1450 ° C., and a temperature increase rate from 1000 ° C. to the maximum temperature is 50 to A ° C./hr (however, after the drying step) (A = 150 / B, where Bkg is the mass of the honeycomb formed body.)
請求項1において、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を最高温度T1で仮焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を最高温度T2(≧T1)で本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有することを特徴とする排ガス浄化フィルタの製造方法。
In claim 1, the firing step includes a first firing step in which the honeycomb formed body is temporarily fired at a maximum temperature T 1 before the plugging step.
After the plugging step, the honeycomb formed body is subjected to a main firing at a maximum temperature T 2 (≧ T 1 ) and a second firing step of forming the plug portion at the portion to be plugged. A method for producing an exhaust gas purification filter.
請求項1において、上記焼成工程は、上記栓詰め工程の前に、上記ハニカム成形体を最高温度T2で本焼成する第1焼成工程と、
上記栓詰め工程の後に、上記ハニカム成形体を最高温度T1(≦T2)で仮焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第2焼成工程とを有することを特徴とする排ガス浄化フィルタの製造方法。
According to claim 1, said calcination step, prior to said plug inserting process, a first firing step of the sintering of the honeycomb molded body at a maximum temperature T 2,
After the plugging step, the honeycomb formed body is temporarily fired at a maximum temperature T 1 (≦ T 2 ), and a second firing step of forming the plug portion in the portion to be plugged is provided. A method for producing an exhaust gas purification filter.
請求項1において、上記焼成工程は、上記栓詰め工程の後に、上記ハニカム成形体を最高温度T2で本焼成すると共に、上記栓詰めすべき部分に上記栓部を形成する第1焼成工程のみを有することを特徴とする排ガス浄化フィルタの製造方法。 In claim 1, the firing step, after the plug inserting process, as well as the firing the honeycomb molded body at a maximum temperature T 2, the first firing step of forming the plug portion in a portion to be the plugged only A method for producing an exhaust gas purification filter comprising: 請求項2又は3において、上記焼成工程における仮焼成の最高温度T1は、1300〜1400℃であることを特徴とする排ガス浄化フィルタの製造方法。 4. The method for manufacturing an exhaust gas purification filter according to claim 2, wherein the maximum temperature T 1 for pre-baking in the baking step is 1300 to 1400 ° C. 5. 請求項2〜4のいずれか1項において、上記焼成工程における本焼成の最高温度T2は、1400〜1450℃であることを特徴とする排ガス浄化フィルタの製造方法。 5. The method for producing an exhaust gas purification filter according to claim 2 , wherein the maximum temperature T 2 of the main firing in the firing step is 1400 to 1450 ° C. 6.
JP2006309642A 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purifying filter Pending JP2008119664A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006309642A JP2008119664A (en) 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purifying filter
DE200710000582 DE102007000582B4 (en) 2006-11-15 2007-10-26 Method for producing an exhaust gas purification filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309642A JP2008119664A (en) 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purifying filter

Publications (1)

Publication Number Publication Date
JP2008119664A true JP2008119664A (en) 2008-05-29

Family

ID=39311350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309642A Pending JP2008119664A (en) 2006-11-15 2006-11-15 Manufacturing method of exhaust gas purifying filter

Country Status (2)

Country Link
JP (1) JP2008119664A (en)
DE (1) DE102007000582B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544225A (en) * 2010-11-29 2013-12-12 コーニング インコーポレイテッド Process for controlling cordierite filter characteristics

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119843A (en) * 1981-01-20 1982-07-26 Kobe Steel Ltd Calcining method for catalyst carrier molding
JPS62182158A (en) * 1985-12-27 1987-08-10 日本碍子株式会社 Cordierite honeycom structure and manufacture
JPH01249665A (en) * 1988-03-31 1989-10-04 Ngk Insulators Ltd Method for calcining ceramic and tunnel kiln used therefor
JPH02255576A (en) * 1989-03-29 1990-10-16 Ngk Insulators Ltd Method for calcining ceramics honeycomb structural body
JPH0585856A (en) * 1991-09-30 1993-04-06 Ngk Insulators Ltd Method for burning ceramics honeycomb structure
JP2002234780A (en) * 2001-02-01 2002-08-23 Hitachi Metals Ltd Method for producing porous ceramic honeycomb structure
WO2005068396A1 (en) * 2004-01-13 2005-07-28 Ngk Insulators, Ltd. Honeycomb structure and method for producing the same
WO2006062141A1 (en) * 2004-12-08 2006-06-15 Ngk Insulators, Ltd. Method of producing sealed honeycomb structure body
WO2006098191A1 (en) * 2005-03-16 2006-09-21 Ngk Insulators, Ltd. Honeycomb structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277162A (en) * 2002-01-21 2003-10-02 Ngk Insulators Ltd Porous honeycomb structural body, application thereof and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119843A (en) * 1981-01-20 1982-07-26 Kobe Steel Ltd Calcining method for catalyst carrier molding
JPS62182158A (en) * 1985-12-27 1987-08-10 日本碍子株式会社 Cordierite honeycom structure and manufacture
JPH01249665A (en) * 1988-03-31 1989-10-04 Ngk Insulators Ltd Method for calcining ceramic and tunnel kiln used therefor
JPH02255576A (en) * 1989-03-29 1990-10-16 Ngk Insulators Ltd Method for calcining ceramics honeycomb structural body
JPH0585856A (en) * 1991-09-30 1993-04-06 Ngk Insulators Ltd Method for burning ceramics honeycomb structure
JP2002234780A (en) * 2001-02-01 2002-08-23 Hitachi Metals Ltd Method for producing porous ceramic honeycomb structure
WO2005068396A1 (en) * 2004-01-13 2005-07-28 Ngk Insulators, Ltd. Honeycomb structure and method for producing the same
WO2006062141A1 (en) * 2004-12-08 2006-06-15 Ngk Insulators, Ltd. Method of producing sealed honeycomb structure body
WO2006098191A1 (en) * 2005-03-16 2006-09-21 Ngk Insulators, Ltd. Honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544225A (en) * 2010-11-29 2013-12-12 コーニング インコーポレイテッド Process for controlling cordierite filter characteristics

Also Published As

Publication number Publication date
DE102007000582B4 (en) 2012-05-24
DE102007000582A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
US7208108B2 (en) Method for producing porous ceramic article
JP5981854B2 (en) Honeycomb filter and manufacturing method thereof
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
JPH07163822A (en) Cordierite ceramic filter and its preparation
JP2006516528A (en) Cordierite ceramic body and method
JP6149304B2 (en) Low density cordierite body and method for producing the same
JP5875997B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
JP2003040687A (en) Honeycomb structured ceramic compact and its manufacturing method
JP2008037722A (en) Method of manufacturing honeycomb structure
US7470302B2 (en) Honeycomb structure
JP4358662B2 (en) Method for producing cordierite honeycomb structure
CN102918005A (en) Cordierite porous ceramic honeycomb articles
JP2014108404A (en) Honeycomb catalyst body
JP2014054623A (en) Plugged honeycomb structure
WO2004060830A1 (en) Method of baking ceramic honeycomb structure
JPWO2008084844A1 (en) Manufacturing method of honeycomb structure
JP2007045686A (en) Method for manufacturing porous ceramic structure
JP2014087743A (en) Honeycomb filter
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP6726634B2 (en) Manufacturing method of honeycomb structure
JP2009262125A (en) Porous honeycomb structure and method for manufacturing the same
JP5082398B2 (en) Manufacturing method of exhaust gas purification filter
CN113272042B (en) Cordierite-containing ceramic bodies, batch composition mixtures, and methods of making cordierite-containing ceramic bodies
JPWO2005068396A1 (en) Honeycomb structure and manufacturing method thereof
JP3935159B2 (en) Ceramic honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113