JP3935159B2 - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter Download PDF

Info

Publication number
JP3935159B2
JP3935159B2 JP2004105995A JP2004105995A JP3935159B2 JP 3935159 B2 JP3935159 B2 JP 3935159B2 JP 2004105995 A JP2004105995 A JP 2004105995A JP 2004105995 A JP2004105995 A JP 2004105995A JP 3935159 B2 JP3935159 B2 JP 3935159B2
Authority
JP
Japan
Prior art keywords
ceramic honeycomb
flow path
pore volume
outer peripheral
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004105995A
Other languages
Japanese (ja)
Other versions
JP2004322082A (en
Inventor
博久 諏訪部
靖彦 大坪
博 舟橋
久貴 通阪
恵一 中込
誠 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Proterial Ltd
Original Assignee
Hino Motors Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Hitachi Metals Ltd filed Critical Hino Motors Ltd
Priority to JP2004105995A priority Critical patent/JP3935159B2/en
Publication of JP2004322082A publication Critical patent/JP2004322082A/en
Application granted granted Critical
Publication of JP3935159B2 publication Critical patent/JP3935159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、ディーゼル機関の排気ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタに関するものである。   The present invention relates to a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine.

ディーゼル機関から排出される微粒子を除去するため、セラミックハニカム構造体の隔壁を多孔質構造とし、その隔壁に微粒子を含んだ排気ガスを通過せしめる構造の微粒子捕集用のセラミックハニカムフィルタを採用する検討が進められている。このセラミックハニカムフィルタの正面図を図1に、排気ガス中の微粒子を捕捉するセラミックハニカムフィルタの使用例の一例を示す要部の模式断面概略図を図2に示す。通常セラミックハニカムフィルタ11の端面外周の形状は略円形状で、その外周壁11aとこの外周壁11aの内周側に各々直交する隔壁11bにより形成された複数の流路11cを有し、この流路11cの両端部が交互に流入側目封止材1a、流出側目封止材1bで目封止されている。このセラミックハニカムフィルタ11は、図1に示すように金属製収納容器12内に、支持部材14を介して圧着把持され、また、支持部材13を介して貫通孔方向に挟持され、収納されている。ここで、支持部材14は一般に金属メッシュ或いはセラミックス製のマットで形成されるが、使用条件に応じて併用される。従って、セラミックハニカムフィルタ11をディーゼル機関に装着して使用した際には、支持部材13及び14を介して、エンジンや路面等からの機械的振動や衝撃がセラミックハニカムフィルタに負荷される。   In order to remove particulates discharged from diesel engines, a ceramic honeycomb filter for collecting particulates with a structure in which the partition of the ceramic honeycomb structure has a porous structure and allows exhaust gas containing particulates to pass through the partition is used. Is underway. FIG. 1 is a front view of this ceramic honeycomb filter, and FIG. 2 is a schematic cross-sectional schematic view of the main part showing an example of use of the ceramic honeycomb filter for capturing particulates in exhaust gas. Usually, the shape of the outer periphery of the end face of the ceramic honeycomb filter 11 is substantially circular, and has a plurality of flow paths 11c formed by the outer peripheral wall 11a and the partition walls 11b orthogonal to the inner peripheral side of the outer peripheral wall 11a. Both ends of the path 11c are alternately plugged with the inflow side plugging material 1a and the outflow side plugging material 1b. As shown in FIG. 1, the ceramic honeycomb filter 11 is crimped and held in a metal storage container 12 through a support member 14 and is sandwiched and stored in a through-hole direction through a support member 13. . Here, although the support member 14 is generally formed of a metal mesh or a ceramic mat, it is used in combination according to use conditions. Therefore, when the ceramic honeycomb filter 11 is used in a diesel engine, mechanical vibrations and impacts from the engine, road surface, and the like are applied to the ceramic honeycomb filter via the support members 13 and 14.

このような構造のセラミックハニカムフィルタでの排気ガス浄化作用は以下の通り行われる。先ず、流入側排気ガス2aは収納容器12に収納されたセラミックハニカムフィルタ11の流入側端面の開口している流路11cから流入し、矢印で示すように、隔壁11bを通過し流出側排気ガス2bとして排気される。流入側排気ガス2aが隔壁11bを通過する際に、流入側排気ガス2aに含まれる微粒子は、隔壁11bに捕捉され、浄化された排気ガスが流出側排気ガス2bとして、大気中に放出される。隔壁11bに捕捉された微粒子は一定量以上になるとフィルタの目詰まりが発生するため、バーナーや電気ヒーターにより燃焼させ、フィルタの再生が行われていた。   The exhaust gas purification action of the ceramic honeycomb filter having such a structure is performed as follows. First, the inflow side exhaust gas 2a flows in from the flow path 11c opened in the end surface of the inflow side of the ceramic honeycomb filter 11 housed in the storage container 12, passes through the partition wall 11b as shown by the arrow, and flows into the outflow side exhaust gas. Exhaust as 2b. When the inflow side exhaust gas 2a passes through the partition wall 11b, the particulates contained in the inflow side exhaust gas 2a are captured by the partition wall 11b, and the purified exhaust gas is released into the atmosphere as the outflow side exhaust gas 2b. . When the amount of fine particles trapped in the partition wall 11b exceeds a certain amount, the filter is clogged. Therefore, the filter is regenerated by burning it with a burner or an electric heater.

以上説明したように、ディーゼル機関の排気ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタは、金属製容器中に収納、支持され、フィルタ上で微粒子の捕集、及び燃焼が繰り返し行われ、且つ、機械的振動や衝撃を受けることから、このセラミックハニカムフィルタの特性に関しては、微粒子の捕集効率が高いこと、圧力損失が低いこと、支持部材による支持力に耐え、且つ、機械的衝撃や熱衝撃にも耐えうる強度を有することと共に、微粒子燃焼によるフィルタの再生を効率よく行うという、多くの特性を満足することが要求されている。   As described above, the ceramic honeycomb filter for removing particulates contained in the exhaust gas of a diesel engine is housed and supported in a metal container, and particulate collection and combustion are repeatedly performed on the filter. In addition, since the ceramic honeycomb filter is subjected to mechanical vibration and impact, it has high particulate collection efficiency, low pressure loss, withstands the supporting force of the support member, and mechanical impact. In addition to being strong enough to withstand heat shocks, it is required to satisfy many characteristics such as efficient regeneration of the filter by particulate combustion.

このセラミックハニカムフィルタの必要特性のうち、圧力損失と微粒子の捕集効率、及び、強度とは相反する関係にあることから、これらを両立させるため、セラミックハニカムフィルタの多孔質隔壁の気孔率、平均細孔径、細孔分布、或いは、隔壁表面に存在する細孔の大きさを制御する技術が特許文献1、2、及び3に記載されている。特許文献1に記載の発明では、隔壁表面に孔径5〜40μmの細孔と孔径40〜100μmの大孔とを形成させ、該小孔の数を該大孔の数の5〜40倍とし、更に、隔壁内部の細孔の平均孔径は15μmより大きく、累積細孔容積は0.3〜0.7cm/gであるフィルタにより、捕集効率を初期から高い値に維持することができ、かつ、圧力損失は低く維持されるとされている。また、特許文献2に記載の発明では、細孔径10μm未満の細孔容積が全細孔容積の15%以下であり、細孔径10〜50μmの細孔容積が全細孔容積の75%以上、細孔径50μmを超える細孔容積が、全細孔容積の10%以下である多孔質ハニカムフィルタにより、微粒子の捕集効率が高く、且つ、細孔の目詰まりによる圧力損失の増大が防止できるフィルタが得られるとしている。また、特許文献3に記載の発明では、細孔径5〜20μmの範囲内の細孔容積が全細孔容積の30〜40%の範囲内にあり、細孔径20〜200μmの範囲内の細孔容積が全細孔容積の50〜70%の排気ガス浄化用フィルタにより、微粒子の捕集効率及び燃焼特性に優れたフィルタが得られるとしている。 Among the necessary characteristics of this ceramic honeycomb filter, the pressure loss and the collection efficiency of fine particles and the strength are in a contradictory relationship. Patent Documents 1, 2, and 3 describe techniques for controlling the pore diameter, pore distribution, or the size of pores existing on the partition wall surface. In the invention described in Patent Document 1, pores having a pore diameter of 5 to 40 μm and large pores having a pore diameter of 40 to 100 μm are formed on the partition wall surface, and the number of the small holes is 5 to 40 times the number of the large holes. Furthermore, the filter has an average pore diameter larger than 15 μm and a cumulative pore volume of 0.3 to 0.7 cm 3 / g, so that the collection efficiency can be maintained at a high value from the beginning. In addition, the pressure loss is said to be kept low. In the invention described in Patent Document 2, the pore volume having a pore diameter of less than 10 μm is 15% or less of the total pore volume, and the pore volume having a pore diameter of 10 to 50 μm is 75% or more of the total pore volume, A porous honeycomb filter having a pore volume exceeding a pore diameter of 50 μm is 10% or less of the total pore volume, a filter that has a high particulate collection efficiency and can prevent an increase in pressure loss due to pore clogging. Is supposed to be obtained. Further, in the invention described in Patent Document 3, the pore volume in the range of 5 to 20 μm in pore diameter is in the range of 30 to 40% of the total pore volume, and the pore in the range of 20 to 200 μm in pore diameter. An exhaust gas purifying filter having a volume of 50 to 70% of the total pore volume can obtain a filter excellent in particulate collection efficiency and combustion characteristics.

特公平3−10365号公報Japanese Patent Publication No. 3-10365 特開2002−219319号公報JP 2002-219319 A 特許第3446558号公報Japanese Patent No. 3446558

しかしながら、従来技術である特許文献1〜3に開示されているようなセラミックハニカムフィルタに関する技術のみでは、以下のような問題点があり、低圧力損失特性を有し、且つ、使用時の機械的振動や衝撃に耐えうる強度を有するセラミックハニカムフィルタを得ることはできなかった。   However, only the technology related to the ceramic honeycomb filter as disclosed in Patent Documents 1 to 3 as the prior art has the following problems, has a low pressure loss characteristic, and mechanical at the time of use. A ceramic honeycomb filter having a strength capable of withstanding vibration and impact could not be obtained.

特許文献1に記載されているフィルタにおいては、その第4図に隔壁内部の細孔分布が記載されているように、全細孔容積が0.3〜0.7cm/gであって、細孔径1〜100μmの細孔に対して、取りうる累積細孔容積の範囲が明記されているものの、100μm以上の細孔については、最大でも細孔容積が0.01cm/g以下である。この細孔径100μm以上の細孔については、微粒子を含有した排気ガスが細孔内部を通過し易いことから、隔壁中に適量存在させることにより、フィルタの圧力損失を低減させることが可能となるが、特許文献1に記載されているフィルタでは、100μmを超える細孔の累積細孔容積は0.01cm/g以下であるため、低圧力損失特性が得られないという問題があった。また、1〜100μmの細孔についても、第4図に示されるように、その累積細孔容積は、広い範囲を取りうることが記載されているものの、1〜100μmの細孔の詳細な分布については何ら規定されていないことから、低圧力損失特性と高強度を両立させたフィルタが得られないという問題があった。 In the filter described in Patent Document 1, the total pore volume is 0.3 to 0.7 cm 3 / g, as shown in FIG. Although the range of the cumulative pore volume that can be taken is specified for pores having a pore diameter of 1 to 100 μm, the pore volume of 100 μm or more is at most 0.01 cm 3 / g or less. . With respect to the pores having a pore diameter of 100 μm or more, the exhaust gas containing fine particles easily passes through the inside of the pores. Therefore, the presence of an appropriate amount in the partition wall can reduce the pressure loss of the filter. In the filter described in Patent Document 1, since the cumulative pore volume of pores exceeding 100 μm is 0.01 cm 3 / g or less, there is a problem that low pressure loss characteristics cannot be obtained. Further, as shown in FIG. 4, the pore volume of 1 to 100 μm is described as being able to take a wide range as shown in FIG. 4, but the detailed distribution of the pores of 1 to 100 μm is described. Since there is no provision for the filter, there is a problem that a filter having both low pressure loss characteristics and high strength cannot be obtained.

特許文献2に記載されているフィルタでは、細孔径10μm未満の細孔容積が全細孔容積の15%以下であり、細孔径10〜50μmの細孔容積が、全細孔容積の75%以上、細孔径50μmを超える細孔容積が、全細孔容積の10%以下であることが記載されているが、細孔径10μm以下の細孔や、細孔径10〜50μm、細孔径50〜100μm、細孔径100μm以上の細孔の詳細な分布について一切考慮されていないことから、低圧力損失と高強度を両立させたフィルタが得られないという問題があった。   In the filter described in Patent Document 2, the pore volume having a pore diameter of less than 10 μm is 15% or less of the total pore volume, and the pore volume having a pore diameter of 10 to 50 μm is 75% or more of the total pore volume. In addition, it is described that the pore volume exceeding the pore diameter of 50 μm is 10% or less of the total pore volume, but the pore diameter is 10 μm or less, the pore diameter is 10 to 50 μm, the pore diameter is 50 to 100 μm, Since no detailed distribution of pores having a pore diameter of 100 μm or more is taken into consideration, there has been a problem that a filter having both low pressure loss and high strength cannot be obtained.

特許文献3に記載されているフィルタでは、細孔径5〜20μmの範囲内の細孔容積が全細孔容積の30〜40%の範囲内にあり、細孔径20〜200μmの範囲内の細孔容積が全細孔容積の50〜70%であることが記載されているが、細孔径5〜20μm、及び細孔径20〜200μmの細孔の詳細な分布について一切考慮されておらず、また、気孔率や全細孔容積の記載が一切ないことから、低圧力損失と高強度を両立させたフィルタが得られないという問題があった。   In the filter described in Patent Document 3, the pore volume within a pore diameter range of 5 to 20 μm is within a range of 30 to 40% of the total pore volume, and the pore diameter within a pore diameter range of 20 to 200 μm. Although it is described that the volume is 50 to 70% of the total pore volume, the detailed distribution of pores having a pore diameter of 5 to 20 μm and a pore diameter of 20 to 200 μm is not considered at all, Since there is no description of the porosity and the total pore volume, there is a problem that a filter having both low pressure loss and high strength cannot be obtained.

本発明は、上記問題を解決し、低圧力損失であって、且つ支持部材による支持力や機械的衝撃に耐えうる強度を有するセラミックハニカムフィルタを提供することを目的とする。   An object of the present invention is to provide a ceramic honeycomb filter that solves the above-described problems, has a low pressure loss, and has a strength capable of withstanding a supporting force and mechanical shock by a supporting member.

本発明のセラミックハニカムフィルタは、セラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタであって、前記多孔質隔壁の全細孔容積が0.57〜0.80cm/gであって、100μm以上の細孔容積が0.02〜0.08cm/gであることを特徴とする。
The ceramic honeycomb filter of the present invention plugs the end of a predetermined flow path of the ceramic honeycomb structure, and allows the exhaust gas to pass through a porous partition wall that defines the flow path, whereby fine particles contained in the exhaust gas Honeycomb filter that removes the pores, the total pore volume of the porous partition wall is 0.57 to 0.80 cm 3 / g, and the pore volume of 100 μm or more is 0.02 to 0.08 cm 3. / G.

本発明のセラミックハニカムフィルタにおいて、前記多孔質隔壁の細孔分布が、2μm以上の細孔容積:0.55〜0.75cm/g、5μm以上の細孔容積:0.540.74cm/g、10μm以上の細孔容積:0.450.65cm/g、20μm以上の細孔容積:0.250.45cm/g、40μm以上の細孔容積:0.070.20cm/gであることが好ましい。
In the ceramic honeycomb filter of the present invention, the pore distribution of the porous partition wall is such that the pore volume is 2 μm or more: 0.55 to 0.75 cm 3 / g, the pore volume is 5 μm or more: 0.54 to 0.00 . 74 cm 3 / g, pore volume of 10 μm or more: 0.45 to 0.65 cm 3 / g, pore volume of 20 μm or more: 0.25 to 0.45 cm 3 / g, pore volume of 40 μm or more : it is preferred that 0.07 ~ 0.20 cm 3 / g.

本発明のセラミックハニカムフィルタにおいて、前記セラミックハニカムフィルタの外周壁近傍の流路が、両端部において目封止されていることが好ましい。   In the ceramic honeycomb filter of the present invention, it is preferable that the flow path near the outer peripheral wall of the ceramic honeycomb filter is plugged at both ends.

本発明のセラミックハニカムフィルタにおいて、外周壁近傍の流路の両端部を目封止する目封止材のフィルタ端面からの長さが、セラミックハニカムフィルタの全長の8.2%以下であり、且つ、前記両端が目封止されている流路は、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在することが好ましい。   In the ceramic honeycomb filter of the present invention, the length from the filter end surface of the plugging material for plugging both ends of the flow path near the outer peripheral wall is not more than 8.2% of the total length of the ceramic honeycomb filter, and The flow path in which both ends are plugged preferably exists in a range of a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face.

本発明のセラミックハニカムフィルタにおいて、前記隔壁の間隔が2.54mm以下であって、セラミックハニカムフィルタの流路を目封止している少なくとも一部の目封止材の外端面が、隔壁端面に対して流路方向に0.01〜5mm突出し、前記突出部分が少なくとも流路方向に対して傾斜面を有することが好ましい。   In the ceramic honeycomb filter of the present invention, the interval between the partition walls is 2.54 mm or less, and the outer end surface of at least a part of the plugging material plugging the channels of the ceramic honeycomb filter is the partition end surface. On the other hand, it is preferable that the protrusion protrudes 0.01 to 5 mm in the flow path direction, and the protruding portion has an inclined surface at least with respect to the flow path direction.

また、本発明の別発明のセラミックハニカムフィルタは、セラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタであって、隔壁の間隔が2.54mm以下であって、前記目封止している少なくとも一部の目封止材の外端面が隔壁端面に対して流路方向に0.01〜5mm突出し、前記突出部分が少なくとも流路方向に対して傾斜面を有し、且つ前記セラミックハニカムフィルタの外周壁近傍の流路が両端部において目封止されていることを特徴とする。   Further, the ceramic honeycomb filter according to another aspect of the present invention plugs an end of a predetermined flow path of the ceramic honeycomb structure, and allows the exhaust gas to pass through a porous partition wall that defines the flow path. A ceramic honeycomb filter for removing fine particles contained therein, wherein an interval between partition walls is 2.54 mm or less, and an outer end surface of at least a part of the plugging material plugged is relative to an end surface of the partition wall. Projecting 0.01 to 5 mm in the flow path direction, the protruding portion has an inclined surface at least with respect to the flow path direction, and the flow path near the outer peripheral wall of the ceramic honeycomb filter is plugged at both ends. It is characterized by being.

本発明のセラミックハニカムフィルタにおいて、外周壁近傍の流路の両端部を目封止する目封止材のフィルタ端面からの長さが、セラミックハニカムフィルタの全長の8.2%以下であり、且つ、前記両端が目封止されている流路は、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在することが好ましい。   In the ceramic honeycomb filter of the present invention, the length from the filter end surface of the plugging material for plugging both ends of the flow path near the outer peripheral wall is not more than 8.2% of the total length of the ceramic honeycomb filter, and The flow path in which both ends are plugged preferably exists in a range of a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face.

次に、本発明における作用効果につき説明する。
本発明のセラミックハニカムフィルタは、セラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質の隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタであって、多孔質隔壁の全細孔容積が0.57〜0.80cm/gであって、100μm以上の細孔容積が0.02〜0.08cm/gであることを特徴とする。このように全細孔容積を0.57〜0.80cm/gと設定することにより、ハニカムフィルタの圧力損失を低くすることができるとともに、圧力損失に大きな影響を及ぼす、100μm以上の細孔容積を0.02〜0.08cm/gとして適量含有させることにより、強度低下させることなく、更に圧力損失を低減することができる。ここで、全細孔容積を0.57〜0.80cm/gの範囲に限定するのは、0.57cm/g未満とすると、細孔の絶対量が減るため圧力損失が上昇し、0.80cm/gを超えると、強度が低下するからである。また100μm以上の細孔容積を0.02〜0.08cm/gの範囲に限定するのは、0.02cm/g未満であると、圧力損失低減に有効な100μm以上の細孔が減るため、圧力損失低減の効果が大きくないからであり、0.08cm/gを超えると、100μm以上の大きな細孔が増えるため、これら大きな細孔同士が連通して破壊起点となりやすく、強度が低下するからである。
Next, the effect in this invention is demonstrated.
The ceramic honeycomb filter of the present invention is contained in the exhaust gas by plugging the end of a predetermined flow path of the ceramic honeycomb structure and allowing the exhaust gas to pass through the porous partition walls defining the flow path. A ceramic honeycomb filter for removing fine particles, wherein a total pore volume of a porous partition wall is 0.57 to 0.80 cm 3 / g, and a pore volume of 100 μm or more is 0.02 to 0.08 cm 3. / G. Thus, by setting the total pore volume to 0.57 to 0.80 cm 3 / g, the pressure loss of the honeycomb filter can be lowered, and pores having a size of 100 μm or more have a great influence on the pressure loss. By containing an appropriate amount of the volume of 0.02 to 0.08 cm 3 / g, the pressure loss can be further reduced without lowering the strength. Here, to limit the total pore volume in the range of 0.57 ~0.80cm 3 / g, when less than 0.57 cm 3 / g, the pressure loss since the absolute amount decreases the pores rises If it exceeds 0.80 cm 3 / g, the strength decreases. Further, the pore volume of 100 μm or more is limited to the range of 0.02 to 0.08 cm 3 / g. When the pore volume is less than 0.02 cm 3 / g, pores of 100 μm or more effective for reducing pressure loss are obtained. This is because the effect of reducing the pressure loss is not great, and when it exceeds 0.08 cm 3 / g, large pores of 100 μm or more increase. This is because the strength decreases.

ここで、セラミックハニカムフィルタの、多孔質隔壁の細孔分布を、2μm以上の細孔容積:0.55〜0.75cm/g、5μm以上の細孔容積:0.540.74cm/g、10μm以上の細孔容積:0.450.65cm/g、20μm以上の細孔容積:0.250.45cm/g、40μm以上の細孔容積:0.070.20cm/g、とすると好ましい理由を以下に説明する。多孔質隔壁内に2μm以下の小さな細孔から、100μm以上の大きな細孔までを所望の割合で含有させることにより、各種大きさの細孔が連通して、細孔間の連通割合が増加して低圧力損失特性を得ることができるのと共に、実用に耐えうる強度特性が得られるからである。
Here, the pore distribution of the porous partition walls of the ceramic honeycomb filter is as follows: pore volume of 2 μm or more: 0.55 to 0.75 cm 3 / g, pore volume of 5 μm or more: 0.54 to 0.74 cm 3 / g, pore volume of 10 μm or more: 0.45 to 0.65 cm 3 / g, pore volume of 20 μm or more: 0.25 to 0.45 cm 3 / g, pore volume of 40 μm or more: The reason why it is preferable to be 0.07 to 0.20 cm 3 / g will be described below. By including a desired ratio of small pores of 2 μm or less to large pores of 100 μm or more in the porous partition walls, pores of various sizes communicate with each other and the communication ratio between the pores increases. This is because the low pressure loss characteristic can be obtained and the strength characteristic that can be practically used can be obtained.

具体的に、より最適な範囲は、前記多孔質隔壁の全細孔容積が0.63〜0.78cm/gであって、細孔分布を、2μm以上の細孔容積:0.58〜0.73cm/g、5μm以上の細孔容積:0.57〜0.72cm/g、10μm以上の細孔容積:0.48〜0.63cm/g、20μm以上の細孔容積:0.3〜0.45cm/g、40μm以上の細孔容積:0.10〜0.20cm/g、100μm以上の細孔容積:0.02〜0.07cm/gである。このように、細孔分布がより最適な範囲に調整されることにより、各種大きさの細孔の連通割合がより改善されるため、圧力損失の低減がより図れる。全細孔容積、及び細孔分布は、例えばMicromeritics社製のオートポアIII9410を使用し、水銀圧入法で測定することができる。
Specifically, the more optimal range is that the total pore volume of the porous partition wall is 0.63 to 0.78 cm 3 / g, and the pore distribution is a pore volume of 2 μm or more: 0.58 to 0.73 cm 3 / g, 5 μm or more pore volume: 0.57 to 0.72 cm 3 / g, 10 μm or more pore volume: 0.48 to 0.63 cm 3 / g, 20 μm or more pore volume: 0.3~0.45cm 3 / g, 40μm or more pore volume: 0.10~0.20cm 3 / g, 100μm or more pore volume: a 0.02~0.07cm 3 / g. Thus, by adjusting the pore distribution to a more optimal range, the communication ratio of pores of various sizes is further improved, so that the pressure loss can be further reduced. The total pore volume and pore distribution can be measured by mercury porosimetry using, for example, Autopore III 9410 manufactured by Micromeritics.

以上説明のように、本発明のセラミックハニカムフィルタは、その細孔分布が適切な範囲に調整されていることから、圧力損失が有効に低減され、且つ強度特性も確保されているため、ディーゼルエンジンの排気ガス浄化装置に使用されるセラミックハニカムフィルタに好適である。   As described above, since the ceramic honeycomb filter of the present invention has its pore distribution adjusted to an appropriate range, the pressure loss is effectively reduced and the strength characteristics are secured. It is suitable for a ceramic honeycomb filter used in the exhaust gas purification apparatus.

ここで、本発明のセラミックハニカムフィルタにおける多孔質隔壁の細孔分布の好ましい範囲について、図5を用いて説明する。図5は細孔径と累積細孔容積の関係を示す図であり、点△(52)は、本発明の全細孔容積の上限を示し、点▲(51)は、本発明の全細孔容積の下限を示し、点○(54)は、本発明の細孔径100μm以上の累積細孔容積の上限を示し、点●(53)は、本発明の細孔径100μm以上の累積細孔容積の下限を示し、点□(56)は、本発明の細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上における好ましい累積細孔容積の上限を示し、点■(55)は、本発明の細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上における好ましい累積細孔容積の下限を示す。また点◇(57)は、本発明を実施するための最良の形態で記載している実施例のセラミックハニカムフィルタの多孔質隔壁の細孔分布を示す。本発明の好ましいセラミックハニカムフィルタでは、各細孔径に対する累積細孔容積を、点△(52)、点□(56)、及び○(54)と点▲(51)、点■(55)、及び点●(53)の間に存在させれば良い。この図5に示すように、各細孔径に対する累積細孔容積を狭い範囲に収めることによって、低圧力損失と高強度の両立がはかれる。
Here, a preferable range of the pore distribution of the porous partition wall in the ceramic honeycomb filter of the present invention will be described with reference to FIG. FIG. 5 is a graph showing the relationship between the pore diameter and the cumulative pore volume. Point (52) indicates the upper limit of the total pore volume of the present invention, and point (51) indicates the total pore volume of the present invention. The lower limit of the volume is shown, the point ○ (54) indicates the upper limit of the cumulative pore volume of the present invention having a pore diameter of 100 μm or more, and the point ● (53) indicates the cumulative pore volume of the present invention having a pore diameter of 100 μm or more. A lower limit □ (56) indicates the upper limit of the preferred cumulative pore volume at a pore diameter of 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, 40 μm or more of the present invention, and a point ■ (55) indicates the present invention. The lower limit of the preferable cumulative pore volume at a pore diameter of 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, or 40 μm or more is shown. Further, point (57) indicates the pore distribution of the porous partition walls of the ceramic honeycomb filter of Example 1 described in the best mode for carrying out the present invention. In the preferred ceramic honeycomb filter of the present invention, the cumulative pore volume with respect to each pore diameter is represented by points Δ (52), □ (56), and ◯ (54), and points ▲ (51), □ (55), and It suffices if it exists between points (53). As shown in FIG. 5, by keeping the cumulative pore volume for each pore diameter within a narrow range, both low pressure loss and high strength can be achieved.

本発明のセラミックハニカムフィルタにおいて、外周壁近傍の流路が両端部において目封止されていることが好ましい理由を図3及び図4の模式図を用いて説明する。図3は、本発明の好ましい形態のセラミックハニカムフィルタの正面図を、図4は要部断面図を示している。本発明の好ましい形態のセラミックハニカムフィルタは、外周壁11aとこの外周壁の内周側に各々概略直交する隔壁11bにより形成された複数の流路11cを有し、この流路11cの両端部が交互に流入側目封止材1a、流出側目封止材1bで目封止されていると共に、外周壁近傍の流路は両端部で目封止材1cにより目封止されている。このような構造を有する本発明のセラミックハニカムフィルタは、外周壁近傍の流路両端部が目封止材で補強されていることから、セラミックフィルタの端面角部が破損しにくくなり、結果としてセラミックハニカム構造体の強度が改善され、支持部材の支持力や、使用時の機械的振動や衝撃により破損しにくくなるからである。更に、外周壁近傍の流路の両端部が目封止された流路は、断熱空間として作用して、フィルタ再生の際に微粒子の燃焼熱がフィルタ内から外周壁を介して金属製収納容器へ伝わりにくく、フィルタ中心部の温度が高温に維持されるようになり、微粒子の燃焼が良好に行われるからである。ここで外周壁近傍の流路とは、図3及び図4に示すように外周壁に隣接する流路群及びそれに隣接する流路群のことを言う。また、外周壁近傍の流路が、外周壁に対して傾いており、ハニカム構造体の両端面に到達していない場合は、一方の端部は端面において目封止材で目封止され、もう一方の端部は、外周壁で目封止されていれば良い。   In the ceramic honeycomb filter of the present invention, the reason why the flow path in the vicinity of the outer peripheral wall is preferably plugged at both ends will be described with reference to the schematic diagrams of FIGS. FIG. 3 is a front view of a ceramic honeycomb filter according to a preferred embodiment of the present invention, and FIG. The ceramic honeycomb filter according to a preferred embodiment of the present invention has a plurality of flow paths 11c formed by an outer peripheral wall 11a and partition walls 11b that are substantially orthogonal to each other on the inner peripheral side of the outer peripheral wall. The inflow side plugging material 1a and the outflow side plugging material 1b are alternately plugged, and the flow path near the outer peripheral wall is plugged with the plugging material 1c at both ends. In the ceramic honeycomb filter of the present invention having such a structure, since both ends of the flow path in the vicinity of the outer peripheral wall are reinforced with the plugging material, the corners of the end face of the ceramic filter are less likely to be damaged. This is because the strength of the honeycomb structure is improved, and the honeycomb structure is less likely to be damaged by the support force of the support member, mechanical vibration or impact during use. Furthermore, the flow path in which both ends of the flow path near the outer peripheral wall are plugged acts as a heat insulating space, and the heat of combustion of the fine particles is generated from the inside of the filter through the outer peripheral wall during filter regeneration. This is because the temperature at the center of the filter is maintained at a high temperature and fine particles are burned well. Here, the flow path in the vicinity of the outer peripheral wall means a flow path group adjacent to the outer peripheral wall and a flow path group adjacent thereto as shown in FIGS. 3 and 4. Further, when the flow path near the outer peripheral wall is inclined with respect to the outer peripheral wall and does not reach both end faces of the honeycomb structure, one end is plugged with a plugging material on the end face, The other end may be plugged with an outer peripheral wall.

本発明のセラミックハニカムフィルタにおいて、外周壁近傍の流路の両端部を目封止する目封止材のフィルタ端面からの長さがセラミックハニカムフィルタの全長の8.2%以下であり、且つ、前記両端が目封止されている流路は、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在することが好ましいのは、外周壁近傍の両端が目封止された目封止部の存在範囲を適切に調整することにより、低圧力損失及び両端目封止によるセラミックハニカムフィルタの強度向上の効果を維持しつつ、微粒子燃焼によるフィルタの再生が良好に行えるからである。   In the ceramic honeycomb filter of the present invention, the length from the filter end surface of the plugging material plugging both ends of the flow path near the outer peripheral wall is not more than 8.2% of the total length of the ceramic honeycomb filter, and The flow path in which both ends are plugged is preferably present in a range of a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. By appropriately adjusting the existence range of the plugged portions where both ends in the vicinity of the outer peripheral wall are plugged, while maintaining the effect of improving the strength of the ceramic honeycomb filter due to low pressure loss and plugging at both ends, fine particle combustion This is because the filter can be regenerated satisfactorily.

ここで、流路の両端部を目封止している目封止材の端面からの長さをフィルタ全長の8.2%以下としていることが好ましい理由は、外周壁近傍の流路両端部の目封止材により、セラミックハニカム構造体の強度向上の効果を維持しつつ、当該流路が断熱空間として有効に機能して、微粒子燃焼時の燃焼熱の金属製容器へ放散が無視できる程度に押さえることが可能になるからである。ここで、目封止材の端面からの長さがフィルタ全長の8.2%を越えると、微粒子燃焼時の燃焼熱の目封止材を介しての金属製容器へ放散が無視できなくなり、捕集された微粒子の燃え残りが生じ易くなり、フィルタ再生率が低下することもあるから好ましくない。ここで、外周壁近傍の流路が、外周壁に対して傾いており、ハニカム構造体の両端面に到達していない場合は、一方の端部は端面において目封止材で目封止され、もう一方の端部は、外周壁で目封止されることになるので、目封止材の端面からの長さをフィルタ全長の8.2%以下とする目封止材とは、ハニカム構造体の端面に存在する目封止材のことを言う。   Here, the reason why the length from the end face of the plugging material plugging both ends of the flow path is preferably 8.2% or less of the total length of the filter is that the both ends of the flow path in the vicinity of the outer peripheral wall With this plugging material, while maintaining the effect of improving the strength of the ceramic honeycomb structure, the flow path functions effectively as a heat insulating space, and the diffusion of combustion heat to the metal container at the time of particulate combustion can be ignored This is because it becomes possible to hold it down. Here, if the length from the end face of the plugging material exceeds 8.2% of the total length of the filter, the diffusion of the combustion heat at the time of particulate combustion through the plugging material cannot be ignored, It is not preferable because the collected fine particles are likely to remain unburned and the filter regeneration rate may be lowered. Here, when the flow path in the vicinity of the outer peripheral wall is inclined with respect to the outer peripheral wall and does not reach both end faces of the honeycomb structure, one end is plugged with a plugging material on the end face. The other end portion is plugged with the outer peripheral wall. Therefore, the plugging material whose length from the end face of the plugging material is 8.2% or less of the total length of the filter is a honeycomb. It refers to a plugging material present on the end face of the structure.

また、両端が目封止されている流路が、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在する流路としていることが好ましい理由は、フィルタの圧力損失上昇を最小限に押さえることができるからである。即ち、流路の両端部を目封止することは、排気ガスが当該流路を流通しにくくなるため、フィルタ機能を有する多孔質隔壁の割合が減り、セラミックハニカムフィルタの圧力損失上昇に繋がるという悪影響の出る場合もあるが、図2で示したように外周壁近傍の流路は支持部材13a及び13bで両端部を塞がれる場合もあることから、外周壁近傍の両端が目封止されている流路の割合を一定の範囲に納めることにより、フィルタの圧力損失上昇を最小限に押さえることができ、エンジン性能の低下を招くこともないからである。一方、両端が目封止されている流路が、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲を越えると、相対的にフィルタ機能を有する隔壁の割合が少なくなることから、フィルタの圧力損失が上昇するため、エンジンの排圧が上昇し、エンジン性能の低下を招くこともあることから好ましくない。ここで、両端が目封止されている流路が、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在するとは、セラミックハニカムフィルタの端面において、両端が目封止されている流路が、外周壁から中心に向かって、最大で隔壁ピッチの5倍の長さの位置に該当する流路に存在することを意味する。すなわち、隔壁ピッチの5倍の長さの位置に該当する流路の全てが、両端が目封止されている必要はなく、部位により、両端が目封止されている流路は、最大で隔壁ピッチの5倍の長さの範囲に存在することである。ここで、前記両端が目封止されている流路が、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在することを、図3を用いて具体的に説明する。図3は、前記両端が目封止されている流路は、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、2×(隔壁ピッチ)の長さの範囲に存在することを示した図であり、仮想線15は外周壁に対して端面中心に向かって2×(隔壁ピッチ)の長さだけ小さい輪郭を示し、仮想線15と外周壁との間に存在する流路は両端で目封止されている。この図3では、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、2×(隔壁ピッチ)の長さの範囲に存在する流路全てが両端で目封止された例を示したが、これらの流路のうち、個数割合で80%以上の流路が両端で目封止されていれば、同様の効果が得られる。   Further, the flow path whose both ends are plugged is a flow path that exists within a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. Is preferable because an increase in the pressure loss of the filter can be minimized. That is, plugging both ends of the flow path makes it difficult for exhaust gas to flow through the flow path, so the ratio of porous partition walls having a filter function is reduced, leading to an increase in pressure loss of the ceramic honeycomb filter. Although the adverse effect may occur, as shown in FIG. 2, both ends of the flow path near the outer peripheral wall may be blocked by the support members 13a and 13b, so both ends near the outer peripheral wall are plugged. This is because, by keeping the ratio of the flow paths within a certain range, the increase in the pressure loss of the filter can be minimized, and the engine performance is not deteriorated. On the other hand, when the flow path whose both ends are plugged exceeds the range of a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face, the filter is relatively Since the ratio of the partition wall having a function is reduced, the pressure loss of the filter is increased, so that the exhaust pressure of the engine is increased, and the engine performance may be deteriorated. Here, it is said that the flow path having both ends plugged exists in a range of a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. It means that the channel whose both ends are plugged on the end face of the filter exists in the channel corresponding to a position having a length five times as large as the partition wall pitch from the outer peripheral wall toward the center. That is, it is not necessary that all the flow paths corresponding to the position having a length five times the partition wall pitch are plugged at both ends, and the flow paths that are plugged at both ends depending on the part are the maximum. It exists in the range of 5 times the length of the partition wall pitch. Here, the flow path in which both ends are plugged exists from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face in a range of a maximum length of 5 × (partition wall pitch). This will be specifically described with reference to FIG. FIG. 3 shows that the flow path having both ends plugged exists in a range of 2 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. The imaginary line 15 shows an outline that is smaller by a length of 2 × (partition wall pitch) toward the center of the end face than the outer peripheral wall, and the flow path existing between the imaginary line 15 and the outer peripheral wall is at both ends. It is plugged with. FIG. 3 shows an example in which all the channels existing in the range of 2 × (partition wall pitch) length are plugged at both ends from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. However, the same effect can be obtained if 80% or more of these channels are plugged at both ends.

さらに、本発明のセラミックハニカムフィルタにおいて、前記外周壁近傍の流路を両端部で目封止した目封止材の端面からの長さが、セラミックハニカムフィルタの全長の3.3%以下とすることにより、両端目封止によるセラミックハニカム構造体の強度向上の効果を維持しつつ、外周壁近傍の流路が断熱空気層として働く効果が更に大きくなり、フィルタ外周壁から金属製容器の熱放散が更に少なくなり、捕集された微粒子を効率よく燃焼除去でき、フィルタ再生効率が更に優れるようになる。   Furthermore, in the ceramic honeycomb filter of the present invention, the length from the end face of the plugging material in which the flow path near the outer peripheral wall is plugged at both ends is 3.3% or less of the total length of the ceramic honeycomb filter. Thus, while maintaining the effect of improving the strength of the ceramic honeycomb structure by plugging both ends, the effect of the flow path near the outer peripheral wall acting as a heat insulating air layer is further increased, and the heat dissipation of the metal container from the outer peripheral wall of the filter is achieved. The collected particulate matter can be burned and removed efficiently, and the filter regeneration efficiency is further improved.

また、前記両端が目封止されている外周壁近傍の流路を、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大3×(隔壁ピッチ)の範囲に存在する流路とすることにより、両端目封止によるセラミックハニカム構造体の強度向上及び優れたフィルタ再生効率の効果を維持しつつ、フィルタの圧力損失を更に低減できるため、エンジンの排圧が低下し、エンジン性能が更に向上する。   Further, the flow path in the vicinity of the outer peripheral wall whose both ends are plugged is a flow path existing in a range of 3 × (partition wall pitch) at the maximum from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. As a result, the pressure loss of the filter can be further reduced while maintaining the effect of improving the strength of the ceramic honeycomb structure by plugging both ends and the excellent filter regeneration efficiency. Further improvement.

本発明のセラミックハニカムフィルタにおいて、前記隔壁の間隔が2.54mm以下であって、セラミックハニカムフィルタの流路を目封止している少なくとも一部の目封止材の外端面が隔壁端面に対して流路方向に0.01〜5mm突出し、前記突出部が少なくとも流路方向に傾斜面を有していることが好ましい理由を説明する。本発明のセラミックハニカムフィルタの目封止部の好ましい形態の代表例を図6に示す。本発明のセラミックハニカムフィルタは、目封止材の流路方向に傾斜面1dを有する突出部により、図7(a)(b)に示すような目封止材の外端面15が平坦で、隔壁外端面16と同一平面内に存在するように形成されているもの、図7(c)に示すような、フィルム厚さの分だけ突出した突出部を有するもの、或いは図7(d)に示すような、目封止材の外端面15が凸面状であり、且つ目封止材の外端面15がハニカム構造体の隔壁外端面16に対し、完全に埋没して隙間18が形成されているものに比較して、目封止材の突出部分が傾斜面1dを有して突出していることから、流路11cの排気ガス流入側の実質的な開口率が大きくなり、排気ガス流に対する抵抗が小さくなり、排気ガスは流路方向へと円滑に流れるため、目封止材の外端面に微粒子が堆積しにくくなり、結果として、堆積した微粒子により発生する流路入り口狭窄による圧力損失の上昇を防ぐ効果が大きくなるからである。   In the ceramic honeycomb filter of the present invention, the interval between the partition walls is 2.54 mm or less, and the outer end face of at least a part of the plugging material plugging the flow path of the ceramic honeycomb filter is relative to the end face of the partition wall. The reason why it is preferable that the protrusion protrudes by 0.01 to 5 mm in the flow path direction and the protrusion has an inclined surface at least in the flow path direction will be described. A representative example of a preferred form of the plugged portion of the ceramic honeycomb filter of the present invention is shown in FIG. In the ceramic honeycomb filter of the present invention, the outer end surface 15 of the plugging material as shown in FIGS. 7 (a) and 7 (b) is flat due to the protruding portion having the inclined surface 1d in the flow path direction of the plugging material. Those formed so as to be in the same plane as the outer wall 16 of the partition wall, those having protrusions protruding by the film thickness as shown in FIG. 7C, or those shown in FIG. As shown, the outer end surface 15 of the plugging material is convex, and the outer end surface 15 of the plugging material is completely buried in the partition wall outer end surface 16 of the honeycomb structure to form a gap 18. Since the protruding portion of the plugging material protrudes with the inclined surface 1d as compared with the existing one, the substantial opening ratio on the exhaust gas inflow side of the flow path 11c is increased, and the exhaust gas flow is reduced. The resistance is reduced, and the exhaust gas flows smoothly in the direction of the flow path. Fine particles less likely deposited on the outer end face, because as a result, the effect is increased to prevent an increase in pressure loss due to flow path inlet constriction generated by the deposited particles.

ここで、外周壁付近の流路は、支持部材13aが当接して塞がれることもあり、排気ガスの微粒子浄化には寄与しないことから、目封止材の外端面が隔壁端面に対して突出しなくても良い。突出部形状としては、例えば、図8に示すような形状である。また、微粒子浄化に寄与する範囲に存在する目封止材であっても、全ての目封止材が、突出して傾斜面を持つ必要はなく、およそ50%以上の目封止材が突出して傾斜面を持てば、圧力損失の上昇を低減する効果を大きくできる。ここで、突出長さ23を0.01〜5mmとしているのは、0.01mm以下では、突出部が有する傾斜面により、排ガスを流路方向へと、円滑に流す効果が得られず、目封止材の外端面に微粒子が堆積し、流路入り口の狭窄による圧力損失の上昇が起こりやすくなることもあるからである。一方、突出長さが5mmを越えると、目封止材の外端面に機械的負荷が作用した際に、目封止材の隔壁端面近傍に作用する曲げ応力が大きくなるため、金属製収納容器への挿入等の取り扱い時に突出部分を破損させ、結果として目封止材の突出長さが0.01mm未満になることがあるからである。   Here, the flow path near the outer peripheral wall may be blocked by contact with the support member 13a, and does not contribute to the purification of exhaust gas particulates. It does not have to protrude. As a protrusion part shape, it is a shape as shown in FIG. 8, for example. Moreover, even if the plugging material is present in a range that contributes to fine particle purification, it is not necessary for all the plugging materials to protrude and have inclined surfaces, and about 50% or more of the plugging materials protrude. If the inclined surface is provided, the effect of reducing an increase in pressure loss can be increased. Here, the protrusion length 23 is set to 0.01 to 5 mm. If the protrusion length is 0.01 mm or less, the inclined surface of the protrusion does not provide an effect of smoothly flowing the exhaust gas in the flow path direction. This is because fine particles may accumulate on the outer end surface of the sealing material, and the pressure loss may easily increase due to narrowing of the flow path entrance. On the other hand, if the protruding length exceeds 5 mm, when a mechanical load is applied to the outer end face of the plugging material, the bending stress acting near the end face of the partition wall of the plugging material increases. This is because the protruding portion may be damaged during handling such as insertion into the plug, resulting in a protruding length of the plugging material of less than 0.01 mm.

さらに、突出長さは、0.1mm以上の場合、排気ガス流に対する目封止材の抵抗がより小さくなることから、突出長さ2mm以下では、目封止材の突出部分の破損がより発生しにくくなることから、突出長さ0.1〜2mmがより好ましい範囲である。   Furthermore, when the projection length is 0.1 mm or more, the resistance of the plugging material with respect to the exhaust gas flow becomes smaller. Therefore, when the projection length is 2 mm or less, the projection portion of the plugging material is more damaged. Therefore, the protrusion length of 0.1 to 2 mm is a more preferable range.

また、目封止材の隔壁端面に対する突出部分が有する傾斜面の流路方向に対する角度は2°以上であることがより好ましい。この理由は、傾斜面の流路方向に対する角度が2°未満では、突出部分により排ガスを円滑に流路方向へ流す効果が小さく、また、突出部分が有する傾斜面の流出側端部に形成される角部25(図6)に微粒子が堆積しやすく、この部分を核として微粒子の堆積部分が成長することにより、流路入り口の狭窄による圧力損失の上昇が起こることもあるからである。尚、目封止材の隔壁端面に対する突出部分が有する傾斜面の流路方向に対する角度は80°以下であると、排気ガス流に対する抵抗を小さくし、排気ガスを流路方向へと円滑に流すという観点から、より好ましい。   Moreover, it is more preferable that the angle with respect to the flow path direction of the inclined surface which the protrusion part with respect to the partition wall end surface of the plugging material has is 2 ° or more. The reason for this is that if the angle of the inclined surface with respect to the flow path direction is less than 2 °, the effect of flowing the exhaust gas smoothly in the flow path direction by the protruding portion is small, and it is formed at the outflow side end of the inclined surface of the protruding portion. This is because fine particles are likely to be deposited on the corner portion 25 (FIG. 6), and the deposition portion of the fine particles grows with this portion serving as a nucleus, which may cause an increase in pressure loss due to narrowing of the channel entrance. When the angle of the inclined surface of the protruding portion of the plugging member with respect to the partition wall surface with respect to the flow path direction is 80 ° or less, the resistance to the exhaust gas flow is reduced and the exhaust gas flows smoothly in the flow path direction. From the viewpoint of, it is more preferable.

本発明において、目封止材の外端面が、隔壁端面に埋没しないことが好ましい。この理由は、目封止材の外側面が隔壁端面に対して突出していたとしても、図7(d)のような隙間18が形成されていると、隙間18に微粒子が堆積し易くなり、流路入り口の狭窄による圧力損失の上昇が起こり易くなるからである。   In the present invention, it is preferable that the outer end face of the plugging material is not buried in the end face of the partition wall. The reason for this is that even if the outer surface of the plugging material protrudes from the end face of the partition wall, if the gap 18 is formed as shown in FIG. This is because an increase in pressure loss is likely to occur due to narrowing of the flow path entrance.

また、本発明のセラミックハニカムフィルタにおいて、目封止材の外端面の表面粗さ(最大高さRy)は200μm以下であることが好ましい。これは、最大高さRyが200μmを越えると目封止材外側面の表面に微粒子が付着、堆積し易くなり、流路入り口の狭窄による圧力損失の上昇が起こり易くなるからである。   In the ceramic honeycomb filter of the present invention, the surface roughness (maximum height Ry) of the outer end face of the plugging material is preferably 200 μm or less. This is because if the maximum height Ry exceeds 200 μm, fine particles are likely to adhere and accumulate on the surface of the outer surface of the plugging material, and the pressure loss is likely to increase due to narrowing of the flow path entrance.

本発明のセラミックハニカムフィルタについて、主に排気ガス入口の目封止材形状を中心に説明したが、排気ガス出口側の端面の目封止材形状については、特に限定する必要はなく、本発明と同様に突出部を設けても良いし、従来技術のように隔壁端面と目封止材端面が同一平面内に存在するように形成しても良い。   The ceramic honeycomb filter of the present invention has been described mainly focusing on the shape of the plugging material at the exhaust gas inlet, but the shape of the plugging material on the end surface on the exhaust gas outlet side is not particularly limited, and the present invention The protrusions may be provided in the same manner as described above, or the partition wall end face and the plugging material end face may be formed in the same plane as in the prior art.

本発明の別発明のセラミックハニカムフィルタは、セラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタであって、隔壁の間隔が2.54mm以下であって、前記目封止している少なくとも一部の目封止材の外端面が隔壁端面に対して流路方向に0.01〜5mm突出し、前記突出部分が少なくとも流路方向に対して傾斜面を有し、且つ、前記セラミックハニカムフィルタの外周壁近傍の流路が両端部において、目封止されていることから、低圧力損失特性と強度の両立を図ることができる。即ち、本発明のセラミックハニカムフィルタは、目封止材の突出部分が傾斜面1dを有して突出していることから、流路11cの排気ガス流入側の実質的な開口率が大きくなり、排気ガス流に対する抵抗が小さくなり、排気ガスは流路方向へと円滑に流れるため、目封止材の外端面に微粒子が堆積しにくくなり、結果として、堆積した微粒子による流路入り口の狭窄による圧力損失の上昇を防ぐことができるのと共に、外周壁近傍の流路両端部が目封止材で補強されていることから、セラミックフィルタの角部が破損しにくくなり、結果として、セラミックハニカム構造体の強度が改善され、使用時の機械的振動や衝撃により破損しにくくなり、低圧力損失と強度を両立させることができる。また、外周壁近傍の流路の両端部が目封止された流路は、断熱空間として作用して、フィルタ再生の際に微粒子の燃焼熱がフィルタ内から外周壁を介して金属製収納容器へ伝わりにくく、フィルタ中心部の温度が高温に維持されるようになり、微粒子の燃焼が良好に行われるからである。ここで外周壁近傍の流路とは、図3及び図4に示すように外周壁に隣接する流路群及びそれに隣接する流路群のことを言う。また外周壁近傍の流路が、外周壁に対して傾いており、ハニカム構造体の両端面に到達していない場合は、一方の端部は端面において目封止材で目封止され、もう一方の端部は、外周壁で目封止されていれば良い。   A ceramic honeycomb filter according to another aspect of the present invention plugs a predetermined flow path end of a ceramic honeycomb structure, and allows the exhaust gas to pass through a porous partition wall that defines the flow path. A ceramic honeycomb filter for removing fine particles contained therein, wherein a partition gap is 2.54 mm or less, and an outer end surface of at least a part of the plugged material that is plugged flows with respect to a partition end surface. It protrudes 0.01 to 5 mm in the road direction, the protruding portion has an inclined surface at least with respect to the flow path direction, and the flow path near the outer peripheral wall of the ceramic honeycomb filter is plugged at both ends. Therefore, both low pressure loss characteristics and strength can be achieved. That is, in the ceramic honeycomb filter of the present invention, since the projecting portion of the plugging material projects with the inclined surface 1d, the substantial opening ratio on the exhaust gas inflow side of the flow path 11c increases, Since the resistance to gas flow is reduced and the exhaust gas flows smoothly in the direction of the flow path, it is difficult for fine particles to accumulate on the outer end face of the plugging material. The increase in loss can be prevented, and both ends of the flow path near the outer peripheral wall are reinforced with plugging material, so that the corners of the ceramic filter are less likely to be damaged. As a result, the ceramic honeycomb structure The strength is improved, and it is difficult to break due to mechanical vibration or impact during use, and both low pressure loss and strength can be achieved. Further, the flow path in which both ends of the flow path near the outer peripheral wall are plugged acts as a heat insulating space, and the heat of combustion of fine particles during the regeneration of the filter from the inside of the filter through the outer peripheral wall is a metal storage container. This is because the temperature at the center of the filter is maintained at a high temperature and fine particles are burned well. Here, the flow path in the vicinity of the outer peripheral wall means a flow path group adjacent to the outer peripheral wall and a flow path group adjacent thereto as shown in FIGS. 3 and 4. When the flow path near the outer peripheral wall is inclined with respect to the outer peripheral wall and does not reach both end faces of the honeycomb structure, one end is plugged with a plugging material at the end face, One end may be plugged with an outer peripheral wall.

本発明の別発明のセラミックハニカムフィルタにおいて、外周壁近傍の流路の両端部を目封止する目封止材のフィルタ端面からの長さがセラミックハニカムフィルタの全長の8.2%以下であり、且つ、前記両端が目封止されている流路は、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在することが好ましいのは、外周壁近傍の両端が目封止された目封止部の存在範囲を適切に調整することにより、低圧力損失及び両端目封止によるセラミックハニカムフィルタの強度向上の効果を維持しつつ、微粒子燃焼によるフィルタの再生が良好に行えるからである。   In the ceramic honeycomb filter of another invention of the present invention, the length from the filter end surface of the plugging material plugging both ends of the flow path near the outer peripheral wall is 8.2% or less of the total length of the ceramic honeycomb filter. In addition, the flow path in which both ends are plugged preferably exists in a range of a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. While maintaining the effect of improving the strength of the ceramic honeycomb filter due to low pressure loss and plugging at both ends, by appropriately adjusting the existence range of the plugged portions where both ends near the outer peripheral wall are plugged This is because the filter can be regenerated by burning fine particles.

ここで、流路の両端部を目封止している目封止材の端面からの長さをフィルタ全長の8.2%以下としていることが好ましい理由は、外周壁近傍の流路両端部の目封止材により、セラミックハニカム構造体の強度向上の効果を維持しつつ、当該流路が断熱空間として有効に機能して、微粒子燃焼時の燃焼熱の金属製容器へ放散が無視できる程度に押さえることが可能になるからである。ここで、目封止材の端面からの長さがフィルタ全長の8.2%を越えると、微粒子燃焼時の燃焼熱の目封止材を介しての金属製容器へ放散が無視できなくなり、捕集された微粒子の燃え残りが生じ易くなり、フィルタ再生率が低下することもあるから好ましくない。ここで、外周壁近傍の流路が、外周壁に対して傾いており、ハニカム構造体の両端面に到達していない場合は、一方の端部は端面において目封止材で目封止され、もう一方の端部は、外周壁で目封止されることになるので、目封止材の端面からの長さをフィルタ全長の8.2%以下とする目封止材とは、ハニカム構造体の端面に存在する目封止材のことを言う。   Here, the reason why the length from the end face of the plugging material plugging both ends of the flow path is preferably 8.2% or less of the total length of the filter is that the both ends of the flow path in the vicinity of the outer peripheral wall With this plugging material, while maintaining the effect of improving the strength of the ceramic honeycomb structure, the flow path functions effectively as a heat insulating space, and the diffusion of combustion heat to the metal container at the time of particulate combustion can be ignored This is because it becomes possible to hold it down. Here, if the length from the end face of the plugging material exceeds 8.2% of the total length of the filter, the diffusion of the combustion heat at the time of particulate combustion through the plugging material cannot be ignored, It is not preferable because the collected fine particles are likely to remain unburned and the filter regeneration rate may be lowered. Here, when the flow path in the vicinity of the outer peripheral wall is inclined with respect to the outer peripheral wall and does not reach both end faces of the honeycomb structure, one end is plugged with a plugging material on the end face. The other end portion is plugged with the outer peripheral wall. Therefore, the plugging material whose length from the end face of the plugging material is 8.2% or less of the total length of the filter is a honeycomb. It refers to a plugging material present on the end face of the structure.

また、両端が目封止されている流路が、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲に存在する流路としていることが好ましい理由は、フィルタの圧力損失上昇を最小限に押さえることができるからである。即ち、流路の両端部を目封止することは、排気ガスが当該流路を流通しにくくなるため、フィルタ機能を有する多孔質隔壁の割合が減り、セラミックハニカムフィルタの圧力損失上昇に繋がるという悪影響の出る場合もあるが、図2で示したように外周壁近傍の流路は支持部材13a及び13bで両端部を塞がれる場合もあることから、外周壁近傍の両端が目封止されている流路の割合を一定の範囲に納めることにより、フィルタの圧力損失上昇を最小限に押さえることができ、エンジン性能の低下を招くこともないからである。一方、両端が目封止されている流路が、ハニカムフィルタ端面の外周壁からハニカムフィルタ端面の中心に向かって、最大5×(隔壁ピッチ)の長さの範囲を越えると、相対的にフィルタ機能を有する隔壁の割合が少なくなることから、フィルタの圧力損失が上昇するため、エンジンの排圧が上昇し、エンジン性能の低下を招くこともあることから好ましくない。   Further, the flow path whose both ends are plugged is a flow path that exists within a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face. Is preferable because an increase in the pressure loss of the filter can be minimized. That is, plugging both ends of the flow path makes it difficult for exhaust gas to flow through the flow path, so the ratio of porous partition walls having a filter function is reduced, leading to an increase in pressure loss of the ceramic honeycomb filter. Although the adverse effect may occur, as shown in FIG. 2, both ends of the flow path near the outer peripheral wall may be blocked by the support members 13a and 13b, so both ends near the outer peripheral wall are plugged. This is because, by keeping the ratio of the flow paths within a certain range, the increase in the pressure loss of the filter can be minimized, and the engine performance is not deteriorated. On the other hand, when the flow path whose both ends are plugged exceeds the range of a maximum length of 5 × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the center of the honeycomb filter end face, the filter is relatively Since the ratio of the partition wall having a function is reduced, the pressure loss of the filter is increased, so that the exhaust pressure of the engine is increased, and the engine performance may be deteriorated.

また、本発明のセラミックハニカムフィルタを構成する材料としては、本発明が主としてディーゼルエンジンから排出される排ガスを対象とするため、耐熱性の良い材料を使用することが好ましい。このためコージェライト、ムライト、アルミナ、窒化珪素、炭化珪素、LAS等を主結晶相とするセラミック材料を用いることが好ましいが、中でもコージェライトを主結晶相とするセラミックハニカムフィルタは、安価で耐熱性に優れ、化学的にも安定なため最も好ましい。   Moreover, as a material which comprises the ceramic honeycomb filter of this invention, since this invention mainly targets the exhaust gas discharged | emitted from a diesel engine, it is preferable to use a material with good heat resistance. For this reason, it is preferable to use a ceramic material whose main crystal phase is cordierite, mullite, alumina, silicon nitride, silicon carbide, LAS, etc. Among them, ceramic honeycomb filters whose main crystal phase is cordierite are inexpensive and heat resistant. It is most preferable because it is excellent in chemical stability and chemically stable.

本発明のセラミックハニカムフィルタの隔壁厚は0.1〜0.5mmが好ましく、隔壁のピッチは1.3mm以上が好ましい。隔壁厚が0.1mm未満の場合は、特に外径が150mmを越えるようなハニカムフィルタを製造する際に隔壁の強度が低下し、好ましくない。一方、隔壁厚が0.5mmを超える場合は、ハニカムフィルタの排気ガスに対する隔壁の通気抵抗が大きくなり、圧力損失が大きくなるからである。より好ましい隔壁厚さは、0.2〜0.4mmである。また、隔壁のピッチが1.3mm未満の場合は、ハニカムフィルタのセルの開口面積が小さくなることから、ハニカムフィルタの入口の圧力損失が大きくなるためである。ハニカムフィルタの圧力損失が大きくなると、エンジンの出力低下につながることから好ましくない。   The partition wall thickness of the ceramic honeycomb filter of the present invention is preferably 0.1 to 0.5 mm, and the partition wall pitch is preferably 1.3 mm or more. When the partition wall thickness is less than 0.1 mm, the strength of the partition walls is lowered particularly when a honeycomb filter having an outer diameter exceeding 150 mm is produced, which is not preferable. On the other hand, when the partition wall thickness exceeds 0.5 mm, the ventilation resistance of the partition wall to the exhaust gas of the honeycomb filter increases, and the pressure loss increases. A more preferable partition wall thickness is 0.2 to 0.4 mm. In addition, when the partition pitch is less than 1.3 mm, the opening area of the cell of the honeycomb filter becomes small, so that the pressure loss at the inlet of the honeycomb filter becomes large. An increase in the pressure loss of the honeycomb filter is not preferable because it leads to a reduction in engine output.

本発明において、セラミックハニカムフィルタの外周壁が、厚さが0.3〜2.0mmであり、セラミックス粒子と、それらの間に存在する非晶質酸化物マトリックスとから構成されていると更に好ましい。この理由は、該外周壁において、両端面を目封止された外周壁近傍の流路の断熱効果がいっそう有効になるからである。このような外周壁は、セラミックハニカム構造体の外周部を加工により除去して、軸方向に延びる凹溝を有する外周面に、セラミックス粒子とコロイド状非晶質酸化物を含むコート材を充填、塗布することにより形成することができる。或いはハニカム構造の成形体の外周部を除去加工した後に、焼成してコート材を充填、塗布しても良い。この除去加工の際に、流路と外周壁が傾くように加工しても良い。なお、外周壁の厚さは、厚い方が断熱性からは好ましいが、2.0mmを越えると、フィルタに熱衝撃が加わった際に外周壁の割れが発生しやすくなり、また、0.3mm未満では、断熱効果は得られないことから、0.3〜2mmの範囲が好ましい。また、外周壁がセラミックス粒子と、それらの間に存在する非晶質酸化物マトリックスとから構成されていると、外周壁が単一のセラミックスで構成されている場合に比べて、外周壁内におけるセラミックスの連続性が損なわれるため、熱が伝わりにくく、外周壁での断熱効果が更に改善されるからである。ここで、セラミックス粒子としてはコージェライト、アルミナ、シリカ、ムライト等耐熱性のものを使用することができるが、中でもコージェラト粒子やシリカ粒子は、熱膨張係数が小さく、耐熱衝撃に有利なためより好ましい。さらに、セラミックス粒子の大きさは、50μm以下の平均粒径を有する粉末であれば、断熱性と強度の両立が図れるため良い。また非晶質酸化物マトリックスはセラミックス粒子を結合して耐熱性を有する外周壁を形成するためのものであるが、外周壁を形成する際にコロイド状となるコロイダルシリカ、コロイダルアルミナ、水ガラス等を使用することができる。尚、外周壁には上記セラミックス粒子とコロイド状物質から形成された非晶質酸化物マトリックス以外にも、耐熱性や強度を損なわない範囲で、セラミックファイバー、アルミナセメント、等を適宜添加しても良い。   In the present invention, it is more preferable that the outer peripheral wall of the ceramic honeycomb filter has a thickness of 0.3 to 2.0 mm and is composed of ceramic particles and an amorphous oxide matrix existing therebetween. . This is because the heat insulation effect of the flow path in the vicinity of the outer peripheral wall whose both end faces are plugged in the outer peripheral wall becomes more effective. Such an outer peripheral wall is obtained by removing the outer peripheral portion of the ceramic honeycomb structure by processing, and filling the outer peripheral surface having a concave groove extending in the axial direction with a coating material containing ceramic particles and a colloidal amorphous oxide. It can be formed by coating. Alternatively, the outer peripheral portion of the honeycomb structure formed body may be removed and then fired to fill and apply the coating material. During the removal process, the flow path and the outer peripheral wall may be inclined. In addition, the thickness of the outer peripheral wall is preferable from the viewpoint of heat insulation, but if it exceeds 2.0 mm, the outer wall tends to crack when a thermal shock is applied to the filter. If it is less than the range, the heat insulating effect cannot be obtained, so the range of 0.3 to 2 mm is preferable. Further, when the outer peripheral wall is composed of ceramic particles and an amorphous oxide matrix existing between them, the outer peripheral wall is formed in the outer peripheral wall as compared with the case where the outer peripheral wall is composed of a single ceramic. This is because the continuity of the ceramics is impaired, so that heat is hardly transmitted and the heat insulating effect on the outer peripheral wall is further improved. Here, as the ceramic particles, those having heat resistance such as cordierite, alumina, silica and mullite can be used, but cordierate particles and silica particles are particularly preferable because they have a small thermal expansion coefficient and are advantageous for thermal shock. . Furthermore, the size of the ceramic particles is preferably a powder having an average particle diameter of 50 μm or less because both heat insulation and strength can be achieved. In addition, the amorphous oxide matrix is used to bond ceramic particles to form a heat-resistant outer peripheral wall, but colloidal silica, colloidal alumina, water glass, etc. that become colloidal when forming the outer peripheral wall. Can be used. In addition to the amorphous oxide matrix formed from the ceramic particles and the colloidal material, ceramic fibers, alumina cement, etc. may be appropriately added to the outer peripheral wall as long as the heat resistance and strength are not impaired. good.

以上説明したように、本発明のセラミックハニカムフィルタによれば、セラミックハニカムフィルタの多孔質隔壁内に形成される細孔の分布を所望の範囲に最適化していることから、低圧力損失であって、支持部材による支持力や、機械的振動及び衝撃に耐えうる強度を有する、圧力損失と強度を両立させたセラミックハニカムフィルタを得ることができる。更には、フィルタの外周壁近傍に両端を目封止材で目封止した流路を設け、または、目封止材の端面を突出させていることから、強度向上と圧力損失低減が確実に達成でき、圧力損失と強度を両立させた信頼性の高いセラミックハニカムフィルタを得ることができる。また、フィルタの外周壁近傍に両端を目封止材で目封止した流路を設けることにより、微粒子を効率よく燃焼させ、燃え残り微粒子による圧力損失の上昇を回避できる効果も有している。   As described above, according to the ceramic honeycomb filter of the present invention, since the distribution of pores formed in the porous partition walls of the ceramic honeycomb filter is optimized to a desired range, the pressure loss is low. Thus, it is possible to obtain a ceramic honeycomb filter having both the pressure loss and the strength, which has the strength to withstand the supporting force by the supporting member and mechanical vibration and impact. Furthermore, the flow path with both ends plugged with plugging material is provided in the vicinity of the outer peripheral wall of the filter, or the end face of the plugging material is projected, so that strength improvement and pressure loss reduction are ensured. It is possible to achieve a highly reliable ceramic honeycomb filter that achieves both pressure loss and strength. In addition, by providing a flow path in which both ends are plugged with plugging material in the vicinity of the outer peripheral wall of the filter, there is an effect that the fine particles can be burned efficiently and an increase in pressure loss due to unburned fine particles can be avoided. .

本発明のセラミックハニカムフィルタは、例えば、以下のようにして製造することが出来る。
カオリン、タルク、シリカ、水酸化アルミ、アルミナなどのコージェライト化原料粉末を調整して、化学組成が質量比で、SiO:48〜52%、Al:33〜37%、MgO:12〜15%、CaO:0〜0.05%、Na
:0〜0.05%、KO :0〜0.05%、TiO :0〜1.0%、Fe:0〜1.0%、PbO:0〜0.1%、P:0〜0.2%となるよう調整した後、このコージェライト化原料粉末に、造孔材、バインダーを投入して乾式混合した後に、水を投入後、混練し、可塑性を有する坏土とする。この坏土を公知の押出成形法によりハニカム構造の成形体を押出成形した後、公知の乾燥法、例えば、マイクロ波乾燥、誘電乾燥、熱風乾燥等の方法により、成形体の乾燥を行う。次いで、乾燥されたハニカム構造の成形体を、焼成炉内に配置し、1350〜1440℃の温度で焼成を行い、隔壁中にコージェライトセラミックス固有の微細孔及び造孔材燃焼除去後の痕跡により形成された細孔を有するセラミックハニカム構造体を得る。
The ceramic honeycomb filter of the present invention can be manufactured, for example, as follows.
A cordierite-forming raw material powder such as kaolin, talc, silica, aluminum hydroxide, and alumina is prepared, and the chemical composition is in mass ratio, SiO 2 : 48 to 52%, Al 2 O 3 : 33 to 37%, MgO: 12~15%, CaO: 0~0.05%, Na 2 O
: 0~0.05%, K 2 O: 0~0.05%, TiO 2: 0~1.0%, Fe 2 O 3: 0~1.0%, PbO: 0~0.1%, P 2 O 5 : After adjusting to be 0 to 0.2%, the pore-forming material and the binder are added to the cordierite forming raw material powder and dry-mixed, and then water is added and then kneaded to improve the plasticity. Have the dredged soil. After this kneaded material is extruded by a known extrusion molding method, a molded body having a honeycomb structure is extruded, and then the molded body is dried by a known drying method such as microwave drying, dielectric drying, or hot air drying. Next, the dried honeycomb structure is placed in a firing furnace, fired at a temperature of 1350 to 1440 ° C., and the fine pores unique to cordierite ceramics in the partition walls and the traces after combustion removal of the pore former A ceramic honeycomb structure having formed pores is obtained.

ここで、コージェライトを主結晶とする材料からなるセラミックハニカム構造体の多孔質隔壁の全細孔容積を0.57〜0.80cm/g、100μm以上の細孔容積を0.02〜0.08cm/gとするには、使用するコージェライト化原料の粒径や造孔剤の粒径を調整することにより、達成できる。また、多孔質隔壁の細孔分布を、2μm以上の細孔容積:0.55〜0.75cm/g、5μm以上の細孔容積:0.540.74cm/g、10μm以上の細孔容積:0.450.65cm/g、20μm以上の細孔容積:0.250.45cm/g、40μm以上の細孔容積:0.070.20cm/gとするには、使用するコージェライト化原料の粒径や造孔剤の粒径を調整することにより、達成できる。ここで、コージェライト化原料のうち、タルク及びシリカには平均粒径は10〜30μmのものを、造孔剤には、平均粒径10μm以上で、粒径10〜100μmが50%以上を占めるものを少なくとも使用すると有効である。
Here, the total pore volume of the porous partition walls of the ceramic honeycomb structure made of a material having cordierite as the main crystal is 0.57 to 0.80 cm 3 / g, and the pore volume of 100 μm or more is 0.02 to 0. 0.08 cm 3 / g can be achieved by adjusting the particle size of the cordierite forming raw material to be used and the particle size of the pore former. Further, the pore distribution of the porous partition wall is set to a pore volume of 2 μm or more: 0.55 to 0.75 cm 3 / g, a pore volume of 5 μm or more: 0.54 to 0.74 cm 3 / g, 10 μm. more pore volume: 0.45 ~ 0.65 cm 3 / g , 20μm or more pore volume: 0.25 ~ 0.45 cm 3 / g , 40μm or more pore volume: from 0.07 to 0. 20 cm 3 / g can be achieved by adjusting the particle size of the cordierite forming raw material to be used and the particle size of the pore former. Here, among the cordierite forming raw materials, talc and silica have an average particle size of 10 to 30 μm, and the pore former has an average particle size of 10 μm or more, and the particle size of 10 to 100 μm accounts for 50% or more. It is effective to use at least things.

なお、造孔材は、公知のグラファイト、小麦粉、樹脂粉末等であり、平均粒径10μm以上、粒径10〜100μmが50%以上を占める粒度分布となるように調整するのが好ましい。また樹脂粉末を使用する場合、その製造条件を調整して、平均粒径10μm以上、粒径10〜100μmが50%以上を占める粒度分布としても良い。また、造孔材は略球状であると、隔壁中に形成される細孔も略球状となることから、細孔への応力集中を低減することができ、優れた機械的強度を有するセラミックハニカム構造体が得られることから好ましい。更には造孔材が中空であると、造孔材を燃焼除去する際に、容易に隔壁中から除去することが可能となり、燃焼除去の際に隔壁に亀裂が入るといった問題が起こり難く、製造歩留まりが向上することから好ましい。   The pore former is a known graphite, wheat flour, resin powder or the like, and is preferably adjusted so as to have a particle size distribution in which an average particle size of 10 μm or more and a particle size of 10 to 100 μm occupy 50% or more. Moreover, when using resin powder, it is good also as the particle size distribution which adjusts the manufacturing conditions and occupies 50% or more for the average particle diameter of 10 micrometers or more and 10-100 micrometers of particle diameters. In addition, if the pore former is substantially spherical, the pores formed in the partition walls also become substantially spherical, so that the stress concentration on the pores can be reduced, and the ceramic honeycomb having excellent mechanical strength It is preferable because a structure is obtained. Furthermore, if the pore former is hollow, it can be easily removed from the partition wall when the pore former is burned and removed, and the problem that the partition wall cracks during combustion removal is unlikely to occur. It is preferable because the yield is improved.

図3に本発明によるセラミックハニカムフィルタの端面の模式図を示す。また、図4に本発明によるセラミックハニカムフィルタの流路方向の断面模式図を示す。仮想線15は外周壁に対して端面中心に向かって2×(隔壁ピッチ)の長さだけ小さい輪郭を示し、仮想線15と外周壁との間に存在する流路は両端で目封止されている。ここで、目封止材の流路への充填は、公知の技術、例えば、セラミックハニカム構造体の端面にマスキングフィルムを配置した後、ハニカム構造体の流路に対して交互に穿孔部を形成し、別に準備していた目封止用のセラミックスラリーに、セラミックハニカム構造体の端面を浸漬し、マスキングフィルムの穿孔部を通じて、セラミックハニカム構造体にセラミックスラリーを導入する。この際、外周壁近傍の流路については、マスキングフィルムを配置しないことにより、外周壁近傍の流路全てにセラミックスラリーが導入される。この、導入されたスラリ−が固化後に、ハニカム構造体をセラミックスラリーから抜き出し、乾燥させ目封止材を形成する。さらに、ハニカム構造体の他端側も同様の手法で、セラミックスラリーを導入、固化、乾燥させて目封止材を形成した後マスキングフィルムを剥がす。その後、目封止材の焼成を行い、隔壁と目封止材を一体化せしめ、排気ガスの流入側と流出側の所定の流路が目封止されたセラミックハニカムフィルタを得る。尚、所定の流路へのセラミックスラリーの導入は、乾燥後のセラミックハニカム構造の成形体に対して行った上で、成形体と同時に目封止材を焼成、一体化させても良い。   FIG. 3 is a schematic view of the end face of the ceramic honeycomb filter according to the present invention. FIG. 4 is a schematic cross-sectional view of the ceramic honeycomb filter according to the present invention in the flow path direction. The imaginary line 15 has a contour that is smaller by a length of 2 × (partition wall pitch) toward the center of the end surface than the outer peripheral wall, and the flow path existing between the imaginary line 15 and the outer peripheral wall is plugged at both ends. ing. Here, the plugging material is filled into the flow path by a known technique, for example, after a masking film is disposed on the end face of the ceramic honeycomb structure, the perforated portions are alternately formed in the flow path of the honeycomb structure. Then, the end face of the ceramic honeycomb structure is dipped in a separately prepared ceramic slurry for plugging, and the ceramic slurry is introduced into the ceramic honeycomb structure through the perforated portion of the masking film. At this time, the ceramic slurry is introduced into all the channels near the outer peripheral wall by disposing no masking film for the channels near the outer peripheral wall. After the introduced slurry is solidified, the honeycomb structure is extracted from the ceramic slurry and dried to form a plugging material. Further, the other end side of the honeycomb structure is introduced in the same manner, ceramic slurry is introduced, solidified, and dried to form a plugging material, and then the masking film is peeled off. Thereafter, the plugging material is fired to integrate the partition walls and the plugging material, thereby obtaining a ceramic honeycomb filter in which predetermined flow paths on the exhaust gas inflow side and the outflow side are plugged. The introduction of the ceramic slurry into the predetermined flow path may be performed on the formed body of the ceramic honeycomb structure after drying, and the plugging material may be fired and integrated simultaneously with the formed body.

更に、セラミックハニカム構造体の外周壁近傍の流路については、その目封止長さをハニカム構造体の中心部の流路とは異ならせるため、マスキングフィルムを使って、ハニカム構造体の中心部の流路と外周壁近傍の流路へのセラミックスラリー導入を別工程で行うこともできる。例えば、セラミックハニカム構造体の端面にマスキングフィルムを配置した後、ハニカム構造体の中心部の流路に対して交互に穿孔部を形成し、外周壁近傍の流路に対しては穿孔部を形成せずに、別に準備していた目封止用のセラミックスラリーに、セラミックハニカム構造体の端面を浸漬し、マスキングフィルムの穿孔部を通じて、セラミックハニカム構造体にセラミックスラリーを導入する。導入されたスラリ−が固化後に、ハニカム構造体をセラミックスラリーから抜き出し、乾燥、焼成させ、中心部の流路の目封止材と隔壁を一体化せしめる。その後、中心部の流路端面全域にマスキングフィルムを配置し、外周壁近傍の流路にのみセラミックスラリーを導入して、固化、乾燥、焼成させ、中心部の流路と外周壁近傍の流路の目封止材の長さの異なるハニカム構造体が得られる。   Further, for the flow path near the outer peripheral wall of the ceramic honeycomb structure, a masking film is used to make the plugging length different from the flow path in the central part of the honeycomb structure. The ceramic slurry can be introduced into the flow path and the flow path in the vicinity of the outer peripheral wall in separate steps. For example, after placing a masking film on the end face of a ceramic honeycomb structure, perforations are formed alternately in the central flow path of the honeycomb structure, and perforations are formed in the flow path near the outer peripheral wall. Instead, the end face of the ceramic honeycomb structure is immersed in a separately prepared ceramic slurry for plugging, and the ceramic slurry is introduced into the ceramic honeycomb structure through the perforated portion of the masking film. After the introduced slurry is solidified, the honeycomb structure is extracted from the ceramic slurry, dried and fired, and the plugging material and the partition walls in the central channel are integrated. After that, a masking film is arranged over the entire flow path end face of the central part, and the ceramic slurry is introduced only into the flow path near the outer peripheral wall, solidified, dried and fired, and the central flow path and the flow path near the outer peripheral wall. Thus, honeycomb structures having different plugging material lengths can be obtained.

ここで、本発明の実施の形態は図3乃至4の形状に限定されるものでなく、図9に示す他の発明例の形状でも、外周壁近傍で両端を目封止された流路が断熱空気層として働くため、フィルタ外周壁から金属製容器の熱放散がなく、捕集された微粒子を効率よく燃焼除去できると共に、フィルタの圧力損失を最小限に押さえることができるため、エンジン性能の低下を防ぐことができる。   Here, the embodiment of the present invention is not limited to the shape shown in FIGS. 3 to 4, and the shape of the other invention shown in FIG. Since it acts as an adiabatic air layer, there is no heat dissipation of the metal container from the outer wall of the filter, and the collected particulates can be efficiently burned and removed, and the pressure loss of the filter can be minimized. Decline can be prevented.

尚、本発明の好ましい形態である、セラミックハニカムフィルタの流路を目封止している少なくとも一部の目封止材の外端面が隔壁端面に対して流路方向に0.01〜5mm突出し、前記突出部分が少なくとも流路方向に対して傾斜面を有しているセラミックハニカムフィルタは以下のように製造することが出きる。まず、所定の目封止材の突出部が得られるように、樹脂製材料に開口部を形成させた樹脂製マスク21を準備した。ここで、傾斜面21aを有する開口部を形成するには、樹脂製板材料に機械加工、加熱加工等を施したり、或いは、射出成形法等を用いることにより、可能となる。次に、目封止材スラリーを準備し、図10(a)に示すように、ハニカム構造体の貫通孔における一端側の所定の開口端部を予め作成しておいた樹脂製マスク21により閉塞し、当該ハニカム構造体の一端側に所定の深さが得られるようにスラリーを浸積した。スラリーが乾燥した後に、樹脂製マスク21を除去することにより、図10(b)に示すように隔壁端面に対して目封止材外端面が突出した、セラミックハニカムフィルタを得た。この際、樹脂製マスクの厚さ、開口部傾斜面21aの角度、及び目封止材スラリー等を調整することにより、各種形態で各種突出長さ23を有するセラミックハニカムフィルタを得ることができる。   The outer end face of at least a part of the plugging material plugging the flow path of the ceramic honeycomb filter, which is a preferred embodiment of the present invention, protrudes 0.01 to 5 mm in the flow path direction with respect to the partition wall end face. The ceramic honeycomb filter in which the protruding portion has an inclined surface at least with respect to the flow path direction can be manufactured as follows. First, a resin mask 21 in which an opening was formed in a resin material was prepared so that a projecting portion of a predetermined plugging material was obtained. Here, the opening having the inclined surface 21a can be formed by subjecting the resin plate material to machining, heating, or the like, or using an injection molding method or the like. Next, a plugging material slurry is prepared and, as shown in FIG. 10 (a), a predetermined opening end on one end side of the through hole of the honeycomb structure is closed with a resin mask 21 prepared in advance. Then, the slurry was immersed so as to obtain a predetermined depth on one end side of the honeycomb structure. After the slurry was dried, the resin mask 21 was removed to obtain a ceramic honeycomb filter in which the outer end face of the plugging material protruded from the end face of the partition wall as shown in FIG. At this time, a ceramic honeycomb filter having various protrusion lengths 23 in various forms can be obtained by adjusting the thickness of the resin mask, the angle of the opening inclined surface 21a, the plugging material slurry, and the like.

以下、本発明の実際の例を説明するが、本発明はそれらに限定されるものではない。
(実施例1〜4、参考例1、2
SiOが42〜56質量%、Alが30〜45質量%、MgOが12〜16質量%となるようにカオリン、仮焼カオリン、アルミナ、水酸化アルミニウム、シリカ、タルク等のコージェライト化セラミック原料粉末にバインダー、潤滑剤、及び造孔材を加え、混合した。この時、焼成後の多孔質隔壁の細孔分布が各種のものが得られるよう、コージェライト化原料粉末、及び造孔材の粒径、粒度分布、添加量等を調整し、表1に示す配合NO.1〜6の6種類の原料を準備した。次に、この混合物に水を添加して可塑化可能なバッチを作製し、このバッチを公知の押出成形法により、円筒形ハニカム構造体を成形した。次いで、この成形体をマイクロ波乾燥機で乾燥した後、熱風乾燥を行ったうえで、1400℃の温度条件で焼成を行い、外径267mm、長さ304mm、隔壁のピッチ1.5mm、隔壁厚0.3mmのセラミックハニカム構造体を得た。これら配合NO.1〜6で作成した、セラミックハニカム構造体の、隔壁の細孔分布及びA軸圧縮強度を表1に示す。
Hereinafter, although the actual example of this invention is demonstrated, this invention is not limited to them.
(Examples 1 to 4, Reference Examples 1 and 2 )
Cordierite such as kaolin, calcined kaolin, alumina, aluminum hydroxide, silica, talc, etc., so that SiO 2 is 42 to 56 mass%, Al 2 O 3 is 30 to 45 mass%, and MgO is 12 to 16 mass%. A binder, a lubricant, and a pore former were added to the ceramic material powder and mixed. At this time, the particle size, particle size distribution, addition amount, etc. of the cordierite forming raw material powder and the pore former are adjusted so that various types of pore distributions of the porous partition walls after firing are obtained, and are shown in Table 1. Formulation NO. Six types of raw materials 1 to 6 were prepared. Next, water was added to the mixture to produce a plasticizable batch, and the batch was formed into a cylindrical honeycomb structure by a known extrusion method. Next, the molded body was dried with a microwave dryer and then dried with hot air, and then fired at a temperature condition of 1400 ° C. to obtain an outer diameter of 267 mm, a length of 304 mm, a partition pitch of 1.5 mm, and a partition wall thickness. A 0.3 mm ceramic honeycomb structure was obtained. These formulation NO. Table 1 shows the pore distribution and A-axis compressive strength of the partition walls of the ceramic honeycomb structure prepared in 1-6.

ここで、全細孔容積及び細孔分布の測定は、水銀圧入法により、Micromeritics社製オートポアIIIを使用して行い、セラミックハニカムフィルタから切り出した小片を試験片として測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧し、このときの圧力と試料内に存在する細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積の関係を求める。このとき、水銀を導入する圧力は0.5psi(3.4×10−3MPa)とし、圧力から細孔径を算出する際の常数は、接触角=130°、表面張力484dyne/cmとした。また全細孔容積は、圧力60、000psi(414MPa)の時の累積細孔容積とした(細孔径0.003μmに相当)。また、A軸圧縮強度の測定は、社団法人自動車技術会が定める規格M505−87「自動車排気ガス浄化触媒用セラミックモノリス担体の試験方法」に従って行った。 Here, the measurement of the total pore volume and the pore distribution is performed by using the mercury intrusion method, using Autopore III manufactured by Micromeritics, and the small piece cut out from the ceramic honeycomb filter is stored in the measurement cell as a test piece. After depressurizing the inside, mercury is introduced and pressurized, and the relationship between the pore size and the cumulative pore volume is obtained from the relationship between the pressure at this time and the volume of mercury pushed into the pores existing in the sample. . At this time, the pressure for introducing mercury was 0.5 psi (3.4 × 10 −3 MPa), and the constants for calculating the pore diameter from the pressure were contact angle = 130 ° and surface tension of 484 dyne / cm. The total pore volume was the cumulative pore volume at a pressure of 60,000 psi (414 MPa) (corresponding to a pore diameter of 0.003 μm). The A-axis compressive strength was measured according to the standard M505-87 “Testing method for ceramic monolithic carrier for automobile exhaust gas purification catalyst” established by the Japan Society for Automotive Engineers.

次いで、これらの配合NO.1〜6の原料から得られたセラミックハニカム構造体に対して、セラミックハニカム構造体の流路端部を交互に目封止がなされるように公知の技術により、コージェライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥、焼成を行い、実施例1〜6の各種コージェライト質セラミックハニカムフィルタを得た。ここで流路の目封止材の長さは7〜10mmとなるよう調整した。   Then, these compounding NO. The ceramic honeycomb structure obtained from the raw materials 1 to 6 is plugged from a cordierite-forming raw material by a known technique so that the channel ends of the ceramic honeycomb structure are alternately plugged. After filling the stop material slurry, the plugging material slurry was dried and fired to obtain various cordierite ceramic honeycomb filters of Examples 1-6. Here, the length of the plugging material of the flow path was adjusted to 7 to 10 mm.

得られた実施例1〜4、参考例1、2のセラミックハニカムフィルタに対して、圧力損失の評価、及びアイソスタティック強度の評価を行った。結果を表2に示す。
ここで、圧力損失は、圧力損失テストスタンドにて、セラミックハニカムフィルタに空気流量7.5Nm/minで、粒径0.042μmのカーボン粉を3g/hの投入速度で投入し、17g(カーボン粉1g/フィルタ容積1L)投入した後の流入側と流出側の差圧を圧力損失(mmAq)として測定して、カーボン粉投入前の圧力損失に対する上昇率を算出した。圧力損失上昇率=100×{(カーボン1g/L投入後の圧力損失)−(カーボン投入前の圧力損失)}/(カーボン投入前の圧力損失)(%)。その結果、圧力損失上昇率25%以下であれば合格(△)とし、より好ましい20%以下であれば(○)とし、更に好ましい15%以下を(◎)、25%を越える場合を不合格(×)として圧力損失を評価した。
The obtained ceramic honeycomb filters of Examples 1 to 4 and Reference Examples 1 and 2 were evaluated for pressure loss and isostatic strength. The results are shown in Table 2.
Here, the pressure loss was measured by applying a carbon powder having an air flow rate of 7.5 Nm 3 / min and a particle size of 0.042 μm at a rate of 3 g / h to a ceramic honeycomb filter at a pressure loss test stand. The differential pressure between the inflow side and the outflow side after charging 1 g of powder / filter volume 1 L) was measured as pressure loss (mmAq), and the rate of increase relative to the pressure loss before charging carbon powder was calculated. Pressure loss increase rate = 100 × {(pressure loss after charging carbon 1 g / L) − (pressure loss before charging carbon)} / (pressure loss before charging carbon) (%). As a result, if the rate of increase in pressure loss is 25% or less, it will be accepted (△), if it is more preferably 20% or less, it will be (◯), more preferably 15% or less will be (◎), and if it exceeds 25%, it will fail. The pressure loss was evaluated as (×).

また、アイソスタティック強度試験は、社団法人自動車技術会発行の自動車規格(JASO)M505−87に基づき、セラミックハニカム構造体の軸方向両端面に厚さ20mmのアルミ板を当接して両端を密閉するとともに、外壁部表面を厚さ2mmのゴムで密着したものを、圧力容器に入れ、圧力容器内に水を導入して、外壁部表面から静水圧を加え、破壊したときの圧力を測定して、アイソスタティック強度とした。そして、アイソスタティック強度が1.5MPa以上の場合を合格(△)とし、さらに1.8MPa以上の好ましい場合を(○)、さらに2MPa以上の好ましい場合を(◎)とし、1.5MPa未満の場合を不合格(×)で示した。
そして、総合判定として、圧力損失、アイソスタティック強度のいずれも判定が(○)であるものを(○)、さらにいずれも(◎)であるものを(◎)、いずれかに(△)があるものを(△)、いずれかに(×)があるものを(×)で評価した。
In addition, the isostatic strength test is based on the automobile standard (JASO) M505-87 issued by the Japan Society of Automotive Engineers, and the both ends of the ceramic honeycomb structure are contacted with 20 mm thick aluminum plates to seal both ends. At the same time, put the outer wall surface in close contact with 2 mm thick rubber into a pressure vessel, introduce water into the pressure vessel, apply hydrostatic pressure from the outer wall surface, and measure the pressure when destroyed The isostatic strength was used. The case where the isostatic strength is 1.5 MPa or more is determined to be acceptable (Δ), the case where 1.8 MPa or more is preferable (O), the case where 2 MPa or more is preferable (◎), and the case where it is less than 1.5 MPa Is indicated by a failure (x).
Then, as a comprehensive judgment, both the pressure loss and the isostatic strength are judged as (◯), (◎) as well as (◎), and (△) as one of them. The thing with ((triangle | delta)) and the thing which has (x) in any was evaluated by (x).

参考例1,2のセラミックハニカムフィルタは、隔壁の全細孔容積が0.55〜0.80cm/gであって、多孔質隔壁の細孔分布が、2μm以上の細孔容積:0.55〜0.80cm/g、5μm以上の細孔容積:0.50〜0.80cm/g、10μm以上の細孔容積:0.40〜0.70cm/g、20μm以上の細孔容積:0.20〜0.50cm/g、40μm以上の細孔容積:0.05〜0.25cm/g、100μm以上の細孔容積が0.02〜0.10cm/gである、配合NO.16の原料から作製したセラミックハニカム構造体を用いていることから、圧力損失、アイソスタティック強度の評価結果はいずれも合格の(△)(◎)で総合判定は(△)となった。実施例1〜4のセラミックハニカムフィルタは、隔壁の全細孔容積が0.57〜0.80cm/gであって、多孔質隔壁の細孔分布が、2μm以上の細孔容積:0.55〜0.75cm/g、5μm以上の細孔容積:0.54〜0.74cm/g、10μm以上の細孔容積:0.45〜0.65cm/g、20μm以上の細孔容積:0.25〜0.45cm/g、40μm以上の細孔容積:0.07〜0.2cm/g、100μm以上の細孔容積が0.02〜0.08cm/gである、配合NO.2〜5の原料から作製したハニカム構造体は、圧力損失、アイソスタティック強度の評価結果はいずれも(○)で総合判定は合格(○)となり、圧力損失、強度の面で、より優れたセラミックハニカムフィルタであることが判る。
In the ceramic honeycomb filters of Reference Examples 1 and 2 , the total pore volume of the partition walls is 0.55 to 0.80 cm 3 / g, and the pore distribution of the porous partition walls is 2 μm or more. 55 to 0.80 cm 3 / g, 5 μm or more pore volume: 0.50 to 0.80 cm 3 / g, 10 μm or more pore volume: 0.40 to 0.70 cm 3 / g, 20 μm or more pore volume: 0.20~0.50cm 3 / g, 40μm or more pore volume: 0.05~0.25cm 3 / g, or more of the pore volume 100μm is 0.02~0.10cm 3 / g , Formulation NO. From the fact that using the 1, ceramic honeycomb structure produced from 6 of the raw material, the pressure loss, any evaluation of the isostatic strength of the pass (△), the comprehensive judgment by (◎) becomes (△) . In the ceramic honeycomb filters of Examples 1 to 4, the total pore volume of the partition walls is 0.57 to 0.80 cm 3 / g, and the pore distribution of the porous partition walls is 2 μm or more. 55 to 0.75 cm 3 / g, 5 μm or more pore volume: 0.54 to 0.74 cm 3 / g, 10 μm or more pore volume: 0.45 to 0.65 cm 3 / g, 20 μm or more pore volume: 0.25~0.45cm 3 / g, 40μm or more pore volume: 0.07~0.2cm 3 / g, or more of the pore volume 100μm is 0.02~0.08cm 3 / g , Formulation NO. Honeycomb structures made from 2 to 5 materials have a pressure loss and isostatic strength evaluation results of both (◯) and a comprehensive judgment of pass (○), which is a superior ceramic in terms of pressure loss and strength. It turns out that it is a honeycomb filter.

(比較例1〜2)
実施例1〜4、参考例1、2と同様に、配合NO.7〜8の2種類の原料を準備し、水を添加して可塑化可能なバッチを作製し、このバッチを公知の押出成形法により、円筒形ハニカム構造体を成形した。次いで、この成形体をマイクロ波乾燥機で乾燥した後、熱風乾燥を行ったうえで、1400℃の温度条件で焼成を行い、4種類の異なる特性を有し、且つ、外径267mm、長さ304mm、隔壁のピッチ1.5mm、隔壁厚0.3mmのセラミックハニカム構造体を得た。これらの細孔分布、及びA軸圧縮強度を表1に示す。次いで、これらのセラミックハニカム構造体に対して、セラミックハニカム構造体の流路端部を交互に目封止がなされる公知の技術により、コージェライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥、焼成を行い、比較例1〜2のコージェライト質セラミックハニカムフィルタを得た。ここで、目封止材の長さは7〜10mmとなるよう調整
(Comparative Examples 1-2)
In the same manner as in Examples 1 to 4 and Reference Examples 1 and 2 , the blending NO. Two types of raw materials 7 to 8 were prepared, and water was added to produce a plasticizable batch. A cylindrical honeycomb structure was formed from this batch by a known extrusion method. Next, the molded body was dried with a microwave dryer and then dried with hot air, and then fired under a temperature condition of 1400 ° C., having four different characteristics, an outer diameter of 267 mm, and a length. A ceramic honeycomb structure having 304 mm, a partition pitch of 1.5 mm, and a partition wall thickness of 0.3 mm was obtained. These pore distributions and the A-axis compressive strength are shown in Table 1. Next, after filling these ceramic honeycomb structures with a plugging material slurry made of a cordierite forming material by a known technique in which the flow path ends of the ceramic honeycomb structures are alternately plugged. The plugging material slurry was dried and fired to obtain cordierite ceramic honeycomb filters of Comparative Examples 1 and 2. Here, the length of the plugging material is adjusted to be 7 to 10 mm.

これらのセラミックハニカムフィルタに対し、実施例1〜4、参考例1,2と同様に圧力損失、アイソスタティック強度の評価を行った結果を表2に示す。比較例1のセラミックハニカムフィルタは、隔壁の全細孔容積が0.57cm/g未満であって、多孔質隔壁の細孔分布が、2μm以上の細孔容積:0.55cm/g未満、5μm以上の細孔容積:0.54cm/g未満、10μm以上の細孔容積:0.45cm/g未満、20μm以上の細孔容積:0.25cm/g未満、40μm以上の細孔容積:0.07cm/g未満、100μm以上の細孔容積:0.02cm/g未満である、配合NO.7の原料から作製したハニカム構造体を用いていることから、全ての細孔径において細孔容積が小さかったため、アイソスタティック強度の評価結果は合格の(◎)であったものの、圧力損失の評価結果は不合格(×)となり、総合判定は不合格(×)となり、圧力損失と強度を両立させたセラミックハニカムフィルタを得ることはできなかった。
Table 2 shows the results of evaluating the pressure loss and isostatic strength of these ceramic honeycomb filters in the same manner as in Examples 1 to 4 and Reference Examples 1 and 2. In the ceramic honeycomb filter of Comparative Example 1, the total pore volume of the partition walls is less than 0.57 cm 3 / g, and the pore distribution of the porous partition walls is a pore volume of 2 μm or more: 0.55 cm 3 / g. Pore volume of less than 5 μm: less than 0.54 cm 3 / g, pore volume of 10 μm or more: less than 0.45 cm 3 / g, pore volume of 20 μm or more: less than 0.25 cm 3 / g, Pore volume of 40 μm or more: less than 0.07 cm 3 / g, pore volume of 100 μm or more: less than 0.02 cm 3 / g Since the honeycomb structure made from the raw material No. 7 was used, the pore volume was small at all pore diameters, so the isostatic strength evaluation result was a pass (◎), but the pressure loss evaluation result Was rejected (x), the overall judgment was rejected (x), and a ceramic honeycomb filter having both pressure loss and strength could not be obtained.

また、比較例2のセラミックハニカムフィルタは、隔壁の全細孔容積が0.80cm/gを越え、多孔質隔壁の細孔分布が、2μm以上の細孔容積:0.75cm/gを越え、5μm以上の細孔容積:0.74cm/gを越え、10μm以上の細孔容積:0.65cm/gを越え、20μm以上の細孔容積:0.45cm/gを越え、40μm以上の細孔容積:0.20cm/gを越え、100μm以上の細孔容積:0.08cm/gを越えている、配合NO.8の原料から作製したハニカム構造体を用いていることから、全ての細孔径において細孔容積が大きかったため、圧力損失の評価結果は合格(◎)であったものの、アイソスタティック強度の評価結果は不合格の(×)となり、総合判定は不合格(×)となり、圧力損失と強度を両立させたセラミックハニカムフィルタを得ることはできなかった。
In the ceramic honeycomb filter of Comparative Example 2, the total pore volume of the partition walls exceeded 0.80 cm 3 / g, and the pore distribution of the porous partition walls was 2 μm or more: 0.75 cm 3 / g More than 5 μm pore volume: More than 0.74 cm 3 / g More than 10 μm pore volume: More than 0.65 cm 3 / g More than 20 μm pore volume: 0.45 cm 3 / g More than 40 μm pore volume: more than 0.20 cm 3 / g and more than 100 μm pore volume: more than 0.08 cm 3 / g Since the honeycomb structure produced from the raw material of No. 8 was used, the pore volume was large in all pore diameters, so the evaluation result of pressure loss was acceptable (◎), but the evaluation result of isostatic strength was It was rejected (x), the overall judgment was rejected (x), and it was not possible to obtain a ceramic honeycomb filter having both pressure loss and strength.

(実施例19、参考例3〜17
実施例1〜4、参考例1、2と同様に、配合NO.1、3、4、の4種類の原料から、外径267mm、長さ304mm、隔壁のピッチ1.5mm、隔壁厚0.3mmのセラミックハニカム構造体を得た。これらのセラミックハニカム構造体に対して、セラミックハニカム構造体の流路端部を交互に目封止がなされると共に、外周壁近傍の流路に対しては両端部が目封止されるように、セラミックハニカム構造体の端面にマスキングフィルムを配置した後、ハニカム構造体の中心部の流路に対して交互に穿孔部を形成し、外周壁近傍の流路に対しては穿孔部を形成せずに、別に準備していた目封止用のコージェライト化原料からなるセラミックスラリーに、セラミックハニカム構造体の端面を浸漬し、マスキングフィルムの穿孔部を通じて、セラミックハニカム構造体にセラミックスラリーを導入、導入されたスラリ−が固化後に、ハニカム構造体をセラミックスラリーから抜き出し、乾燥させ、中心部の流路の目封止材と隔壁を一体化せしめ、その後、中心部の流路端面全域にマスキングフィルムを配置し、外周壁近傍の流路にのみセラミックスラリーを導入して、固化、乾燥後、焼成して、外周壁近傍の流路が目封止された実施例19、参考例3〜17の各種コージェライト質セラミックハニカムフィルタを得た。ここで外周壁近傍の流路を除く流路の目封止材の長さは7〜10mmとなるよう調整した。
(Examples 5 to 19, Reference Examples 3 to 17 )
In the same manner as in Examples 1 to 4 and Reference Examples 1 and 2 , the blending NO. A ceramic honeycomb structure having an outer diameter of 267 mm, a length of 304 mm, a partition wall pitch of 1.5 mm, and a partition wall thickness of 0.3 mm was obtained from the four types of raw materials 1, 3, 4, and 6 . For these ceramic honeycomb structures, the end portions of the channels of the ceramic honeycomb structure are alternately plugged, and both ends are plugged for the channels near the outer peripheral wall. After the masking film is disposed on the end face of the ceramic honeycomb structure, the perforated portions are alternately formed in the flow path at the center of the honeycomb structure, and the perforated portions are formed in the flow path near the outer peripheral wall. Without immersing the end face of the ceramic honeycomb structure in the ceramic slurry made of the cordierite raw material for plugging prepared separately, through the perforated part of the masking film, the ceramic slurry is introduced into the ceramic honeycomb structure, After the introduced slurry is solidified, the honeycomb structure is extracted from the ceramic slurry, dried, and the plugging material and partition walls in the central channel are integrated, After that, a masking film is arranged over the entire end face of the flow path in the center, and the ceramic slurry is introduced only into the flow path near the outer peripheral wall, solidified, dried, and fired, so that the flow path near the outer peripheral wall is plugged. Various cordierite ceramic honeycomb filters of Examples 5 to 19 and Reference Examples 3 to 17 were obtained. Here, the length of the plugging material of the flow path excluding the flow path in the vicinity of the outer peripheral wall was adjusted to be 7 to 10 mm.

得られた実施例19、参考例3〜17のセラミックハニカムフィルタに対して、実施例1〜4、参考例1、2と同様に、圧力損失の評価及びアイソスタティック強度の評価を行い、総合判定を行った。更にディーゼルエンジンから排出される微粒子を捕捉させた後、微粒子を燃焼除去した後の質量再生率の評価を行った。
For the obtained ceramic honeycomb filters of Examples 5 to 19 and Reference Examples 3 to 17 , pressure loss and isostatic strength were evaluated in the same manner as in Examples 1 to 4 and Reference Examples 1 and 2 , A comprehensive judgment was made. Furthermore, after capturing fine particles discharged from the diesel engine, the mass regeneration rate after the fine particles were burned and removed was evaluated.

ここで、質量再生率とは、(微粒子の捕捉量−再生後の燃え残り量)×100/(微粒子捕捉量)(%)のことを示す。試験結果は、質量再生率が80%以上の場合を合格(△)とし、より好ましい85%以上の場合を(○)とし、更に90%以上の好ましい場合を(◎)とし、80%未満の場合を不合格(×)で示した。   Here, the mass regeneration rate means (fine particle trapping amount−burning residual amount after regeneration) × 100 / (fine particle trapping amount) (%). The test results are as follows (△) when the mass regeneration rate is 80% or more, (◯) when 85% or more is preferable, and (◎) when 90% or more is preferable, and less than 80%. Cases are indicated by a failure (x).

結果を、表3に示す。表3において、両端部目封止部の目封止長さ比とは、(外周壁近傍の流路を両端部で目封止した一方の目封止材の端面からの長さ)×100/(フィルタの全長)のことであり、本実施例ではフィルタ全長は304mmである。また端面における両端目封止部の範囲とは、両端が目封止された流路の存在する範囲を、端面における外周壁からの中心に向かう長さで示したものである。これらの測定はアイソスタティック試験により破壊したセラミックハニカムフィルタの任意の5カ所について測定した平均値で示した。   The results are shown in Table 3. In Table 3, the plugging length ratio of the plugging portions at both ends is (the length from the end surface of one plugging material in which the channel near the outer peripheral wall is plugged at both ends) × 100 / (Total length of the filter), and in this embodiment, the total filter length is 304 mm. Further, the range of the both end plugged portions on the end face indicates the range where the flow path having both ends plugged exists by the length from the outer peripheral wall to the center of the end face. These measurements are shown as average values measured at arbitrary five locations of the ceramic honeycomb filter broken by the isostatic test.

実施例19のセラミックハニカムフィルタは、隔壁の全細孔容積が0.57〜0.80cm/gであって、多孔質隔壁の細孔分布が、2μm以上の細孔容積:0.55〜0.75cm/g、5μm以上の細孔容積:0.540.74cm/g、10μm以上の細孔容積:0.450.65cm/g、20μm以上の細孔容積:0.250.45cm/g、40μm以上の細孔容積:0.070.20cm/g、100μm以上の細孔容積が0.02〜0.08cm/gである、配合NO.3、4の原料から作製したハニカム構造体を用いており、また、参考例3〜17のセラミックハニカムフィルタは、隔壁の全細孔容積が0.55〜0.80cm /gであって、多孔質隔壁の細孔分布が、2μm以上の細孔容積:0.55〜0.80cm /g、5μm以上の細孔容積:0.50〜0.80cm /g、10μm以上の細孔容積:0.40〜0.70cm /g、20μm以上の細孔容積:0.20〜0.50cm /g、40μm以上の細孔容積:0.05〜0.25cm /g、100μm以上の細孔容積が0.02〜0.10cm /gである、配合NO.1、6の原料から作製したハニカム構造体を用いており、且つ該セラミックハニカムフィルタの外周壁近傍の流路が両端部において目封止されていることから、圧力損失、アイソスタティック強度の評価結果はいずれも合格の(△)〜(◎)となり、圧力損失、強度に優れたセラミックハニカムフィルタの得られることが判る。また、実施例19、参考例3〜17のセラミックハニカムフィルタは、外周壁近傍の流路両端部が目封止され、ハニカムフィルタの角部が補強されていることから、アイソスタティック強度の評価は、いずれも合格の(○)又は、(◎)となり、外周壁近傍の流路両端部が目封止材で目封止されていない参考例1、2、実施例2、3のセラミックハニカムフィルタのアイソスタティック強度の(△)または(○)に比べ、強度特性が改善されている。更に、質量再生率の評価結果から、参考例6及び、実施例及び、実施例17及び18、実施例15及び16のセラミックハニカムフィルタは、端面における両端目封止部の範囲が2×(隔壁ピッチ)であり、且つ、両端目封止部の目封止長さ比が3.3%以下であるため、断熱空間が十分確保されていることから、質量再生率の評価結果が(◎)となり、微粒子の燃焼が良好に行われることが判る。また、参考例1114、実施例1316のセラミックハニカムフィルタは、端面における両端目封止部の範囲が(4〜6)×(隔壁ピッチ)であるため、断熱空間が十分確保されていることから、質量再生率の評価結果が(◎)となり、微粒子の燃焼が良好に行われることが判る。但し、このうち参考例14及び実施例16のセラミックハニカムフィルタは、端面における両端目封止部の範囲が6×(隔壁ピッチ)であるため、圧力損失の評価が(△)であった。
In the ceramic honeycomb filters of Examples 5 to 19 , the total pore volume of the partition walls is 0.57 to 0.80 cm 3 / g, and the pore distribution of the porous partition walls is 2 μm or more. 55 to 0.75 cm 3 / g, 5 μm or more pore volume: 0.54 to 0.74 cm 3 / g, 10 μm or more pore volume: 0.45 to 0.65 cm 3 / g, 20 μm or more Pore volume: 0.25 to 0.45 cm 3 / g, pore volume of 40 μm or more: 0.07 to 0.20 cm 3 / g, pore volume of 100 μm or more is 0.02 to 0.08 Formulation NO., which is cm 3 / g. The honeycomb structure produced from the raw materials of 3 and 4 is used, and the ceramic honeycomb filters of Reference Examples 3 to 17 have a total pore volume of partition walls of 0.55 to 0.80 cm 3 / g, The pore distribution of the porous partition walls is a pore volume of 2 μm or more: 0.55 to 0.80 cm 3 / g, a pore volume of 5 μm or more: 0.50 to 0.80 cm 3 / g, a pore of 10 μm or more Volume: 0.40 to 0.70 cm 3 / g, pore volume of 20 μm or more: 0.20 to 0.50 cm 3 / g, pore volume of 40 μm or more: 0.05 to 0.25 cm 3 / g, 100 μm The above-mentioned pore volume is 0.02-0.10 cm < 3 > / g, compounding NO. Evaluation results of pressure loss and isostatic strength because the honeycomb structure manufactured from the raw materials 1 and 6 is used and the flow path near the outer peripheral wall of the ceramic honeycomb filter is plugged at both ends. Are acceptable (Δ) to (◎), indicating that a ceramic honeycomb filter excellent in pressure loss and strength can be obtained. Further, in the ceramic honeycomb filters of Examples 5 to 19 and Reference Examples 3 to 17, both ends of the flow path near the outer peripheral wall are plugged, and the corners of the honeycomb filter are reinforced, so that the isostatic strength is high. The evaluation is (◯) or (◎), both of which are acceptable, and the both ends of the flow path in the vicinity of the outer peripheral wall are not plugged with the plugging material. The ceramics of Reference Examples 1 and 2 and Examples 2 and 3 The strength characteristics are improved as compared with the isostatic strength (Δ) or (◯) of the honeycomb filter. Furthermore, from the evaluation results of the mass regeneration rate, the ceramic honeycomb filters of Reference Examples 6 and 7 , Examples 8 and 9 , Examples 17 and 18 , and Examples 15 and 16 have a range of plugging portions at both ends on the end surface of 2. X (partition wall pitch), and the plugging length ratio of the plugging portions at both ends is 3.3% or less, so that the heat insulation space is sufficiently secured. (A), and it can be seen that the fine particles are burned well. Further, in the ceramic honeycomb filters of Reference Examples 11 to 14 and Examples 13 to 16 , the range of the plugging portions at both ends on the end face is (4 to 6) × (partition wall pitch), so that a sufficient heat insulating space is secured. Therefore, it can be seen that the evaluation result of the mass regeneration rate is (◎), and the fine particles are burned well. However, among these, the ceramic honeycomb filters of Reference Example 14 and Example 16 had a pressure loss evaluation of (Δ) because the range of both end plugging portions on the end face was 6 × (partition wall pitch).

(参考例1829)
実施例と同様に、配合NO.2のコージェライト化原料を混合、混練し、公知の押出成形法によりハニカム構造体を成形した後、両端部の所定の流路に目封止を行い、1400℃で焼成を行い、外径295mm、長さ304mm、隔壁のピッチ1.5mm、隔壁厚0.3mmであるセラミックハニカム構造体を得た。このハニカム構造体の細孔分布及びA軸圧縮強度は表1に示す通りである。その後、この焼成体の周縁部を加工により除去し、加工後の外周面に、軸方向に延びる凹溝を有する、外径が284mmのセラミックハニカム構造体とした。
( Reference Examples 18-29 )
Similar to Example 1 , the formulation NO. After mixing and kneading 2 cordierite forming materials and forming a honeycomb structure by a known extrusion molding method, plugging is performed on predetermined flow paths at both ends, firing at 1400 ° C., and outer diameter of 295 mm A ceramic honeycomb structure having a length of 304 mm, a partition wall pitch of 1.5 mm, and a partition wall thickness of 0.3 mm was obtained. Table 1 shows the pore distribution and the A-axis compressive strength of this honeycomb structure. Thereafter, the peripheral portion of the fired body was removed by processing, and a ceramic honeycomb structure having an outer diameter of 284 mm having a groove extending in the axial direction on the outer peripheral surface after processing.

次に、所定の目封止材の突出部が得られるように、樹脂製材料に開口部を形成させた樹脂製マスク21を準備した。ここで、傾斜面21aを有する開口部を形成するには、樹脂製板材料に機械加工、加熱加工等を施したり、或いは、射出成形法等を用いることにより、可能となる。次に、コージェライト化原料からなる目封止材スラリーを準備し、ハニカム構造体の貫通孔における一端側の所定の開口端部を予め作成しておいた樹脂製マスク21により閉塞し、当該ハニカム構造体の一端側に所定の深さが得られるようにスラリーを浸積した。スラリーが乾燥した後に、樹脂製マスク21を除去することにより、隔壁端面に対して目封止材外端面が突出した目封止材により目封止されているセラミックハニカムフィルタを得た。この際、樹脂製マスクの厚さ、開口部傾斜面21aの角度、及び目封止材スラリー等を調整することにより、図6(a)、(b)、図8(g)、(n)の形態で各種突出長さ23を有する実施例37〜48のセラミックハニカム構造体とした。次いで、他端面側も同様に目封止部を形成後、目封止材の焼成を行った。このときの目封止材の突出長さの算出は、セラミックハニカム構造体の排気ガス流入側端面の目封止材について、任意の5ケ所の測定値の平均値とした。ここで、目封止材長さは、いずれも概略9mm(全長に対する目封止長さ比3%)に統一した。また、目封止材外側面の表面粗さRyは76μmであった。   Next, a resin mask 21 in which an opening was formed in the resin material was prepared so that a predetermined plugging material protrusion was obtained. Here, the opening having the inclined surface 21a can be formed by subjecting the resin plate material to machining, heating, or the like, or using an injection molding method or the like. Next, a plugging material slurry made of a cordierite forming raw material is prepared, and a predetermined opening end portion on one end side in the through hole of the honeycomb structure is closed with a resin mask 21 prepared in advance. The slurry was immersed so as to obtain a predetermined depth on one end side of the structure. After the slurry was dried, the resin mask 21 was removed to obtain a ceramic honeycomb filter plugged with a plugging material whose outer end face of the plugging material protruded from the end face of the partition wall. At this time, by adjusting the thickness of the resin mask, the angle of the opening inclined surface 21a, the plugging material slurry, etc., FIGS. 6 (a), 6 (b), 8 (g), 8 (n). The ceramic honeycomb structures of Examples 37 to 48 having various protrusion lengths 23 in the form of Subsequently, the plugging material was fired after forming the plugging portions on the other end surface side in the same manner. The projection length of the plugging material at this time was calculated as an average value of measured values at arbitrary five locations for the plugging material on the exhaust gas inflow side end face of the ceramic honeycomb structure. Here, the length of the plugging material was unified to approximately 9 mm (the plugging length ratio with respect to the entire length is 3%). Further, the surface roughness Ry of the outer surface of the plugging material was 76 μm.

次いで、このセラミックハニカム構造体の外周面に、平均粒径15μmのコージェライト粉末100質量部に対してコロイダルシリカを10質量部加え、更にバインダー、水などを加えて調整したコージェライト質スラリーを塗布して外周壁を形成した。その後、外周壁の乾燥、焼成を行い、外径267mm、長さ304mm、隔壁の厚さが0.3mm、隔壁のピッチが1.47mm、外周壁の厚さが1.5mmである、実施例37〜48のコージェライト質セラミックハニカムフィルタを得た。   Next, a cordierite slurry prepared by adding 10 parts by weight of colloidal silica to 100 parts by weight of cordierite powder having an average particle diameter of 15 μm and further adding a binder, water, and the like to the outer peripheral surface of the ceramic honeycomb structure is applied. To form an outer peripheral wall. Thereafter, the outer peripheral wall was dried and fired, and the outer diameter was 267 mm, the length was 304 mm, the partition wall thickness was 0.3 mm, the partition wall pitch was 1.47 mm, and the outer wall thickness was 1.5 mm. 37 to 48 cordierite ceramic honeycomb filters were obtained.

上記参考例1829のセラミックハニカムフィルタに対して、圧力損失及びアイソスタティック強度の評価を行った結果を表4に示す。参考例1829のセラミックハニカムフィルタは、配合NO.2から得られたハニカム構造体で製造した実施例のセラミックハニカムフィルタの圧力損失の判定が(○)であったのに対し、目封止材の端面形状が、隔壁端面から0.01〜5mm突出し、かつ、突出部分が少なくとも流路方向に傾斜面を有していることから、流入側目封止部1aの端面への微粒子の堆積が起こりにくく、圧力損失の評価が(◎)に改善されていることが判る。
Table 4 shows the results of evaluating the pressure loss and isostatic strength of the ceramic honeycomb filters of Reference Examples 18 to 29 . The ceramic honeycomb filters of Reference Examples 18 to 29 are blended NO. The determination of the pressure loss of the ceramic honeycomb filter of Example 1 manufactured with the honeycomb structure obtained from No. 2 was (◯), whereas the end face shape of the plugging material was 0.01 to Since the protrusion protrudes 5 mm and the protruding portion has an inclined surface at least in the flow path direction, accumulation of fine particles hardly occurs on the end surface of the inflow side plugged portion 1a, and the evaluation of pressure loss is (◎). It turns out that it is improving.

参考例3035
実施例と同様に、配合NO.3のコージェライト化原料を混合、混練し、公知の押出成形法によりハニカム構造体を成形した後、両端部の所定の流路に目封止を行い、1400℃で焼成を行い、外径295mm、長さ304mm、隔壁のピッチ1.5mm、隔壁厚0.3mmであるセラミックハニカム構造体を得た。このハニカム構造体の細孔分布及びA軸圧縮強度は表1に示す通りである。その後、この焼成体の周縁部を加工により除去し、加工後の外周面に、加工後の外周面に、軸方向に延びる凹溝を有する、外径が284mmのセラミックハニカム構造体とした。
( Reference Examples 30 to 35 )
As in Example 2 , the formulation NO. No. 3 cordierite forming raw material was mixed and kneaded, and a honeycomb structure was formed by a known extrusion molding method, then plugged into predetermined flow paths at both ends, fired at 1400 ° C., and an outer diameter of 295 mm A ceramic honeycomb structure having a length of 304 mm, a partition wall pitch of 1.5 mm, and a partition wall thickness of 0.3 mm was obtained. Table 1 shows the pore distribution and the A-axis compressive strength of this honeycomb structure. Thereafter, the peripheral edge portion of the fired body was removed by processing, and a ceramic honeycomb structure having an outer diameter of 284 mm having a groove extending in the axial direction on the outer peripheral surface after processing on the outer peripheral surface after processing.

次に、所定の目封止材の突出部が得られるように、樹脂製材料に開口部を形成させた樹脂製マスク21を準備した。ここで、傾斜面21aを有する開口部を形成するには、樹脂製板材料に機械加工、加熱加工等を施したり、或いは、射出成形法等を用いることにより、可能となる。次に、目封止材スラリーを準備し、ハニカム構造体の貫通孔における一端側の所定の開口端部を予め作成しておいた樹脂製マスク21により閉塞し、当該ハニカム構造体の一端側に所定の深さが得られるようにスラリーを浸積した。なお、ここで、ハニカムフィルタ端面の外周壁からハニカムフィルタの端面中心に向かって(1〜4)×(隔壁ピッチ)の長さの範囲に存在する外周壁近傍の流路については、全ての流路に目封止材を導入できるよう、マスクは配置しなかった。スラリーが乾燥した後に、樹脂製マスク21を除去することにより、隔壁端面に対して目封止材外端面が突出し、且つ外周壁近傍の流路が外周壁から(1〜4)×(隔壁ピッチ)の範囲で、全ての流路が目封止されているセラミックハニカム構造体を得た。この際、樹脂製マスクの厚さ、開口部傾斜面21aの角度、及び目封止材スラリー等を調整することにより、図6(a)、(b)の形態で、突出長さ23が0.14mmである実施例49〜54のセラミックハニカム構造体を得た。次いで、他端面側も同様に目封止部を形成後、目封止材の焼成を行った。このときの目封止材の突出長さの算出は、セラミックハニカム構造体の排気ガス流入側端面の目封止材について、任意の5ケ所の測定値の平均値とした。ここで、目封止材長さは、いずれも概略9mm(全長に対する目封止長さ比3%)に統一した。また、目封止材外側面の表面粗さRyは76μmであった。   Next, a resin mask 21 in which an opening was formed in the resin material was prepared so that a predetermined plugging material protrusion was obtained. Here, the opening having the inclined surface 21a can be formed by subjecting the resin plate material to machining, heating, or the like, or using an injection molding method or the like. Next, a plugging material slurry is prepared, and a predetermined opening end on one end side of the through hole of the honeycomb structure is closed with a resin mask 21 prepared in advance, The slurry was immersed so as to obtain a predetermined depth. Here, regarding the flow path in the vicinity of the outer peripheral wall existing in the range of (1 to 4) × (partition wall pitch) from the outer peripheral wall of the honeycomb filter end face toward the end face center of the honeycomb filter, No mask was placed so that plugging material could be introduced into the path. After the slurry is dried, by removing the resin mask 21, the outer end face of the plugging material protrudes from the end face of the partition wall, and the flow path in the vicinity of the outer peripheral wall is (1-4) × (partition pitch) from the outer peripheral wall. ), A ceramic honeycomb structure in which all the channels were plugged was obtained. At this time, by adjusting the thickness of the resin mask, the angle of the opening inclined surface 21a, the plugging material slurry, and the like, the protrusion length 23 is 0 in the form of FIGS. 6 (a) and 6 (b). Ceramic honeycomb structures of Examples 49 to 54 having a diameter of 14 mm were obtained. Subsequently, the plugging material was fired after forming the plugging portions on the other end surface side in the same manner. The projection length of the plugging material at this time was calculated as an average value of measured values at arbitrary five locations for the plugging material on the exhaust gas inflow side end face of the ceramic honeycomb structure. Here, the length of the plugging material was unified to approximately 9 mm (the plugging length ratio with respect to the entire length is 3%). Further, the surface roughness Ry of the outer surface of the plugging material was 76 μm.

次いで、このセラミックハニカム構造体の外周面に、平均粒径15μmのシリカ粉末100質量部に対してコロイダルシリカを10質量部加え、更にバインダー、水などを加えて調整したコージェライト質スラリーを塗布して外周壁を形成した。その後、外周壁の乾燥、焼成を行い、外径267mm、長さ304mm、隔壁の厚さが0.3mm、隔壁のピッチが1.47mm、外周壁の厚さが1.5mmである、参考例3035のコージェライト質セラミックハニカムフィルタを得た。
Next, a cordierite slurry prepared by adding 10 parts by mass of colloidal silica to 100 parts by mass of silica powder having an average particle size of 15 μm and further adding a binder, water, etc. is applied to the outer peripheral surface of the ceramic honeycomb structure. An outer peripheral wall was formed. Then, drying of the outer peripheral wall and fired, the outer diameter 267 mm, length 304 mm, partition wall thickness of 0.3 mm, a pitch of the partition walls is 1.47 mm, the thickness of the outer peripheral wall is 1.5 mm, reference example 30 to 35 cordierite ceramic honeycomb filters were obtained.

上記参考例3035のセラミックハニカムフィルタに対して、圧力損失、アイソスタティック強度、及び質量再生率の評価を行った結果を表5に示す。参考例3035のセラミックハニカムフィルタは、配合NO.3から得られたハニカム構造体で製造した実施例のセラミックハニカムフィルタの圧力損失及びアイソスタティック強度の判定が両者とも(○)であったのに対し、外周壁近傍の流路両端部が目封止され、ハニカムフィルタの角部が補強されていることから、アイソスタティック強度の評価は(◎)と改善され、且つ目封止材の端面形状が、隔壁端面から0.14mm突出し、かつ、突出部分が少なくとも流路方向に傾斜面を有していることから、流入側目封止部1aの端面への微粒子の堆積が起こりにくく、圧力損失の評価が(◎)に改善されているため、いずれも総合判定は(◎)となり、低圧力損失と高強度を両立させたセラミックハニカムフィルタの得られることが判る。
Table 5 shows the results of evaluation of pressure loss, isostatic strength, and mass regeneration rate for the ceramic honeycomb filters of Reference Examples 30 to 35 . The ceramic honeycomb filters of Reference Examples 30 to 35 are blended NO. The determination of the pressure loss and isostatic strength of the ceramic honeycomb filter of Example 2 manufactured with the honeycomb structure obtained from No. 3 was both (◯), whereas both ends of the flow path near the outer peripheral wall were visible. Since the corners of the honeycomb filter are reinforced, the evaluation of isostatic strength is improved as (◎), and the end face shape of the plugging material protrudes from the end face of the partition wall by 0.14 mm, and Since the protruding portion has an inclined surface in at least the flow path direction, the accumulation of fine particles on the end face of the inflow side plugged portion 1a hardly occurs, and the evaluation of the pressure loss is improved to (◎). In both cases, the overall judgment is (◎), and it can be seen that a ceramic honeycomb filter having both low pressure loss and high strength can be obtained.

セラミックハニカムフィルタの一例を示す正面図である。It is a front view showing an example of a ceramic honeycomb filter. セラミックハニカムフィルタの使用例の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the usage example of a ceramic honeycomb filter. 本発明のセラミックハニカムフィルタの一例を示す正面図である。It is a front view which shows an example of the ceramic honeycomb filter of this invention. 本発明のセラミックハニカムフィルタの一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the ceramic honeycomb filter of this invention. 本発明のセラミックハニカムフィルタの細孔径と累積細孔容積の関係を示す図である。It is a figure which shows the relationship between the pore diameter of the ceramic honeycomb filter of this invention, and a cumulative pore volume. 本発明のセラミックハニカムフィルタの好ましい一例の目封止部拡大図である。FIG. 3 is an enlarged view of a plugged portion of a preferred example of the ceramic honeycomb filter of the present invention. 従来のセラミックハニカムフィルタの一例の目封止部拡大図である。It is an enlarged view of a plugged portion of an example of a conventional ceramic honeycomb filter. 本発明のセラミックハニカムフィルタの目封止形状の他の一例である。It is another example of the plugged shape of the ceramic honeycomb filter of the present invention. 本発明のセラミックハニカムフィルタの他の例の模式概略断面図である。It is a schematic schematic sectional drawing of the other example of the ceramic honeycomb filter of this invention. 本発明の好ましいセラミックハニカムフィルタの目封止を実施する一例の模式断面図である。(a)樹脂製マスクが設置された状態(b)樹脂製マスクを除去した状態It is a schematic cross section of an example for carrying out plugging of a preferred ceramic honeycomb filter of the present invention. (A) State in which resin mask is installed (b) State in which resin mask is removed

符号の説明Explanation of symbols

1a:流入側目封止材
1b:流出側目封止材
1c:外周壁近傍の流路の両端部の目封止材
1d:突出部に形成された傾斜面
1e:目封止材用セラミックスラリー
2a:流入側排気ガス
2b:流出側排気ガス
11:セラミックハニカムフィルタ
11a:外周壁
11b:隔壁
11c:流路
12:収納容器
13a、13b:支持部材
14:支持部材
15:目封止材の外端面
16:隔壁の外端面
17:目封止材突出部と隔壁端面の間に形成された角部
18:隙間
21:樹脂製マスク
21a:樹脂製マスク開口部の傾斜面
22:目封止材スラリー容器
23:突出長さ
24:目封止材長さ
25:突出部分が有する傾斜面の流出側端部に形成される角部
51:本発明のセラミックハニカムフィルタの全細孔容積の下限を示す点
52:本発明のセラミックハニカムフィルタの全細孔容積の上限を示す点
53:本発明のセラミックハニカムフィルタの細孔径100μm以上の累積細孔容積の下限を示す点
54:本発明のセラミックハニカムフィルタの細孔径100μm以上の累積細孔容積の上限を示す点
55:本発明のセラミックハニカムフィルタの細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上における好ましい累積細孔容積の下限を示す点
56:本発明のセラミックハニカムフィルタの細孔径2μm以上、5μm以上、10μm以上、20μm以上、40μm以上における好ましい累積細孔容積の上限を示す点
57:本発明の実施例2のセラミックハニカムフィルタの細孔分布
DESCRIPTION OF SYMBOLS 1a: Inflow side plugging material 1b: Outflow side plugging material 1c: Plugging material of the both ends of the flow path near an outer peripheral wall 1d: The inclined surface formed in the protrusion part 1e: Ceramics for plugging materials Rally 2a: inflow side exhaust gas 2b: outflow side exhaust gas 11: ceramic honeycomb filter 11a: outer peripheral wall 11b: partition wall 11c: flow path 12: storage container 13a, 13b: support member 14: support member 15: plugging material Outer end face 16: Outer end face 17 of the partition wall: Corner 18 formed between the plugging material protruding portion and the end face of the partition wall 21: Gap 21: Resin mask 21a: Inclined surface 22 of the resin mask opening: Plugging Material slurry container 23: protrusion length 24: plugging material length 25: corner 51 formed at the outflow side end of the inclined surface of the protrusion portion: lower limit of the total pore volume of the ceramic honeycomb filter of the present invention Point 52 indicating: ceramic of the present invention Point 53 showing the upper limit of the total pore volume of the Nicham filter 53: Point showing the lower limit of the cumulative pore volume of the ceramic honeycomb filter of the present invention having a pore diameter of 100 μm or more 54: Accumulation of the ceramic honeycomb filter of the present invention having a pore diameter of 100 μm or more Point 55 indicating the upper limit of the pore volume: Point 56 indicating the preferred lower limit of the cumulative pore volume when the pore diameter of the ceramic honeycomb filter of the present invention is 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, 40 μm or more. Point 57 indicating the upper limit of the preferred cumulative pore volume at a pore diameter of 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, 40 μm or more of the honeycomb filter: pore distribution of the ceramic honeycomb filter of Example 2 of the present invention

Claims (2)

セラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタであって、前記多孔質隔壁の全細孔容積が0.57〜0.80cm/gであって、2μm以上の細孔容積:0.55〜0.75cm /g、5μm以上の細孔容積:0.54〜0.74cm /g、10μm以上の細孔容積:0.45〜0.65cm /g、20μm以上の細孔容積:0.25〜0.45cm /g、40μm以上の細孔容積:0.07〜0.20cm /g、100μm以上の細孔容積が0.02〜0.08cm/gであることを特徴とするセラミックハニカムフィルタ。 A ceramic honeycomb filter that removes particulates contained in exhaust gas by plugging a predetermined flow path end of the ceramic honeycomb structure and allowing the exhaust gas to pass through a porous partition wall defining the flow path. The total pore volume of the porous partition wall is 0.57 to 0.80 cm 3 / g, and the pore volume of 2 μm or more: 0.55 to 0.75 cm 3 / g, the pore volume of 5 μm or more. : 0.54 to 0.74 cm 3 / g, 10 μm or more pore volume: 0.45 to 0.65 cm 3 / g, 20 μm or more pore volume: 0.25 to 0.45 cm 3 / g, 40 μm or more pore volume: 0.07~0.20cm 3 / g, a ceramic honeycomb filter, characterized in that 100μm or more of the pore volume is 0.02~ 0.08 cm 3 / g. 前記セラミックハニカムフィルタの外周壁近傍の流路が、両端部において目封止されていることを特徴とする請求項1記載のセラミックハニカムフィルタ。2. The ceramic honeycomb filter according to claim 1, wherein a flow path near the outer peripheral wall of the ceramic honeycomb filter is plugged at both ends.
JP2004105995A 2003-04-11 2004-03-31 Ceramic honeycomb filter Expired - Lifetime JP3935159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105995A JP3935159B2 (en) 2003-04-11 2004-03-31 Ceramic honeycomb filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003108237 2003-04-11
JP2004105995A JP3935159B2 (en) 2003-04-11 2004-03-31 Ceramic honeycomb filter

Publications (2)

Publication Number Publication Date
JP2004322082A JP2004322082A (en) 2004-11-18
JP3935159B2 true JP3935159B2 (en) 2007-06-20

Family

ID=33513092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105995A Expired - Lifetime JP3935159B2 (en) 2003-04-11 2004-03-31 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP3935159B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669123B1 (en) * 2003-08-12 2010-10-06 NGK Insulators, Ltd. Ceramic filter
WO2009048156A1 (en) 2007-10-12 2009-04-16 Hitachi Metals, Ltd. Cordierite ceramic honeycomb filter and process for producing the same
JP5147503B2 (en) * 2008-04-02 2013-02-20 株式会社ニッカトー One-end-sealed zeolite membrane substrate tube
JP4402732B1 (en) * 2008-07-16 2010-01-20 東京窯業株式会社 Honeycomb structure
CN102089058B (en) 2008-07-28 2014-03-12 日立金属株式会社 Ceramic honeycomb structure and process for producing same
JP5053224B2 (en) * 2008-10-09 2012-10-17 本田技研工業株式会社 Exhaust purification filter
JP6398546B2 (en) * 2014-09-30 2018-10-03 日立金属株式会社 Ceramic honeycomb structure, manufacturing method thereof, and coating material
JP6982530B2 (en) * 2018-03-23 2021-12-17 日本碍子株式会社 Honeycomb structure
KR102611477B1 (en) * 2021-05-11 2023-12-07 (주) 세라컴 Filter for reducing smoke provided in emergency generator

Also Published As

Publication number Publication date
JP2004322082A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US7785695B2 (en) Honeycomb structured body
JP4516017B2 (en) Ceramic honeycomb structure
KR100831836B1 (en) Honeycomb unit and honeycomb structured body
US7517502B2 (en) Honeycomb structural body
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
US8512433B2 (en) Low back pressure porous honeycomb and method
JP4737594B2 (en) Ceramic honeycomb filter
JP5315997B2 (en) Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
JP5270879B2 (en) Honeycomb structure
JPH07163822A (en) Cordierite ceramic filter and its preparation
US9890673B2 (en) Honeycomb filter
CN107489493B (en) Honeycomb filter
US20060217262A1 (en) Honeycomb structured body
KR20090101821A (en) Honeycomb filter
WO2004087295A1 (en) Honeycomb structure
CN108568209B (en) Honeycomb structure
EP1482138A1 (en) Exhaust emission control system, method of calculating pressure loss of filter, and method of manufacturing filter
JP3935159B2 (en) Ceramic honeycomb filter
CN108568159B (en) Honeycomb structure
JP2004360654A (en) Ceramic honeycomb filter
JP2004148308A (en) Ceramic honeycomb filter and its production method
EP2221099B1 (en) Honeycomb structure
JP4402732B1 (en) Honeycomb structure
JP2008100408A (en) Ceramic honeycomb structure
JP7325473B2 (en) Porous honeycomb structure and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Ref document number: 3935159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350