JP2004360654A - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter Download PDF

Info

Publication number
JP2004360654A
JP2004360654A JP2003162941A JP2003162941A JP2004360654A JP 2004360654 A JP2004360654 A JP 2004360654A JP 2003162941 A JP2003162941 A JP 2003162941A JP 2003162941 A JP2003162941 A JP 2003162941A JP 2004360654 A JP2004360654 A JP 2004360654A
Authority
JP
Japan
Prior art keywords
pores
partition wall
ceramic honeycomb
porous partition
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162941A
Other languages
Japanese (ja)
Other versions
JP4577752B2 (en
Inventor
Hirohisa Suwabe
博久 諏訪部
Kenichiro Sekiguchi
謙一郎 関口
Hideya Yamane
英也 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003162941A priority Critical patent/JP4577752B2/en
Publication of JP2004360654A publication Critical patent/JP2004360654A/en
Application granted granted Critical
Publication of JP4577752B2 publication Critical patent/JP4577752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic honeycomb filter capable of attaining high initial fine particle collecting efficiency at the beginning of the operation start of a diesel engine or immediately after reproducing the filter and preventing deleterious fine particles from being discharged at an initial stage. <P>SOLUTION: In the ceramic honeycomb filter for removing fine particles contained in exhaust gas by sealing the end of a predetermined flow channel of a ceramic honeycomb structure and passing the exhaust gas through porous partition walls partitioning the flow channel, the porosity of the porous partition wall is 55 to 75%, an average pore diameter is 15 to 40 μm, the gross area of the pore opened in the surface of the porous partition wall is 10 to 30% of the gross area of the surface of the partition, and the pores of the which circle equivalent diameters are 5 to 20 μm of the pores opened in the surface of the porous partition walls are 300/mm<SP>2</SP>or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主にディーゼル機関から排出される排ガス中の微粒子を捕集するためセラミックハニカムフィルタに関する。
【0002】
【従来の技術】
ハニカム構造体の所定の流路端部を目封止し、主に該流路を区画する多孔質隔壁に排気ガスを通過させることにより、ディーゼル機関から排出される排ガス中の微粒子を多孔質隔壁で捕集する構造のセラミックハニカムフィルタが注目を浴びている。この隔壁に捕集された微粒子が一定量以上になるとフィルタの目詰まりが発生するため、バーナーや電気ヒーターにより微粒子を燃焼させることにより、フィルタを再生することが行われている。このセラミックハニカムフィルタの特性に関しては、微粒子の捕集効率が高いこと、圧力損失が低いことを満足することが要請されており、これらの相反する特性を満足するように、セラミックハニカムフィルタに対しては、下記のように、気孔率、平均細孔径、隔壁表面に存在する細孔の大きさを制御する技術が従来から検討されてきた。
【0003】
特許文献1に記載の発明では、フィルタ隔壁表面に開口した細孔を、孔径5〜40μmの小孔と、孔径40〜100μmの大孔とから構成し、該小孔の数が該大孔の数の5〜40倍となるように構成し、該隔壁表面に開口した細孔が隔壁の内部細孔と連通するとともに、該隔壁表面に開口した孔の開口部の面積を、隔壁の全面積の20〜60%を占めるようにすることにより、微粒子の捕集効率を初期から高い値に維持できると共に、圧力損失を低くした排ガス浄化用フィルタの得られることが開示されている。また、隔壁内部に存在する細孔の平均孔径は15μmより大きく、かつ累積細孔容積は0.3〜0.7cm/gが好ましい範囲となっている。ここで、隔壁の気孔率P(体積%)の記載はないが、実施例に記載されているコージェライト材料の真比重ρを2.5g/cmとすると、累積細孔容積V(cm/g)から以下の計算式で算出することができる。P=100×V×ρ/(1+V×ρ)。従って、隔壁内部に存在する細孔の累積細孔容積の好ましい範囲0.3〜0.7cm/gは、気孔率に換算すると42.8〜63.6体積%となる。ここで小孔の数が大孔の数の5倍より少ない場合には微粒子捕集開始時の初期の捕集効率が低下する傾向になり、製造面から見てフィルタの強度が低下するとされている。
【0004】
また、特許文献2に記載の発明では、コージェライトを主成分とするハニカムセラミックス構造体であって、気孔率が55〜65%、平均細孔径が15〜30μmであり、該ハニカムセラミックス構造体を構成する隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の35%以上であるハニカムセラミックス構造体が開示されている。この発明によれば、隔壁表面に開口した細孔の総面積を大きくしたことにより、排ガスに対して、極めて低い圧力損失で、且つ高い微粒子の捕集効率が得られるとしている。好ましい隔壁表面に開口した細孔の総面積は、隔壁表面の総面積の40%以上60%以下であるとしている。
【0005】
一方、隔壁に担持した触媒物質の作用により、排ガス中の微粒子を捕集と同時に或いは捕集に連続して、比較的低温で燃焼させて、フィルタの再生を行うようにした、連続再生式のセラミックハニカムフィルタが注目されている。特許文献3に記載の発明では、触媒が担持されたセラミックハニカムフィルタにおいて、ハニカム構造体の隔壁の気孔率を55〜80%とし、隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の20%以上とした、排ガス浄化フィルタが開示されている。この発明によれば、隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の20%以上とすることによって、隔壁の表面を積極的に凹凸のある形状とすることができるので、微粒子と触媒物質の接触面積が増大し、触媒の作用を十分に発揮させることができるとしており、併せて、圧力損失を低減する効果も得られるとしている。
【0006】
また、特許文献4に記載の発明では、触媒が担持された排ガス浄化フィルタであって、隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の30%以上であり、かつ隔壁表面に開口した細孔のうち孔径が30μm以上の大オープンポアの開口面積の合計が該オープンポアの全開口面積の50%以上である排ガス浄化フィルタが開示されている。この発明によれば、オープンポアの開口面積を規定したことにより、微粒子を隔壁表面ばかりでなく細孔内部にまで捕集することが可能となり、細孔内部の表面まで利用して微粒子と触媒物質を接触させることができるため、微粒子の燃焼効率が向上し、フィルタの連続再生が可能になるとしている。しかも、オープンポアの開口合計面積や、隔壁表面に開口した細孔のうち孔径が30μm以上の大オープンポアの開口面積合計を所定の範囲としているので、微粒子の捕集効率が低下することもないとしている。
【0007】
以上述べたように、従来技術によれば、セラミックハニカムフィルタの隔壁表面に開口した細孔の大きさ、隔壁表面に開口した細孔総面積の隔壁表面の総面積に対する割合や、隔壁の気孔率、平均細孔径を調整することにより、微粒子の捕集効率、圧力損失や、微粒子の燃焼効率を最適化する技術が検討されていた。
【0008】
【特許文献1】
特公平3−10365号公報
【特許文献2】
特開2003−40687号公報
【特許文献3】
特開2002−355511号公報
【特許文献4】
特開2002−349234号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記したような従来技術においては、以下の理由により、セラミックハニカムフィルタにおける、微粒子の捕集効率及び、圧力損失の両立を図ることは困難であった。
特許文献1に記載の発明では、セラミックハニカムフィルタの隔壁表面に開口した孔径5〜40μmの小孔と、孔径40〜100μmの大孔とからなり、該小孔の数が該大孔の数の5〜40倍となるように構成されているが、小孔の大きさの最大寸法が40μmと大きいことから、微粒子の捕集効率が十分でなく、捕集されなかった微粒子がフィルタから排出されるという問題点が残っていた。この特許文献1の実施例の図5、図7に記載されているように、このセラミックハニカムフィルタの微粒子捕集効率は60%以上は得られるものの、最大でも85%未満程度であった。特に、小孔の大きさの最大寸法が40μmと大きくなっていることから、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期の微粒子捕集効率が低く、初期段階で有害な微粒子が、捕集されずに排出されてしまうという問題があった。
【0010】
特許文献2に記載の発明では、セラミックハニカムフィルタの気孔率を55〜65%、平均細孔径を15〜30μmとし、高気孔率隔壁表面に開口した細孔の表面積を35%以上に大きくしていることから、低圧力損失特性は得られる。但し、この特許文献2に記載の発明では隔壁表面に開口した細孔の大きさについての記載はないが、本文献の図1に示すように隔壁表面の開口寸法が20μmを越えるような細孔が多数存在することから、特に、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期の微粒子捕集効率が低く、初期段階で有害な微粒子が、捕集されずに排出されてしまうという問題があった。
【0011】
また、特許文献3に記載の発明では、セラミックハニカムフィルタの多孔質隔壁の気孔率を55〜80%とし、隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の20%以上と、多くしている。この、特許文献3に記載の発明では隔壁表面に露出した細孔の大きさについての記載は一切ないが、隔壁表面に開口した細孔の寸法が20μmを越えるような細孔が多数存在する場合には、特に、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期の捕集効率が低く、初期段階で有害な微粒子が、捕集されずに排出されてしまうという問題が発生する場合があった。
【0012】
また、特許文献4の発明では、隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の30%以上あり、しかも、隔壁表面に開口した細孔のうち孔径30μm以上の大きなオープンポアの開口面積がオープンポア全体の50%以上と、開口面積の大きな孔を多く存在させていることから、微粒子の捕集効率が悪いという問題があった。特に、孔径30μm以上の大きな孔を多く存在させていることから、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期の微粒子捕集効率が低く、初期段階で有害な微粒子が、捕集されずに排出されてしまうという問題があった。
【0013】
本発明は、上記問題を解決し、低圧力損失であって、微粒子の捕集効率の高いセラミックハニカムフィルタ、特に、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期の微粒子捕集効率が高く、初期段階で有害な微粒子を排出させないようにしたセラミックハニカムフィルタを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者等は上記従来技術の問題について鋭意検討を行った。その結果、上記従来技術のセラミックハニカムフィルタでは、多孔質隔壁表面に開口した細孔の開口径が20μmを越えるような大きな寸法であるため、排ガス中の微粒子が、多孔質隔壁の細孔内部に入り込み、一部は細孔内に捕集されるものの、細孔内を通過して隔壁を通過するものもあることから、特にディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期段階で有害な微粒子が、捕集されずに排出され、初期の微粒子捕集効率が低くなることを突きとめた。このようなセラミックハニカムフィルタに、更に、微粒子の捕集が進むと、細孔内部が微粒子で充填され、排ガスが細孔内を通過する際の通気抵抗が大きくなり、セラミックハニカムフィルタの圧力損失が大きくなることも突きとめた。従って、排気ガス中の微粒子が隔壁の細孔内部に充填されにくい細孔構造を採用すれば、初期の捕集効率を向上させ、圧力損失も低くできると考え、本発明に想到した。
【0015】
即ち、本発明のセラミックハニカムフィルタは、セラミックハニカム構造体の所定の流路端部を目封止し、主に該流路を区画する多孔質隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタであって、前記多孔質隔壁の気孔率が55〜75%、平均細孔径が15〜40μmであり、前記多孔質隔壁表面の細孔の面積率が10〜30%、前記多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmの細孔が300個/mm以上存在することを特徴とする。
【0016】
また、本発明のセラミックハニカムフィルタにおいて、多孔質隔壁表面に、炭素を主成分とする微粒子からなる、厚さ10μm以上のコート層を少なくとも有することが好ましい。また、本発明のセラミックハニカムフィルタにおいて、多孔質隔壁に触媒物質が担持されていることが好ましい。
【0017】
【作用】
本発明の作用効果について説明する。
本発明のセラミックハニカムフィルタは、多孔質隔壁の気孔率が55〜75%、平均細孔径が15〜40μmである、高気孔率で細孔の寸法の大きな多孔質材料としているにもかかわらず、前記多孔質隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%という適切な範囲に調整しており、且つ多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmの細孔を300個/mm以上としており、隔壁表面に円相当径5〜20μmの小さな細孔を多数存在させるようにしていることから、低圧力損失、と高い微粒子捕集効率の両立を図ることができる。特に、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期の微粒子捕集効率を高くすることができる。この理由について、以下に詳しく説明する。本発明のセラミックハニカムフィルタの多孔質隔壁の気孔率は55〜75%、平均細孔径は15〜40μmとしていることから、多孔質隔壁には平均細孔径が15〜40μmである大きな細孔が多数存在しているが、例えば隔壁内部の細孔に連通して隔壁表面で開口した細孔のうち、円相当径が5〜20μmである小さな表面細孔を、300個/mm以上と多く分布させ、かつ隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%という適切な範囲に調整している。このため、このようなセラミックハニカムフィルタの多孔質隔壁に、微粒子を含有した排ガスを通過せしめようとすると、隔壁表面に開口した細孔のうち円相当径が5〜20μmのように開口部の寸法を小さくした細孔では、微粒子の凝集力の強いこともあり、開口部入口で微粒子が凝集することにより、開口部入口を塞ぎ、隔壁表面に微粒子のコート層が形成されるようになる。このため、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期段階においても、隔壁表面に開口した細孔の開口部に形成されたコート層が、所謂フィルターの役割をはたし、微粒子捕集初期の段階から、微粒子の捕集効率を高く維持することが可能となるのである。また、更に微粒子を含有した排ガスを通過させ続けると、このコート層は徐々に厚く形成され、開口部から細孔内に微粒子が入り込み、細孔内が微粒子で充填されることが起こりにくいことから、排ガスが細孔内を通過する際の通気抵抗が小さく、圧力損失が上昇することも少ない。以上説明したように、本発明のセラミックハニカムフィルタは多孔質隔壁が気孔率55〜75%、平均細孔径15〜40μmの細孔寸法の大きな高気孔率材とし、多孔質隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%、前記多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔を300個/mm以上存在させるようにしていることから、初期段階での微粒子捕集効率が高く、且つ低圧力損失という相反する特性の両立ができるのである。
【0018】
本発明において、隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%とするのは、10%未満では、隔壁表面に開口した細孔の面積が不足することにより、セラミックハニカムフィルタの圧力損失が大きくなるからであり、30%を越えると、隔壁表面の開口割合が大きくなるため、セラックハニカムフィルタの強度が低下するからである。また、隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔を300個/mm以上存在させるようにしているのは、300個/mmを下まわると、隔壁表面に開口した細孔のうち円相当径が20μmを越える細孔が相対的に増えることから、ディーゼル機関の運転開始当初やフィルタが再生された直後等の、初期の微粒子捕集効率が低下し、初期段階で有害な微粒子が排出される。
【0019】
尚、隔壁表面に開口した細孔の総面積の、隔壁表面の総面積に対する割合や、隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔の1mm2あたりの個数は、隔壁表面のSEM観察から得られた写真から、画像解析装置により求めた。ここで円相当径(d)とは、対象となる隔壁表面に開口した細孔の開口面積(S)と等しい面積を有する円の直径のことを言い、次式により算出する。 d=(4×S/π)1/2
【0020】
ここで、上記観点から、隔壁表面に開口した細孔の総面積は、隔壁表面の総面積の15〜25%がより好ましく、隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔は400個/mm以上存在させるようにすることがより好ましい。
【0021】
本発明において、多孔質隔壁の気孔率を55〜75%、平均細孔径を15〜40μmとしているのは、隔壁中に存在する細孔寸法を大きくし、高気孔率として、微粒子が捕集されていない状態での、初期の圧力損失を低く押さえることができるのと共に、実用上十分な強度を持たせるためである。また、上記説明したように、本発明のセラミックハニカムフィルタは隔壁表面に開口した細孔の総面積の隔壁表面の総面積に対する割合、及び隔壁表面に開口した細孔のうちの円相当径が5〜20μmである細孔の存在割合を最適化していることから、捕集した微粒子は隔壁表面にコート層を形成し、細孔内には充填されにくいため、排気ガスを隔壁に長時間、通過させても、隔壁自体の初期の圧力損失が維持されるからである。ここで気孔率を55〜75%としているのは、気孔率が55%を下まわると、初期の圧力損失が大きくなるためであり、気孔率が75%を越えると、強度が低下し、セラミックハニカムフィルタとして実用できないからである。より好ましい気孔率の範囲は58〜70%である。また平均細孔径を15〜40μmとしているのは、平均細孔径が15μmを下まわると、初期の圧力損失が高くなるためであり、平均細孔径が40μmを越えると、強度が低下し、セラミックハニカムフィルタとして実用できないからである。平均細孔径のより好ましい範囲は18〜25μmである。
ここで多孔質隔壁の気孔率及び平均細孔径は、水銀圧入法により測定する。
【0022】
更に、多孔質隔壁の初期の圧力損失を低く押さえ、実用上十分な強度を持たせるため、多孔質隔壁の細孔の分布は、細孔径20〜40μmの総細孔容積が全細孔容積の30%以上であることが好ましい。細孔径20μm以上の細孔は圧力損失を低く押さえるのに好ましく、細孔径40μmを越える細孔は、強度低下の原因となるからである。
【0023】
ここで、本発明のセラミックハニカムフィルタにおいて、多孔質隔壁表面に、炭素を主成分とする、厚さ10μm以上のコート層が少なくとも形成されることが好ましいのは、上記の理由による。 ここで、厚さ10μmより小さいコート層の場合は、コート層自体のフィルター機能が十分でなく、微粒子がこのコート層を素通りして排出されることもあるからである。
【0024】
また、本発明のセラミックハニカムフィルタにおいて、多孔質隔壁に触媒物質が担持されていることが好ましいのは、本発明のセラミックハニカムフィルタでは、上述したように微粒子は多孔質隔壁表面にコート層を形成し、多孔質隔壁内部の細孔に充填されにくいことから、コート層を通過して、隔壁内に浸入した、粒径の極めて小さな微粒子が触媒物質の作用により容易に燃焼され、浄化されるからである。
【0025】
本発明に係るセラミックハニカムフィルタの隔壁厚は0.1〜0.5mmが好ましく、隔壁のピッチは1.2mm以上が好ましい。隔壁厚が0.1mm未満では、隔壁が細孔を有する高気孔率の多孔質体であることからハニカム構造体の強度が低下し、好ましくないからである。一方、隔壁厚が0.5mmを超えると、如何に隔壁が高気孔率であっても、排気ガスに対する隔壁の通気抵抗が大きくなるため、フィルタの圧力損失が大きくなる場合もあるからである。より好ましい隔壁厚さは、0.2〜0.4mmである。また、隔壁のピッチが1.3mm未満であると、ハニカム構造体の入口の開口面積が小さくなることから、フィルタ入口の圧力損失が大きくなる場合もあるためである。
【0026】
本発明のセラミックハニカムフィルタを構成する材料としては、本発明がディーゼルエンジンの排気ガス中の微粒子を除去するためのフィルタとして使用されるため、耐熱性に優れた材料を使用することが好ましく、コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素及びLASからなる群から選ばれた少なくとも1種を主結晶とするセラミック材料を用いることが好ましい。中でも、コージェライトを主結晶とするセラミックハニカムフィルタは、安価で耐熱性、耐食性に優れ、また低熱膨張であることから最も好ましい。
【0027】
【発明の実施の形態】
本発明のセラミックハニカムフィルタに使用されるセラミックハニカム構造体の製造方法の一例を示す。本発明のセラミックスハニカムフィルタは、多孔質隔壁が気孔率55〜75%、平均細孔径15〜40μmの細孔寸法の大きな高気孔率材とし、多孔質隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%、前記多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔を300個/mm以上存在させるようにしている。即ち、隔壁内部の細孔の大きさに比べて、隔壁表面に開口した細孔の寸法の小さいものを多く配置させていることから、以下のような方法で製造することができる。
【0028】
タルク、シリカ、カオリン、アルミナ、及び水酸化アルミニウムからなるコージェライト化原料を秤量し、これに可燃性造孔剤、バインダー、及び水等を加えて混練し、可塑性坏土を得る。この得られた坏土を、公知の押出成形口金を使用し、ハニカム構造の成形体が得られるように押出成形し、乾燥、焼成して、セラミックハニカム構造体を得る。一般に、コージェライト質セラミックハニカム構造体の多孔質隔壁中の細孔は、可燃性造孔剤が燃焼したり、コージェライトの合成過程でタルク及びシリカが溶融した箇所が残留して形成されることが知られている。このため、造孔剤やコージェライト化原料の粒径、粒度分布の選択、或いはコージェライト合成過程の昇温速度や雰囲気等の焼成条件を調整することにより、多孔質隔壁内部の細孔や多孔質隔壁表面に開口した細孔の大きさを調整することが可能となる。
【0029】
また、以下のような方法を採用することもできる。上記と同様の方法により、タルク、カオリン、アルミナ、水酸化アルミニウム、及びシリカからなるコージェライト化原料を秤量し、これに造孔剤、バインダー、及び水を加えて混練し、上記と同様に可塑性坏土を得る。得られた坏土を、公知の押出成形金型を使用し、ハニカム構造の成形体が得られるように押出成形する。この成形体を乾燥させたのち、別に準備した、上記可塑性粘土より小さな細孔寸法が得られるコージェライトスラリーを隔壁表面に塗布して乾燥させ、焼成を行うことにより隔壁内部の細孔の大きさに比べて、隔壁表面に開口した細孔の寸法が小さいコージェライト質セラミッックハニカム構造体が得られる。
【0030】
以上のようにして得られたセラミックハニカム構造体の両端面にマスキングフィルムを接着剤で貼り付けた後、市松模様となるように穿孔し、続いて、容器に収容したスラリー状の封止部材に一方の端面を浸漬することで、スラリー状の封止部材を穿孔部を通して浸入させ、封止部を形成する。同様に、もう一方の端面もスラリー状の封止部材に浸漬して、封止部を形成する。次いで、封止部と共にセラミックハニカム構造体を乾燥、焼成することで、封止部がハニカム構造体と一体化される。
このようにして、セラミックハニカム構造体の所定の流路端部を目封止し、該流路を区画する多孔質隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去する構造のセラミックハニカムフィルタが得られる。
【0031】
(実施例)
カオリン、タルク、アルミナ、水酸化アルミ、シリカ等の原料粉末を調整して、化学組成が質量比でSiO :48〜52%、Al:33〜37%、MgO:12〜15%、CaO:0〜0.05%、NaO :0〜0.05%、KO :0〜0.05%、TiO :0〜1.0%、Fe:0〜1.0%、PbO:0〜0.1%、P:0〜0.2%を含むコーディエライト化原料粉末とした。このコージェライト化原料粉末に対し、造孔剤、メチルセルロースを添加して混合した後、水を加えて混練し、可塑性のあるコージェライト化原料からなるセラミック坏土を作製した。この得られた坏土を押出成形口金を使用し、ハニカム構造の成形体が得られるように押出成形し、乾燥後、バッチ式焼成炉にて200時間のスケジュール、最高温度1400℃の条件で焼成して、外径267mm、全長304mmで、隔壁のピッチ1.57mm、隔壁の厚さ0.32mmである試験NO.1〜20のセラミックハニカム構造体を得た。この時、表1に示す、多孔質隔壁の気孔率、平均細孔径、20〜40μmの細孔の全細孔容積に対する割合、多孔質隔壁表面に開口した細孔の総面積の、隔壁表面の総面積に対する割合、多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔の1mm以当たりの個数が得られるように、タルク粉末、シリカ粉末、造孔剤、焼成条件を適宜選択した。
【0032】
次いで、これらのセラミックハニカム構造体に対して、セラミックハニカム構造体の流路端部を交互に目封止がなされるように公知の技術により、コージェライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥、焼成を行い、実施例1〜4の各種コージェライト質セラミックハニカムフィルタを得た。ここで流路の目封止材の長さは7〜10mmとなるよう調整した。
【0033】
得られた実施例のセラミックハニカムフィルタに対して、微粒子捕集効率の評価、圧力損失の評価、及びアイソスタティック強度の評価を行った。結果を表1に示す。
ここで微粒子の捕集効率は、圧力損失テストスタンドにて、セラミックハニカムフィルタに空気流量10Nm/minで、粒径0.042μmのカーボン粉を3g/hの投入速度で投入し、17g(カーボン粉1g/フィルタ容積1L)投入した後の、カーボン粉投入量及び捕集量から捕集効率を算出した。そして、捕集効率が90%以上であれば合格(○)とし、更に好ましい95%以上を(◎)、90%未満を不合格(×)として判定した。
【0034】
また、圧力損失は、同様に圧力テストスタンドで、流入側と流出側の差圧を圧力損失(mmAq)として測定して、カーボン粉投入前の圧力損失に対する上昇率を算出した。圧力損失上昇率=100×{(カーボン1g/L投入後の圧力損失)−(カーボン投入前の圧力損失)}/(カーボン投入前の圧力損失)(%)。その結果、圧力損失上昇率20%以下であれば合格(○)とし、更に好ましい15%以下を(◎)、20%を越える場合を不合格(×)として圧力損失を評価した。
【0035】
また、アイソスタティック強度試験は、社団法人自動車技術会発行の自動車規格(JASO)M505−87に基づき、セラミックハニカム構造体の軸方向両端面に厚さ20mmのアルミ板を当接して両端を密閉するとともに、外壁部表面を厚さ2mmのゴムで密着したものを、圧力容器に入れ、圧力容器内に水を導入して、外壁部表面から静水圧を加え、破壊したときの圧力を測定して、アイソスタティック強度とした。そして、アイソスタティック強度が1.5MPa以上の好ましい場合を合格(○)とし、さらに1.8MPa以上の好ましい場合を(◎)とし、1.5MPa以下の場合を不合格(×)で示した。
【0036】
そして、総合判定として、捕集効率、圧力損失、アイソスタティック強度のいずれも合格であるものを(○)、いずれかに(×)があるものを(×)で評価した。
【0037】
更に、アイソスタティック強度試験で破壊したハニカムフィルタの多孔質隔壁から試験片を切り出し、気孔率、平均細孔径、多孔質隔壁表面に開口した細孔の総面積の、隔壁表面の総面積に対する割合、前記多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔の隔壁表面1mm当たりの個数を測定した結果を、表1に示す。気孔率及び平均細孔径は、水銀圧入法により、Micromeritics社製オートポアIIIを使用して行った。
【0038】
また、多孔質隔壁表面に開口した細孔の総面積の、隔壁表面の総面積に対する割合、前記多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔の隔壁表面1mm当たりの個数は、SEM観察により得られた隔壁表面の300倍の写真から、画像解析装置により求めた。
【0039】
表1より、本発明例である試験NO.1〜12のセラミックハニカムフィルタは、多孔質隔壁の気孔率が55〜75%、平均細孔径が15〜40μmであり、多孔質隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%、多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔が300個/mm以上存在することから、微粒子の捕集効率、圧力損失、アイソスタティック強度とも合格判定の(○)又は(◎)となり、総合判定は合格(○)であった。中でも試験NO.2〜4のセラミックハニカムフィルタは、多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔が400個/mm以上存在することから、微粒子捕集効率の判定は、更に好ましい(◎)であった。
【0040】
一方、本発明の比較例である、試験NO.13及び14のセラミックハニカムフィルタは、多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔が300個/mmに満たないことから、隔壁表面に開口した細孔のうち円相当径が20μmを越える細孔が相対的に増えるため、微粒子の捕集効率の判定が不合格(×)であり、総合判定は不合格(×)となった。また試験NO.15のセラミックハニカムフィルタは、多孔質隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の10%未満であることから、隔壁表面に開口した細孔の面積が不足することにより、圧力損失の判定が不合格(×)となり、総合判定は不合格(×)であった。また、試験NO.16のセラミックハニカムフィルタは、多孔質隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の30%を越えることから、隔壁表面の開口割合が大きくなるため、アイソスタティック強度の判定が不合格(×)となり、総合判定は不合格(×)であった。また、試験NO.17及び18のセラミックハニカムフィルタは、多孔質隔壁の気孔率が55〜75%の範囲から、はずれているため、試験NO.17のセラミックハニカムフィルタは、圧力損失の判定が不合格(×)となり、試験NO.18のセラミックハニカムフィルタは、アイソスタティック強度の判定が不合格(×)となり、総合判定はいずれも不合格(×)であった。また、試験NO.19及び20のセラミックハニカムフィルタは、多孔質隔壁の平均細孔径が15〜40μmの範囲から、はずれているため、試験NO.19のセラミックハニカムフィルタは、圧力損失の判定が不合格(×)となり、試験NO.18のセラミックハニカムフィルタは、アイソスタティック強度の判定が不合格(×)となり、総合判定はいずれも不合格(×)であった。
【0041】
【表1】

Figure 2004360654
【0042】
【発明の効果】
以上詳細に説明したように、本発明のセラミックハニカムフィルタは多孔質隔壁が気孔率55〜75%、平均細孔径15〜40μmの細孔寸法の大きな高気孔率材とし、多孔質隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%としているにもかかわらず、前記多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔を300個/mm以上存在させるようにしていることから、初期段階での微粒子捕集効率が高く、且つ低圧力損失という相反する特性の両立ができる。
【図面の簡単な説明】
【図1】(a)及び(b)はそれぞれセラミックハニカム構造体の一例を示す正面図及び側面図である。
【図2】(a)及び(b)はそれぞれセラミックハニカム構造体を使用したセラミックハニカムフィルタの一例を示す正面図及び側面図である。
【符号の説明】
1 セラミックハニカム構造体、 2 隔壁、 3 流路、
4 セラミックハニカムフィルタ、5 目封止材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic honeycomb filter mainly for collecting fine particles in exhaust gas discharged from a diesel engine.
[0002]
[Prior art]
By plugging a predetermined flow path end of the honeycomb structure and passing exhaust gas mainly through a porous partition that divides the flow path, fine particles in exhaust gas discharged from a diesel engine are removed from the porous partition. A ceramic honeycomb filter with a structure that captures by means of attention is drawing attention. If the amount of the fine particles trapped in the partition walls exceeds a certain amount, the filter is clogged. Therefore, the filter is regenerated by burning the fine particles with a burner or an electric heater. Regarding the characteristics of the ceramic honeycomb filter, it is required to satisfy that the collection efficiency of the fine particles is high and the pressure loss is low, and to satisfy these contradictory characteristics, the ceramic honeycomb filter is required. As described below, techniques for controlling the porosity, the average pore diameter, and the size of the pores present on the partition wall surface have been conventionally studied as follows.
[0003]
In the invention described in Patent Document 1, pores opened on the surface of the filter partition wall are composed of small pores having a pore diameter of 5 to 40 μm and large pores having a pore diameter of 40 to 100 μm, and the number of the small pores is larger than that of the large pores. 5 to 40 times the number, the pores opened on the partition wall surface communicate with the internal pores of the partition wall, and the area of the opening of the hole opened on the partition wall surface is the total area of the partition wall. It is disclosed that, by occupying 20 to 60% of the above, it is possible to obtain a filter for purifying exhaust gas, which can maintain the collection efficiency of fine particles at a high value from the beginning and reduce the pressure loss. The average pore diameter of the pores present inside the partition is larger than 15 μm, and the cumulative pore volume is 0.3 to 0.7 cm. 3 / G is a preferable range. Here, the porosity P (volume%) of the partition walls is not described, but the true specific gravity ρ of the cordierite material described in the examples is 2.5 g / cm. 3 Then, the cumulative pore volume V (cm 3 / G) can be calculated by the following formula. P = 100 × V × ρ / (1 + V × ρ). Therefore, the preferred range of the cumulative pore volume of the pores present inside the partition walls is 0.3 to 0.7 cm. 3 / G is 42.8 to 63.6% by volume in terms of porosity. Here, if the number of small holes is less than 5 times the number of large holes, the initial collection efficiency at the start of collecting fine particles tends to decrease, and the strength of the filter decreases from the viewpoint of manufacturing. I have.
[0004]
In the invention described in Patent Document 2, a honeycomb ceramic structure containing cordierite as a main component has a porosity of 55 to 65% and an average pore diameter of 15 to 30 μm. There is disclosed a honeycomb ceramic structure in which the total area of pores formed on the surface of the partition wall is 35% or more of the total area of the partition wall surface. According to the present invention, it is stated that by increasing the total area of the pores opened on the partition wall surface, an extremely low pressure loss and a high collection efficiency of fine particles can be obtained for exhaust gas. The preferred total area of the pores opened on the partition wall surface is 40% to 60% of the total area of the partition wall surface.
[0005]
On the other hand, by the action of the catalyst substance carried on the partition walls, the particulates in the exhaust gas are burned at a relatively low temperature at the same time or continuously with the collection, and the filter is regenerated. Ceramic honeycomb filters have attracted attention. According to the invention described in Patent Document 3, in a ceramic honeycomb filter supporting a catalyst, the porosity of the partition walls of the honeycomb structure is set to 55 to 80%, and the total area of the pores opened on the partition wall surface is reduced by the total of the partition wall surface. An exhaust gas purification filter having an area of 20% or more is disclosed. According to the present invention, by setting the total area of the pores opened on the partition wall surface to be 20% or more of the total area of the partition wall surface, the surface of the partition wall can be positively formed with irregularities. It is stated that the contact area between the fine particles and the catalyst substance is increased, so that the action of the catalyst can be sufficiently exerted, and also that the effect of reducing the pressure loss can be obtained.
[0006]
The invention described in Patent Document 4 is an exhaust gas purification filter carrying a catalyst, wherein the total area of the pores opened on the partition wall surface is 30% or more of the total area of the partition wall surface, and There is disclosed an exhaust gas purification filter in which the total open area of large open pores having a pore diameter of 30 μm or more among the open pores is 50% or more of the total open area of the open pores. According to the present invention, by defining the open area of the open pore, it is possible to trap fine particles not only on the surface of the partition walls but also inside the pores. Can be contacted, so that the combustion efficiency of the fine particles is improved, and continuous regeneration of the filter is made possible. Moreover, since the total open area of the open pores and the total open area of the large open pores having a pore diameter of 30 μm or more among the pores opened on the partition wall surface are within a predetermined range, the collection efficiency of the fine particles does not decrease. And
[0007]
As described above, according to the related art, the size of the pores opened on the partition wall surface of the ceramic honeycomb filter, the ratio of the total pore area opened on the partition wall surface to the total area of the partition wall surface, and the porosity of the partition wall Techniques for optimizing the collection efficiency and pressure loss of fine particles and the combustion efficiency of fine particles by adjusting the average pore diameter have been studied.
[0008]
[Patent Document 1]
Japanese Patent Publication No. 3-10365
[Patent Document 2]
JP-A-2003-40687
[Patent Document 3]
JP-A-2002-355511
[Patent Document 4]
JP-A-2002-349234
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional technology, it is difficult to achieve both the efficiency of collecting fine particles and the pressure loss in the ceramic honeycomb filter for the following reasons.
In the invention described in Patent Literature 1, the ceramic honeycomb filter has small holes having a hole diameter of 5 to 40 μm and large holes having a hole diameter of 40 to 100 μm, and the number of the small holes is equal to the number of the large holes. Although it is configured to be 5 to 40 times, since the maximum size of the small holes is as large as 40 μm, the collection efficiency of the fine particles is not sufficient, and the uncollected fine particles are discharged from the filter. Problem remained. As shown in FIGS. 5 and 7 of the example of Patent Document 1, although the particulate collection efficiency of the ceramic honeycomb filter is 60% or more, it is less than 85% at the maximum. In particular, since the maximum size of the small holes is as large as 40 μm, the initial particulate collection efficiency is low, such as at the beginning of the operation of the diesel engine or immediately after the filter is regenerated, and harmful in the initial stage. There is a problem that the fine particles are discharged without being collected.
[0010]
In the invention described in Patent Document 2, the porosity of the ceramic honeycomb filter is 55 to 65%, the average pore diameter is 15 to 30 μm, and the surface area of the pores opened on the surface of the high porosity partition wall is increased to 35% or more. Therefore, low pressure loss characteristics can be obtained. However, in the invention described in Patent Document 2, there is no description about the size of the pores opened on the surface of the partition, but as shown in FIG. 1 of this document, the pores whose opening dimension on the surface of the partition exceeds 20 μm. Since many exist, especially at the beginning of operation of the diesel engine or immediately after the filter is regenerated, the initial particulate collection efficiency is low, and harmful particulates are discharged without being collected at the initial stage. There was a problem that it would.
[0011]
In the invention described in Patent Document 3, the porosity of the porous partition walls of the ceramic honeycomb filter is 55 to 80%, and the total area of the pores opened on the partition wall surface is 20% or more of the total area of the partition wall surface. And many more. In the invention described in Patent Document 3, there is no description about the size of the pores exposed on the surface of the partition wall, but there are many pores in which the size of the pores opened on the partition wall surface exceeds 20 μm. In particular, the initial collection efficiency is low at the beginning of operation of the diesel engine or immediately after the filter is regenerated, and the problem is that harmful fine particles are discharged without being collected at the initial stage. There was a case.
[0012]
Further, in the invention of Patent Document 4, the total area of pores opened on the partition wall surface is 30% or more of the total area of the partition wall surface, and among the pores opened on the partition wall surface, large open pores having a pore diameter of 30 μm or more are provided. Has a large opening area of 50% or more of the whole open pores, and there is a large number of holes having a large opening area. In particular, since many large pores with a pore diameter of 30 μm or more are present, the initial particulate collection efficiency is low, such as at the beginning of operation of the diesel engine or immediately after the filter is regenerated, and harmful particulates in the initial stage are reduced. There was a problem that it was discharged without being collected.
[0013]
The present invention solves the above-mentioned problems, and has a low pressure loss and a high efficiency of collecting fine particles, particularly, an initial fine particle collection at the beginning of operation of a diesel engine or immediately after the filter is regenerated. An object of the present invention is to provide a ceramic honeycomb filter having a high collection efficiency and preventing harmful fine particles from being discharged in an initial stage.
[0014]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the above-mentioned problems of the prior art. As a result, in the ceramic honeycomb filter of the prior art, since the opening diameter of the pores opened on the surface of the porous partition has a large size exceeding 20 μm, the fine particles in the exhaust gas are trapped inside the pores of the porous partition. Although part of the gas enters and is trapped in the pores, some pass through the pores and pass through the partition walls. It has been found that harmful fine particles are discharged without being collected at the stage, and the initial fine particle collecting efficiency is lowered. In such a ceramic honeycomb filter, when the collection of fine particles further progresses, the inside of the pores is filled with the fine particles, the ventilation resistance when exhaust gas passes through the inside of the pores increases, and the pressure loss of the ceramic honeycomb filter decreases. I also found it to grow. Accordingly, the present inventors thought that the adoption of a pore structure in which the fine particles in the exhaust gas are unlikely to be filled in the pores of the partition walls would improve the initial collection efficiency and reduce the pressure loss, and reached the present invention.
[0015]
That is, the ceramic honeycomb filter of the present invention plugs the predetermined flow channel end of the ceramic honeycomb structure, and mainly allows the exhaust gas to pass through the porous partition walls that define the flow channel, thereby reducing the amount of exhaust gas. A ceramic honeycomb filter for removing fine particles contained in a porous partition, wherein the porosity of the porous partition is 55 to 75%, the average pore size is 15 to 40 μm, and the area ratio of pores on the surface of the porous partition is 10 to 10. 3030%, among the pores opened on the surface of the porous partition wall, 300 pores / mm having an equivalent circle diameter of 5 to 20 μm / mm 2 It is characterized in that it exists as described above.
[0016]
Further, in the ceramic honeycomb filter of the present invention, it is preferable that at least a coat layer having a thickness of 10 μm or more made of fine particles containing carbon as a main component is provided on the surface of the porous partition wall. Further, in the ceramic honeycomb filter of the present invention, it is preferable that the porous partition walls carry a catalyst substance.
[0017]
[Action]
The operation and effect of the present invention will be described.
Although the ceramic honeycomb filter of the present invention is a porous material having a high porosity and a large pore size, the porosity of the porous partition wall is 55 to 75% and the average pore diameter is 15 to 40 μm. The total area of the pores opened on the surface of the porous partition is adjusted to an appropriate range of 10 to 30% of the total area of the surface of the partition, and the circle equivalent diameter of the pores opened on the surface of the porous partition is adjusted. Of 5 to 20 μm pores / 300 2 As described above, since a large number of small pores having an equivalent circle diameter of 5 to 20 μm exist on the partition wall surface, it is possible to achieve both low pressure loss and high particulate collection efficiency. In particular, it is possible to increase the initial particulate collection efficiency at the beginning of the operation of the diesel engine or immediately after the regeneration of the filter. The reason will be described in detail below. Since the porosity of the porous partition of the ceramic honeycomb filter of the present invention is 55 to 75% and the average pore size is 15 to 40 μm, the porous partition has many large pores having an average pore size of 15 to 40 μm. For example, among the pores opened on the partition wall surface in communication with the pores inside the partition walls, small surface pores having an equivalent circle diameter of 5 to 20 μm are present at 300 / mm. 2 The total area of the pores distributed in the above manner and opened on the partition wall surface is adjusted to an appropriate range of 10 to 30% of the total area of the partition wall surface. For this reason, when trying to allow exhaust gas containing fine particles to pass through such a porous partition wall of such a ceramic honeycomb filter, the size of the opening such that the equivalent circle diameter of the pores opened on the partition wall surface is 5 to 20 μm. Since the fine particles have a strong cohesive force in the pores having a small particle size, the fine particles aggregate at the entrance of the opening, thereby closing the entrance of the opening and forming a coat layer of the fine particles on the partition wall surface. For this reason, even in the initial stage, such as at the beginning of the operation of the diesel engine or immediately after the filter is regenerated, the coat layer formed in the opening of the pores opened on the partition wall surface plays the role of a so-called filter. From the initial stage of collecting fine particles, it is possible to keep the efficiency of collecting fine particles high. Further, if the exhaust gas containing fine particles is further passed, the coat layer is formed gradually thicker, the fine particles enter the fine pores from the openings, and it is difficult for the fine pores to be filled with the fine particles. In addition, the ventilation resistance when the exhaust gas passes through the pores is small, and the pressure loss rarely increases. As described above, in the ceramic honeycomb filter of the present invention, the porous partition walls are formed of a high porosity material having a porosity of 55 to 75% and a large pore size having an average pore diameter of 15 to 40 μm. The total area of the pores was 10 to 30% of the total area of the partition wall surface, and 300 pores / mm having pore equivalent diameters of 5 to 20 μm among the pores opened on the porous partition wall surface were used. 2 Because of the presence of the above, it is possible to achieve both high particle collection efficiency in the initial stage and low pressure loss, which are contradictory characteristics.
[0018]
In the present invention, the total area of the pores opened on the partition surface is set to 10 to 30% of the total area of the partition surface. If the total area is less than 10%, the area of the pores opened on the partition surface becomes insufficient. This is because the pressure loss of the ceramic honeycomb filter increases, and when it exceeds 30%, the opening ratio of the partition wall surface increases, and the strength of the shellac honeycomb filter decreases. Further, among pores opened on the partition wall surface, 300 pores / mm having a circle-equivalent diameter of 5 to 20 μm were formed. 2 More than 300 pieces / mm 2 Below, the pores having an equivalent circle diameter of more than 20 μm among the pores opened on the partition wall surface relatively increase, so that the initial fine particles such as at the beginning of the operation of the diesel engine or immediately after the filter is regenerated. The collection efficiency is reduced, and harmful fine particles are discharged in the initial stage.
[0019]
In addition, the ratio of the total area of the pores opened on the partition wall surface to the total area of the partition wall surface, and the number of the pores having an equivalent circle diameter of 5 to 20 μm per 1 mm2 of the pores opened on the partition wall surface are: It was determined by an image analyzer from a photograph obtained by SEM observation of the partition wall surface. Here, the equivalent circle diameter (d) refers to the diameter of a circle having an area equal to the opening area (S) of the pores opened on the surface of the target partition wall, and is calculated by the following equation. d = (4 × S / π) 1/2 .
[0020]
Here, from the above viewpoint, the total area of the pores opened on the partition wall surface is more preferably 15 to 25% of the total area of the partition wall surface, and the equivalent circle diameter of the pores opened on the partition wall surface is 5 to 20 μm. Some pores are 400 / mm 2 It is more preferable to make it exist.
[0021]
In the present invention, the porosity of the porous partition wall is set to 55 to 75% and the average pore diameter is set to 15 to 40 μm because the size of the pores existing in the partition wall is increased and fine particles are collected as a high porosity. This is because not only can the initial pressure loss in a state where it is not performed be kept low, but also it has sufficient strength for practical use. Further, as described above, the ceramic honeycomb filter of the present invention has a ratio of the total area of the pores opened on the partition wall surface to the total area of the partition wall surface, and a circle equivalent diameter of the pores opened on the partition wall surface of 5%. Since the existence ratio of pores of up to 20 μm is optimized, the collected fine particles form a coat layer on the surface of the partition wall and are hardly filled in the pores, so that the exhaust gas passes through the partition wall for a long time. This is because even if it is performed, the initial pressure loss of the partition wall itself is maintained. The reason why the porosity is set to 55 to 75% is that if the porosity falls below 55%, the initial pressure loss increases. If the porosity exceeds 75%, the strength decreases, and the porosity decreases. This is because it cannot be used as a honeycomb filter. A more preferable range of the porosity is 58 to 70%. The average pore diameter is set to 15 to 40 μm because when the average pore diameter is less than 15 μm, the initial pressure loss increases. When the average pore diameter exceeds 40 μm, the strength is reduced and the ceramic honeycomb is reduced. This is because it cannot be used as a filter. A more preferable range of the average pore diameter is 18 to 25 μm.
Here, the porosity and the average pore diameter of the porous partition are measured by a mercury intrusion method.
[0022]
Furthermore, in order to keep the initial pressure loss of the porous partition walls low and to have practically sufficient strength, the distribution of the pores in the porous partition walls is such that the total pore volume of the pore diameter of 20 to 40 μm is the total pore volume. It is preferably at least 30%. This is because pores having a pore diameter of 20 μm or more are preferable for suppressing pressure loss, and pores having a pore diameter of more than 40 μm cause a decrease in strength.
[0023]
Here, in the ceramic honeycomb filter of the present invention, it is preferable that at least a coat layer having carbon as a main component and having a thickness of 10 μm or more is formed on the surface of the porous partition wall for the above-described reason. This is because, in the case of a coat layer having a thickness of less than 10 μm, the filter function of the coat layer itself is not sufficient, and fine particles may be discharged without passing through the coat layer.
[0024]
Further, in the ceramic honeycomb filter of the present invention, it is preferable that the catalyst material is supported on the porous partition walls. In the ceramic honeycomb filter of the present invention, as described above, the fine particles form a coat layer on the surface of the porous partition walls. However, since it is difficult to fill the pores inside the porous partition walls, the fine particles having an extremely small particle size that have passed through the coat layer and entered the partition walls are easily burned and purified by the action of the catalyst substance. It is.
[0025]
The partition wall thickness of the ceramic honeycomb filter according to the present invention is preferably 0.1 to 0.5 mm, and the pitch of the partition walls is preferably 1.2 mm or more. If the partition wall thickness is less than 0.1 mm, the strength of the honeycomb structure is reduced because the partition wall is a porous material having high porosity having pores, which is not preferable. On the other hand, if the partition wall thickness exceeds 0.5 mm, no matter how high the porosity of the partition wall, the pressure resistance of the filter may be increased because the resistance of the partition walls to the exhaust gas to flow becomes large. A more preferred partition wall thickness is 0.2 to 0.4 mm. Further, if the pitch of the partition walls is less than 1.3 mm, the opening area of the inlet of the honeycomb structure becomes small, so that the pressure loss at the filter inlet may increase.
[0026]
As the material constituting the ceramic honeycomb filter of the present invention, since the present invention is used as a filter for removing fine particles in exhaust gas of a diesel engine, it is preferable to use a material having excellent heat resistance. It is preferable to use a ceramic material having at least one selected from the group consisting of light, alumina, mullite, silicon nitride, silicon carbide, and LAS as a main crystal. Among them, a ceramic honeycomb filter using cordierite as a main crystal is most preferable because it is inexpensive, has excellent heat resistance and corrosion resistance, and has low thermal expansion.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
1 shows an example of a method for manufacturing a ceramic honeycomb structure used for a ceramic honeycomb filter of the present invention. In the ceramic honeycomb filter of the present invention, the porous partition wall is a high porosity material having a porosity of 55 to 75% and a large pore size having an average pore diameter of 15 to 40 μm, and the total area of the pores opened on the surface of the porous partition wall is reduced. 10 to 30% of the total area of the partition wall surface, and 300 pores / mm having a circle equivalent diameter of 5 to 20 μm among the pores opened on the porous partition wall surface. 2 The above is made to exist. That is, since a large number of pores having small pores opened on the surface of the partition wall are arranged as compared with the size of the pores inside the partition wall, it can be manufactured by the following method.
[0028]
A cordierite-forming raw material composed of talc, silica, kaolin, alumina, and aluminum hydroxide is weighed, and a combustible pore-forming agent, a binder, water, and the like are added and kneaded to obtain a plastic clay. The obtained kneaded material is extruded using a known extrusion die so as to obtain a formed body having a honeycomb structure, dried and fired to obtain a ceramic honeycomb structure. Generally, the pores in the porous partition walls of the cordierite-based ceramic honeycomb structure are formed by burning a combustible pore-forming agent or by leaving a portion where talc and silica are melted in the process of synthesizing cordierite. It has been known. For this reason, by selecting the particle size and particle size distribution of the pore-forming agent and the cordierite-forming raw material, or adjusting the firing conditions such as the rate of temperature rise and the atmosphere during the cordierite synthesis process, the pores and pores inside the porous partition walls can be adjusted. It is possible to adjust the size of the pores opened on the surface of the porous partition.
[0029]
Also, the following method can be adopted. According to the same method as described above, a cordierite-forming raw material composed of talc, kaolin, alumina, aluminum hydroxide, and silica is weighed, and a pore-forming agent, a binder, and water are added and kneaded, and the plasticity is determined as described above. Obtain kneaded clay. The obtained kneaded material is extruded using a known extrusion mold so as to obtain a formed body having a honeycomb structure. After drying the molded body, separately prepared, a cordierite slurry having a pore size smaller than that of the plastic clay is applied to the surface of the partition wall, dried, and baked to perform pore size inside the partition wall. As a result, a cordierite-based ceramic honeycomb structure having small pores opened on the partition wall surface is obtained.
[0030]
After attaching a masking film with an adhesive to both end surfaces of the ceramic honeycomb structure obtained as described above, piercing it into a checkered pattern, and then into a slurry-like sealing member housed in a container. By immersing one end surface, the slurry-like sealing member is made to penetrate through the perforated portion to form a sealed portion. Similarly, the other end face is also immersed in the slurry-like sealing member to form a sealing portion. Next, the sealing portion is integrated with the honeycomb structure by drying and firing the ceramic honeycomb structure together with the sealing portion.
In this way, by plugging the predetermined flow channel end of the ceramic honeycomb structure, and by allowing the exhaust gas to pass through the porous partition that divides the flow channel, the fine particles contained in the exhaust gas are removed. A ceramic honeycomb filter having a structure is obtained.
[0031]
(Example)
By adjusting the raw material powder such as kaolin, talc, alumina, aluminum hydroxide, silica, etc., the chemical composition is SiO 2 by mass ratio. 2 : 48-52%, Al 2 O 3 : 33 to 37%, MgO: 12 to 15%, CaO: 0 to 0.05%, Na 2 O: 0 to 0.05%, K 2 O: 0-0.05%, TiO 2 : 0 to 1.0%, Fe 2 O 3 : 0 to 1.0%, PbO: 0 to 0.1%, P 2 O 5 : Cordierite-forming raw material powder containing 0 to 0.2%. To this cordierite-forming raw material powder, a pore-forming agent and methylcellulose were added and mixed, and then water was added and kneaded to produce a ceramic clay made of a plastic cordierite-forming raw material. The obtained kneaded clay is extruded using an extrusion die so as to obtain a formed body having a honeycomb structure, dried, and fired in a batch-type firing furnace at a schedule of 200 hours at a maximum temperature of 1400 ° C. Test No. having an outer diameter of 267 mm, a total length of 304 mm, a partition wall pitch of 1.57 mm, and a partition wall thickness of 0.32 mm. 1 to 20 ceramic honeycomb structures were obtained. At this time, the porosity of the porous partition, the average pore diameter, the ratio of the pores of 20 to 40 μm to the total pore volume, and the total area of the pores opened on the porous partition surface shown in Table 1, 1 mm of the pores having an equivalent circle diameter of 5 to 20 μm among the pores opened on the surface of the porous partition wall relative to the total area. 2 The talc powder, the silica powder, the pore-forming agent, and the firing conditions were appropriately selected so as to obtain the following numbers.
[0032]
Next, these ceramic honeycomb structures are filled with a plugging material slurry made of cordierite-forming raw material by a known technique so that the flow path ends of the ceramic honeycomb structures are alternately plugged. After that, the plugging material slurry was dried and fired to obtain various cordierite ceramic honeycomb filters of Examples 1 to 4. Here, the length of the plugging material in the flow path was adjusted to be 7 to 10 mm.
[0033]
The obtained ceramic honeycomb filters of the examples were evaluated for the efficiency of collecting fine particles, the pressure loss, and the isostatic strength. Table 1 shows the results.
Here, the collection efficiency of the fine particles is determined by measuring the air flow rate of 10 Nm through 3 / Min, carbon powder having a particle size of 0.042 μm was charged at a charging rate of 3 g / h, and after 17 g (1 g of carbon powder / 1 L of filter volume) were charged, the collection efficiency was determined from the amount of carbon powder charged and the amount collected. Was calculated. When the collection efficiency was 90% or more, the sample was judged as acceptable (○), more preferably 95% or more as (◎), and less than 90% as reject (×).
[0034]
Similarly, the pressure loss was measured by measuring the differential pressure between the inflow side and the outflow side as a pressure loss (mmAq) in a pressure test stand, and the rate of increase relative to the pressure loss before the carbon powder was charged was calculated. Pressure loss increase rate = 100 × {(pressure loss after carbon 1 g / L injection) − (pressure loss before carbon injection)} / (pressure loss before carbon injection) (%). As a result, pressure loss was evaluated as pass (() if the rate of increase in pressure loss was 20% or less, (◎) if more than 15%, and reject (×) if more than 20%.
[0035]
In addition, the isostatic strength test is based on the automotive standard (JASO) M505-87 issued by the Society of Automotive Engineers of Japan, and an aluminum plate having a thickness of 20 mm is brought into contact with both ends in the axial direction of the ceramic honeycomb structure to seal both ends. At the same time, the surface of the outer wall in close contact with a rubber having a thickness of 2 mm is put in a pressure vessel, water is introduced into the pressure vessel, hydrostatic pressure is applied from the outer wall surface, and the pressure at the time of breaking is measured. , And isostatic strength. A case where the isostatic strength was 1.5 MPa or more was evaluated as pass ((), a case where the isostatic strength was 1.8 MPa or more was evaluated as (◎), and a case where the isostatic strength was 1.5 MPa or less was evaluated as failed (×).
[0036]
Then, as a comprehensive judgment, a sample that passed all of the collection efficiency, pressure loss, and isostatic strength was evaluated as (し た), and a sample with (×) was evaluated as (X).
[0037]
Further, a test piece was cut out from the porous partition wall of the honeycomb filter broken in the isostatic strength test, and the porosity, the average pore diameter, the ratio of the total area of the pores opened on the porous partition wall surface to the total area of the partition wall surface, Among the pores opened on the surface of the porous partition wall, the partition wall surface of the pore having a circle equivalent diameter of 5 to 20 μm is 1 mm. 2 Table 1 shows the results of measuring the number of hits. The porosity and the average pore size were measured by a mercury intrusion method using Autopore III manufactured by Micromeritics.
[0038]
The ratio of the total area of the pores opened on the porous partition wall surface to the total area of the partition wall surface, the partition wall surface of the pores having an equivalent circle diameter of 5 to 20 μm among the pores opened on the porous partition wall surface. 1mm 2 The number of hits was determined by an image analyzer from a 300 × photograph of the partition wall surface obtained by SEM observation.
[0039]
From Table 1, it is found that Test No. In the ceramic honeycomb filters 1 to 12, the porosity of the porous partition is 55 to 75%, the average pore diameter is 15 to 40 μm, and the total area of the pores opened on the surface of the porous partition is determined by the total area of the partition surface. Of the pores opened on the surface of the porous partition wall, the number of pores having an equivalent circle diameter of 5 to 20 μm is 300 / mm. 2 Because of the existence, the collection efficiency of the fine particles, the pressure loss, and the isostatic strength were all judged as acceptable (又 は) or (◎), and the overall judgment was acceptable (○). Among them, the test No. The ceramic honeycomb filters of Nos. 2 to 4 have 400 pores / mm having pore equivalent diameters of 5 to 20 μm among pores opened on the surface of the porous partition wall. 2 Based on the above, the determination of the fine particle collection efficiency was more preferable (◎).
[0040]
On the other hand, Test No. 1 which is a comparative example of the present invention. The ceramic honeycomb filters of Nos. 13 and 14 have 300 / mm pores having an equivalent circle diameter of 5 to 20 μm among the pores opened on the surface of the porous partition wall. 2 , The number of pores having an equivalent circle diameter of more than 20 μm among the pores opened on the partition wall surface relatively increases, so that the judgment of the collection efficiency of the fine particles is unacceptable (×). Rejected (x). In addition, test NO. In the ceramic honeycomb filter of No. 15, since the total area of the pores opened on the surface of the porous partition wall is less than 10% of the total area of the partition wall surface, the area of the pores opened on the partition wall surface is insufficient. The judgment of pressure loss was unacceptable (x), and the overall judgment was unacceptable (x). In addition, the test NO. In the ceramic honeycomb filter of No. 16, since the total area of the pores opened on the surface of the porous partition wall exceeds 30% of the total area of the partition wall surface, the opening ratio on the partition wall surface becomes large, so that the isostatic strength is determined. It was rejected (x), and the comprehensive judgment was rejected (x). In addition, the test NO. In the ceramic honeycomb filters of Nos. 17 and 18, the porosity of the porous partition wall was out of the range of 55 to 75%. In the ceramic honeycomb filter of No. 17, the determination of the pressure loss was rejected (x), and the test no. For the ceramic honeycomb filter No. 18, the determination of the isostatic strength was rejected (x), and the overall determination was rejected (x). In addition, the test NO. In the ceramic honeycomb filters of Nos. 19 and 20, the average pore diameter of the porous partition wall was out of the range of 15 to 40 µm. For the ceramic honeycomb filter of No. 19, the determination of the pressure loss was rejected (x), and the test no. For the ceramic honeycomb filter No. 18, the determination of the isostatic strength was rejected (x), and the overall determination was rejected (x).
[0041]
[Table 1]
Figure 2004360654
[0042]
【The invention's effect】
As described above in detail, the ceramic honeycomb filter of the present invention has a porous partition wall made of a high porosity material having a large porosity of 55 to 75% and an average pore diameter of 15 to 40 μm, and an opening on the surface of the porous partition wall. Despite setting the total area of the formed pores to be 10 to 30% of the total area of the partition wall surface, among the pores opened to the porous partition wall surface, the pores having an equivalent circle diameter of 5 to 20 μm are 300. Pieces / mm 2 Because of the above-mentioned existence, it is possible to achieve both high efficiency of collecting fine particles in the initial stage and low pressure loss.
[Brief description of the drawings]
FIGS. 1A and 1B are a front view and a side view showing an example of a ceramic honeycomb structure, respectively.
FIGS. 2A and 2B are a front view and a side view, respectively, showing an example of a ceramic honeycomb filter using a ceramic honeycomb structure.
[Explanation of symbols]
1 ceramic honeycomb structure, 2 partition, 3 flow path,
4 Ceramic honeycomb filter, 5 plugging material

Claims (3)

セラミックハニカム構造体の所定の流路端部を目封止し、主に該流路を区画する多孔質隔壁に排気ガスを通過せしめることにより、排気ガス中に含まれる微粒子を除去するセラミックハニカムフィルタであって、前記多孔質隔壁の気孔率が55〜75%、平均細孔径が15〜40μmであり、前記多孔質隔壁表面に開口した細孔の総面積を、隔壁表面の総面積の10〜30%、前記多孔質隔壁表面に開口した細孔のうち円相当径が5〜20μmである細孔が300個/mm以上存在することを特徴とするセラミックハニカムフィルタ。A ceramic honeycomb filter for removing fine particles contained in exhaust gas by plugging a predetermined flow channel end of the ceramic honeycomb structure and allowing exhaust gas to pass mainly through porous partition walls defining the flow channel Wherein the porosity of the porous partition is 55 to 75%, the average pore diameter is 15 to 40 μm, and the total area of pores opened on the surface of the porous partition is 10 to 10 of the total area of the partition surface. 30%, among the pores opened on the surface of the porous partition wall, there are at least 300 pores / mm < 2 > having an equivalent circle diameter of 5 to 20 [mu] m. 前記多孔質隔壁表面に、炭素を主成分とする微粒子からなる、厚さ10μm以上のコート層を有することを特徴とする請求項1記載のセラミックハニカムフィルタ。2. The ceramic honeycomb filter according to claim 1, further comprising a coating layer made of fine particles containing carbon as a main component and having a thickness of 10 [mu] m or more on the surface of the porous partition wall. 前記多孔質隔壁に触媒物質が担持されていることを特徴とする請求項1又は2記載のセラミックハニカムフィルタ。The ceramic honeycomb filter according to claim 1, wherein a catalyst substance is supported on the porous partition.
JP2003162941A 2003-06-06 2003-06-06 Ceramic honeycomb filter Expired - Lifetime JP4577752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162941A JP4577752B2 (en) 2003-06-06 2003-06-06 Ceramic honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162941A JP4577752B2 (en) 2003-06-06 2003-06-06 Ceramic honeycomb filter

Publications (2)

Publication Number Publication Date
JP2004360654A true JP2004360654A (en) 2004-12-24
JP4577752B2 JP4577752B2 (en) 2010-11-10

Family

ID=34054939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162941A Expired - Lifetime JP4577752B2 (en) 2003-06-06 2003-06-06 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP4577752B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192347A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Filter for purifying exhaust gas
JP2006255574A (en) * 2005-03-16 2006-09-28 Ibiden Co Ltd Honeycomb structure
JP2009517208A (en) * 2005-11-30 2009-04-30 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Method for selecting a gas filtration structure
JP2009517207A (en) * 2005-11-30 2009-04-30 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Silicon carbide based gas filtration structure with controlled wall surface porosity
WO2011027837A1 (en) 2009-09-04 2011-03-10 日立金属株式会社 Ceramic honeycomb structure and method for manufacturing same
WO2011102487A1 (en) 2010-02-22 2011-08-25 日立金属株式会社 Ceramic honeycomb structure and process for producing same
JP2013202503A (en) * 2012-03-28 2013-10-07 Ngk Insulators Ltd Honeycomb structure and method of manufacturing the same
WO2015046012A1 (en) 2013-09-24 2015-04-02 日立金属株式会社 Ceramic honeycomb structure and production method therefor
KR20170129694A (en) 2015-03-24 2017-11-27 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb structure and manufacturing method thereof
KR20170130362A (en) 2015-03-24 2017-11-28 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb structure
US20210270162A1 (en) * 2020-03-02 2021-09-02 Ngk Insulators, Ltd. Honeycomb filter
JP2021137686A (en) * 2020-03-02 2021-09-16 日本碍子株式会社 Honeycomb filter
JP2021159867A (en) * 2020-03-31 2021-10-11 日本碍子株式会社 Ceramic filter
CN115138397A (en) * 2021-03-30 2022-10-04 日本碍子株式会社 Honeycomb structure

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192347A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Filter for purifying exhaust gas
JP2006255574A (en) * 2005-03-16 2006-09-28 Ibiden Co Ltd Honeycomb structure
US8003190B2 (en) 2005-03-16 2011-08-23 Ibiden Co. Ltd Honeycomb structure
JP2009517208A (en) * 2005-11-30 2009-04-30 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Method for selecting a gas filtration structure
JP2009517207A (en) * 2005-11-30 2009-04-30 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Silicon carbide based gas filtration structure with controlled wall surface porosity
US8066798B2 (en) 2005-11-30 2011-11-29 Saint-Gobain Centre De Recherches Et D'etudes European Method for selecting a gas filtering structure
US8105543B2 (en) 2005-11-30 2012-01-31 Saint-Gobain Centre De Recherches Et D'etudes Europeen Silicon carbide based structure for filtrating gas
KR101323404B1 (en) * 2005-11-30 2013-11-04 생-고뱅 생트레 드 레체르체 에 데투드 유로삐엔 Structure for the filtration of a gas based on silicium carbide with a controlled wall surface porosity
US9074504B2 (en) 2009-09-04 2015-07-07 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
WO2011027837A1 (en) 2009-09-04 2011-03-10 日立金属株式会社 Ceramic honeycomb structure and method for manufacturing same
US9724633B2 (en) 2009-09-04 2017-08-08 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
KR20170008894A (en) 2009-09-04 2017-01-24 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb structure and its production method
EP3120916A2 (en) 2010-02-22 2017-01-25 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US9353015B2 (en) 2010-02-22 2016-05-31 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US8636821B2 (en) 2010-02-22 2014-01-28 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
WO2011102487A1 (en) 2010-02-22 2011-08-25 日立金属株式会社 Ceramic honeycomb structure and process for producing same
JP2013202503A (en) * 2012-03-28 2013-10-07 Ngk Insulators Ltd Honeycomb structure and method of manufacturing the same
US10065141B2 (en) 2013-09-24 2018-09-04 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US9649587B2 (en) 2013-09-24 2017-05-16 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
WO2015046012A1 (en) 2013-09-24 2015-04-02 日立金属株式会社 Ceramic honeycomb structure and production method therefor
US10072543B2 (en) 2015-03-24 2018-09-11 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US9968879B2 (en) 2015-03-24 2018-05-15 Hitachi Metals, Ltd. Ceramic honeycomb structure
KR20170130362A (en) 2015-03-24 2017-11-28 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb structure
KR20170129694A (en) 2015-03-24 2017-11-27 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb structure and manufacturing method thereof
US10077693B2 (en) 2015-03-24 2018-09-18 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP2021137686A (en) * 2020-03-02 2021-09-16 日本碍子株式会社 Honeycomb filter
JP2021137685A (en) * 2020-03-02 2021-09-16 日本碍子株式会社 Honeycomb filter
US20210270162A1 (en) * 2020-03-02 2021-09-02 Ngk Insulators, Ltd. Honeycomb filter
JP7227178B2 (en) 2020-03-02 2023-02-21 日本碍子株式会社 honeycomb filter
JP7229192B2 (en) 2020-03-02 2023-02-27 日本碍子株式会社 honeycomb filter
JP2021159867A (en) * 2020-03-31 2021-10-11 日本碍子株式会社 Ceramic filter
JP7234180B2 (en) 2020-03-31 2023-03-07 日本碍子株式会社 ceramic filter
CN115138397A (en) * 2021-03-30 2022-10-04 日本碍子株式会社 Honeycomb structure
CN115138397B (en) * 2021-03-30 2023-11-14 日本碍子株式会社 honeycomb structure

Also Published As

Publication number Publication date
JP4577752B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP5444716B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP3756721B2 (en) Exhaust gas purification filter
KR100865101B1 (en) Porous honeycomb filter
KR101894341B1 (en) Ceramic honeycomb structure and process for producing same
JP5272733B2 (en) Ceramic honeycomb filter and manufacturing method thereof
JP4737594B2 (en) Ceramic honeycomb filter
JP2007525612A (en) Cordierite filter with reduced pressure loss
EP1980309B1 (en) Method for manufacturing ceramic honeycomb filter
JP2003269132A (en) Exhaust emission control filter
JP4094824B2 (en) Honeycomb ceramic filter
EP1264971A1 (en) Exhaust gas purifying filter and method of manufacturing the same
WO2006041174A1 (en) Ceramic honeycomb structure
JPH08931A (en) Exhaust gas filter and exhaust gas treatment apparatus using the same
JPH07163822A (en) Cordierite ceramic filter and its preparation
JP2002357114A (en) Exhaust gas cleaning filter and manufacturing method therefor
EP1493724A1 (en) Porous material and method for production thereof
JP4577752B2 (en) Ceramic honeycomb filter
KR101480811B1 (en) Ceramic honeycomb filter
KR20080094052A (en) Ceramic honeycomb filter and exhaust gas purifier
JP3506334B2 (en) Ceramic honeycomb filter
JP2003001029A (en) Porous ceramic honeycomb filter
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP2005296936A (en) Ceramic honeycomb filter and exhaust gas cleaning apparatus
JP2004148308A (en) Ceramic honeycomb filter and its production method
JP3935159B2 (en) Ceramic honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4577752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term