JP3506334B2 - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter

Info

Publication number
JP3506334B2
JP3506334B2 JP2002350849A JP2002350849A JP3506334B2 JP 3506334 B2 JP3506334 B2 JP 3506334B2 JP 2002350849 A JP2002350849 A JP 2002350849A JP 2002350849 A JP2002350849 A JP 2002350849A JP 3506334 B2 JP3506334 B2 JP 3506334B2
Authority
JP
Japan
Prior art keywords
plugging
porosity
plugging material
honeycomb filter
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002350849A
Other languages
Japanese (ja)
Other versions
JP2003236322A (en
Inventor
博久 諏訪部
俊二 岡崎
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2002350849A priority Critical patent/JP3506334B2/en
Publication of JP2003236322A publication Critical patent/JP2003236322A/en
Application granted granted Critical
Publication of JP3506334B2 publication Critical patent/JP3506334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の排気ガス
浄化装置に関し、特に、ディーゼルエンジンからの排気
ガス中に含まれる微粒子を捕集するセラミックハニカム
フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle exhaust gas purifying apparatus, and more particularly to a ceramic honeycomb filter for collecting fine particles contained in exhaust gas from a diesel engine.

【0002】[0002]

【従来技術】地域環境や地球環境の保全面から、ディー
ゼルエンジンから排出される排気ガスより炭素を主成分
とする微粒子を除去するため、セラミックハニカム構造
体の両端部を交互に目封止して、ハニカム構造体の複数
の流路を両端部で交互に閉塞させたセラミックハニカム
フィルタ(以下、「セラミックハニカムフィルタ」を略
して「ハニカムフィルタ」という)が使用されるように
なってきた。
2. Description of the Related Art In order to remove particulates containing carbon as a main component from exhaust gas emitted from a diesel engine, the both ends of a ceramic honeycomb structure are alternately plugged in order to protect the local environment and the global environment. A ceramic honeycomb filter in which a plurality of channels of a honeycomb structure are alternately closed at both ends (hereinafter, “ceramic honeycomb filter” is abbreviated as “honeycomb filter”) has come to be used.

【0003】図3は、ハニカムフィルタ50の斜視図で
あり、図4は、図3のハニカムフィルタ50の模式断面
図である。図3及び図4に示すように、通常、ハニカム
フィルタ50は、略円筒状又は略楕円状で、外周壁51
aと、この外周壁51aの内周側で隔壁51bにより囲
まれた多数のセル51cを有する多孔質セラミックハニ
カム構造体(以下、「多孔質セラミックハニカム構造
体」を略して「ハニカム構造体」という)51での流路
51cの流入側51d、流出側51eの両端面を交互に
目封止材52a、52bで目封止している。
FIG. 3 is a perspective view of the honeycomb filter 50, and FIG. 4 is a schematic sectional view of the honeycomb filter 50 of FIG. As shown in FIGS. 3 and 4, usually, the honeycomb filter 50 has a substantially cylindrical shape or a substantially elliptical shape, and has an outer peripheral wall 51.
a and a porous ceramic honeycomb structure having a large number of cells 51c surrounded by partition walls 51b on the inner peripheral side of the outer peripheral wall 51a (hereinafter, "porous ceramic honeycomb structure" is abbreviated as "honeycomb structure"). ) 51, both end surfaces of the inflow side 51d and the outflow side 51e of the flow path 51c are alternately plugged with the plugging materials 52a and 52b.

【0004】ハニカムフィルタ50での排気ガス浄化
は、以下の通り行われる。図4で、排気ガスは、ハニカ
ムフィルタ50の流入側51dで開口している流路51
cから流入(50aで示す)し、出口側は目封止されて
いるため、排気ガスはそのまま流出することはできず
に、隔壁51bに形成された細孔(図示せず)を通過し
た後、隣接セルの流出側51eから排出(50bで示
す)される。そして、排気ガス中に含まれる微粒子など
は、隔壁51b内で連続する細孔から隣接する流路に通
過する際に濾過され、捕集される。セル壁51bに捕捉
された微粒子は一定量以上になるとフィルタの目詰まり
が発生するため、バーナーや電気ヒーターにより燃焼さ
せ、フィルタの再生が行われる。上記のような構造のハ
ニカムフィルタの特性に関しては、エンジン性能を低下
させないため、フィルタの圧力損失を低く押さえること
が特に重要であるが、微粒子の捕集効率や、フィルタ再
生時の耐破損性や耐溶損性も重要である。これらの中、
フィルタの圧力損失については隔壁の気孔率や気孔寸法
を大きくし、排気ガスに対する抵抗を小さくすることに
より、低減可能となるが、一方、気孔率や気孔寸法を大
きくすることは隔壁の強度低下につながり、フィルタの
耐破損性が低下するという問題がある。また、ハニカム
フィルタの両端面に配置された目封止材は、図4に示さ
れるように、隔壁中を排気ガスが通過させるようにする
ため不可欠なものであるが、この目封止材の存在により
ハニカムフィルタの圧力損失を上昇させたり、熱衝撃等
による耐破損性を低下させたりするという問題を発生さ
せることもあった。このようなことから、ハニカムフィ
ルタの重要特性である圧力損失と耐破損性を両立させる
ことは実質的に困難であった。そこで、上記問題点を解
決するため、ハニカムフィルタの目封止材の気孔率や寸
法に着目して改良を加える技術が以下のように開示され
ている。
Exhaust gas purification by the honeycomb filter 50 is performed as follows. In FIG. 4, the exhaust gas has a flow path 51 that is open on the inflow side 51 d of the honeycomb filter 50.
After flowing through the pores (not shown) formed in the partition wall 51b, the exhaust gas cannot flow out as it is, because it flows in from c (indicated by 50a) and is plugged on the outlet side. , Is discharged from the outflow side 51e of the adjacent cell (shown by 50b). Then, the fine particles contained in the exhaust gas are filtered and collected when passing through the adjacent pores from the continuous pores in the partition wall 51b. When the amount of fine particles trapped on the cell wall 51b exceeds a certain amount, the filter is clogged, and therefore the filter is regenerated by burning it with a burner or an electric heater. Regarding the characteristics of the honeycomb filter having the above structure, it is particularly important to suppress the pressure loss of the filter so as not to deteriorate the engine performance, but the collection efficiency of fine particles and the damage resistance during filter regeneration and Melt resistance is also important. Among these,
The pressure loss of the filter can be reduced by increasing the porosity and pore size of the partition wall and reducing the resistance to exhaust gas.On the other hand, increasing the porosity and pore size reduces the strength of the partition wall. However, there is a problem in that the resistance to damage of the filter is reduced. Further, the plugging materials arranged on both end surfaces of the honeycomb filter are indispensable for allowing exhaust gas to pass through the partition walls as shown in FIG. The presence of the honeycomb filter may cause problems such as an increase in pressure loss of the honeycomb filter and a decrease in damage resistance due to thermal shock. For this reason, it has been practically difficult to satisfy both the pressure loss and the breakage resistance, which are important characteristics of the honeycomb filter. Therefore, in order to solve the above-mentioned problems, a technique of making improvements by focusing on the porosity and size of the plugging material of the honeycomb filter is disclosed as follows.

【0005】特許文献1には、排気ガス流出側の目封止
材の細孔を3次元的に連鎖させたハニカムフィルタであ
って、排気ガス流出側での目封止材の気孔率をハニカム
構造体の気孔率の110〜140%とした排ガスフィル
タが開示されている。同文献によれば、排気ガス流出側
から逆洗エアを流した場合に、排気ガス流出側の目封止
材の直上に堆積した微粒子50cが良好に剥離されるた
め、セル壁の目詰まりを防止できると共に、ハニカムフ
ィルタの圧力損失の上昇を防止できるとしている。更
に、排気ガス流出側の目封止材は気体を流通させるが、
排気ガス中の微粒子は殆ど通過させないので、微粒子の
捕集効率が悪化することはないとしている。
Patent Document 1 discloses a honeycomb filter in which the pores of the plugging material on the exhaust gas outflow side are three-dimensionally linked, and the porosity of the plugging material on the exhaust gas outflow side is honeycomb. An exhaust gas filter having a porosity of 110 to 140% of the structure is disclosed. According to the document, when backwashing air is flown from the exhaust gas outflow side, the fine particles 50c deposited directly on the plugging material on the exhaust gas outflow side are favorably peeled off, so that the cell wall is not clogged. It is said that the pressure loss of the honeycomb filter can be prevented from increasing as well as the prevention. Furthermore, the plugging material on the exhaust gas outflow side allows the gas to flow,
Since the fine particles in the exhaust gas hardly pass through, it is said that the collection efficiency of the fine particles does not deteriorate.

【0006】一方、特許文献2には、ハニカムフィルタ
の両端部の目封止材の目封止厚さが均一でなく、目封止
材と隔壁との境界を直線又は一定のパターンで連続しな
いように不均一とした排ガス浄化フィルタが開示されて
いる。この文献によれば、目封止材と隔壁との境界を直
線又は一定のパターンで連続しないように不均一として
いることから、熱衝撃により応力集中する部分及び燃焼
熱が集中する部分を連続しないこととなり、応力及び燃
焼熱が分散され、熱衝撃によるクラックの発生及び溶損
を防止できるとされている。
On the other hand, in Patent Document 2, the plugging thickness of the plugging material at both ends of the honeycomb filter is not uniform, and the boundary between the plugging material and the partition walls is not continuous with a straight line or a fixed pattern. Thus, a non-uniform exhaust gas purification filter is disclosed. According to this document, since the boundary between the plugging material and the partition wall is made non-uniform so as not to be continuous in a straight line or a fixed pattern, the portion where stress is concentrated by thermal shock and the portion where combustion heat is concentrated are not continuous. It is said that the stress and the heat of combustion are dispersed, and the generation of cracks and melting loss due to thermal shock can be prevented.

【0007】[0007]

【特許文献1】特開平7−332064号公報[Patent Document 1] JP-A-7-332064

【特許文献2】特許第3012167号公報[Patent Document 2] Japanese Patent No. 3012167

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特許文
献1に記載のハニカムフィルタは、その実施例に記載さ
れているように、ハニカム構造体の気孔率が45%であ
り、さらに排気ガス流出側の目封止材の気孔率がハニカ
ム構造体の気孔率の110〜140%(隔壁の気孔率が
45%の場合、目封止材の気孔率49.5〜63%)程
度であり、実施例には、目封止材の気孔率40〜65%
が記載されており、逆洗エアによる排気ガス流出側の目
封止材の直上に堆積した微粒子が剥離される効果は認め
られるものの、ハニカム構造体の隔壁の気孔率が45
%、排気ガス流出側の目封止材の気孔率が40〜65%
と小さいため、隔壁や排気ガス流出側目封止材での排気
ガスの通気抵抗が大きく、ハニカムフィルタ自体の圧力
損失が大きいという問題があった。更に、排気ガス流入
側の目封止材はハニカム構造体と同一材料で形成されて
おり、目封止材と隔壁の気孔率は同程度であるので、隔
壁に比べて厚さの厚い排気ガス流入側目封止部中の気孔
を、排気ガスが通過することは殆ど出来ないため、ハニ
カムフィルタ入口での圧力損失が大きくなり、ハニカム
フィルタ全体としての圧力損失が大きくなるという問題
もあった。また、隔壁での圧力損失を低減する目的で、
隔壁を構成する材料に、例えば50〜80%の高気孔率
のものを用いた場合には、排気ガス流出側目封止部の気
孔率をハニカム構造体の気孔率の110〜140%とす
ると、排気ガス流出側目封止材の気孔率は55〜112
%となってしまい、気孔率100%を超えるような目封
止材は存在しえなく、微粒子を捕集することが実質的に
困難となり、ハニカムフィルタとしての機能が発揮でき
なくなってしまうという問題もあった。すなわち特許文
献1に記載の排ガスフィルタには、隔壁の気孔率が小さ
いこと、排気ガス流入側の目封止材の気孔率は隔壁と同
程度であることから、圧力損失が大きいという問題点が
あった。また、気孔率50〜80%の高気孔率を有する
隔壁に適した、排気ガス流入側及び排気ガス流出側の目
封止部の気孔率、細孔径分布、細孔形態等についての開
示は全くされていない。
However, the honeycomb filter described in Patent Document 1 has a porosity of 45% in the honeycomb structure as described in the examples thereof, and further, on the exhaust gas outflow side. The porosity of the plugging material is about 110 to 140% of the porosity of the honeycomb structure (when the partition wall porosity is 45%, the porosity of the plugging material is 49.5 to 63%). Has a porosity of 40 to 65%.
Although the effect that the fine particles deposited directly on the plugging material on the exhaust gas outflow side by the backwash air is peeled off is recognized, the porosity of the partition walls of the honeycomb structure is 45%.
%, The porosity of the plugging material on the exhaust gas outflow side is 40 to 65%
Therefore, there is a problem that the ventilation resistance of the exhaust gas through the partition walls and the exhaust gas outlet side plugging material is large, and the pressure loss of the honeycomb filter itself is large. Furthermore, since the plugging material on the exhaust gas inflow side is made of the same material as the honeycomb structure and the porosity of the plugging material and the partition walls is about the same, the exhaust gas with a larger thickness than the partition wall. Exhaust gas can hardly pass through the pores in the inflow side plugged portion, so that the pressure loss at the honeycomb filter inlet becomes large and the pressure loss as a whole honeycomb filter also becomes large. Also, for the purpose of reducing the pressure loss in the partition wall,
When a material having a high porosity of, for example, 50 to 80% is used as the material forming the partition walls, the porosity of the exhaust gas outflow side plugging portion is set to 110 to 140% of the porosity of the honeycomb structure. The porosity of the exhaust gas outlet side plugging material is 55 to 112.
%, A plugging material having a porosity exceeding 100% cannot exist, and it becomes substantially difficult to collect fine particles, and the function as a honeycomb filter cannot be exhibited. There was also. That is, the exhaust gas filter described in Patent Document 1 has a problem that the partition wall has a small porosity and the plugging material on the exhaust gas inflow side has a porosity of about the same level as the partition wall, resulting in a large pressure loss. there were. Further, there is no disclosure about the porosity, the pore size distribution, the pore morphology, etc. of the plugged portions on the exhaust gas inflow side and the exhaust gas outflow side, which are suitable for partition walls having a high porosity of 50 to 80%. It has not been.

【0009】また、特許文献2に記載の排気ガス浄化フ
ィルタのように、ハニカムフィルタの両端部の目封止材
の目封止厚さが均一でなく、目封止材と隔壁との境界を
直線又は一定のパターンで連続しないように不均一とす
ると、目封止厚さの大きい目封止材を有する流路では、
フィルタ機能を主に有する隔壁の表面積が実質的に小さ
くなるため、ハニカムフィルタ自体のフィルタ表面積が
小さくなり、結果的に圧力損失が大きくなるという問題
が生じる場合があった。一方、目封止厚さの小さい箇所
では目封止材と隔壁間の接合面積が小さいため両者の接
合力が小さく、排気ガスによる圧力や熱衝撃等により、
目封止材と隔壁の界面にクラックが発生したり、或いは
目封止材と隔壁が剥離する場合があった。さらに、目封
止厚さを不均一にすると、ハニカムフィルタ製品毎のフ
ィルタ表面積が一定にはなり得ず、結果的にハニカムフ
ィルタの製品毎の圧力損失に変動が生ずるため、ハニカ
ムフィルタの製造歩留まりが悪くなるという問題が生じ
る場合があった。
Further, unlike the exhaust gas purifying filter described in Patent Document 2, the plugging thickness of the plugging material at both ends of the honeycomb filter is not uniform, and the boundary between the plugging material and the partition wall is If it is made non-uniform so as not to be continuous in a straight line or a fixed pattern, in a flow path having a plugging material with a large plugging thickness,
Since the surface area of the partition wall mainly having the filter function is substantially reduced, the filter surface area of the honeycomb filter itself may be reduced, resulting in a problem that the pressure loss is increased. On the other hand, at a portion where the plugging thickness is small, the joining area between the plugging material and the partition wall is small, so the joining force between the two is small, and due to pressure or thermal shock due to exhaust gas
There were cases where cracks were generated at the interface between the plugging material and the partition walls, or the plugging material and the partition walls were separated. Further, if the plugging thickness is made non-uniform, the filter surface area of each honeycomb filter product cannot be constant, and as a result, the pressure loss of each honeycomb filter product varies, so that the manufacturing yield of honeycomb filters is increased. There was a case where the problem of getting worse.

【0010】本発明は、上記課題に鑑みてなされたもの
で、圧力損失が小さく、フィルタ再生時の熱衝撃による
クラックの発生が防止できるハニカムフィルタを得るこ
とにある。
The present invention has been made in view of the above problems, and an object of the present invention is to obtain a honeycomb filter which has a small pressure loss and can prevent the occurrence of cracks due to thermal shock during filter regeneration.

【0011】[0011]

【課題を解決するための手段】本発明者らは、ハニカム
フィルタの隔壁および目封止材について各種の検討を行
った結果、ハニカムフィルタの耐破損性を低下させるこ
となく、圧力損失を低下させるためには、ハニカムフィ
ルタ両端に形成された目封止材に関して、高気孔率隔壁
に組合される目封止材の気孔率及び目封止厚さを適切な
範囲とすることで、上記課題が解決できるとの知見を
得、本発明に想到した。更には、ハニカムフィルタの両
端に形成された目封止材の細孔形態を適切な形態とする
ことによっても、ハニカムフィルタの耐破損性を損なう
ことなく、圧力損失が低減できることを見い出し、本発
明に想到した。
DISCLOSURE OF THE INVENTION As a result of various investigations on partition walls and plugging materials of honeycomb filters, the present inventors have reduced pressure loss without reducing damage resistance of honeycomb filters. In order to achieve the above object, the plugging material formed at both ends of the honeycomb filter has the porosity and the plugging thickness of the plugging material combined with the high-porosity partition wall in an appropriate range. The present invention was conceived based on the knowledge that it can be solved. Furthermore, even by making the pore form of the plugging material formed at both ends of the honeycomb filter into a proper form, it is found that the pressure loss can be reduced without impairing the damage resistance of the honeycomb filter. Was conceived.

【0012】 即ち、本発明のセラミックハニカムフィ
ルタは、排気ガスに含まれる微粒子を除去するフィルタ
であって、セラミックハニカム構造体の両端の所望部位
を、目封止材により目封止した形態のセラミックハニカ
ムフィルタにおいて、前記ハニカム構造体の隔壁の気孔
率が50〜80%、前記目封止材の気孔率が隔壁の気孔
率より大きく、目封止厚さが3〜15mmであり、目封
止材の任意断面における細孔の断面形状の少なくとも一
部が略円形状であり、断面積が1000μm 2 以上であ
る細孔のうちアスペクト比が2以下の細孔の割合が20
%以上であることを特徴とする。更に、本発明のセラミ
ックハニカムフィルタにおいて、前記ハニカム構造体の
隔壁壁厚が0.1〜0.5mm、隔壁のピッチが1〜3
mmであることが好ましい。
That is, the ceramic honeycomb filter of the present invention is a filter for removing fine particles contained in exhaust gas, and a ceramic honeycomb structure in which desired portions at both ends are plugged with plugging materials. in the honeycomb filter, the porosity is 50% to 80% of the partition wall of the honeycomb structure, the eye porosity of the sealing material is greater than the porosity of the partition walls, plugging thickness Ri 3~15mm der, plugging
At least one of the cross-sectional shapes of pores in an arbitrary cross section of the stopper
Part is substantially circular and has a cross-sectional area of 1000 μm 2 or more
The ratio of pores with an aspect ratio of 2 or less is 20
Characterized in der Rukoto than%. Furthermore, in the ceramic honeycomb filter of the present invention, the partition wall thickness of the honeycomb structure is 0.1 to 0.5 mm, and the partition pitch is 1 to 3.
It is preferably mm.

【0013】[0013]

【作用】次に、本発明における作用効果につき説明す
る。本発明のセラミックハニカムフィルタは、セラミッ
クハニカム構造体の隔壁の気孔率が50〜80%、ハニ
カムフィルタの両端に形成された目封止材の気孔率が隔
壁の気孔率より大きく、目封止厚さが3〜15mmの範
囲内で形成されていることから、ハニカムフィルタの流
入側に開口した流路に流入した排気ガスは50〜80%
という高い気孔率を有する隔壁中を通過し、隣接した流
路を経て排出されるのと共に、ハニカムフィルタの排気
ガス流入側及び流出側の両端部に形成された、隔壁より
高い気孔率を有し、厚さが3〜15mmの範囲に均一に
形成された目封止部をも通過することができるようにな
るため、ハニカムフィルタ全体としての圧力損失を低減
することができる。また、ハニカムフィルタ両端部に形
成された目封止材の気孔率を、隔壁の気孔率に比べて大
きくしていることから、従来の隔壁と同一材料で形成さ
れた目封止部に比べ、目封止部の熱容量が小さくなり、
目封止材の速熱性が良好となるため、フィルタ再生時の
熱衝撃が加わっても、目封止材や目封止材と隔壁界面に
発生する応力を小さく押さえることができ、隔壁、目封
止部、或いは両者界面へのクラック発生を防止すること
が可能となる。更に、目封止厚さが3〜15mmの範囲
になるよう均一に形成されていることから、目封止部が
配置されている流路の隔壁表面積が確保され、低圧力損
失が得られるのと共に、目封止部と隔壁間の接合力が十
分確保され、両者間にクラックが発生したり、目封止部
が脱落するといった問題を回避することができる。以上
述べたように、本発明のセラミックハニカムフィルタに
よれば、圧力損失が低く耐破損性に優れるという相反す
る二つの特性を両立させることができるのである。更に
は、目封止材厚さが3〜15mmの範囲になるようにし
ていることは、ハニカムフィルタ製品毎のフィルタ面積
が一定となり、ハニカムフィルタ製品毎の圧力損失の安
定化につながるという効果もある。
Next, the function and effect of the present invention will be described. In the ceramic honeycomb filter of the present invention, the porosity of the partition walls of the ceramic honeycomb structure is 50 to 80%, the porosity of the plugging material formed at both ends of the honeycomb filter is larger than the porosity of the partition walls, and the plugging thickness is Is formed within the range of 3 to 15 mm, the exhaust gas flowing into the flow passage opened on the inflow side of the honeycomb filter is 50 to 80%.
It passes through a partition wall having a high porosity, is discharged through an adjacent flow path, and has a higher porosity than the partition wall formed at both ends of the exhaust gas inflow side and the outflow side of the honeycomb filter. As a result, the pressure loss of the honeycomb filter as a whole can be reduced because it can also pass through the plugging portions formed uniformly in the thickness range of 3 to 15 mm. Further, since the porosity of the plugging material formed at both ends of the honeycomb filter is made larger than the porosity of the partition walls, compared with the plugging portion formed of the same material as the conventional partition walls, The heat capacity of the plugged part becomes small,
Since the plugging material has a good rapid heating property, even if a thermal shock is applied during filter regeneration, the stress generated at the plugging material or the interface between the plugging material and the partition wall can be suppressed to a small level. It is possible to prevent the occurrence of cracks in the sealing portion or the interface between the both. Further, since the plugging thickness is uniformly formed in the range of 3 to 15 mm, the partition wall surface area of the flow path in which the plugging portion is arranged is secured, and low pressure loss can be obtained. At the same time, a sufficient bonding force between the plugged portion and the partition wall is secured, and problems such as cracks occurring between the two and the plugged portion falling off can be avoided. As described above, according to the ceramic honeycomb filter of the present invention, two contradictory characteristics of low pressure loss and excellent damage resistance can be achieved. Furthermore, the fact that the thickness of the plugging material is within the range of 3 to 15 mm also has the effect that the filter area for each honeycomb filter product becomes constant and the pressure loss for each honeycomb filter product is stabilized. is there.

【0014】以下、上記本発明のセラミックハニカムフ
ィルタの数値限定理由について詳細に記述する。本発明
のハニカムフィルタの隔壁の気孔率を50〜80%にし
たのは、気孔率が50%未満であると、隔壁を排気ガス
が通過する際の通気抵抗が大きくなるため、ハニカムフ
ィルタの圧力損失が大きくなるからであり、気孔率が8
0%を超えると、強度が低下すると共に微粒子の捕集効
率が低下するためである。ハニカムフィルタの隔壁の気
孔率は、上記理由から、好ましくは、60〜75%であ
る。
The reasons for limiting the numerical values of the ceramic honeycomb filter of the present invention will be described in detail below. The porosity of the partition walls of the honeycomb filter of the present invention is set to 50 to 80% because the porosity of less than 50% increases the ventilation resistance when the exhaust gas passes through the partition walls, and therefore the pressure of the honeycomb filter is increased. This is because the loss is large and the porosity is 8
This is because if it exceeds 0%, the strength decreases and the collection efficiency of fine particles also decreases. The porosity of the partition walls of the honeycomb filter is preferably 60 to 75% for the above reason.

【0015】本発明のハニカムフィルタの両端に形成さ
れた目封止材の気孔率を隔壁の気孔率より大きくする理
由は上述したように、排気ガスの一部が目封止材を通過
できるため、ハニカムフィルタの圧力損失を低減するこ
とが可能となると共に、目封止材の熱容量が小さくなる
ため、目封止材の速熱性が良好となり、熱衝撃が加わっ
ても目封止材や目封止材と隔壁界面に発生する応力を小
さく押さえることができ、クラックが発生しにくくなる
からである。一方、目封止材の気孔率が隔壁の気孔率と
同等或いは、小さくなると、隔壁厚さより厚い目封止厚
さを有する目封止材における排気ガスの通気抵抗が大き
くなるため、排気ガスの一部が目封止材を通過しにくく
なり、フィルタの圧力損失が大きくなると共に、目封止
材の熱容量が大きくなるため、熱衝撃が加わった際に目
封止材や目封止材と隔壁界面に発生する応力が大きくな
り、クラックが発生しやすくなるからである。尚、目封
止材の気孔率は、隔壁の気孔率よりも5%以上大きい
と、その効果は大きくなり、更に好ましくは10%以上
である。更には、目封止材の気孔率は、70〜90%と
することが好ましい。目封止材の気孔率が70%未満で
あると、排気ガスの一部が目封止材を通過しにくくなる
ので、圧力損失が上昇することもある。一方、目封止材
の気孔率が90%を超えると、目封止材自体の強度が不
足して、キャニングやハンドリング時、特に両端面に欠
けや割れが発生しやすく、また、排気ガス中の大きな微
粒子が目封止部で捕集されず大気中に放出されるおそれ
がある。特に好ましい目封止材の気孔率の範囲は75%
〜85%である。この時、流入側と流出側の目封止材の
気孔率は同一であっても、異なっても良い。
The reason why the porosity of the plugging material formed on both ends of the honeycomb filter of the present invention is made larger than the porosity of the partition wall is that a part of exhaust gas can pass through the plugging material as described above. It is possible to reduce the pressure loss of the honeycomb filter, and the heat capacity of the plugging material is reduced, so that the plugging material has a good rapid heating property and the plugging material and the plugging material can be heated even when a thermal shock is applied. This is because the stress generated at the interface between the sealing material and the partition wall can be suppressed to a low level, and cracks are less likely to occur. On the other hand, when the porosity of the plugging material is equal to or smaller than the porosity of the partition wall, the ventilation resistance of the exhaust gas in the plugging material having a plugging thickness larger than the partition wall thickness becomes large, so that the exhaust gas It becomes difficult for some of them to pass through the plugging material, and the pressure loss of the filter increases and the heat capacity of the plugging material also increases, so when the thermal shock is applied, This is because the stress generated at the barrier rib interface is increased and cracks are easily generated. If the porosity of the plugging material is larger than the porosity of the partition wall by 5% or more, the effect is enhanced, and more preferably 10% or more. Furthermore, the porosity of the plugging material is preferably 70 to 90%. If the porosity of the plugging material is less than 70%, it is difficult for some of the exhaust gas to pass through the plugging material, and the pressure loss may increase. On the other hand, when the porosity of the plugging material exceeds 90%, the strength of the plugging material itself is insufficient, and it is easy for cracks and cracks to occur especially on both end surfaces during canning and handling. Of large particles may not be collected by the plugging portion and may be released into the atmosphere. Particularly preferable porosity range of the plugging material is 75%
~ 85%. At this time, the porosities of the plugging materials on the inflow side and the outflow side may be the same or different.

【0016】目封止厚さ3〜15mmとしたのは、目封
止厚さが3mm未満では、目封止材と隔壁の接合力が低
下することから、機械的衝撃や熱衝撃が発生した際に、
両者界面にクラックが発生し、隔壁と目封止材が剥離す
る場合があるからである。この場合、剥離した箇所を通
って排気ガスが通過してしまい、微粒子が捕集されずに
出口に排出されるという問題が発生するからである。一
方、目封止厚さが15mmを超えると、相対的にフィル
タ面積が小さくなるため、圧力損失が大きくなるからで
ある。さらに、より好ましい目封止厚さは5〜12mm
である。なお、目封止厚さは、流路の開口端部から金属
製の棒(直径0.8mm程度で、先端は糸面取り)を差し
込み、この棒の挿入深さを測定することにより、ハニカ
ムフィルタ全長と挿入深さとの差から求めることができ
る。
The plugging thickness is set to 3 to 15 mm, because if the plugging thickness is less than 3 mm, the bonding force between the plugging material and the partition wall decreases, so that mechanical shock or thermal shock occurs. When
This is because cracks may occur at the interface between the two and the partition walls and the plugging material may separate. This is because, in this case, the exhaust gas passes through the separated portion, and there is a problem that the fine particles are not collected and are discharged to the outlet. On the other hand, when the plugging thickness exceeds 15 mm, the filter area becomes relatively small and the pressure loss becomes large. Furthermore, more preferable plugging thickness is 5 to 12 mm.
Is. The plugging thickness is determined by inserting a metal rod (having a diameter of about 0.8 mm and a chamfered tip at the tip) from the open end of the flow channel and measuring the insertion depth of this rod to obtain the honeycomb filter. It can be calculated from the difference between the total length and the insertion depth.

【0017】また、本発明の別の発明にかかわるセラミ
ックハニカムフィルタは、目封止材中に細孔が存在し、
目封止材の任意断面における細孔の断面形状の少なくと
も一部が略円形状であることから、排気ガスの通気性が
良好であるのと共に、細孔での応力集中を低減でき、目
封止材自体の強度を確保できることから、圧力損失が低
く耐破損性に優れるという相反する二つの特性を両立さ
せることができる。断面形状が略円形状の細孔は、すべ
ての細孔が略円形状である必要はなく、少なくとも一部
の細孔、特に排気ガスの通気性や強度への影響が大きい
寸法の大きな細孔、例えば断面積が1000μm2以上
の細孔に略円形状のものが含まれていると好ましい。こ
こで、断面形状が略円形状とは、目封止材の任意断面に
おいて、アスペクト比が2以下の細孔のことを言う。更
に、断面積が1000μm2以上である細孔のうちアス
ペクト比が2以下の細孔の割合が20%以上であると、
より好ましい。ここでアスペクト比とは、任意断面の細
孔形状の相当楕円の長軸と短軸の比(長軸/短軸)で表
す。断面形状が略円形状の細孔を形成するためには、目
封止材を形成する際に、スラリ−状或いはペースト状の
目封止材形成原料中に略球状の造孔剤を添加し、目封止
部を形成した上で、乾燥、焼成を行うことにより、造孔
剤を燃焼、除去し、目封止材中に断面形状が略円形状の
細孔を残留させることができる。更に、本目封止材中に
細孔が存在し、目封止材の任意断面における細孔の断面
形状の少なくとも一部が略円形状であるセラミックハニ
カムフィルタは、隔壁の気孔率が50〜80%、前記目
封止材の気孔率が隔壁の気孔率より大きく、目封止厚さ
が3〜15mmであると、更に低圧力損失で耐破損性に
優れるという相反する二つの特性の両立が容易になる。
A ceramic honeycomb filter according to another invention of the present invention has pores in the plugging material,
Since at least a part of the cross-sectional shape of the pores in the arbitrary cross section of the plugging material is substantially circular, the exhaust gas permeability is good, and the stress concentration in the pores can be reduced, and the plugging Since the strength of the stopper itself can be secured, two contradictory properties of low pressure loss and excellent damage resistance can be achieved. It is not necessary that all the pores having a substantially circular cross section have a substantially circular shape, and at least a part of the pores, especially a large pore having a large influence on the exhaust gas permeability and strength. For example, it is preferable that the pores having a cross-sectional area of 1000 μm 2 or more include substantially circular pores. Here, the cross section having a substantially circular shape means pores having an aspect ratio of 2 or less in an arbitrary cross section of the plugging material. Furthermore, if the proportion of pores having an aspect ratio of 2 or less is 20% or more among the pores having a cross-sectional area of 1000 μm 2 or more,
More preferable. Here, the aspect ratio is represented by the ratio (major axis / minor axis) of the major axis and the minor axis of the ellipse corresponding to the pore shape of an arbitrary cross section. In order to form pores having a substantially circular cross section, a substantially spherical pore-forming agent is added to a slurry-like or paste-like raw material for forming a plugging material when forming the plugging material. The pore-forming agent can be burned and removed by forming the plugging portion and then drying and firing, so that the pores having a substantially circular cross section can remain in the plugging material. Furthermore, a ceramic honeycomb filter in which pores are present in the plugging material and at least a part of the cross-sectional shape of the pores in an arbitrary cross section of the plugging material is substantially circular, has a partition wall porosity of 50 to 80. %, If the porosity of the plugging material is larger than the porosity of the partition walls and the plugging thickness is 3 to 15 mm, it is possible to achieve two contradictory properties, that is, low pressure loss and excellent breakage resistance. It will be easier.

【0018】本発明のセラミックハニカムフィルタにお
いて、ハニカム構造体の隔壁厚さが0.1〜0.5m
m、隔壁のピッチが1〜3mmであることが好ましいの
は、以下の理由による。隔壁厚が0.1mm未満では、
隔壁の気孔率を50〜80%の高い範囲に設定している
ことからハニカム構造体の強度が低下し、好ましくな
い。一方、ハニカム構造体のセル壁厚が0.5mmを超
えると、如何に隔壁が高気孔率であっても、排気ガスに
対する隔壁の通気抵抗が大きくなるため、ハニカムフィ
ルタの圧力損失が大きくなるからである。より好ましい
隔壁厚さは、0.2〜0.4mmである。また、隔壁の
ピッチが1mm未満になると、排気ガス流入側に開口し
た流路の開口寸法が小さくなるため、入口での圧損が大
きくなり、ハニカムフィルタの圧力損失が大きくなるか
らであり。隔壁のピッチが3mmを超えると、幾何学的
表面積(単位体積当たりの隔壁の表面積)が小さくなる
ことから、ハニカムフィルタの圧力損失が大きくなるか
らである。より好ましい隔壁のピッチは1.2〜2.0
mmである。以上のように、隔壁厚さ及び隔壁ピッチを
好ましい範囲とすることにより、低圧力損失で耐破損性
に優れるという相反する特性の両立がより容易になる。
上記、多孔質セラミックハニカム構造体の隔壁及び目封
止材を構成する材料としては、本発明が主にディーゼル
エンジンの排気ガス中の微粒子を除去するためのフィル
タとして使用されるため、耐熱性に優れた材料を使用す
ることが好ましく、コージェライト、アルミナ、ムライ
ト、窒化珪素、炭化珪素及びLASからなる群から選ば
れた少なくとも1種を主結晶とするセラミック材料を用
いることが好ましい。中でも、コージェライトを主結晶
とするセラミックハニカムフィルタは、安価で耐熱性、
耐食性に優れ、また低熱膨張であることから最も好まし
い。
In the ceramic honeycomb filter of the present invention, the partition wall thickness of the honeycomb structure is 0.1 to 0.5 m.
The reason why m and the pitch of the partition walls are preferably 1 to 3 mm is as follows. If the partition wall thickness is less than 0.1 mm,
Since the porosity of the partition walls is set in a high range of 50 to 80%, the strength of the honeycomb structure decreases, which is not preferable. On the other hand, if the cell wall thickness of the honeycomb structure exceeds 0.5 mm, no matter how high the porosity of the partition walls is, the ventilation resistance of the partition walls to exhaust gas becomes large, so that the pressure loss of the honeycomb filter becomes large. Is. A more preferable partition wall thickness is 0.2 to 0.4 mm. Further, if the partition wall pitch is less than 1 mm, the opening size of the flow path that opens to the exhaust gas inflow side becomes small, so the pressure loss at the inlet becomes large and the pressure loss of the honeycomb filter becomes large. This is because when the partition wall pitch exceeds 3 mm, the geometric surface area (surface area of partition wall per unit volume) becomes small, and the pressure loss of the honeycomb filter becomes large. More preferable partition pitch is 1.2 to 2.0.
mm. As described above, by setting the partition wall thickness and partition wall pitch within the preferable ranges, it becomes easier to achieve the contradictory characteristics of low pressure loss and excellent breakage resistance.
As the material for forming the partition walls and plugging material of the porous ceramic honeycomb structure, the present invention is mainly used as a filter for removing fine particles in exhaust gas of a diesel engine, so that the heat resistance is improved. It is preferable to use an excellent material, and it is preferable to use a ceramic material containing at least one selected from the group consisting of cordierite, alumina, mullite, silicon nitride, silicon carbide and LAS as a main crystal. Among them, the ceramic honeycomb filter whose main crystal is cordierite is inexpensive and heat resistant,
Most preferable because it has excellent corrosion resistance and low thermal expansion.

【0019】また、上記セラミミックハニカムフィルタ
は、目封止材の少なくとも片方の端面が凹形状とするこ
とが好ましい。目封止材の端面が凹形状であると、目封
止材の実質厚さが小さくなり、耐破損性を維持しつつ、
更に圧力損失を低減することが可能となる。すなわち、
目封止材厚さの、流路中心部を流路の隔壁側に比べて小
さくなることにより、目封止材の端面が平坦な場合に比
べて、目封止材と隔壁間の接合強度は維持されつつ、排
気ガスに対する抵抗を小さくすることができるからであ
る。目封止材の端面とは、流入側目封止材の入り口側端
面、及び流路側端面、そして流出側目封止材の出口側端
面、及び流路側端面のことを言い、これらのうち少なく
とも1箇所の端面に凹部が形成されていれば、圧力損失
を小さくする効果が認められるが、これらのうちの複数
箇所の端面に凹部が形成されていると、更にその効果は
大きくなるのである。
Further, in the ceramic honeycomb filter, it is preferable that at least one end surface of the plugging material has a concave shape. When the end surface of the plugging material is concave, the substantial thickness of the plugging material becomes small, while maintaining the damage resistance,
Further, it becomes possible to reduce the pressure loss. That is,
By reducing the thickness of the plugging material at the center of the flow path compared to the partition wall side of the flow path, the bonding strength between the plugging material and the partition wall is greater than when the end surface of the plugging material is flat. This is because the resistance to the exhaust gas can be reduced while being maintained. The end surface of the plugging material refers to the inlet side end surface of the inflow side plugging material, the flow path side end surface, and the outlet side end surface of the outflow side plugging material, and the flow path side end surface, at least of these The effect of reducing the pressure loss can be recognized if the recesses are formed at one end face, but the effect is further enhanced if the recesses are formed at a plurality of end faces among these.

【0020】次に本発明のセラミックハニカムフィルタ
に目封止する方法の一例について図2を用いて説明す
る。図2は、ハニカム構造体に目封止材を導入している
状況を示す模式断面図である。まずハニカム構造体の端
面に図2に示すようにマスキングフィルム17−1及び
17−2を配置した後、ハニカム構造体の流路に対して
交互に穿孔部17−1a及び17−2aを形成する。ま
た、セラミックスラリー12を調整し、容器18に収納
しておく。このセラミックスラリーの作成に当たって
は、所定の目封止材の気孔率を得る目的で、粒子径の大
きいセラミック原料を使用したり、造孔剤を添加する方
法等を適宜選択する。特に目封止材中に目封止材断面に
おいて略円形状の断面形状を有する細孔を形成する場合
は、球状の造孔剤、例えば樹脂製ビーズ、より好ましく
は中空樹脂製ビーズを添加し、その後の焼成過程でこの
造孔剤を燃焼除去することにより、目封止材中に断面形
状が略円形状の細孔を形成することができる。次いで、
上記のように作成したセラミックスラリー12に、ハニ
カム構造体11の端面11eを浸漬し、マスキングフィ
ルムの穿孔部穿孔部17−1aを通じて、ハニカム構造
体11にセラミックスラリー12を導入、セラミックス
ラリーが乾燥後、ハニカム構造体の他端側を同様にマス
キングフィルムの穿孔部穿孔部17−2aを通じて、ハ
ニカム構造体11にセラミックスラリー12を導入、セ
ラミックスラリーが乾燥して、マスキングフィルム17
−1,17−2を剥がす。このとき、ハニカム構造体の
セラミックスラリーへの浸積深さを調整することによ
り、3〜15mmの目封止厚さが得られる。その後、目
封止材の焼成を行い、隔壁と目封止材を一体化せしめ、
図1に示すセラミックハニカムフィルタを得る。
Next, an example of a method for plugging the ceramic honeycomb filter of the present invention will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing a situation in which a plugging material is introduced into the honeycomb structure. First, after arranging masking films 17-1 and 17-2 on the end face of the honeycomb structure as shown in FIG. 2, perforated portions 17-1a and 17-2a are alternately formed in the channels of the honeycomb structure. . Further, the ceramic slurry 12 is adjusted and stored in the container 18. In preparing the ceramic slurry, a ceramic raw material having a large particle diameter, a method of adding a pore-forming agent, or the like is appropriately selected for the purpose of obtaining a porosity of a predetermined plugging material. In particular, when forming pores having a substantially circular cross-sectional shape in the plugging material cross section in the plugging material, a spherical pore-forming agent, for example, resin beads, more preferably hollow resin beads are added. By burning and removing this pore-forming agent in the subsequent firing process, it is possible to form pores having a substantially circular cross-section in the plugging material. Then
The end surface 11e of the honeycomb structure 11 is immersed in the ceramic slurry 12 created as described above, and the ceramic slurry 12 is introduced into the honeycomb structure 11 through the perforated portion perforated portion 17-1a of the masking film, and after the ceramic slurry is dried. The ceramic slurry 12 is introduced into the honeycomb structure 11 through the perforated portion perforated portion 17-2a of the masking film on the other end side of the honeycomb structure in the same manner, the ceramic slurry is dried, and the masking film 17
Peel off -1, 17-2. At this time, a plugging thickness of 3 to 15 mm can be obtained by adjusting the depth of immersion of the honeycomb structure in the ceramic slurry. After that, the plugging material is baked to integrate the partition wall and the plugging material,
The ceramic honeycomb filter shown in FIG. 1 is obtained.

【0021】また本発明のセラミックハニカムフィルタ
は従来技術で示したように微粒子が一定量以上になると
バーナーや電気ヒーターにより微粒子を燃焼させる交互
再生方式のフィルタに適用できるのは勿論のこと、セラ
ミックハニカム構造体に担持させた触媒の作用によって
微粒子を連続的に燃焼除去する、連続再生式のセラミッ
クハニカムフィルタにも適用可能である。
Further, the ceramic honeycomb filter of the present invention can be applied not only to the alternating regeneration type filter in which the fine particles are burned by a burner or an electric heater when the fine particles become a certain amount or more as shown in the prior art, but the ceramic honeycomb filter is also available. It can also be applied to a continuously regenerating type ceramic honeycomb filter in which fine particles are continuously burned and removed by the action of the catalyst supported on the structure.

【0022】[0022]

【発明の実施の形態】以下、発明の実施の形態を詳細に
説明する。 (参考例) カオリン、タルク、シリカ、水酸化アルミ、アルミナな
どの粉末を調整して、質量比で、SiO2:47〜53
%、Al23:32〜38%、MgO:12〜16%及
びCaO、Na2O、K2O、TiO2 Fe23、Pb
O、P25などの不可避的に混入する成分を全体で2.
5%以下を含むようなコーディエライト生成原料粉末
に、成形助剤と造孔剤を5〜25質量%添加し、規定量
の水を注入して更に十分な混合を行い、ハニカム構造に
押出成形可能な坏土を調整した。そして、一般的な構造
の押出成形用金型を用い押出成形し、外周壁と、この外
周壁の内周側で壁により囲まれた断面が四角形状で、各
種の隔壁厚と隔壁の気孔率が得られるように、金型寸
法、及び造孔剤の添加量を調整してハニカム構造を有す
る各種成形体を作製し、乾燥後焼成を行い、直径150
mm×長さ150mmで、各種の隔壁厚さ及び各種の隔
壁ピッチを有し、各種気孔率を有するハニカム構造体を
作製した。次に、図示しないが、ハニカム構造体の両端
面にマスキングフィルムを接着剤で貼り付けた後、市松
模様となるように穿孔し、続いて、ハニカム構造体に目
封止を行った。まず、コージェライト化原料粉末に必要
に応じて造孔剤を添加し、水、成形助剤等を添加し、コ
ージェライト質セラミックスラリー12を作成し、スラ
リー容器18内に収納した。そして図2に示すように、
ハニカム構造体11の端面11eをセラミックスラリー
12に浸漬し、マスキングフィルム17−1及び17−
2の穿孔部17−1a及び17−2aを通じて、ハニカ
ム構造体11に目封止材12の目封止深さを変えて導入
し、その後、マスキングフィルム17−1,17−2を
剥がした。次いで、バッチ式焼成炉(図示せず)を用い
て温度制御しつつ目封止材の焼成を行い、各種気孔率の
目封止材有するセラミックハニカムフィルタ10を得
た。次に、得られたハニカムフィルタ10について、ハ
ニカム構造体11の隔壁厚(mm)、隔壁のピッチ(m
m)、隔壁11bの気孔率(%)、目封止材の気孔率
(%)、目封止厚さ(mm)、その結果を表1に示す。
なお、目封止厚さの測定は、流路の開口端部から金属製
の棒(直径0.8mm程度で、先端は糸面取り)を差し込
み、この棒の挿入深さを測定することにより、ハニカム
フィルタ全長と挿入深さとの差から求めた。また、測定
個所は図5に示すように、ハニカム構造体のX軸、及び
Y軸の直径21、22を等間隔に分割する5箇所×5箇
所計25箇所の流路に対して行い、25箇所目封止厚さ
の測定値の平均を目封止厚さとした。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. ( Reference Example ) Powders such as kaolin, talc, silica, aluminum hydroxide, and alumina are prepared, and in a mass ratio, SiO 2 : 47 to 53.
%, Al 2 O 3: 32~38 %, MgO: 12~16% , and CaO, Na 2 O, K 2 O, TiO 2, Fe 2 O 3, Pb
O., P 2 O 5 and other unavoidable components are mixed as a whole 2.
5 to 25% by mass of a molding aid and a pore-forming agent are added to a cordierite-forming raw material powder containing 5% or less, and a prescribed amount of water is injected to perform sufficient mixing to extrude the honeycomb structure. A moldable kneaded material was adjusted. Then, extrusion molding is performed using an extrusion molding die having a general structure, and the outer peripheral wall and the cross section surrounded by the wall on the inner peripheral side of the outer peripheral wall have a square shape, and various partition wall thicknesses and porosity of partition walls. In order to obtain the above, various molds having a honeycomb structure are prepared by adjusting the die size and the amount of the pore-forming agent added, dried and fired to give a diameter of 150.
A honeycomb structure having mm × length 150 mm, various partition wall thicknesses, various partition wall pitches, and various porosities was produced. Next, although not shown, masking films were attached to both end faces of the honeycomb structure with an adhesive and then perforated in a checkered pattern, and subsequently, the honeycomb structure was plugged. First, a pore-forming agent was added to the cordierite-forming raw material powder as needed, water, a molding aid, and the like were added to prepare a cordierite-based ceramic slurry 12, which was stored in the slurry container 18. And as shown in FIG.
The end surface 11e of the honeycomb structure 11 is dipped in the ceramic slurry 12, and the masking films 17-1 and 17-
Through the perforated portions 17-1a and 17-2a of No. 2, the plugging material 12 was introduced into the honeycomb structure 11 while changing the plugging depth, and then the masking films 17-1 and 17-2 were peeled off. Next, the plugging material was fired while controlling the temperature using a batch-type firing furnace (not shown) to obtain the ceramic honeycomb filter 10 having the plugging material with various porosities. Next, regarding the obtained honeycomb filter 10, the partition wall thickness (mm) of the honeycomb structure 11 and the partition wall pitch (m
m), the porosity (%) of the partition wall 11b, the porosity (%) of the plugging material, the plugging thickness (mm), and the results are shown in Table 1.
In addition, the plugging thickness is measured by inserting a metal rod (having a diameter of about 0.8 mm and a chamfered tip at the tip) from the opening end of the channel and measuring the insertion depth of this rod. It was calculated from the difference between the total length of the honeycomb filter and the insertion depth. In addition, as shown in FIG. 5, the measurement points were measured at 5 points × 5 points at a total of 25 channels that divide the diameters 21 and 22 of the X-axis and Y-axis of the honeycomb structure at equal intervals. The average of the measured values of the plugging thickness was defined as the plugging thickness.

【0023】また、以下のようにして、圧力損失及び耐
熱衝撃性の評価を行った。圧力損失試験装置(図示せ
ず)で、(b)カーボン粉を3g/hで2時間投入した
後の流入側11dと流出側11eの差圧を測定した。そ
して、400mmAq以下を合格とし(○)で、更に3
80mmAq未満の好ましい場合を優(◎)、380〜
400mmAqを良(○)、400mmAqを超えるも
のをNG(×)として評価した。耐熱衝撃性の評価は、
一定温度に加熱された電気炉中にフィルターを30分間
保持し、その後室温に急冷し、目視にてクラックが発見
された時の加熱温度と室温との温度差を耐熱衝撃温度と
して評価した。また、クラックが発見されない場合は2
5℃温度を上昇させ同様の試験を行い、クラックが発生
するまで繰り返した。試験数は各3個とし、それらの平
均値が600℃以上を合格とし(○)で、更に、650
℃以上700℃未満の好ましい場合を(◎)、700℃
以上の更に好ましい場合を優(◎◎)、600℃未満で
あった場合をNG(×)として評価した。
The pressure loss and thermal shock resistance were evaluated as follows. A pressure loss test device (not shown) was used to measure the differential pressure between the inflow side 11d and the outflow side 11e after (b) carbon powder was charged at 3 g / h for 2 hours. Then, if 400 mmAq or less is passed (○), further 3
When it is less than 80 mmAq, excellent (⊚), 380 to 380
400 mmAq was evaluated as good (◯), and those exceeding 400 mmAq were evaluated as NG (x). The evaluation of thermal shock resistance is
The filter was held for 30 minutes in an electric furnace heated to a constant temperature, then rapidly cooled to room temperature, and the temperature difference between the heating temperature when cracks were visually detected and room temperature was evaluated as the thermal shock resistance temperature. 2 if no cracks are found
The same test was conducted by increasing the temperature of 5 ° C. and repeated until a crack was generated. The number of tests is 3 for each, and the average value of those is 600 ° C or higher (passed), and 650
When the temperature is above 700 ° C and less than 700 ° C (◎), 700 ° C
The above more preferable cases were evaluated as excellent (⊚⊚), and the case of less than 600 ° C. was evaluated as NG (x).

【0024】そして、総合判定として、圧力損失及び耐
熱衝撃性のいずれも合格であるものを(○)、そのうち
両者とも(◎)の判定であった場合(◎)、圧力損失が
(◎)耐熱衝撃性が(◎◎)であったものを(◎◎)、
いずれか1つでもNGであるものを(×)で評価し、ハ
ニカムフィルタの隔壁厚、隔壁の気孔率、目封止材の気
孔率、目封止深さと、圧力損失評価結果及び耐熱衝撃性
を、表1にまとめて示す。
Then, as a comprehensive judgment, those which passed both pressure loss and thermal shock resistance (○), when both of them were judged as (◎) (◎), the pressure loss was (◎) heat resistance. If the impact resistance was (◎◎) (◎◎),
If any one of them is NG, it is evaluated by (×), and the partition wall thickness of the honeycomb filter, the partition wall porosity, the plugging material porosity, the plugging depth, the pressure loss evaluation result, and the thermal shock resistance. Are summarized in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】 表1から、参考例である試験NO.1〜
7のハニカムフィルタは、隔壁厚が0.1〜0.5m
m、セル壁の気孔率が50〜80%、目封止材の気孔率
が隔壁の気孔率より大きく、目封止厚さが3〜15mm
であるため、圧力損失及び耐熱衝撃性の評価が良好で、
総合判定は(○)であった。特に、試験NO.4〜7は
目封止材の気孔率が70〜90%のより好適な範囲にあ
るため圧力損失の評価が(◎)であった。一方、比較例
である試験NO.8のハニカムフィルタは、目封止厚さ
が3mm未満であるので耐熱衝撃性が低下し総合判定は
(×)であった。比較例である試験NO.9のハニカム
フィルタは、隔壁の気孔率が50%未満であり、目封止
材の気孔率がセル壁の気孔率より小さいため、圧力損失
が大きくなり、総合判定は(×)であった。比較例であ
る試験NO.10のハニカムフィルタは隔壁の気孔率は
50〜80%の範囲であるが、目封止材の気孔率が隔壁
の気孔率より小さいため、圧力損失が大きくなるのとと
もに、耐熱衝撃性も低下し、総合判定は(×)であっ
た。比較例である試験NO.11のハニカムフィルタ
は、隔壁の気孔率が80%を越えているので、耐熱衝撃
性が低下し、総合判定は(×)であった。比較例である
試験NO.12及び試験NO.13のハニカムフィルタ
は、目封止深さが15mmを超えており、フィルタ面積
が小さくなったため、圧力損失が大きくなり、総合判定
は(×)であった。
[0026] From Table 1, it is a reference example test NO. 1 to
The honeycomb filter of No. 7 has a partition wall thickness of 0.1 to 0.5 m.
m, the porosity of the cell wall is 50 to 80%, the porosity of the plugging material is larger than the porosity of the partition wall, and the plugging thickness is 3 to 15 mm.
Therefore, the evaluation of pressure loss and thermal shock resistance is good,
The overall judgment was (○). In particular, the test NO. In Nos. 4 to 7, the porosity of the plugging material was in the more preferable range of 70 to 90%, and therefore the evaluation of the pressure loss was (⊚). On the other hand, in the honeycomb filter of Test No. 8 which is a comparative example, the plugging thickness was less than 3 mm, so the thermal shock resistance was lowered and the overall judgment was (x). Test No. as a comparative example. In the honeycomb filter of No. 9, since the partition walls had a porosity of less than 50% and the plugging material had a porosity smaller than that of the cell walls, the pressure loss was large, and the overall judgment was (x). Test No. as a comparative example. In the honeycomb filter of No. 10, the partition wall porosity is in the range of 50 to 80%, but since the porosity of the plugging material is smaller than the partition wall porosity, the pressure loss increases and the thermal shock resistance also decreases. The overall judgment was (x). Test No. as a comparative example. Since the honeycomb filter of No. 11 had a partition wall porosity of more than 80%, the thermal shock resistance was lowered, and the overall judgment was (x). Test No. as a comparative example. 12 and test NO. The honeycomb filter of No. 13 had a plugging depth of more than 15 mm and the filter area was small, so the pressure loss was large and the overall judgment was (x).

【0027】 (実施例参考例 と同様の方法にて、直径150mm×長さ150
mm、隔壁のピッチ1.5mm、隔壁11b厚さ0.3
mmの隔壁構造を有し、隔壁の気孔率が65%、目封止
材の気孔率が78%、目封止厚さが10mmであるコー
ジェライト質セラミックハニカムフィルタ10を作製し
た。但し、試験NO.14〜17の目封止材を形成する
際のコージェライト質セラミックスラリー12を作成す
る際には、コージェライト化原料粉末に球状造孔剤であ
るメチルメタクルレート−アクリロニトリル共重合体樹
脂製ビーズをその添加量を変えて添加し、更に水、成形
助剤等を添加、混合して得た。次に、得られたハニカム
フィルタ10について、目封止材の任意断面における細
孔の形態の測定を行った。ここで目封止材の任意断面に
おける細孔の形態の測定は、ハニカムフィルタの流路方
向に添った断面で研磨を行った上で、SEM観察を行
い、SEM像から目視にて略円形状の細孔の有無を確認
した。更に上記SEM像に対して画像解析により細孔の
アスペクト比を測定し、断面積が1000μm2以上で
ある細孔のうち、アスペクト比が2以下の細孔の割合を
算出した。上記アスペクト比の測定は、SEM像の画像
データに対し、市販の画像解析ソフトウェア(メディア
サイバネティクス社製イメージプロプラス ヴァージョ
ン3.0)により解析を行い、任意断面の細孔形状の相
当楕円の長軸と短軸の比(長軸/短軸)で表した。ま
た、上記セラミックハニカムフィルタに対して、参考例
と同様の方法により、圧力損失及び耐熱衝撃性の評価を
行った。
Example 1 In the same manner as the reference example , diameter 150 mm × length 150
mm, partition wall pitch 1.5 mm, partition wall 11b thickness 0.3
A cordierite ceramic honeycomb filter 10 having a partition wall structure of mm, a partition wall porosity of 65%, a plugging material porosity of 78%, and a plugging thickness of 10 mm was produced. However, the test No. When the cordierite-based ceramic slurry 12 for forming the plugging materials 14 to 17 is prepared, the cordierite-forming raw material powder is made of methylmethacrylate-acrylonitrile copolymer resin beads which are spherical pore forming agents. Was added by changing its addition amount, and water, a molding aid, etc. were further added and mixed to obtain. Next, in the obtained honeycomb filter 10, the morphology of pores in an arbitrary cross section of the plugging material was measured. Here, the morphology of the pores in an arbitrary cross section of the plugging material is measured by polishing the cross section along the flow path of the honeycomb filter and then observing with a SEM, and visually observing a substantially circular shape from the SEM image. The presence or absence of pores was confirmed. Further, the aspect ratio of the pores was measured on the SEM image by image analysis, and the ratio of the pores having the aspect ratio of 2 or less was calculated among the pores having the cross-sectional area of 1000 μm 2 or more. The measurement of the aspect ratio is carried out by analyzing commercially available image analysis software (Image Proplus version 3.0 manufactured by Media Cybernetics Co., Ltd.) with respect to the image data of the SEM image, and the major axis of the ellipse corresponding to the pore shape of an arbitrary cross section. And the ratio of the minor axis (major axis / minor axis). Further, the pressure loss and the thermal shock resistance of the ceramic honeycomb filter were evaluated by the same method as in the reference example .

【0028】[0028]

【表2】 [Table 2]

【0029】試験NO14〜17のハニカムフィルタ
は、目封止材中に断面形状が略円形状の細孔が存在する
ことから、低圧力損失特性を示すと共に、特に耐熱衝撃
性に優れており、耐熱衝撃性の評価はいずれも(◎)或
いは(◎◎)となったため、総合判定は(◎)或いは
(◎◎)となった。特に試験NO16及び17のハニカ
ムフィルタは、目封止材の任意断面において、断面積が
1000μm2以上である細孔のうち、アスペクト比が
2以下の細孔の割合が20%以上であることから、耐熱
衝撃性の評価は(◎◎)となり、総合判定も(◎◎)で
あった。一方、試験NO.18、19のハニカムフィル
タは、目封止材中に断面形状が略円形状の細孔が存在し
ないことから、耐熱衝撃性の判定が(○)となり、総合
判定は(○)となった。
Since the honeycomb filters of Test Nos. 14 to 17 have pores having a substantially circular cross section in the plugging material, they exhibit low pressure loss characteristics and are particularly excellent in thermal shock resistance. Since the thermal shock resistance was evaluated as (◎) or (◎◎), the overall judgment was (◎) or (◎◎). In particular, in the honeycomb filters of Test Nos. 16 and 17, the ratio of the pores having the aspect ratio of 2 or less is 20% or more in the pores having the cross-sectional area of 1000 μm 2 or more in the arbitrary cross section of the plugging material. The evaluation of thermal shock resistance was (◎◎), and the overall judgment was (◎◎). On the other hand, the test NO. Since the honeycomb filters of Nos. 18 and 19 did not have pores having a substantially circular cross section in the plugging material, the thermal shock resistance was judged as (◯), and the comprehensive judgment was (◯).

【0030】 (実施例参考例 と同様の方法にて、直径150mm×長さ150
mm、隔壁のピッチ1.5mm、隔壁11b厚さ0.3
mmの隔壁構造を有し、隔壁の気孔率が65%、目封止
材の気孔率が60%、目封止厚さが10mmであるコー
ジェライト質セラミックハニカムフィルタ10を作製し
た。ここで、試験NO.20〜23の目封止材を形成す
る際のコージェライト質セラミックスラリー12を作成
する際には、実施例と同様にコージェライト化原料粉
末に球状造孔剤であるメチルメタクルレート−アクリロ
ニトリル共重合体樹脂製ビーズをその添加量を変えて添
加し、更に水、成形助剤等を添加、混合して得た。次
に、得られたハニカムフィルタ10について、目封止材
の任意断面における細孔の形態の測定を、実施例と同
様に行った。また、上記セラミックハニカムフィルタに
対して、参考例と同様の方法により、圧力損失及び耐熱
衝撃性の評価を行った。
Example 2 By the same method as the reference example , diameter 150 mm × length 150
mm, partition wall pitch 1.5 mm, partition wall 11b thickness 0.3
A cordierite ceramic honeycomb filter 10 having a partition wall structure of mm, a partition wall porosity of 65%, a plugging material porosity of 60%, and a plugging thickness of 10 mm was produced. Here, the test NO. When the cordierite-based ceramic slurry 12 for forming the plugging materials of 20 to 23 is prepared, the cordierite-forming raw material powder is mixed with methylmethacrylate-acrylonitrile, which is a spherical pore-forming agent, in the same manner as in Example 1. Copolymer resin beads were added in various amounts, and water, a molding aid and the like were further added and mixed to obtain a mixture. Next, in the obtained honeycomb filter 10, the morphology of pores in an arbitrary cross section of the plugging material was measured in the same manner as in Example 1 . The pressure loss and thermal shock resistance of the ceramic honeycomb filter were evaluated by the same method as in the reference example .

【表3】 試験NO20〜23のハニカムフィルタは、目封止材中
に断面形状が略円形状の細孔が存在することから、低圧
力損失特性を示すと共に、特に耐熱衝撃性に優れてお
り、耐熱衝撃性の評価はいずれも(○)或いは(◎)と
なったため、総合判定は(○)或いは(◎)となった。
特に試験NO22及び23のハニカムフィルタは、目封
止材の任意断面において、断面積が1000μm2以上
である細孔のうち、アスペクト比が2以下の細孔の割合
が20%以上であることから、耐熱衝撃性の評価は
(◎)となり、総合判定も(◎)であった。一方、試験
NO.24、25のハニカムフィルタは、目封止材中に
断面形状が略円形状の細孔が存在しないことから、耐熱
衝撃性の判定が(×)となり、総合判定は(×)となっ
た。
[Table 3] The honeycomb filters of Test Nos. 20 to 23 show low pressure loss characteristics because of the presence of pores having a substantially circular cross section in the plugging material, and also have particularly excellent thermal shock resistance, and thermal shock resistance. Since each of the evaluations was (○) or (⊚), the overall judgment was (∘) or (⊚).
In particular, in the honeycomb filters of Test Nos. 22 and 23, the ratio of the pores having the aspect ratio of 2 or less is 20% or more in the pores having the cross-sectional area of 1000 μm 2 or more in the arbitrary cross section of the plugging material. The evaluation of thermal shock resistance was (◎), and the overall judgment was (◎). On the other hand, the test NO. Since the honeycomb filters of Nos. 24 and 25 did not have pores having a substantially circular cross-section in the plugging material, the thermal shock resistance was judged as (x) and the comprehensive judgment was (x).

【0031】[0031]

【発明の効果】以上詳細に説明のとおり、本発明のハニ
カムフィルタは、圧力損失が小さく、耐熱衝撃性が良好
で、フィルタ再生時の熱衝撃によるクラックの発生や溶
損を防止することができる。
As described above in detail, the honeycomb filter of the present invention has a small pressure loss and a good thermal shock resistance, and can prevent the generation of cracks and melting loss due to the thermal shock at the time of filter regeneration. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態でのハニカムフィルタの模式断面図
である。
FIG. 1 is a schematic cross-sectional view of a honeycomb filter according to an embodiment.

【図2】ハニカム構造体に目封止材を導入している状況
を示す模式断面図である。
FIG. 2 is a schematic cross-sectional view showing a situation in which a plugging material is introduced into the honeycomb structure.

【図3】従来のハニカムフィルタの斜視図である。FIG. 3 is a perspective view of a conventional honeycomb filter.

【図4】図3のハニカムフィルタの模式断面図である。FIG. 4 is a schematic cross-sectional view of the honeycomb filter of FIG.

【図5】ハニカムフィルタの目封止厚さの測定個所を示
す図である。
FIG. 5 is a diagram showing measurement points of a plugging thickness of a honeycomb filter.

【符号の説明】[Explanation of symbols]

10、50:ハニカムフィルタ 50a:流入 50b:流出 11、51:ハニカム構造体 11a、51a:外周壁 11b、51b:隔壁 11c、51c:流路 11d、51d:流入側端面 11e、51e:流出側端面 12a、12b、51a、51b:目封止材 17−1,17−2:マスキングフィルム 17−1a,17−2a:穿孔部 18:スラリー容器 21:Y軸の直径 23:X軸の直径 10, 50: Honeycomb filter 50a: Inflow 50b: Outflow 11, 51: Honeycomb structure 11a, 51a: outer peripheral wall 11b, 51b: partition walls 11c, 51c: flow path 11d, 51d: Inflow end face 11e, 51e: Outflow end face 12a, 12b, 51a, 51b: plugging material 17-1, 17-2: Masking film 17-1a, 17-2a: Perforated part 18: Slurry container 21: Y-axis diameter 23: X-axis diameter

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排気ガスに含まれる微粒子を除去するフ
ィルタであって、セラミックハニカム構造体の両端の所
望部位を、目封止材により目封止した形態のセラミック
ハニカムフィルタにおいて、前記セラミックハニカム構
造体の隔壁の気孔率が50〜80%、前記目封止材の気
孔率が隔壁の気孔率より大きく、目封止厚さが3〜15
mmであり、目封止材の任意断面における細孔の断面形
状の少なくとも一部が略円形状であり、断面積が100
0μm 2 以上である細孔のうちアスペクト比が2以下の
細孔の割合が20%以上であることを特徴とするセラミ
ックハニカムフィルタ。
1. A ceramic honeycomb filter for removing fine particles contained in exhaust gas, wherein desired portions on both ends of a ceramic honeycomb structure are plugged with a plugging material. The partition wall of the body has a porosity of 50 to 80%, the plugging material has a porosity higher than that of the partition wall, and a plugging thickness of 3 to 15
mm der is, cross-sectional shape of pores in an arbitrary cross section of the plugging material
At least a part of the shape is substantially circular and has a cross-sectional area of 100
Of the pores of 0 μm 2 or more, the aspect ratio is 2 or less
Ceramic honeycomb filters proportion of pores, characterized in der Rukoto 20% or more.
【請求項2】 前記ハニカム構造体の隔壁壁厚が0.1
〜0.5mm、隔壁のピッチが1〜3mmであることを
特徴とする請求項1記載のセラミックハニカムフィル
タ。
2. The partition wall thickness of the honeycomb structure is 0.1.
To 0.5 mm, the ceramic honeycomb filter according to claim 1, wherein the pitch of the partition walls is characterized by a 1 to 3 mm.
JP2002350849A 2001-12-03 2002-12-03 Ceramic honeycomb filter Expired - Lifetime JP3506334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350849A JP3506334B2 (en) 2001-12-03 2002-12-03 Ceramic honeycomb filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-368807 2001-12-03
JP2001368807 2001-12-03
JP2002350849A JP3506334B2 (en) 2001-12-03 2002-12-03 Ceramic honeycomb filter

Publications (2)

Publication Number Publication Date
JP2003236322A JP2003236322A (en) 2003-08-26
JP3506334B2 true JP3506334B2 (en) 2004-03-15

Family

ID=27790419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350849A Expired - Lifetime JP3506334B2 (en) 2001-12-03 2002-12-03 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP3506334B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439236B2 (en) 2003-10-23 2010-03-24 イビデン株式会社 Honeycomb structure
JP4767491B2 (en) * 2003-12-11 2011-09-07 日本碍子株式会社 Honeycomb structure
JP4526276B2 (en) * 2004-02-10 2010-08-18 株式会社キャタラー Method for analyzing filter catalyst and catalyst layer thereof
JP4673035B2 (en) * 2004-10-25 2011-04-20 日本碍子株式会社 Ceramic honeycomb structure
JP4666593B2 (en) * 2005-03-28 2011-04-06 日本碍子株式会社 Honeycomb structure
JP2007010492A (en) * 2005-06-30 2007-01-18 Hitachi Metals Ltd Ceramic honeycomb filter inspection method
CN100529341C (en) * 2005-10-12 2009-08-19 揖斐电株式会社 Honeycomb unit and honeycomb structured body
CN101389392B (en) * 2006-08-30 2011-04-13 日立金属株式会社 Ceramic honeycomb filter
JP5328174B2 (en) * 2008-02-20 2013-10-30 日本碍子株式会社 Plugged honeycomb structure
JP5829840B2 (en) * 2011-06-17 2015-12-09 日本碍子株式会社 Exhaust gas purification filter
JP6492495B2 (en) 2014-01-27 2019-04-03 株式会社デンソー Exhaust gas purification filter and manufacturing method thereof
WO2016111287A1 (en) * 2015-01-09 2016-07-14 株式会社デンソー Exhaust gas filter
JP6451615B2 (en) * 2015-01-09 2019-01-16 株式会社デンソー Exhaust gas filter
CN112368465B (en) * 2018-05-04 2022-09-30 康宁股份有限公司 High-balanced-strength honeycomb structure and extrusion die head for same
JP2020060163A (en) * 2018-10-12 2020-04-16 イビデン株式会社 Honeycomb structure
JP7304187B2 (en) * 2019-03-29 2023-07-06 日本碍子株式会社 honeycomb filter

Also Published As

Publication number Publication date
JP2003236322A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
JP3506334B2 (en) Ceramic honeycomb filter
JP5444716B2 (en) Ceramic honeycomb filter and manufacturing method thereof
EP1491734B1 (en) Ceramic honeycomb filter
JP3288536B2 (en) Exhaust gas filter and exhaust gas treatment device using the same
EP1184066B1 (en) Exhaust gas purifying filter
JP5315997B2 (en) Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
KR101894341B1 (en) Ceramic honeycomb structure and process for producing same
JP4737594B2 (en) Ceramic honeycomb filter
JP5195416B2 (en) Ceramic honeycomb filter and exhaust gas purification device
JPWO2005002709A1 (en) Honeycomb structure
JP2003269132A (en) Exhaust emission control filter
US8053054B2 (en) Honeycomb structure
JP5218056B2 (en) Ceramic honeycomb filter
JP4577752B2 (en) Ceramic honeycomb filter
JP2003001029A (en) Porous ceramic honeycomb filter
JP2005095884A (en) Ceramic honeycomb structure and body for ceramic honeycomb structure extrusion molding
JP4900820B2 (en) Ceramic honeycomb filter
JP4735917B2 (en) Ceramic honeycomb filter
JPH0929024A (en) Exhaust gas filter
JP4600826B2 (en) Ceramic honeycomb filter
CN110314450B (en) Ceramic porous body, method for producing same, and filter for dust collection
JP2005324154A (en) Ceramic honeycomb structure
JP2021133283A (en) Honeycomb filter
JPH09299730A (en) Waste gas filter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031211

R150 Certificate of patent or registration of utility model

Ref document number: 3506334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

EXPY Cancellation because of completion of term