WO2016111287A1 - Exhaust gas filter - Google Patents

Exhaust gas filter Download PDF

Info

Publication number
WO2016111287A1
WO2016111287A1 PCT/JP2016/050113 JP2016050113W WO2016111287A1 WO 2016111287 A1 WO2016111287 A1 WO 2016111287A1 JP 2016050113 W JP2016050113 W JP 2016050113W WO 2016111287 A1 WO2016111287 A1 WO 2016111287A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
cell
gas filter
sample
hole
Prior art date
Application number
PCT/JP2016/050113
Other languages
French (fr)
Japanese (ja)
Inventor
悠登 丹羽
周作 山村
石原 幹男
崇生 三島
真吾 中田
藤井 宏明
好太 山越
晶 宮下
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015239637A external-priority patent/JP6451615B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680005165.5A priority Critical patent/CN107109978B/en
Priority to DE112016000299.8T priority patent/DE112016000299B4/en
Priority to US15/542,215 priority patent/US10569207B2/en
Publication of WO2016111287A1 publication Critical patent/WO2016111287A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous

Definitions

  • the present invention relates to an exhaust gas filter for purifying exhaust gas of an internal combustion engine such as a gasoline engine or a diesel engine.
  • An exhaust gas purification device that collects particulate matter (PM) contained in exhaust gas is provided in an exhaust pipe of an internal combustion engine such as a gasoline engine or a diesel engine.
  • This exhaust gas purification apparatus includes an exhaust gas filter for collecting particulate matter contained in exhaust gas (Patent Documents 1 and 2).
  • the exhaust gas filter of the exhaust gas purification apparatus disclosed in Patent Documents 1 and 2 has a plurality of cell walls and cell holes formed surrounded by the cell walls. As the cell hole, there are a plugged cell hole whose upstream end is closed by a plug part and an open cell hole in which no plug part is provided.
  • Patent Document 1 discloses an exhaust gas purification device in which a plurality of exhaust gas filters are mounted in series in order to improve the collection performance.
  • the exhaust gas filters of Patent Documents 1 and 2 have the following problems.
  • the exhaust gas filters of Patent Documents 1 and 2 transmit exhaust gas to the cell wall using a pressure difference caused by pressure loss in the open cell hole, pressure loss in the plugged cell hole, and pressure loss due to passage resistance in the cell wall. I am letting. Therefore, if a sufficient pressure difference cannot be generated in the exhaust gas filter, the exhaust gas flowing into the open cell hole is discharged from the exhaust gas filter without passing through the cell wall. Therefore, the collection performance of the particulate matter in the exhaust gas filter is lowered.
  • the flow path cross-sectional areas of the open cell hole and the plugged cell hole are equal. Therefore, the exhaust gas filter has a small difference between the pressure loss of the open cell hole and the pressure loss of the plugged cell hole, and cannot exhibit sufficient collection performance.
  • the exhaust gas purification apparatus described in Patent Document 1 has a plurality of exhaust gas filters arranged in series, the ease of mounting on a vehicle is likely to deteriorate. That is, the exhaust gas purification device can be mounted only on a vehicle that can mount a plurality of exhaust gas filters in series on an exhaust pipe. In addition, the exhaust gas purification device tends to increase pressure loss.
  • the present invention has been made in view of such a background, and suppresses an increase in pressure loss and a decrease in mountability on a vehicle, and particulates contained in exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine. It is an object of the present invention to provide an exhaust gas filter that improves the substance collection performance, has an excellent exhaust gas purification performance, reduces pressure loss, and has excellent mountability in a vehicle.
  • a first aspect of the present invention is an exhaust gas filter that purifies exhaust gas containing particulate matter discharged from an internal combustion engine, and has a plurality of cell walls and a plurality of cell holes surrounded by the cell walls.
  • the cell wall has a pore communicating between adjacent cell holes, and the cell hole includes an open cell hole penetrating in the axial direction of the exhaust gas filter and a plug portion closing the upstream end.
  • the total length L (base material length L) of the catalyst is not less than the first reference value L1 determined by the following formula (1) and not more than the critical length Lm (blow-through critical length Lm) determined by the following formula (M).
  • the exhaust gas filter is characterized in that.
  • L1 ⁇ 3.7 ⁇ Rs 1.5 ⁇ 3.6 / w + 9.7 / k ⁇ 152.9 ⁇ C + 2241.5 / ⁇ + 145.1
  • Lm ⁇ 5.5 ⁇ Rs 1.5 ⁇ 6.0 / w + 44.9 / k ⁇ 234.9 ⁇ C + 176.7 / ⁇ + 255.6 (formula (M))
  • a second aspect of the present invention is an exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine, and is surrounded by a plurality of cell walls (2) and the cell walls (2).
  • a plurality of cell holes (3), the cell wall (2) has pores communicating between adjacent cell holes (3), and the cell holes (3) are provided in the exhaust gas filter.
  • the flow path cross-sectional area S2 in the plugged cell hole (32) is larger than the flow path cross-sectional area S1 in the open cell hole (31), and the thickness of the cell wall (2) is w (mm), the exhaust gas permeability coefficient k ( ⁇ m 2), a cell density C (pieces / mm 2), the exhaust gas filter (1
  • the total length L (base material length L) of the exhaust gas filter (1) is
  • the exhaust gas filter (1) is characterized by being not less than the second reference value L2 determined by 2) and not more than the critical length Lm (blow-through critical length Lm) determined by the following formula (M).
  • a third aspect of the present invention is an exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine, and is surrounded by a plurality of cell walls (2) and the cell walls (2).
  • a plurality of cell holes (3), the cell wall (2) has pores communicating between adjacent cell holes (3), and the cell holes (3) are provided in the exhaust gas filter.
  • the flow path cross-sectional area S2 in the plugged cell hole (32) is larger than the flow path cross-sectional area S1 in the open cell hole (31), and the thickness of the cell wall (2) is w (mm), the exhaust gas permeability coefficient k ( ⁇ m 2), a cell density C (pieces / mm 2), the exhaust gas filter (1
  • the total length L (base material length L) of the exhaust gas filter (1) is
  • the exhaust gas filter (1) is characterized by being not less than a third reference value L3 determined by 3) and not more than a critical length Lm (blow-through critical length Lm) determined by the following equation (M).
  • the critical length Lm (blow-through critical length Lm) described in the first, second, and third aspects of the present invention is the total length L at which the increase in the collection rate accompanying the increase in the exhaust gas filter total length L does not occur.
  • the collection rate refers to the ratio of the number of particulate matter contained in the exhaust gas discharged from the exhaust gas filter to the number of particulate matter contained in the exhaust gas introduced into the exhaust gas filter.
  • the exhaust gas filter according to the first to third aspects has the open cell hole and the plugged cell hole as the cell hole as described above. Therefore, exhaust gas can be efficiently circulated through the pores formed in the cell wall, and the purification performance of the exhaust gas filter can be improved.
  • the pressure loss in the open cell hole is larger than the pressure loss in the plugged cell hole.
  • the pressure difference between the pressure in the open cell hole and the pressure in the plugged cell hole becomes large.
  • the exhaust gas flowing into the open cell holes can be efficiently circulated through the pores to the plugged cell holes.
  • the pressure difference between the open cell hole and the plugged cell hole becomes smaller from the upstream side to the downstream side of the exhaust gas filter, but in the range where the pressure difference is generated, the exhaust gas to the pores is reduced. Distribution continues. Therefore, as described above, by increasing the pressure difference between the open cell hole and the plugged cell hole, the exhaust gas can permeate the cell wall in a wider range of the exhaust gas filter. Thereby, the particulate matter contained in the exhaust gas can be efficiently collected.
  • the plug portion is disposed at an upstream end portion of the plugged cell hole. Therefore, Ash (ash content such as calcium compounds) contained in the exhaust gas together with the particulate matter can be discharged from the exhaust gas filter. Since Ash cannot be removed by combustion, for example, in an exhaust gas filter in which the plug is disposed at the downstream end of the plugged cell hole, Ash is accumulated in the interior. On the other hand, in the exhaust gas filter, when the exhaust gas permeates the cell wall, it is separated by the cell wall, and Ash remains in the open cell hole. Since the open cell hole penetrates in the axial direction, the Ash can be easily discharged from the open cell hole, and the Ash can be prevented from remaining in the exhaust gas filter. Thereby, the fall of the purification performance in the said exhaust gas filter can be suppressed.
  • Ash ash content such as calcium compounds
  • the exhaust gas filter of the first aspect has a total length L (base material length L) equal to or greater than the first reference value L1 determined by the above formula (1). Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter.
  • the exhaust gas filter of the second aspect has a total length L (base material length L) equal to or greater than a second reference value L2 determined by the above formula (2). Therefore, the collection rate of the exhaust gas filter can be ensured to be 50% or more, which exceeds the collection rate generally required in a vehicle equipped with a gasoline engine, and high purification performance can be obtained.
  • the exhaust gas filter of the third aspect has a total length L (base material length L) equal to or greater than a third reference value L3 determined by the above formula (3). Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter.
  • the exhaust gas filter according to the first to third aspects has a total length L (base material length L) equal to or shorter than the critical length Lm (blow-through critical length Lm) determined by the above equation (M).
  • This critical length Lm (blow-through critical length Lm) is the full length L at which the collection rate starts to increase with the increase in the exhaust gas filter overall length L, and the collection rate is included in the exhaust gas introduced into the exhaust gas filter.
  • the critical length Lm and the collection rate will be described in the following examples. Therefore, an increase in the pressure loss of the exhaust gas filter and an increase in the size of the exhaust gas filter can be effectively suppressed.
  • the total length (base material length) of the exhaust gas filter is longer than the critical length Lm, the exhaust gas flowing through the open cell holes is discharged without passing through the cell walls. In addition, waste is increased due to the relationship between the pressure loss and the mountability of the exhaust gas filter. Therefore, by setting the total length (base material length) of the exhaust gas filter to the critical length Lm or less determined by the above formula (M), it is possible to effectively suppress an increase in pressure loss and an increase in size of the exhaust gas filter.
  • an exhaust gas filter capable of improving the collection performance of particulate matter and improving the purification performance while suppressing an increase in pressure loss and a decrease in mountability on a vehicle. Can be provided.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2.
  • Explanatory drawing which shows an example of the exhaust gas filter in Example 1 of this invention.
  • the diagram which shows the outline of the relationship between the base material length in Example 1 of this invention, ie, the full length of an exhaust gas filter, and a collection rate.
  • Example 3 of this invention The diagram which shows the outline of the relationship between the base material length in Example 3 of this invention, ie, the full length of an exhaust gas filter, and a collection rate.
  • Explanatory drawing which shows the exhaust gas filter in Example 4 of this invention.
  • Explanatory drawing which shows the shape of the exhaust gas filter in the confirmation test 1 of this invention.
  • the graph which shows the relationship between the permeation
  • S1 is 1.1 ⁇ Rs ⁇ 5
  • the base material length L of the exhaust gas filter (hereinafter, the base material length L is used, but the total length L of the exhaust gas filter) is 35 mm ⁇ L ⁇ 270 mm. It is preferable that In this case, a pressure difference between the open cell hole and the plugged cell hole can be reliably generated, and the exhaust gas can be reliably circulated through the pore formed in the cell wall.
  • the base material length L is determined within the range of 35 mm to 270 mm in accordance with the flow path cross-sectional area ratio Rs between the plugged cell hole and the open cell hole, thereby increasing the pressure loss of the exhaust gas filter. It is possible to improve the collection performance of the exhaust gas filter while suppressing it.
  • Rs is less than 1.1, the pressure difference becomes small, the permeation amount of the exhaust gas that permeates the cell wall decreases, and sufficient purification performance may not be exhibited.
  • Rs exceeds 5 the area of the cell wall constituting the open cell hole, that is, the filtration area tends to be small. Along with this, the cell hole may be blocked during the deposition of the particulate matter, and the pressure loss may become excessive.
  • the flow path cross-sectional area ratio Rs is more preferably 1.1 ⁇ Rs ⁇ 2.5.
  • Rs is larger than 2.5, the pressure loss of the exhaust gas filter may be excessive. Therefore, when the substrate length is increased, the effect of improving the collection performance may be reduced with respect to the increase in pressure loss of the exhaust gas filter.
  • L is less than 35 mm, the substrate length becomes too short with respect to the substrate diameter, and it may be difficult to attach the exhaust gas filter to the exhaust pipe.
  • L exceeds 270 mm the exhaust gas permeates through the cell holes, thereby generating a region where there is no pressure difference between the open cell holes and the plugged cell holes. More preferably, the exhaust gas filter has a substrate length L of 55 mm ⁇ L ⁇ 220 mm.
  • the cell hole is composed of an octagonal cell hole with an inner peripheral shape and a square cell hole with an inner peripheral shape, and the hydraulic diameter of the octagonal cell hole is greater than the hydraulic diameter of the square cell hole. It is preferable that the octagonal cell holes and the square cell holes are alternately arranged. In this case, the difference between the hydraulic diameter of the octagonal cell hole and the hydraulic diameter of the square cell hole can be increased. Thereby, for example, when the octagonal cell hole is appropriately allocated as a plugged cell hole and the square cell hole is appropriately allocated as the open cell hole, the plugged cell hole and the open cell hole can be adjacent to each other. And the pressure difference between the plugged cell hole and the open cell hole can be effectively increased.
  • the cell shape is preferably a shape having a large hydraulic diameter from the viewpoint of pressure loss of the exhaust gas filter. Accordingly, making the cell holes triangular, for example, tends to increase the pressure loss of the exhaust gas filter. From the above viewpoint, the purification performance can be improved efficiently by alternately forming the octagonal cell holes and the square cell holes.
  • the porosity of the cell wall is not particularly limited, but is preferably 50 to 80%, and more preferably 50 to 65%.
  • the porosity is less than 50%, the exhaust gas containing particulate matter is difficult to permeate the cell wall (that is, the exhaust gas permeability coefficient of the cell wall is likely to decrease). Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered.
  • the porosity is larger than 65%, the strength of the exhaust gas filter tends to decrease, and there is a concern that it becomes difficult to attach the exhaust gas filter to the exhaust pipe.
  • the porosity of the cell wall can be measured with a mercury porosimeter.
  • the average pore diameter of the cell wall is not particularly limited, but is preferably 5 to 30 ⁇ m, and more preferably 10 to 25 ⁇ m.
  • the average pore diameter is smaller than 10 ⁇ m, the exhaust gas containing particulate matter is difficult to permeate the cell wall (that is, the exhaust gas permeability coefficient of the cell wall is likely to decrease). Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered.
  • the average pore diameter is larger than 25 ⁇ m, the strength of the exhaust gas filter tends to decrease, and there is a concern that it is difficult to attach the exhaust gas filter to the exhaust pipe.
  • the average pore diameter of the cell wall can be measured with a mercury porosimeter.
  • the thickness w (mm) of the cell wall is preferably 0.10 ⁇ w ⁇ 0.50, and more preferably 0.13 ⁇ w ⁇ 0.47 mm. If the thickness w is less than 0.13 mm, the strength of the exhaust gas filter tends to decrease, and there is a concern that it will be difficult to attach the exhaust gas filter to the exhaust pipe. If the thickness w is greater than 0.47 mm, the exhaust gas containing particulate matter will not easily pass through the cell walls. Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered.
  • the cell density C (cells / mm 2 ) is preferably 0.30 ⁇ C ⁇ 0.70, and more preferably 0.31 ⁇ C ⁇ 0.62. If the cell density C is less than 0.31 cells / mm 2 , the difference in hydraulic diameter between the plugged cell hole and the open cell hole tends to be relatively small. Therefore, the pressure difference between the plugged cell hole and the open cell hole tends to be small, and the exhaust gas containing particulate matter is difficult to permeate the cell wall. Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered. When the cell density C is larger than 0.62 cells / mm 2 , the hydraulic diameter of the cell holes becomes too small, and the pressure loss may increase.
  • the outer diameter ⁇ (mm) of the exhaust gas filter is preferably 60 ⁇ ⁇ ⁇ 160, and more preferably 80 ⁇ ⁇ ⁇ 150.
  • the outer diameter ⁇ is smaller than 80 mm, the area of all the cell holes as viewed from the axial direction of the exhaust gas filter, that is, the area of the entire flow path becomes small, and the pressure loss of the exhaust gas filter may increase. If the outer diameter ⁇ is larger than 150 mm, the mounting property of the exhaust gas filter on the exhaust pipe may be lowered.
  • the exhaust gas permeability coefficient k ( ⁇ m 2 ) of the cell wall is preferably 0.1 ⁇ k ⁇ 2.0, and more preferably 0.3 ⁇ k ⁇ 1.1. It is known that the exhaust gas permeability coefficient k of the cell wall is strongly influenced by the porosity and the average pore diameter. When the exhaust gas permeability coefficient k is smaller than 0.3 ⁇ m 2 , the porosity and average pore diameter are likely to be small, and the exhaust gas containing particulate matter is difficult to permeate the cell wall, and accordingly, the trapping performance tends to be lowered. It is considered to be. When the exhaust gas permeability coefficient k is larger than 1.1 ⁇ m 2 , the porosity and average pore diameter are likely to increase, and the strength of the exhaust gas filter tends to decrease.
  • Example 1 of the exhaust gas filter will be described with reference to FIGS. As shown in FIGS. 1 to 3, the exhaust gas filter 1 purifies exhaust gas containing particulate matter discharged from an internal combustion engine.
  • the exhaust gas filter 1 has a plurality of cell walls 2 and a plurality of cell holes 3 surrounded by the cell walls 2.
  • the cell wall 2 is formed with pores communicating between adjacent cell holes 3.
  • the cell hole 3 includes an open cell hole 31 penetrating in the axial direction X of the exhaust gas filter 1 and a plugged cell hole 32 provided with a plug part 321 for closing the upstream end.
  • the flow path cross-sectional area in the plugged cell hole 32 is larger than the flow path cross-sectional area in the open cell hole 31.
  • the exhaust gas filter 1 of this example is for purifying exhaust gas generated in an internal combustion engine of an automobile, for example, a diesel engine or a gasoline engine.
  • the exhaust gas filter 1 has a cylindrical shape, and is formed with cell walls 2 arranged in a lattice shape and cell holes 3 surrounded by the cell walls 2.
  • the outer diameter ⁇ of the exhaust gas filter 1 is 132 mm.
  • the base material length L is preferably 35 mm ⁇ L ⁇ 270 mm.
  • the cell wall 2 is made of a ceramic material having a porous structure, and inside thereof, pores (not shown) that are pores and communicate with adjacent cell holes 3 are formed.
  • a ceramic material having a porous structure, and inside thereof, pores (not shown) that are pores and communicate with adjacent cell holes 3 are formed.
  • cordierite having an average pore diameter of 18 ⁇ m and a porosity of 60% was used as the ceramic material.
  • the thickness W of the cell wall 2 was 0.28 mm.
  • the exhaust gas permeation coefficient k indicating the ease of permeation when the exhaust gas permeates the cell wall 2 is 0.7 ⁇ m 2 .
  • the cell hole 3 includes an open cell hole 31 and a plugged cell hole 32.
  • the open cell holes 31 and the plugged cell holes 32 are formed alternately so as to be adjacent to each other.
  • the cell density C which is the number of the cell holes 3 per unit area, was 0.47 / mm 2 .
  • the plurality of cell holes 3 have two or more types of shapes. That is, in the plurality of cell holes 3, there are two or more types of cell holes 3 having different shapes when viewed from the axial direction X. Further, the cell holes 3 having different sizes even in the similar shape are different in shape.
  • the cell hole 3 includes an octagonal cell hole 3 with an inner peripheral shape and a cell hole 3 with an inner peripheral shape of a quadrangle.
  • the hydraulic diameter of the octagonal cell hole 3 is larger than the hydraulic diameter of the square cell hole 3.
  • the exhaust gas filter 1 is formed by alternately arranging octagonal cell holes 3 and square cell holes 3.
  • the cell hole 3 having an octagonal inner periphery is a plugged cell hole 32, and the cell hole 3 having a rectangular inner periphery is an open cell hole 31.
  • the hydraulic diameter of the plugged cell hole 32 is larger than the hydraulic diameter of the open cell hole 31.
  • the open cell hole 31 has a square shape when viewed from the axial direction X, and is formed so as to penetrate through the entire length of the exhaust gas filter 1. Further, the plugging cell hole 32 has an octagonal shape when viewed from the axial direction X. Further, the upstream end portion of the plugging cell hole 32 is closed by a plug portion 321.
  • the base material length L of the exhaust gas filter 1 is not less than the first reference value L1 determined by the following formula (1). Furthermore, the base material length L of the exhaust gas filter 1 is not more than the critical length Lm (blow-through critical length Lm) determined by the following formula (M).
  • the thickness of the cell wall 2 is w (mm)
  • the exhaust gas permeability coefficient is k ( ⁇ m 2 )
  • the cell density is C (pieces / mm 2 )
  • the outer diameter of the exhaust gas filter 1 is ⁇ (mm).
  • FIG. 5 shows an outline of the relationship between the substrate length L and the collection rate.
  • the collection rate refers to the ratio of the number of particulate matter contained in the exhaust gas discharged from the exhaust gas filter 1 to the number of particulate matter contained in the exhaust gas introduced into the exhaust gas filter 1.
  • the collection rate increases as the substrate length L (full length L) increases, but the increase in the collection rate decreases as the substrate length L increases.
  • the substrate length L is equal to or longer than a certain length, an increase in the collection rate accompanying the increase in the substrate length L is eliminated.
  • the base material length L of the exhaust gas filter 1 is set to the critical length Lm or less.
  • the first reference value L1 of the formula (1) is the shortest (La1) of the base material length L that is equal to or higher than the collection rate obtained by subtracting 10% from the limit collection rate. Equivalent values are assumed. That is, for example, when the limit collection rate is 70%, a base length such that the collection rate is 60% is defined as La1, and it is assumed that the first reference value L1 is equivalent to this. . And by making the base-material length L into 1st reference value L1 or more and critical length Lm or less, high purification performance can be acquired, aiming at reduction of the pressure loss of an exhaust gas filter, and size reduction.
  • the derivation of the formula (1) and the formula (M) can affect the value of the critical collection rate, the flow path cross-sectional area ratio Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, This was performed by multiple regression analysis using the outer diameter ⁇ of the exhaust gas filter 1 as a variable. This derivation was performed using analysis software JUSE-StatWorks (registered trademark).
  • the cross-sectional area ratio Rs is 1.6, the thickness w of the cell wall 2 is 0.28 mm, the cell density C is 0.47 cells / mm 2 , the exhaust gas permeability coefficient k is 0.7 ⁇ m 2 , and the outer diameter ⁇ is 132.
  • the first reference value L1 is 84 mm
  • the critical length Lm is 178 mm.
  • the substrate length L of the exhaust gas filter 1 is not less than the first reference value L1 and not more than the critical length Lm.
  • the exhaust gas filter 1 has the open cell holes 31 and the plugged cell holes 32 as the cell holes 3. Therefore, the exhaust gas can be efficiently circulated through the pores formed in the cell wall 2 and the purification performance of the exhaust gas filter 1 can be improved.
  • the pressure loss in the open cell hole 31 is larger than the pressure loss in the plugged cell hole 32.
  • the pressure difference between the pressure in the open cell hole 31 and the pressure in the plugged cell hole 32 increases.
  • the pressure difference can be increased by enlarging the difference between the channel cross-sectional area of the open cell hole 31 and the channel cross-sectional area of the plugged cell hole 32.
  • the plug part 321 is disposed at the upstream end of the plugged cell hole 32. Therefore, Ash (ash content such as calcium compound) contained in the exhaust gas together with the particulate matter can be discharged from the exhaust gas filter 1. Since Ash cannot be removed by combustion, it remains inside, for example, in an exhaust gas filter in which the plug is disposed at the downstream end of the plugged cell hole. On the other hand, in the exhaust gas filter 1, when exhaust gas permeates the cell wall 2, it is separated by the cell wall 2, and Ash remains in the open cell hole 31. Since the open cell hole 31 penetrates in the axial direction, the Ash can be easily discharged from the open cell hole, and the remaining of the Ash in the exhaust gas filter 1 can be prevented. Thereby, the fall of the purification performance in the exhaust gas filter 1 can be suppressed.
  • Ash ash content such as calcium compound
  • the exhaust gas filter 1 has a base material length that is not less than the first reference value L1 determined by the above formula (1), that is, a total length. Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter.
  • the exhaust gas filter has a base material length that is not more than the critical length Lm determined by the above formula (M). Therefore, an increase in pressure loss of the exhaust gas filter 1 and an increase in the size of the exhaust gas filter 1 can be effectively suppressed.
  • the base material length L of the exhaust gas filter 1 is longer than the critical length Lm, the exhaust gas flowing through the open cell holes 31 is discharged without passing through the cell walls 2, Waste is increased due to the relationship between the pressure loss and the mountability of the exhaust gas filter 1. Therefore, by setting the base length of the exhaust gas filter 1 to be equal to or less than the critical length Lm determined by the above formula (M), it is possible to effectively suppress an increase in pressure loss and an increase in size of the exhaust gas filter 1.
  • the flow path cross-sectional area ratio Rs is 1.1 ⁇ Rs ⁇ 5, and the base material length L of the exhaust gas filter 1 is 35 mm ⁇ L ⁇ 270 mm. Therefore, a pressure difference between the open cell hole 31 and the plugged cell hole 32 can be reliably generated, and the exhaust gas can be reliably circulated through the pores formed in the cell wall 2. Further, the collection performance of the exhaust gas filter is improved by determining the substrate length L within the range of 35 mm to 270 mm in accordance with the flow path cross-sectional area ratio Rs between the plugged cell hole 32 and the open cell hole 31. be able to.
  • the exhaust gas filter 1 of this example has a base material length that is not less than the first reference value L1 determined by the above formula (1), that is, a total length. Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter 1.
  • the plurality of cell holes 3 have two or more types of shapes. Therefore, a configuration in which the flow path cross-sectional area S2 in the plugged cell hole 32 is larger than the flow path cross-sectional area S1 in the open cell hole 31 can be easily obtained.
  • the cell hole 3 is composed of an octagonal cell hole 3 with an inner peripheral shape and a square cell hole 3 with an inner peripheral shape, and the hydraulic diameter of the octagonal cell hole 3 is the hydraulic power of the square cell hole 3.
  • the octagonal cell holes 3 and the quadrangular cell holes 3 are arranged alternately and larger than the diameter. Therefore, the difference between the hydraulic diameter of the octagonal cell hole 3 and the hydraulic diameter of the square cell hole 3 can be increased. Thereby, when the octagonal cell hole 3 and the square cell hole 3 are appropriately allocated to the plugged cell hole 32 and the open cell hole 31, the pressure between the plugged cell hole 32 and the open cell hole 31 is determined. The difference can be increased effectively. Moreover, the cell wall 2 which does not distribute
  • the exhaust gas filter 1 that can improve the collection performance of particulate matter and improve the purification performance while suppressing an increase in pressure loss and a decrease in mountability on a vehicle. Can be provided.
  • the open cell holes 31 and the plugged cell holes 32 are alternately arranged with the square cell holes 3 as open cell holes 31 and the octagonal cell holes 3 as plugged cell holes 32.
  • other shapes may be used.
  • a part of the rectangular cell hole 3 may be a plugged cell hole 32.
  • the same effect as the exhaust gas filter 1 of Example 1 can be obtained.
  • the present Example 2 is an example in which the base material length of the exhaust gas filter 1, that is, the method for determining the total length is changed.
  • the basic structure of the exhaust gas filter 1 is the same as that of the first embodiment.
  • the base material length L of the exhaust gas filter 1 is not less than the second reference value L2 determined by the following formula (2).
  • the base material length L of the exhaust gas filter 1 is not more than the critical length Lm (blow-through critical length Lm) determined by the above formula (M).
  • L2 ⁇ 13.4 ⁇ Rs 1.5 + 0.76 / w + 3.2 / k ⁇ 132.1 ⁇ C + 117.3 / ⁇ + 174.4 (2)
  • FIG. 6 shows an outline of the relationship between the substrate length L and the collection rate, similar to FIG. 5 of Example 1.
  • the second reference value L2 of the formula (2) assumes a value equivalent to the shortest (La2) of the base material length L at which the collection rate is 50% or more. Then, by setting the substrate length L to the second reference value L2 or more and the critical length Lm or less, it is possible to obtain a collection rate of 50% or more while reducing the pressure loss and reducing the size of the exhaust gas filter.
  • the derivation of the above equation (2) can also affect the value of the limit collection rate.
  • the flow path cross-sectional area ratio Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter ⁇ are variables. Was performed by multiple regression analysis.
  • the channel cross-sectional area ratio Rs S2 / S1 is 1.6, the thickness of the cell wall 2 is 0.28 mm, the cell density C is 0.47 / mm 2 , the exhaust gas permeability coefficient k is 0.7 ⁇ m 2 , When the outer diameter ⁇ is 132.0 mm, the second reference value L2 is 101 mm, and the critical length Lm is 178 mm as described above.
  • the base material length L of the exhaust gas filter 1 is not less than the second reference value L2 and not more than the critical length Lm.
  • the exhaust gas filter 1 according to the second embodiment can secure a collection rate of 50% or more, which is higher than the collection rate generally required in a vehicle equipped with a gasoline engine, and high purification performance can be obtained.
  • the exhaust gas filter 1 according to the second embodiment has the same effects as the exhaust gas filter 1 according to the first embodiment.
  • the third embodiment is an example in which the method for determining the substrate length of the exhaust gas filter 1, that is, the total length is changed.
  • the basic structure of the exhaust gas filter 1 is the same as that of the first embodiment.
  • the base material length L of the exhaust gas filter 1 is not less than the third reference value L3 determined by the following formula (3).
  • the base material length L of the exhaust gas filter 1 is not more than the critical length Lm (blow-through critical length Lm) determined by the above formula (M).
  • L3 ⁇ 6.8 ⁇ Rs 1.5 ⁇ 4.5 / w + 12.0 / k ⁇ 189.9 ⁇ C + 2629.1 / ⁇ + 191.7 Formula (3).
  • Equation (3) will be described with reference to FIG. FIG. 7 shows an outline of the relationship between the substrate length L and the collection rate, similar to FIG. 5 used in Example 1.
  • the collection rate of the exhaust gas filter 1 decreases as the substrate length L is shortened from the critical length Lm.
  • the third reference value L3 of the formula (3) is equivalent to the shortest (La3) of the base material length L that is 90% or more of the limit collection rate. Is assumed.
  • the substrate length such that the value of the collection rate is 63% is defined as La3, and the third reference value L3 is equivalent to this. ing.
  • the base-material length L into 3rd reference value L3 or more and critical length Lm or less, high purification performance can be acquired, aiming at reduction of the pressure loss of an exhaust gas filter, and size reduction.
  • the derivation of the above formula (3) can also affect the value of the limit collection rate.
  • the flow path cross-sectional area ratio Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter ⁇ are variables. Was performed by multiple regression analysis.
  • the cross-sectional area ratio Rs S2 / S1 is 1.6, the thickness w of the cell wall 2 is 0.28 mm, the cell density C is 0.47 cells / mm 2 , the exhaust gas permeability coefficient k is 0.7 ⁇ m 2 , the outside When the diameter ⁇ is 132.0 mm, the third reference value L3 is 110 mm, and the critical length Lm is 178 mm as described above.
  • the base material length L of the exhaust gas filter 1 is not less than the third reference value L3 and not more than the critical length Lm.
  • Example 3 the particulate matter collection performance can be sufficiently secured, and the purification performance of the exhaust gas filter 1 can be further improved. In addition, the same effect as the exhaust gas filter 1 of Example 1 is obtained.
  • Example 4 is an example in which the shape of the cell hole in the exhaust gas filter of Example 1 is changed as shown in FIG.
  • the shape of the cell hole 3 is formed in a uniform shape.
  • the cell hole 3 has a square shape, and is formed so as to be aligned in a vertical direction parallel to one side of the square and a horizontal direction orthogonal to the vertical direction on a cross section orthogonal to the axial direction.
  • a total of nine cell holes 3 arranged three by three in the vertical direction and in the horizontal direction are defined as one section, and this is appropriately spread to form the exhaust gas filter 1.
  • the exhaust gas filter 1 of this example can make the shape of the exhaust gas filter simple by making the shape of the cell holes 3 uniform. Thereby, the exhaust gas filter 1 can be manufactured easily. Further, also in the exhaust gas filter 1 of the fourth embodiment, it is possible to obtain the same effects as the exhaust gas filter 1 of the first embodiment.
  • Verification test 1 In the verification test 1, the flow path cross-sectional area ratio Rs was compared with the permeation flow rate ratio and the collection rate.
  • the permeate flow rate ratio indicates the ratio of the exhaust gas that has flowed into the open cell hole 31 through the cell wall 2 and has flowed into the plugged cell hole 32.
  • exhaust gas filters 101 to 104 in which the flow path cross-sectional area ratio Rs between the open cell hole 31 and the plugged cell hole 32 was changed were used.
  • the exhaust gas filter 101 has a flow passage cross-sectional area ratio Rs of 0.5.
  • the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter 1 of the first embodiment are set to be opposite to each other.
  • the exhaust gas filter 102 has a flow path cross-sectional area ratio Rs of 1.
  • the exhaust gas filter 103 has a channel cross-sectional area ratio Rs of 2.1
  • the exhaust gas filter 104 has a channel cross-sectional area ratio Rs of 4.
  • the shapes of the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter 103 and the exhaust gas filter 104 are similar to the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter 1 of Example 1, respectively.
  • the base material length L that is, the total length L was set to 200 mm.
  • the configuration other than the above is the same as that of the first embodiment.
  • the same reference numerals as those used in the first embodiment denote the same components as in the first embodiment unless otherwise specified.
  • FIG. 10A shows the relationship between the channel cross-sectional area ratio Rs and the permeate flow ratio, where the vertical axis represents the permeate flow ratio (%) and the horizontal axis represents the channel cross-sectional area ratio Rs.
  • FIG. 10B shows the relationship between the channel cross-sectional area ratio Rs and the collection rate. The vertical axis represents the collection rate (%), and the horizontal axis represents the channel cross-sectional area ratio Rs.
  • the permeate flow rate ratio was about 26% for the exhaust gas filter 101, about 50% for the exhaust gas filter 102, about 76% for the exhaust gas filter 103, and about 90% for the exhaust gas filter 104.
  • the collection rate was about 21% for the exhaust gas filter 101, about 41% for the exhaust gas filter 102, about 62% for the exhaust gas filter 103, and about 76% for the exhaust gas filter 104. Therefore, by setting the flow path cross-sectional area ratio Rs to exceed 1, 50% or more of the exhaust gas flowing into the open cell hole 31 can be transmitted through the cell wall 2.
  • Sample 1 has square cell holes, and plugged cell holes and open cell holes are alternately arranged. Therefore, the channel cross-sectional area ratio Rs is 1.
  • the sample 2 is the same as the exhaust gas filter 1 of Example 1 except for the substrate length L, that is, the total length L.
  • Sample 3 and sample 4 have square cell holes and octagonal cell holes similar in shape to the cell holes in the exhaust gas filter of Example 1, and the flow path cross-sectional area ratio Rs is as follows. 4.0, Sample 4 is 5.0. Further, the base material length L in the exhaust gas filters of Samples 1 to 4 was all 200 mm. The configuration other than the above is the same as that of the first embodiment.
  • Table 1 shows the collection rate of particulate matter in Sample 1 to Sample 4. As shown in Table 1, the collection rate in each exhaust gas filter was 42% for sample 1, 57% for sample 2, 76% for sample 3, and 78% for sample 4. Therefore, it was confirmed that the collection rate of the particulate matter was improved as the channel cross-sectional area ratio Rs was increased.
  • Sample 17 to Sample 21 had an average pore diameter in the cell wall of 5 ⁇ m.
  • Sample 2 and Samples 5 to 8 were the same as described above, and the average pore diameter in the cell wall was 18 ⁇ m.
  • the average pore diameter in the cell wall was set to 30 ⁇ m.
  • the configurations of Sample 2 to Sample 26 other than those described above are the same as in Example 1.
  • the collection rate increased as the substrate length L (full length L) increased, and was stabilized in the range of 150 mm and later.
  • the substrate length L was stable in the range of 100 mm or more. Therefore, it was confirmed that the base material length L of the exhaust gas filter required until the pressure loss in the open cell hole and the pressure loss in the plugging cell hole become equal decreases as the average pore diameter increases. This is considered to be due to a reduction in the permeation loss of the exhaust gas in the cell wall in the exhaust gas filter.
  • Example 1 where the increase in the collection rate accompanying the increase in the base material length L does not occur. This was confirmed by comparing the actual measurement value (hereinafter referred to as the critical length actual measurement value) with the critical length Lm (calculated value) calculated using the equation (M).
  • the critical length actual measurement value hereinafter referred to as the critical length actual measurement value
  • the critical length Lm calculated value
  • the thickness w (mm) of the cell wall 2 is 0.13 ⁇ w ⁇ 0.47
  • the exhaust gas permeability coefficient k ( ⁇ m 2 ) is 0.3 ⁇ k ⁇ 1.1
  • the cell density C (pieces / mm 2 ) is 0.31 ⁇ C ⁇ 0.62
  • the outer diameter ⁇ (mm) of the exhaust gas filter is 80 ⁇ ⁇ ⁇ 150.
  • an exhaust gas filter was attached to an exhaust pipe of a gasoline engine, and the exhaust gas was circulated through the exhaust gas filter at a temperature of 700 ° C. and a flow rate of 4 m 3 / min.
  • the limit collection rate (FIG. 5). Reference) was measured. This value is the “limit collection rate” in Tables 4 to 8. The collection rate was measured by detecting the number of particulate matter contained in the exhaust gas introduced into the exhaust gas filter and the number of particulate matter contained in the exhaust gas discharged from the exhaust gas filter. And the collection rate of the exhaust gas filter which changed the base material length L every 5 mm was measured, respectively. And the thing which became the shortest among the base material length which becomes more than the collection rate which subtracted 10% from the limit collection rate was made into the 1st measured value. Moreover, the shortest of the substrate lengths having a collection rate higher than the collection rate obtained by subtracting 1% from the limit collection rate was defined as the critical length actual measurement value.
  • the collection rates of the exhaust gas filters having the first measured substrate length L are listed in Tables 4 to 8 as “collection rates”. Since the substrate length L is changed in increments of 5 mm, the collection rates in Tables 4 to 8 include values slightly higher than the value obtained by subtracting 10% from the limit collection rate.
  • the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the first actual measurement value and the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the critical length actual measurement value were measured. And the measured pressure loss and collection rate were evaluated along the following criteria.
  • An evaluation reference sample was prepared as a reference for evaluating the pressure loss and collection rate of each sample.
  • the evaluation reference sample was the sample 1 used in the confirmation test 2 (that is, the exhaust gas filter having a channel cross-sectional area ratio Rs of 1.0).
  • evaluation of the pressure loss and collection rate of each sample was performed by comparing with the pressure loss and collection rate of an evaluation standard sample. Specifically, the evaluation of the pressure loss is “A” when the pressure loss of the evaluation reference sample is 1.0 and the pressure loss is less than 1.5, and the pressure loss is 1.5 or more, 2 When the pressure loss was 2.0 or more, “C” was assigned.
  • the evaluation of the collection rate was “A” when the collection rate was equal to or higher than the collection rate of the evaluation standard sample, and “B” when it was less than the collection rate of the evaluation standard sample.
  • the pressure loss evaluation in the exhaust gas filter having the first measured substrate length L, the pressure loss evaluation is “pressure loss evaluation 1” and the collection rate evaluation is “collection rate evaluation 1”.
  • the pressure loss evaluation in the exhaust gas filter having the measured base length L of the critical length, the pressure loss evaluation is “pressure loss evaluation 2”, and the collection rate evaluation is “collection rate evaluation 2”. .
  • Tables 4 to 8 The above results are shown in Tables 4 to 8.
  • Tables 4 to 8 the average pore diameter and porosity of the cell wall, which are parameters that can affect the exhaust gas permeability coefficient k, are described.
  • the first reference value L1 obtained by the equation (1) and the first actually measured value confirmed by the experiment are almost the same. Therefore, according to the equation (1), the shortest one of the substrate lengths L that is equal to or higher than the collection rate obtained by subtracting 10 from the limit collection rate is taken into account in consideration of the influence of various parameters of the exhaust gas filter 1. It was confirmed that it can be calculated well.
  • the blow-through critical length Lm (critical length Lm) obtained by the equation (M) and the critical length actual value confirmed by the experiment are almost the same. Therefore, according to the equation (M), in consideration of the influence of various parameters of the exhaust gas filter 1, the substrate has a collection rate higher than the collection rate obtained by subtracting 1% from the limit collection rate. It was confirmed that the shortest of the lengths can be accurately calculated.
  • the collection rate tends to become better (that is, increase) as the substrate length L becomes longer, and the pressure loss increases as the substrate length L becomes shorter. It can be confirmed that there is a tendency to improve (that is, decrease). In other words, it can be seen that the pressure loss tends to deteriorate as the substrate length L increases, and the collection rate tends to deteriorate as the substrate length L decreases. That is, it can be seen that both the pressure loss and the collection rate cannot be improved simultaneously if the substrate length L of the exhaust gas filter is too long or too short.
  • the collection rate can be increased by setting the substrate length L to be equal to or greater than the first reference value L1 obtained by the highly accurate expression (1), and By setting the material length L to be equal to or less than the critical length Lm obtained by the highly accurate formula (M), the pressure loss can be reduced. That is, by setting the substrate length L to the first reference value L1 or more and the critical length Lm or less, both the pressure loss and the collection rate can be improved simultaneously.
  • the second reference value L2 obtained by the equation (2) and the second actually measured value confirmed by the experiment are almost the same. Therefore, according to the equation (2), it is possible to accurately calculate the shortest substrate length among the substrate lengths with a collection rate of 50% or more in consideration of the influence of various parameters of the exhaust gas filter 1. confirmed. Further, by setting the flow path cross-sectional area ratio Rs to be larger than 1 and the base material length L to be not less than the second reference value and not more than the blow-through critical length Lm (critical length Lm), a plurality of exhaust gas filters can be provided. It was also confirmed that the collection performance of 50% or more can be secured by one exhaust gas filter 1 without arranging in series.
  • the basic structure is the exhaust gas filter 1 of Example 1, and as shown in Tables 12 to 15, the channel cross-sectional area ratio Rs, the cell wall Samples C1 to C78 in which the thickness w, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter ⁇ were variously changed were used.
  • the test conditions in confirmation test 6 are the same as the test conditions used in confirmation test 4.
  • the limit collection rate (see FIG. 7) is measured in an exhaust gas filter having a sufficient base material length L (400 mm) at which the collection rate becomes the limit collection rate.
  • the collection rates of the exhaust gas filters in which the substrate length L was changed in various increments of 5 mm were measured. And among the base material length L which becomes 90% or more of the limit collection rate or more, what became the shortest was made into the 3rd measured value.
  • the collection rates of the exhaust gas filter having the third measured actual substrate length L are shown in Tables 12 to 15 as “collection rates”. Since the substrate length L is changed in increments of 5 mm, the collection rates in Tables 12 to 15 include values slightly higher than 90% of the limit collection rate.
  • the third reference value L3 obtained by the equation (3) and the third actually measured value confirmed by the experiment are almost the same. Therefore, according to the expression (3), the influence of various parameters of the exhaust gas filter 1 is taken into consideration, and the shortest of the substrate lengths L (full length L) that is 90% or more of the limit collection rate or more. It was confirmed that it is possible to accurately calculate the above.
  • Example 5 An exhaust gas filter according to Embodiment 5 will be described below.
  • an exhaust gas filter 1 carrying a catalyst was used. By supporting the catalyst on the exhaust gas filter 1, harmful substances contained in the exhaust gas can be removed.
  • the catalyst was a three-way catalyst containing at least one of Pt, Rh, and Pd.
  • the exhaust gas filter 1 of the fifth embodiment has the same basic configuration as that of the exhaust gas filter shown in the first embodiment, and has a catalyst supported thereon.
  • the exhaust gas filter 1 of the fifth embodiment includes the surface of the cell wall 2 facing the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter of the first embodiment, and the inside of the cell wall 2.
  • the pore surfaces are coated with a catalyst coating layer 4 containing a catalyst.
  • the catalyst coat layer 4 includes a porous carrier containing alumina, a promoter supported on the porous carrier, and a noble metal catalyst supported on the promoter.
  • the co-catalyst was a ceria-zirconia composite oxide, and the noble metal catalyst was Pt.
  • the noble metal catalyst may contain, for example, at least one of Pt, Rh, and Pd according to the exhaust gas to be purified.
  • the catalyst coat layer 4 is uniformly formed on the entire surface of the cell wall 2.
  • the catalyst loading amount of the exhaust gas filter 1 is preferably 10 to 150 g / L.
  • the catalyst carrying amount is the mass of the catalyst coat layer 4 carried per 1 L of the volume of the exhaust gas filter 1. If the amount of catalyst supported by the exhaust gas filter 1 is less than 10 g / L, the effect of removing harmful substances in the exhaust gas is reduced. On the other hand, when the amount of the catalyst supported by the exhaust gas filter 1 exceeds 150 g / L, the exhaust gas hardly passes through the cell wall 2 and the collection rate is lowered. Further, the catalyst loading amount of the exhaust gas filter 1 is more preferably 10 to 100 g / L. By setting the catalyst loading of the exhaust gas filter 1 to 100 g / L or less, it is easy to suppress a decrease in the collection rate.
  • the amount of the noble metal catalyst in the catalyst coat layer 4 is preferably 0.1 to 5 g / L.
  • the base material length L of the exhaust gas filter 1 of this example was set to be equal to or more than the first reference value L1 determined by the equation (1) shown in the first example.
  • the substrate length L of the exhaust gas filter 1 of the present example is not limited to this, and may be equal to or more than the second reference value L2 determined by the equation (2) shown in the second embodiment. It is good also as more than the 3rd standard value L3 determined by Formula (3).
  • the exhaust gas filter before supporting the catalyst is immersed in a catalyst slurry whose viscosity is adjusted using Pt as the noble metal catalyst and ceria-zirconia composite oxide and ⁇ -alumina as the carrier. And catalyst slurry is made to adhere in the cell hole 3 of an exhaust gas filter. Then, the exhaust gas filter is pulled up from the catalyst slurry, and excess slurry is removed with an air flow to suppress the clogging of the pores of the cell wall 2.
  • the obtained exhaust gas filter is dried at 80 to 150 ° for about 1 to 6 hours, and then baked at 450 to 700 degrees for about 0.5 to 6 hours.
  • the obtained exhaust gas filter can be dried at 100 ° C. for 3 hours and then baked at 500 ° C. for 3 hours. In this way, an exhaust gas filter 1 carrying a catalyst was obtained.
  • the method for supporting the catalyst on the exhaust gas filter 1 is not limited to this.
  • the exhaust gas filter 1 of Example 5 Since the exhaust gas filter 1 of Example 5 carries a catalyst, harmful substances in the exhaust gas can be removed. In addition, the exhaust gas filter 1 of Example 5 has the effect of the exhaust gas filter 1 of Example 1 and the like.
  • the sample A1 used in the confirmation test 4 the sample D1a in which the catalyst coating layer 4 having a catalyst loading amount of 50 g / L is formed on the sample A1, and the catalyst loading amount of 100 g / L on the sample A1.
  • a sample D1b on which the catalyst coat layer 4 was formed and a sample D1c on which the catalyst coat layer 4 having a catalyst loading of 150 g / L was formed on the sample A1 were prepared. And the value of each flue gas permeability coefficient k of sample A1, sample D1a, sample D1b, and sample D1c was measured.
  • the measurement of the exhaust gas permeability coefficient k was performed as follows. A test piece of each sample was prepared by cutting out the cell wall of each sample to be measured so as to have an outer diameter of 15 mm. Then, the specimen of each sample was mounted on a porous material manufactured by Porous Materials (model number CEP-1100AXSHJ), and a gas at room temperature, that is, 25 ° C. was allowed to pass through the specimen of each sample at a constant gas flow rate Q. . And the pressure loss (DELTA) P which is a difference of the gas pressure of the upstream area
  • is the gas viscosity determined by the temperature and type of gas.
  • A is the area of the test piece through which gas passes.
  • w is the thickness of the cell wall. That is, in the Darcy gas permeation type, the area A, the gas viscosity ⁇ , and the cell wall thickness w are uniquely determined by the temperature and type of the gas and the specifications of the test piece.
  • the value of (A / ⁇ w) k is obtained from the slope when the pressure loss ⁇ P with respect to each gas flow rate Q is plotted, and each of the area A, the gas viscosity ⁇ , and the cell wall thickness w uniquely determined there is obtained. Substitute the value and calculate the value of k.
  • sample A1 sample A9, and sample A11 are samples having different values of the exhaust gas permeability coefficient k. These results are shown in Tables 16-18.
  • Sample D9a “Sample D9b”, and “Sample D9c” shown in Table 17 form the catalyst coating layer 4 with catalyst loadings of 50 g / L, 100 g / L, and 150 g / L on Sample A9, respectively. It is a thing.
  • sample D11a “Sample D11b”, and “Sample D11c” shown in Table 18 were formed with the catalyst coating layer 4 having catalyst loadings of 50 g / L, 100 g / L, and 150 g / L on Sample A11, respectively.
  • the “decrease rate” shown in Tables 16 to 18 is a decrease rate of the exhaust gas permeability coefficient k with respect to the exhaust gas permeability coefficient k of the sample on which the catalyst is not supported.
  • the confirmation test 8 is a test similar to the confirmation test 4 performed on the exhaust gas filter 1 of Example 5 described above. That is, also in the exhaust gas filter carrying the catalyst, the first measured value that is the measured value of the shortest of the base material length that is equal to or higher than the collection rate obtained by subtracting 10% from the limit collection rate, that is, the total length, It was confirmed that it substantially coincided with the first reference value L1 satisfying the above formula (1). Further, in the exhaust gas filter carrying the catalyst, the critical length actual measurement value, which is the actual measurement value of the base material length, at which the collection rate does not increase as the base material length L increases, satisfies the above formula (M). It was confirmed that it substantially coincided with the blow-through critical length Lm, that is, the critical length Lm. Furthermore, also in the exhaust gas filter carrying the catalyst, the later-described evaluation on the pressure loss and the collection rate of the exhaust gas filter was performed.
  • the basic structure is the same as that of the exhaust gas filter 1 of Example 5, and as shown in Table 19, the catalyst loading amount and the flow path cross-sectional area ratio Samples D1a, D1b, D9a, D9b, D11a, and D11b in which Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter ⁇ were variously used were used.
  • the sample D1a and the sample D1b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample A1 of the confirmation test 4.
  • Sample D9a and Sample D9b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample A9 of the confirmation test 4.
  • Sample D11a and Sample D11b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample A9 of the confirmation test 4.
  • the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the first actual measurement value and the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the critical length actual measurement value were measured. And the measured pressure loss and collection rate were evaluated along the following criteria.
  • sample H1 having the same basic structure as the sample 1 of the confirmation test 2, the sample H1a in which the catalyst coating layer having a catalyst loading amount of 50 g / L is formed on the sample H1, and the sample H1 Sample H1b on which a catalyst coating layer having a catalyst loading of 100 g / L was formed as a reference.
  • Sample H1, Sample H1a, and Sample H1b are all exhaust gas filters having a channel cross-sectional area ratio Rs of 1.0.
  • the evaluation of the pressure loss of Sample A1, Sample A9, and Sample A11 with the catalyst loading amount of 0 g / L is the same when the pressure loss of Sample H1 with the catalyst loading amount of 0 g / L is 1.0. "A” if the pressure loss is less than 1.5, “B” if the pressure loss is 1.5 or more and less than 2.0, and “C” if the pressure loss is 2.0 or more. did. Furthermore, the evaluation of the collection rates of the sample A1, the sample A9, and the sample A11 is “A” when the collection rate is equal to or higher than the collection rate of the sample H1, and “B” when it is less than the collection rate of the sample H1. It was.
  • the evaluation of the pressure loss of sample A1a, sample A9a, and sample A11a with a catalyst loading of 50 g / L is the same when the pressure loss of sample H1a with a catalyst loading of 50 g / L is 1.0. "A” if the pressure loss is less than 1.5, “B” if the pressure loss is 1.5 or more and less than 2.0, and “C” if the pressure loss is 2.0 or more. did. Furthermore, the evaluation of the collection rates of the sample A1a, the sample A9a, and the sample A11a is “A” when the collection rate is equal to or higher than the collection rate of the sample H1a, and “B” when it is less than the collection rate of the sample H1a. It was.
  • the evaluation of the pressure loss of Sample A1b, Sample A9b, and Sample A11b with the catalyst loading of 100 g / L is the same when the pressure loss of Sample H1b with the catalyst loading of 100 g / L is 1.0. "A” if the pressure loss is less than 1.5, “B” if the pressure loss is 1.5 or more and less than 2.0, and “C” if the pressure loss is 2.0 or more. did. Furthermore, the evaluation of the collection rates of the sample A1b, the sample A9b, and the sample A11b is “A” when the collection rate is equal to or higher than the collection rate of the sample H1b, and “B” when the collection rate is lower than the collection rate of the sample H1b. It was.
  • test conditions and test method of this confirmation test 8 were the same as the test conditions and test method used in confirmation test 4. The results are shown in Table 19. For reference, Table 19 also shows Sample A1, Sample A9, Sample A11, and Sample H1 of Confirmation Test 4.
  • the blow-through critical length Lm obtained by the equation (M), that is, the critical length Lm, and the critical length actual value confirmed by the experiment are almost the same. Match. Therefore, according to the equation (M), even in the exhaust gas filter 1 carrying the catalyst, in consideration of the influence of various parameters of the exhaust gas filter 1, the collection rate is obtained by subtracting 1% from the limit collection rate. It was confirmed that the shortest of the substrate lengths with a higher collection rate than the rate can be calculated with high accuracy.
  • the collection rate tends to become better (that is, increase) as the substrate length L is increased, as in the confirmation test 4. It can be confirmed that the pressure loss tends to become better (that is, decrease) as the substrate length L is shortened. In other words, it can be seen that the pressure loss tends to deteriorate as the substrate length L increases, and the collection rate tends to deteriorate as the substrate length L decreases. That is, it can be seen that both the pressure loss and the collection rate cannot be improved simultaneously if the substrate length L of the exhaust gas filter is too long or too short.
  • the collection rate can be increased by setting the substrate length L to be equal to or greater than the first reference value L1 obtained by the highly accurate formula (1), and By setting the material length L to be equal to or less than the blow-by reference value Lm obtained by the highly accurate expression (M), the pressure loss can be reduced. That is, by setting the base material length L to the first reference value L1 or more and the blow-through critical length Lm or less, both the pressure loss and the collection rate can be improved simultaneously.
  • This confirmation test 9 is a test similar to the confirmation test 5 performed on the exhaust gas filter 1 of Example 5 described above. That is, also in the exhaust gas filter carrying the catalyst, the second actual measurement value which is the actual measurement value of the shortest of the base material length, that is, the total length of the collection rate of 50% or more satisfies the above formula (2). It was confirmed that it substantially coincided with the second reference value L2.
  • the basic structure is the same as that of the exhaust gas filter 1 of Example 5, and as shown in Table 20, the amount of catalyst supported, the channel cross-sectional area ratio Rs, Sample E4a, sample E15a, and sample E17a in which the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter ⁇ were variously changed were used.
  • the sample E4a is the exhaust gas filter 1 in which the catalyst coating layer 4 having a catalyst loading amount of 50 g / L is formed on the sample B4 of the confirmation test 5.
  • Sample E15a is the exhaust gas filter 1 in which the catalyst coating layer 4 having a catalyst loading of 50 g / L is formed on the sample B15 of the confirmation test 5.
  • Sample E17a is the exhaust gas filter 1 in which the catalyst coat layer 4 having a catalyst loading of 50 g / L is formed on the sample B17 of the confirmation test 5.
  • Sample B4, Sample B15, and Sample B17 in which a catalyst coating layer having a catalyst loading of 100 g / L was formed had a limit collection rate of less than 50%.
  • test conditions and test method of this confirmation test 9 were the same as the test conditions and test method used in confirmation test 5.
  • the results are shown in Table 20.
  • Table 20 also shows Sample B4, Sample B15, Sample B17, and Sample H1 of Confirmation Test 5.
  • Sample B4, Sample B15, and Sample B17 are all evaluated for pressure loss and collection rate based on Sample H1.
  • the pressure loss evaluation of the exhaust gas filter having the substrate length L of the second actual measurement value is “pressure loss evaluation 1”, and the collection rate evaluation is “collection rate evaluation 1”.
  • the collection rate evaluation 1 and the collection rate evaluation 2 in each sample are all “A”, and thus the description of the evaluation regarding the collection rate is omitted.
  • the exhaust gas filter 1 carrying the catalyst also takes into consideration the influence of various parameters of the exhaust gas filter 1, and the shortest of the base material lengths with a collection rate of 50% or more. It was confirmed that it is possible to accurately calculate the above.
  • This confirmation test 10 is a test similar to the confirmation test 6 performed on the exhaust gas filter 1 of Example 5 described above. That is, even in the exhaust gas filter carrying the catalyst, the third measured value that is the measured value of the shortest of the substrate lengths L (full length L) that is not less than 90% of the limit collection rate is the measured value. It was confirmed that the third reference value L3 satisfying the above formula (3) substantially coincides with the third reference value L3.
  • the basic structure is the same as that of the exhaust gas filter 1 of the fifth embodiment, and as shown in Table 21, the catalyst loading amount, the flow path cross-sectional area ratio Samples F4a, F4b, F9a, F9b, F23a, and F23b in which Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter ⁇ were variously used were used.
  • the sample F4a and the sample F4b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample C4 of the confirmation test 6.
  • Sample F9a and sample F9b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample C9 of the confirmation test 6.
  • Sample F23a and sample F23b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample C23 of the confirmation test 6.
  • sample J1 is obtained by changing the base length L to that of sample 1 while the basic structure is the same as that of sample 1 of confirmation test 2.
  • Sample J1a is obtained by forming a catalyst coat layer having a catalyst loading of 50 g / L on sample J1.
  • Sample J1b is obtained by forming a catalyst coat layer with a catalyst loading of 100 g / L on sample J1.
  • Sample J1, Sample J1a, and Sample J1b are all exhaust gas filters having a channel cross-sectional area ratio Rs of 1.0.
  • the evaluation reference samples of Sample C4, Sample C9, and Sample C23 with the catalyst loading amount of 0 g / L were the same as Sample J1 with the catalyst loading amount of 0 g / L.
  • the evaluation reference samples of Sample F4a, Sample F9a, and Sample F23a, in which the catalyst loading was 50 g / L were the same as sample J1a in which the catalyst loading was 50 g / L.
  • the evaluation reference samples of Sample F4b, Sample F9b, and Sample F23b, each having a catalyst loading of 100 g / L were similarly Sample J1b having a catalyst loading of 100 g / L.
  • the criteria for evaluating the pressure loss and the collection rate in each sample in the confirmation test 10 are the same as the criteria for evaluation used in the confirmation test 8.
  • test conditions and test method of this confirmation test 10 were the same as the test conditions and test method used in confirmation test 6. The results are shown in Table 21. For reference, Table 21 also lists Sample C4, Sample C9, Sample C23, and Sample J1 of Confirmation Test 6. Further, in Table 21, the pressure loss evaluation of the exhaust gas filter having the third measured actual substrate length L is “pressure loss evaluation 1”, and the collection rate evaluation is “collection rate evaluation 1”.

Abstract

An exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine has a plurality of cell walls (2) and a plurality of cell holes (3) enclosed by the cell walls (2). Pores through which adjacent cell holes (3) communicate are formed in the cell walls (2), and the cell holes (3) comprise open cell holes (31) running through the exhaust gas filter (1) in an axial direction (X), and stopped cell holes (32) provided with stoppers (321) for closing up the upstream-side ends. In a cross section orthogonal to the axial direction (X), the flow channel cross-sectional area (S2) in the stopped cell holes (32) is greater than the flow channel cross-sectional area (S1) in the open cell holes (31). The total length (L) of the exhaust gas filter (1) is equal to or greater than a first reference value (L1) calculated by a prescribed formula, and equal to or less than a critical length (Lm) calculated by a prescribed formula.

Description

排ガスフィルタExhaust gas filter
 本発明は、ガソリンエンジンやディーゼルエンジン等の内燃機関の排気ガスを浄化するための排ガスフィルタに関する。 The present invention relates to an exhaust gas filter for purifying exhaust gas of an internal combustion engine such as a gasoline engine or a diesel engine.
 ガソリンエンジンやディーゼルエンジン等の内燃機関の排気管には、排ガスに含まれる粒子状物質(Particulate Matter:PM)を捕集する排ガス浄化装置が設けられている。この排ガス浄化装置は、排ガスに含まれる粒子状物質を捕集するための排ガスフィルタを備えている(特許文献1、2)。特許文献1、2に示された排ガス浄化装置の排ガスフィルタは、複数のセル壁と、セル壁によって囲まれて形成されたセル孔とを有している。セル孔としては、上流側端部が栓部によって閉塞された栓詰めセル孔と、栓部が配設されていない開放セル孔とがある。栓詰めセル孔と開放セル孔との間のセル壁には、両者の間を連通するように細孔が形成されており、細孔に排ガスを流通させて粒子状物質をトラップし、排ガスから粒子状物質を除去している。また、特許文献1には、捕集性能を向上させるために複数の排ガスフィルタを直列に搭載した排ガス浄化装置が開示されている。 An exhaust gas purification device that collects particulate matter (PM) contained in exhaust gas is provided in an exhaust pipe of an internal combustion engine such as a gasoline engine or a diesel engine. This exhaust gas purification apparatus includes an exhaust gas filter for collecting particulate matter contained in exhaust gas (Patent Documents 1 and 2). The exhaust gas filter of the exhaust gas purification apparatus disclosed in Patent Documents 1 and 2 has a plurality of cell walls and cell holes formed surrounded by the cell walls. As the cell hole, there are a plugged cell hole whose upstream end is closed by a plug part and an open cell hole in which no plug part is provided. In the cell wall between the plugged cell hole and the open cell hole, pores are formed so as to communicate with each other, and exhaust gas is circulated through the pores to trap particulate matter. Particulate matter is removed. Further, Patent Document 1 discloses an exhaust gas purification device in which a plurality of exhaust gas filters are mounted in series in order to improve the collection performance.
国際公開WO-2012-046484号International Publication WO-2012-046484 特開2003-35126号公報JP 2003-35126 A
 しかしながら、特許文献1、2の排ガスフィルタには以下の課題がある。特許文献1、2の排ガスフィルタは、開放セル孔における圧力損失と、栓詰めセル孔における圧力損失及びセル壁における通過抵抗による圧力損失とによって生じる圧力差を利用して、排ガスをセル壁に透過させている。そのため、排ガスフィルタ内において、十分な圧力差を生じさせることができないと、開放セル孔に流入した排ガスが、セル壁を透過することなく、排ガスフィルタから排出される。そのため、排ガスフィルタにおける粒子状物質の捕集性能が低下する。 However, the exhaust gas filters of Patent Documents 1 and 2 have the following problems. The exhaust gas filters of Patent Documents 1 and 2 transmit exhaust gas to the cell wall using a pressure difference caused by pressure loss in the open cell hole, pressure loss in the plugged cell hole, and pressure loss due to passage resistance in the cell wall. I am letting. Therefore, if a sufficient pressure difference cannot be generated in the exhaust gas filter, the exhaust gas flowing into the open cell hole is discharged from the exhaust gas filter without passing through the cell wall. Therefore, the collection performance of the particulate matter in the exhaust gas filter is lowered.
 また、特許文献1、2に記載の排ガスフィルタは、開放セル孔と栓詰めセル孔の流路断面積が等しい。そのため、上記排ガスフィルタは、開放セル孔の圧力損失と栓詰めセル孔の圧力損失との差が少なく、十分な捕集性能を発揮できない。 Further, in the exhaust gas filters described in Patent Documents 1 and 2, the flow path cross-sectional areas of the open cell hole and the plugged cell hole are equal. Therefore, the exhaust gas filter has a small difference between the pressure loss of the open cell hole and the pressure loss of the plugged cell hole, and cannot exhibit sufficient collection performance.
 また、特許文献1に記載の排ガス浄化装置は、複数の排ガスフィルタを直列に並べているため、車両への搭載性が低下しやすい。すなわち、上記排ガス浄化装置は、排気管に複数の排ガスフィルタを直列に搭載できる車両にしか搭載できない。また、上記排ガス浄化装置は、圧力損失の増大を招きやすい。 Moreover, since the exhaust gas purification apparatus described in Patent Document 1 has a plurality of exhaust gas filters arranged in series, the ease of mounting on a vehicle is likely to deteriorate. That is, the exhaust gas purification device can be mounted only on a vehicle that can mount a plurality of exhaust gas filters in series on an exhaust pipe. In addition, the exhaust gas purification device tends to increase pressure loss.
 本発明は、かかる背景に鑑みてなされたものであり、圧力損失の増大、車両への搭載性の低下を抑制し、ガソリンエンジンやディーゼルエンジン等の内燃機関から排出された排ガスに含まれる粒子状物質の捕集性能を向上し優れた排ガス浄化性能を有し、圧力損失を削減してかつ車両への搭載性が優れた排ガスフィルタを提供するものである。 The present invention has been made in view of such a background, and suppresses an increase in pressure loss and a decrease in mountability on a vehicle, and particulates contained in exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine. It is an object of the present invention to provide an exhaust gas filter that improves the substance collection performance, has an excellent exhaust gas purification performance, reduces pressure loss, and has excellent mountability in a vehicle.
 本発明の第1の態様は、内燃機関から排出される粒子状物質を含む排ガスを浄化する排ガスフィルタであって、複数のセル壁と、該セル壁によって囲まれた複数のセル孔とを有し、上記セル壁は、隣り合うセル孔間を連通する細孔を有し、上記セル孔は、上記排ガスフィルタの軸方向に貫通する開放セル孔と、上流側端部を閉塞する栓部を備えた栓詰めセル孔とからなり、上記軸方向と直交する断面において、上記開放セル孔における流路断面積S1よりも、上記栓詰めセル孔における流路断面積S2が大きく、上記セル壁の厚さをw(mm)、排ガス透過係数をk(μm2)、セル密度をC(個/mm2)、上記排ガスフィルタの外径をφ(mm)、S1に対するS2の比である流路断面積比Rs=S2/S1としたとき、上記排ガスフィルタの全長L(基材長L)が、下記式(1)によって決定される第1基準値L1以上であるとともに、下記式(M)によって定める臨界長Lm(吹き抜け臨界長Lm)以下であることを特徴とする排ガスフィルタにある。
 L1=-3.7×Rs1.5-3.6/w+9.7/k-152.9×C+2241.5/φ+145.1 ・・・式(1),
 Lm=-5.5×Rs1.5-6.0/w+44.9/k-234.9×C+176.7/φ+255.6 ・・・式(M)
A first aspect of the present invention is an exhaust gas filter that purifies exhaust gas containing particulate matter discharged from an internal combustion engine, and has a plurality of cell walls and a plurality of cell holes surrounded by the cell walls. The cell wall has a pore communicating between adjacent cell holes, and the cell hole includes an open cell hole penetrating in the axial direction of the exhaust gas filter and a plug portion closing the upstream end. The cross-sectional area S2 in the plugging cell hole is larger than the flow-path cross-sectional area S1 in the open cell hole in the cross section perpendicular to the axial direction, Thickness is w (mm), exhaust gas permeability coefficient is k (μm 2 ), cell density is C (cells / mm 2 ), the outer diameter of the exhaust gas filter is φ (mm), and the flow path is the ratio of S2 to S1 When the cross-sectional area ratio Rs = S2 / S1, the exhaust gas fill The total length L (base material length L) of the catalyst is not less than the first reference value L1 determined by the following formula (1) and not more than the critical length Lm (blow-through critical length Lm) determined by the following formula (M). The exhaust gas filter is characterized in that.
L1 = −3.7 × Rs 1.5 −3.6 / w + 9.7 / k−152.9 × C + 2241.5 / φ + 145.1 Formula (1),
Lm = −5.5 × Rs 1.5 −6.0 / w + 44.9 / k−234.9 × C + 176.7 / φ + 255.6 (formula (M))
 本発明の第2の態様は、内燃機関から排出される粒子状物質を含む排ガスを浄化する排ガスフィルタ(1)であって、複数のセル壁(2)と、該セル壁(2)によって囲まれた複数のセル孔(3)とを有し、上記セル壁(2)は、隣り合うセル孔(3)間を連通する細孔を有し、上記セル孔(3)は、上記排ガスフィルタ(1)の軸方向に貫通する開放セル孔(31)と、上流側端部を閉塞する栓部(321)を備えた栓詰めセル孔(32)とからなり、上記軸方向と直交する断面において、上記開放セル孔(31)における流路断面積S1よりも、上記栓詰めセル孔(32)における流路断面積S2が大きく、上記セル壁(2)の厚さをw(mm)、排ガス透過係数をk(μm2)、セル密度をC(個/mm2)、上記排ガスフィルタ(1)の外径をφ(mm)、S1に対するS2の比である流路断面積比Rs=S2/S1としたとき、上記排ガスフィルタ(1)の全長L(基材長L)が、下記式(2)によって決定される第2基準値L2以上であるとともに、下記式(M)によって定める臨界長Lm(吹き抜け臨界長Lm)以下であることを特徴とする排ガスフィルタ(1)にある。
 L2=-13.4×Rs1.5+0.76/w+3.2/k-132.1×C+1117.3/φ+174.4 ・・・式(2),
 Lm=-5.5×Rs1.5-6.0/w+44.9/k-234.9×C+176.7/φ+255.6 ・・・式(M)。
A second aspect of the present invention is an exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine, and is surrounded by a plurality of cell walls (2) and the cell walls (2). A plurality of cell holes (3), the cell wall (2) has pores communicating between adjacent cell holes (3), and the cell holes (3) are provided in the exhaust gas filter. (1) an open cell hole (31) penetrating in the axial direction and a plugged cell hole (32) having a plug part (321) for closing the upstream end, and a cross section perpendicular to the axial direction. The flow path cross-sectional area S2 in the plugged cell hole (32) is larger than the flow path cross-sectional area S1 in the open cell hole (31), and the thickness of the cell wall (2) is w (mm), the exhaust gas permeability coefficient k (μm 2), a cell density C (pieces / mm 2), the exhaust gas filter (1 When the outer diameter of the exhaust gas filter (1) is φ (mm) and the flow path cross-sectional area ratio Rs = S2 / S1, which is the ratio of S2 to S1, the total length L (base material length L) of the exhaust gas filter (1) is The exhaust gas filter (1) is characterized by being not less than the second reference value L2 determined by 2) and not more than the critical length Lm (blow-through critical length Lm) determined by the following formula (M).
L2 = −13.4 × Rs 1.5 + 0.76 / w + 3.2 / k−132.1 × C + 117.3 / φ + 174.4 Formula (2),
Lm = −5.5 × Rs 1.5 −6.0 / w + 44.9 / k−234.9 × C + 176.7 / φ + 255.6 (Equation (M))
 本発明の第3の態様は、内燃機関から排出される粒子状物質を含む排ガスを浄化する排ガスフィルタ(1)であって、複数のセル壁(2)と、該セル壁(2)によって囲まれた複数のセル孔(3)とを有し、上記セル壁(2)は、隣り合うセル孔(3)間を連通する細孔を有し、上記セル孔(3)は、上記排ガスフィルタ(1)の軸方向に貫通する開放セル孔(31)と、上流側端部を閉塞する栓部(321)を備えた栓詰めセル孔(32)とからなり、上記軸方向と直交する断面において、上記開放セル孔(31)における流路断面積S1よりも、上記栓詰めセル孔(32)における流路断面積S2が大きく、上記セル壁(2)の厚さをw(mm)、排ガス透過係数をk(μm2)、セル密度をC(個/mm2)、上記排ガスフィルタ(1)の外径をφ(mm)、S1に対するS2の比である流路断面積比Rs=S2/S1としたとき、上記排ガスフィルタ(1)の全長L(基材長L)が、下記式(3)によって決定される第3基準値L3以上であるとともに、下記式(M)によって定める臨界長Lm(吹き抜け臨界長Lm)以下であることを特徴とする排ガスフィルタ(1)にある。
 L3=-6.8×Rs1.5-4.5/w+12.0/k-189.9×C+2629.1/φ+191.7 ・・・式(3),
 Lm=-5.5×Rs1.5-6.0/w+44.9/k-234.9×C+176.7/φ+255.6 ・・・式(M)。
A third aspect of the present invention is an exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine, and is surrounded by a plurality of cell walls (2) and the cell walls (2). A plurality of cell holes (3), the cell wall (2) has pores communicating between adjacent cell holes (3), and the cell holes (3) are provided in the exhaust gas filter. (1) an open cell hole (31) penetrating in the axial direction and a plugged cell hole (32) having a plug part (321) for closing the upstream end, and a cross section perpendicular to the axial direction. The flow path cross-sectional area S2 in the plugged cell hole (32) is larger than the flow path cross-sectional area S1 in the open cell hole (31), and the thickness of the cell wall (2) is w (mm), the exhaust gas permeability coefficient k (μm 2), a cell density C (pieces / mm 2), the exhaust gas filter (1 When the outer diameter of the exhaust gas filter (1) is φ (mm) and the flow path cross-sectional area ratio Rs = S2 / S1, which is the ratio of S2 to S1, the total length L (base material length L) of the exhaust gas filter (1) is The exhaust gas filter (1) is characterized by being not less than a third reference value L3 determined by 3) and not more than a critical length Lm (blow-through critical length Lm) determined by the following equation (M).
L3 = −6.8 × Rs 1.5 −4.5 / w + 12.0 / k−189.9 × C + 2629.1 / φ + 191.7 Formula (3),
Lm = −5.5 × Rs 1.5 −6.0 / w + 44.9 / k−234.9 × C + 176.7 / φ + 255.6 (Equation (M))
 尚、上記本発明の第1、第2、第3の態様で記載の臨界長Lm(吹き抜け臨界長Lm)は、排ガスフィルタ全長Lの増加に伴う捕集率の上昇が生じなくなり始める全長Lであり、当該捕集率とは、排ガスフィルタに導入される排ガスに含まれる粒子状物質の数に対する、排ガスフィルタから排出される排ガスに含まれる粒子状物質の数の割合をいう。上記臨界長Lmおよび上記捕集率に関しては以下の実施例でも説明する。 Note that the critical length Lm (blow-through critical length Lm) described in the first, second, and third aspects of the present invention is the total length L at which the increase in the collection rate accompanying the increase in the exhaust gas filter total length L does not occur. Yes, the collection rate refers to the ratio of the number of particulate matter contained in the exhaust gas discharged from the exhaust gas filter to the number of particulate matter contained in the exhaust gas introduced into the exhaust gas filter. The critical length Lm and the collection rate will be described in the following examples.
 上記第1~第3の態様の排ガスフィルタは、上述のごとく、上記セル孔として上記開放セル孔と上記栓詰めセル孔とを有している。そのため、排ガスを上記セル壁に形成された細孔に効率良く流通させ、上記排ガスフィルタの浄化性能を向上することができる。 The exhaust gas filter according to the first to third aspects has the open cell hole and the plugged cell hole as the cell hole as described above. Therefore, exhaust gas can be efficiently circulated through the pores formed in the cell wall, and the purification performance of the exhaust gas filter can be improved.
 すなわち、上記開放セル孔の流路断面積よりも、上記栓詰めセル孔における流路断面積を大きくすることにより、上記開放セル孔における圧力損失が上記栓詰めセル孔における圧力損失に比べて大きくなり、上記開放セル孔内の圧力と上記栓詰めセル孔内の圧力との圧力差が大きくなる。この圧力差を利用することにより、上記開放セル孔に流入した排ガスを、上記細孔を通じて、上記栓詰めセル孔へと効率良く流通させることができる。また、上記開放セル孔と上記栓詰めセル孔との間の圧力差は、上記排ガスフィルタの上流から下流に向かうにつれて小さくなっていくが、圧力差が生じる範囲においては、上記細孔への排ガスの流通が継続される。そのため、上述のごとく、上記開放セル孔と上記栓詰めセル孔との間の圧力差を増大することで、上記排ガスフィルタのより広い範囲において、上記セル壁に排ガスを透過させることができる。これにより、排ガスに含まれる粒子状物質を効率良く捕集することができる。 That is, by increasing the cross-sectional area of the plugged cell hole compared to the cross-sectional area of the open cell hole, the pressure loss in the open cell hole is larger than the pressure loss in the plugged cell hole. Thus, the pressure difference between the pressure in the open cell hole and the pressure in the plugged cell hole becomes large. By utilizing this pressure difference, the exhaust gas flowing into the open cell holes can be efficiently circulated through the pores to the plugged cell holes. Further, the pressure difference between the open cell hole and the plugged cell hole becomes smaller from the upstream side to the downstream side of the exhaust gas filter, but in the range where the pressure difference is generated, the exhaust gas to the pores is reduced. Distribution continues. Therefore, as described above, by increasing the pressure difference between the open cell hole and the plugged cell hole, the exhaust gas can permeate the cell wall in a wider range of the exhaust gas filter. Thereby, the particulate matter contained in the exhaust gas can be efficiently collected.
 また、上記栓部は、上記栓詰めセル孔の上流側端部に配設されている。したがって、排ガスに粒子状物質と共に含まれているAsh(カルシウム化合物などの灰分)を上記排ガスフィルタから排出することができる。Ashは、燃焼除去をすることができないため、例えば上記栓部が上記栓詰めセル孔の下流側端部に配設された排ガスフィルタにおいては、Ashが内部に残留蓄積する。一方、上記排ガスフィルタにおいては、排ガスが上記セル壁を透過する際に、上記セル壁によって分離され、Ashは上記開放セル孔内に残る。上記開放セル孔は、軸方向において貫通しているため、Ashを上記開放セル孔から容易に排出することができ、上記排ガスフィルタ内におけるAshの残留を防止することができる。これにより、上記排ガスフィルタにおける浄化性能の低下を抑制することができる。 Further, the plug portion is disposed at an upstream end portion of the plugged cell hole. Therefore, Ash (ash content such as calcium compounds) contained in the exhaust gas together with the particulate matter can be discharged from the exhaust gas filter. Since Ash cannot be removed by combustion, for example, in an exhaust gas filter in which the plug is disposed at the downstream end of the plugged cell hole, Ash is accumulated in the interior. On the other hand, in the exhaust gas filter, when the exhaust gas permeates the cell wall, it is separated by the cell wall, and Ash remains in the open cell hole. Since the open cell hole penetrates in the axial direction, the Ash can be easily discharged from the open cell hole, and the Ash can be prevented from remaining in the exhaust gas filter. Thereby, the fall of the purification performance in the said exhaust gas filter can be suppressed.
 また、上記第1の態様の排ガスフィルタは、上記式(1)によって決定される第1基準値L1以上の全長L(基材長L)を有する。そのため、粒子状物質の捕集性能を充分に確保することができ、排ガスフィルタにおける浄化性能をより向上させることができる。 Further, the exhaust gas filter of the first aspect has a total length L (base material length L) equal to or greater than the first reference value L1 determined by the above formula (1). Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter.
 また、上記第2の態様の排ガスフィルタは、上記式(2)によって決定される第2基準値L2以上の全長L(基材長L)を有する。そのため、排ガスフィルタの捕集率を、ガソリンエンジンを搭載する車両において一般的に要求される捕集率を上回る50%以上を確保することができ、高い浄化性能が得られる。 Further, the exhaust gas filter of the second aspect has a total length L (base material length L) equal to or greater than a second reference value L2 determined by the above formula (2). Therefore, the collection rate of the exhaust gas filter can be ensured to be 50% or more, which exceeds the collection rate generally required in a vehicle equipped with a gasoline engine, and high purification performance can be obtained.
 また、上記第3の態様の排ガスフィルタは、上記式(3)によって決定される第3基準値L3以上の全長L(基材長L)を有する。そのため、粒子状物質の捕集性能を充分に確保することができ、排ガスフィルタにおける浄化性能をより向上させることができる。 Further, the exhaust gas filter of the third aspect has a total length L (base material length L) equal to or greater than a third reference value L3 determined by the above formula (3). Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter.
 尚、上記第1~第3の態様に係る排ガスフィルタでは、上記式(M)によって決定される臨界長Lm(吹き抜け臨界長Lm)以下の全長L(基材長L)を有する。この臨界長Lm(吹き抜け臨界長Lm)は、排ガスフィルタ全長Lの増加に伴う捕集率の上昇が生じなくなり始める全長Lであり、当該捕集率とは、排ガスフィルタに導入される排ガスに含まれる粒子状物質の数に対する、排ガスフィルタから排出される排ガスに含まれる粒子状物質の数の割合をいう。上記臨界長Lmおよび上記捕集率に関しては以下の実施例でも説明する。そのため、排ガスフィルタの圧力損失の増大、及び排ガスフィルタの大型化を効果的に抑制することができる。すなわち、排ガスフィルタの全長(基材長)を、臨界長Lmよりも長くしても、上記開放セル孔を流通する排ガスが上記セル壁を透過することなく排出される吹き抜けが発生してしまうため、圧力損失及び排ガスフィルタの搭載性の関係から無駄が大きくなってしまう。そこで、排ガスフィルタの全長(基材長)を、上記式(M)によって決定される臨界長Lm以下とすることにより、排ガスフィルタの圧力損失増大及び大型化を、効果的に抑制できる。 The exhaust gas filter according to the first to third aspects has a total length L (base material length L) equal to or shorter than the critical length Lm (blow-through critical length Lm) determined by the above equation (M). This critical length Lm (blow-through critical length Lm) is the full length L at which the collection rate starts to increase with the increase in the exhaust gas filter overall length L, and the collection rate is included in the exhaust gas introduced into the exhaust gas filter. The ratio of the number of particulate matter contained in the exhaust gas discharged from the exhaust gas filter to the number of particulate matter produced. The critical length Lm and the collection rate will be described in the following examples. Therefore, an increase in the pressure loss of the exhaust gas filter and an increase in the size of the exhaust gas filter can be effectively suppressed. That is, even if the total length (base material length) of the exhaust gas filter is longer than the critical length Lm, the exhaust gas flowing through the open cell holes is discharged without passing through the cell walls. In addition, waste is increased due to the relationship between the pressure loss and the mountability of the exhaust gas filter. Therefore, by setting the total length (base material length) of the exhaust gas filter to the critical length Lm or less determined by the above formula (M), it is possible to effectively suppress an increase in pressure loss and an increase in size of the exhaust gas filter.
 以上のごとく、本発明によれば、圧力損失の増大、車両への搭載性の低下、を抑制しながら、粒子状物質の捕集性能を向上し、浄化性能を向上することができる排ガスフィルタを提供することができる。 As described above, according to the present invention, there is provided an exhaust gas filter capable of improving the collection performance of particulate matter and improving the purification performance while suppressing an increase in pressure loss and a decrease in mountability on a vehicle. Can be provided.
本願発明の実施例1における排ガスフィルタを示す説明図。Explanatory drawing which shows the exhaust gas filter in Example 1 of this invention. 図1におけるII-II矢視断面図。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1. 図2におけるIII-III矢視断面図。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2. 本願発明の実施例1における排ガスフィルタの一例を示す説明図。Explanatory drawing which shows an example of the exhaust gas filter in Example 1 of this invention. 本願発明の実施例1における基材長、すなわち排ガスフィルタの全長と捕集率との関係の概略を示す線図。The diagram which shows the outline of the relationship between the base material length in Example 1 of this invention, ie, the full length of an exhaust gas filter, and a collection rate. 本願発明の実施例2における基材長、すなわち排ガスフィルタの全長と捕集率との関係の概略を示す線図。The diagram which shows the outline of the relationship between the base material length in Example 2 of this invention, ie, the full length of an exhaust gas filter, and a collection rate. 本願発明の実施例3における基材長、すなわち排ガスフィルタの全長と捕集率との関係の概略を示す線図。The diagram which shows the outline of the relationship between the base material length in Example 3 of this invention, ie, the full length of an exhaust gas filter, and a collection rate. 本願発明の実施例4における排ガスフィルタを示す説明図。Explanatory drawing which shows the exhaust gas filter in Example 4 of this invention. 本願発明の確認試験1における排ガスフィルタの形状を示す説明図。Explanatory drawing which shows the shape of the exhaust gas filter in the confirmation test 1 of this invention. 本願発明の確認試験1における透過流量比と流路断面積比との関係を示すグラフ。The graph which shows the relationship between the permeation | transmission flow rate ratio and flow-path cross-sectional area ratio in the confirmation test 1 of this invention. 本願発明の確認試験1における捕集率と流路断面積比との関係を示すグラフ。The graph which shows the relationship between the collection rate in the confirmation test 1 of this invention, and flow-path cross-sectional area ratio. 本願発明の実施例5における排ガスフィルタの断面図。Sectional drawing of the exhaust gas filter in Example 5 of this invention.
 上記排ガスフィルタは、上記開放セル孔の流路断面積をS1とし、上記栓詰めセル孔の流路断面積をS2としたとき、S1に対するS2の比である流路断面積比Rs=S2/S1は、1.1≦Rs≦5であり、かつ上記排ガスフィルタの基材長L(以下では、基材長Lを用いるが、排ガスフィルタの全長Lである。)が、35mm≦L≦270mmであることが好ましい。この場合には、上記開放セル孔と上記栓詰めセル孔との間における圧力差を確実に発生させ、上記セル壁に形成された上記細孔に排ガスを確実に流通させることができる。また、上記栓詰めセル孔と上記開放セル孔との流路断面積比Rsに応じて35mm~270mmの範囲内で基材長Lを決定することにより、上記排ガスフィルタの圧力損失の増大を効果的に抑制しながら、上記排ガスフィルタの捕集性能を向上することができる。Rsが1.1未満の場合、圧力差が小さくなり、上記セル壁を透過する排ガスの透過量が少なくなり、十分な浄化性能を発揮できない場合がある。Rsが5を超える場合、開放セル孔を構成するセル壁の面積、すなわち濾過面積が小さくなりやすい。これに伴い、粒子状物質の堆積時にセル孔が閉塞し圧力損失が過大となる場合がある。排ガスフィルタは、流路断面積比Rsが、1.1≦Rs≦2.5であることがより好ましい。Rsが2.5より大きい場合、排ガスフィルタの圧力損失が過大となるおそれがある。それゆえ、基材長を長くしたとき、排ガスフィルタの圧力損失の増大に対して、捕集性能の向上の効果が小さくなる場合がある。Lが35mm未満の場合、基材径に対して基材長が短くなり過ぎ、上記排ガスフィルタを排気管に取り付け難くなる場合がある。Lが270mmを超える場合、排ガスが上記セル孔を透過することで上記開放セル孔と上記栓詰めセル孔との間の圧力差がなくなる領域が生じる。排ガスフィルタは、基材長Lが、55mm≦L≦220mmであることがより好ましい。Lが55mm未満の場合、上記開放セル孔を流通する排ガスが上記セル壁を透過することなく排出される吹き抜けが発生し、上記排ガスフィルタの性能が低下する場合がある。Lが220mmを超える場合、基材長Lの増加に伴う捕集性能の上昇の効果が緩慢になりやすい。さらに、Lが220mmを超える場合、排ガスフィルタの圧力損失の増大を招くおそれもある。 The exhaust gas filter has a flow path cross-sectional area ratio Rs = S2 / S, which is a ratio of S2 to S1, where S1 is a flow cross-sectional area of the open cell hole and S2 is a flow cross-sectional area of the plugged cell hole. S1 is 1.1 ≦ Rs ≦ 5, and the base material length L of the exhaust gas filter (hereinafter, the base material length L is used, but the total length L of the exhaust gas filter) is 35 mm ≦ L ≦ 270 mm. It is preferable that In this case, a pressure difference between the open cell hole and the plugged cell hole can be reliably generated, and the exhaust gas can be reliably circulated through the pore formed in the cell wall. Further, the base material length L is determined within the range of 35 mm to 270 mm in accordance with the flow path cross-sectional area ratio Rs between the plugged cell hole and the open cell hole, thereby increasing the pressure loss of the exhaust gas filter. It is possible to improve the collection performance of the exhaust gas filter while suppressing it. When Rs is less than 1.1, the pressure difference becomes small, the permeation amount of the exhaust gas that permeates the cell wall decreases, and sufficient purification performance may not be exhibited. When Rs exceeds 5, the area of the cell wall constituting the open cell hole, that is, the filtration area tends to be small. Along with this, the cell hole may be blocked during the deposition of the particulate matter, and the pressure loss may become excessive. In the exhaust gas filter, the flow path cross-sectional area ratio Rs is more preferably 1.1 ≦ Rs ≦ 2.5. When Rs is larger than 2.5, the pressure loss of the exhaust gas filter may be excessive. Therefore, when the substrate length is increased, the effect of improving the collection performance may be reduced with respect to the increase in pressure loss of the exhaust gas filter. When L is less than 35 mm, the substrate length becomes too short with respect to the substrate diameter, and it may be difficult to attach the exhaust gas filter to the exhaust pipe. When L exceeds 270 mm, the exhaust gas permeates through the cell holes, thereby generating a region where there is no pressure difference between the open cell holes and the plugged cell holes. More preferably, the exhaust gas filter has a substrate length L of 55 mm ≦ L ≦ 220 mm. When L is less than 55 mm, the exhaust gas flowing through the open cell hole is discharged without passing through the cell wall, and the performance of the exhaust gas filter may be deteriorated. When L exceeds 220 mm, the effect of increasing the collection performance accompanying the increase in the substrate length L tends to be slow. Furthermore, when L exceeds 220 mm, there is a risk of increasing the pressure loss of the exhaust gas filter.
 また、上記セル孔は、内周形状が八角形のセル孔と、内周形状が四角形のセル孔とからなり、上記八角形のセル孔の水力直径は、上記四角形のセル孔の水力直径よりも大きく、上記八角形のセル孔と上記四角形のセル孔とを交互に並べて形成されていることが好ましい。この場合には、上記八角形のセル孔の水力直径と、上記四角形のセル孔の水力直径との差を大きくすることができる。これにより、例えば、上記八角形のセル孔を栓詰めセル孔、上記四角形のセル孔を上記開放セル孔として適宜割り振った際に、上記栓詰めセル孔と上記開放セル孔とを隣接させることができ、上記栓詰めセル孔と上記開放セル孔との間における圧力差を効果的に増大させることができる。一方、上記栓詰めセル孔同士、又は上記開放セル孔同士が隣接した場合、上記栓詰めセル孔同士の間、又は上記開放セル孔同士の間には圧力差が生じ難いため、捕集性能の観点では機能が少ない。また、セル形状は上記排ガスフィルタの圧力損失の観点から水力直径の大きい形状が良い。従ってセル孔を例えば三角形等にすることは、上記排ガスフィルタの圧力損失の増大を招きやすい。以上の観点から、上記八角形のセル孔と上記四角形のセル孔とを交互に並べて形成することにより、効率よく浄化性能を向上することができる。 The cell hole is composed of an octagonal cell hole with an inner peripheral shape and a square cell hole with an inner peripheral shape, and the hydraulic diameter of the octagonal cell hole is greater than the hydraulic diameter of the square cell hole. It is preferable that the octagonal cell holes and the square cell holes are alternately arranged. In this case, the difference between the hydraulic diameter of the octagonal cell hole and the hydraulic diameter of the square cell hole can be increased. Thereby, for example, when the octagonal cell hole is appropriately allocated as a plugged cell hole and the square cell hole is appropriately allocated as the open cell hole, the plugged cell hole and the open cell hole can be adjacent to each other. And the pressure difference between the plugged cell hole and the open cell hole can be effectively increased. On the other hand, when the plugged cell holes or the open cell holes are adjacent to each other, a pressure difference is hardly generated between the plugged cell holes or between the open cell holes. There are few functions from the viewpoint. The cell shape is preferably a shape having a large hydraulic diameter from the viewpoint of pressure loss of the exhaust gas filter. Accordingly, making the cell holes triangular, for example, tends to increase the pressure loss of the exhaust gas filter. From the above viewpoint, the purification performance can be improved efficiently by alternately forming the octagonal cell holes and the square cell holes.
 セル壁の気孔率は、特に限定されるものではないが、50~80%であることが好ましく、50~65%であることがさらに好ましい。気孔率が50%より小さいと、粒子状物質を含む排ガスがセル壁を透過し難くなる(すなわち、セル壁の排ガス透過係数が減少しやすくなる)。これに伴い、粒子状物質を含む排ガスがセル壁を透過する量が減少しやすくなり、捕集性能が低下しやすくなると考えられる。気孔率が65%より大きいと、排ガスフィルタの強度が減少しやすく、排気管に排ガスフィルタを取り付け難くなることが懸念される。なお、セル壁の気孔率は、水銀ポロシメータによって測定することができる。 The porosity of the cell wall is not particularly limited, but is preferably 50 to 80%, and more preferably 50 to 65%. When the porosity is less than 50%, the exhaust gas containing particulate matter is difficult to permeate the cell wall (that is, the exhaust gas permeability coefficient of the cell wall is likely to decrease). Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered. When the porosity is larger than 65%, the strength of the exhaust gas filter tends to decrease, and there is a concern that it becomes difficult to attach the exhaust gas filter to the exhaust pipe. The porosity of the cell wall can be measured with a mercury porosimeter.
 セル壁の平均気孔径は、特に限定されるものではないが、5~30μmであることが好ましく、10~25μmであることがさらに好ましい。平均気孔径が10μmより小さいと、粒子状物質を含む排ガスがセル壁を透過し難くなる(すなわち、セル壁の排ガス透過係数が減少しやすくなる)。これに伴い、粒子状物質を含む排ガスがセル壁を透過する量が減少しやすくなり、捕集性能が低下しやすくなると考えられる。平均気孔径が25μmより大きいと、排ガスフィルタの強度が減少しやすく、排気管に排ガスフィルタを取り付け難くなることが懸念される。なお、セル壁の平均気孔径は、水銀ポロシメータによって測定することができる。 The average pore diameter of the cell wall is not particularly limited, but is preferably 5 to 30 μm, and more preferably 10 to 25 μm. When the average pore diameter is smaller than 10 μm, the exhaust gas containing particulate matter is difficult to permeate the cell wall (that is, the exhaust gas permeability coefficient of the cell wall is likely to decrease). Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered. When the average pore diameter is larger than 25 μm, the strength of the exhaust gas filter tends to decrease, and there is a concern that it is difficult to attach the exhaust gas filter to the exhaust pipe. The average pore diameter of the cell wall can be measured with a mercury porosimeter.
 セル壁の厚さw(mm)は、0.10≦w≦0.50であることが好ましく、0.13≦w≦0.47mmであることがさらに好ましい。厚さwが0.13mmより薄いと、排ガスフィルタの強度が減少しやすく、排気管に排ガスフィルタを取り付け難くなることが懸念される。厚さwが0.47mmより厚いと、粒子状物質を含む排ガスがセル壁を透過し難くなる。これに伴い、粒子状物質を含む排ガスがセル壁を透過する量が減少しやすくなり、捕集性能が低下しやすくなると考えられる。 The thickness w (mm) of the cell wall is preferably 0.10 ≦ w ≦ 0.50, and more preferably 0.13 ≦ w ≦ 0.47 mm. If the thickness w is less than 0.13 mm, the strength of the exhaust gas filter tends to decrease, and there is a concern that it will be difficult to attach the exhaust gas filter to the exhaust pipe. If the thickness w is greater than 0.47 mm, the exhaust gas containing particulate matter will not easily pass through the cell walls. Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered.
 セル密度C(個/mm2)は、0.30≦C≦0.70であることが好ましく、0.31≦C≦0.62であることがさらに好ましい。セル密度Cが0.31個/mm2より小さいと、栓詰めセル孔と開放セル孔との水力直径の差が相対的に小さくなりやすい。それゆえ、栓詰めセル孔と開放セル孔との間の圧力差が小さくなりやすく、粒子状物質を含む排ガスがセル壁を透過し難くなる。これに伴い、粒子状物質を含む排ガスがセル壁を透過する量が減少しやすくなり、捕集性能が低下しやすくなると考えられる。セルの密度Cが0.62個/mm2より大きいと、セル孔の水力直径が小さくなり過ぎ、圧力損失が増大する場合がある。 The cell density C (cells / mm 2 ) is preferably 0.30 ≦ C ≦ 0.70, and more preferably 0.31 ≦ C ≦ 0.62. If the cell density C is less than 0.31 cells / mm 2 , the difference in hydraulic diameter between the plugged cell hole and the open cell hole tends to be relatively small. Therefore, the pressure difference between the plugged cell hole and the open cell hole tends to be small, and the exhaust gas containing particulate matter is difficult to permeate the cell wall. Along with this, it is considered that the amount of the exhaust gas containing particulate matter permeates the cell walls is likely to decrease, and the collection performance is likely to be lowered. When the cell density C is larger than 0.62 cells / mm 2 , the hydraulic diameter of the cell holes becomes too small, and the pressure loss may increase.
 排ガスフィルタの外径φ(mm)は、60≦φ≦160が好ましく、80≦φ≦150であることがさらに好ましい。外径φが80mmより小さいと、排ガスフィルタの軸方向から見た全セル孔の面積、すなわち流路全体の面積が小さくなるため、排ガスフィルタの圧力損失が増大する場合がある。外径φが150mmより大きいと、排気管に対する排ガスフィルタの搭載性が低くなる場合がある。 The outer diameter φ (mm) of the exhaust gas filter is preferably 60 ≦ φ ≦ 160, and more preferably 80 ≦ φ ≦ 150. When the outer diameter φ is smaller than 80 mm, the area of all the cell holes as viewed from the axial direction of the exhaust gas filter, that is, the area of the entire flow path becomes small, and the pressure loss of the exhaust gas filter may increase. If the outer diameter φ is larger than 150 mm, the mounting property of the exhaust gas filter on the exhaust pipe may be lowered.
 セル壁の排ガス透過係数k(μm2)は、0.1≦k≦2.0が好ましく、0.3≦k≦1.1であることがさらに好ましい。セル壁の排ガス透過係数kは上記気孔率や平均気孔径の影響を強く受けることが知られている。排ガス透過係数kが0.3μm2より小さいと、気孔率や平均気孔径が小さくなりやすく、粒子状物質を含む排ガスがセル壁を透過し難くなり、これに伴い、捕集性能が低下しやすくなると考えられる。排ガス透過係数kが1.1μm2より大きい場合は、気孔率や平均気孔径が大きくなりやすく、排ガスフィルタの強度が減少しやすい。 The exhaust gas permeability coefficient k (μm 2 ) of the cell wall is preferably 0.1 ≦ k ≦ 2.0, and more preferably 0.3 ≦ k ≦ 1.1. It is known that the exhaust gas permeability coefficient k of the cell wall is strongly influenced by the porosity and the average pore diameter. When the exhaust gas permeability coefficient k is smaller than 0.3 μm 2 , the porosity and average pore diameter are likely to be small, and the exhaust gas containing particulate matter is difficult to permeate the cell wall, and accordingly, the trapping performance tends to be lowered. It is considered to be. When the exhaust gas permeability coefficient k is larger than 1.1 μm 2 , the porosity and average pore diameter are likely to increase, and the strength of the exhaust gas filter tends to decrease.
(実施例1)上記排ガスフィルタにかかる実施例1について、図1~図3を参照して説明する。図1~図3に示すごとく、排ガスフィルタ1は、内燃機関から排出される粒子状物質を含む排ガスを浄化するものである。排ガスフィルタ1は、複数のセル壁2と、セル壁2によって囲まれた複数のセル孔3とを有している。 (Example 1) Example 1 of the exhaust gas filter will be described with reference to FIGS. As shown in FIGS. 1 to 3, the exhaust gas filter 1 purifies exhaust gas containing particulate matter discharged from an internal combustion engine. The exhaust gas filter 1 has a plurality of cell walls 2 and a plurality of cell holes 3 surrounded by the cell walls 2.
 セル壁2には、隣り合うセル孔3間を連通する細孔が形成されている。セル孔3は、排ガスフィルタ1の軸方向Xにおいて貫通した開放セル孔31と、上流側端部を閉塞する栓部321が配設された栓詰めセル孔32とからなる。軸方向Xと直交する断面において、栓詰めセル孔32における流路断面積は、開放セル孔31における流路断面積よりも大きい。 The cell wall 2 is formed with pores communicating between adjacent cell holes 3. The cell hole 3 includes an open cell hole 31 penetrating in the axial direction X of the exhaust gas filter 1 and a plugged cell hole 32 provided with a plug part 321 for closing the upstream end. In the cross section orthogonal to the axial direction X, the flow path cross-sectional area in the plugged cell hole 32 is larger than the flow path cross-sectional area in the open cell hole 31.
 以下さらに詳細に説明する。図1に示すごとく、本例の排ガスフィルタ1は、自動車の内燃機関、例えば、ディーゼルエンジンやガソリンエンジンにおいて発生した排気ガスを浄化するためのものである。排ガスフィルタ1は、円柱形状をなしており、格子状に配設されたセル壁2と、セル壁2によって囲まれたセル孔3とが形成されている。本例において、排ガスフィルタ1の外径φは、132mmとした。また、基材長Lは、35mm≦L≦270mmであることが好ましい。 The details will be described below. As shown in FIG. 1, the exhaust gas filter 1 of this example is for purifying exhaust gas generated in an internal combustion engine of an automobile, for example, a diesel engine or a gasoline engine. The exhaust gas filter 1 has a cylindrical shape, and is formed with cell walls 2 arranged in a lattice shape and cell holes 3 surrounded by the cell walls 2. In this example, the outer diameter φ of the exhaust gas filter 1 is 132 mm. The base material length L is preferably 35 mm ≦ L ≦ 270 mm.
 セル壁2は、多孔質構造を有するセラミック材料からなり、その内部には、気孔からなり隣り合うセル孔3同士を連通する細孔(図示略)が形成されている。本例においては、セラミック材料として、平均気孔径が18μm、気孔率が60%のコージェライトを用いた。また、セル壁2の厚さWは、0.28mmとした。本例において、排ガスがセル壁2を透過するときの透過のしやすさを示す排ガス透過係数kは、0.7μm2である。 The cell wall 2 is made of a ceramic material having a porous structure, and inside thereof, pores (not shown) that are pores and communicate with adjacent cell holes 3 are formed. In this example, cordierite having an average pore diameter of 18 μm and a porosity of 60% was used as the ceramic material. Moreover, the thickness W of the cell wall 2 was 0.28 mm. In this example, the exhaust gas permeation coefficient k indicating the ease of permeation when the exhaust gas permeates the cell wall 2 is 0.7 μm 2 .
 図1~図3に示すごとく、セル孔3は、開放セル孔31と栓詰めセル孔32とからなる。開放セル孔31と栓詰めセル孔32とは、互いに隣り合うよう、交互に並んで形成されている。本実施例1の排ガスフィルタ1において、単位面積当たりのセル孔3の個数であるセル密度Cは、0.47個/mm2とした。 As shown in FIGS. 1 to 3, the cell hole 3 includes an open cell hole 31 and a plugged cell hole 32. The open cell holes 31 and the plugged cell holes 32 are formed alternately so as to be adjacent to each other. In the exhaust gas filter 1 of Example 1, the cell density C, which is the number of the cell holes 3 per unit area, was 0.47 / mm 2 .
 図1~図3に示すごとく、複数のセル孔3は、2種類以上の形状を有する。すなわち、複数のセル孔3の中に、軸方向Xから見たときの形状が互いに異なる2種以上のセル孔3が存在する。また、相似形であっても大きさが異なるセル孔3同士も、形状が異なるものとする。本例において、セル孔3は、内周形状が八角形のセル孔3と、内周形状が四角形のセル孔3とからなる。八角形のセル孔3の水力直径は、四角形のセル孔3の水力直径よりも大きい。排ガスフィルタ1は、八角形のセル孔3と四角形のセル孔3とを交互に並べて形成されている。本実施例1の排ガスフィルタ1において、内周形状が八角形のセル孔3が栓詰めセル孔32であり、内周形状が四角形のセル孔3が開放セル孔31である。そして、栓詰めセル孔32の水力直径は、開放セル孔31の水力直径よりも大きい。 As shown in FIGS. 1 to 3, the plurality of cell holes 3 have two or more types of shapes. That is, in the plurality of cell holes 3, there are two or more types of cell holes 3 having different shapes when viewed from the axial direction X. Further, the cell holes 3 having different sizes even in the similar shape are different in shape. In this example, the cell hole 3 includes an octagonal cell hole 3 with an inner peripheral shape and a cell hole 3 with an inner peripheral shape of a quadrangle. The hydraulic diameter of the octagonal cell hole 3 is larger than the hydraulic diameter of the square cell hole 3. The exhaust gas filter 1 is formed by alternately arranging octagonal cell holes 3 and square cell holes 3. In the exhaust gas filter 1 of the first embodiment, the cell hole 3 having an octagonal inner periphery is a plugged cell hole 32, and the cell hole 3 having a rectangular inner periphery is an open cell hole 31. The hydraulic diameter of the plugged cell hole 32 is larger than the hydraulic diameter of the open cell hole 31.
 開放セル孔31は、軸方向Xから見たとき、正方形状をなしており、排ガスフィルタ1の全長において貫通するように形成されている。また、栓詰めセル孔32は、軸方向Xから見たとき、八角形状をなしている。また、栓詰めセル孔32の上流側端部は、栓部321によって閉塞されている。 The open cell hole 31 has a square shape when viewed from the axial direction X, and is formed so as to penetrate through the entire length of the exhaust gas filter 1. Further, the plugging cell hole 32 has an octagonal shape when viewed from the axial direction X. Further, the upstream end portion of the plugging cell hole 32 is closed by a plug portion 321.
 開放セル孔31の流路断面積をS1とし、栓詰めセル孔32の流路断面積をS2としたとき、S2はS1よりも大きい。本例においては、S1に対するS2の比である流路断面積比Rs=S2/S1が、1.1≦Rs≦5を満たす。また、本例においては、流路断面積比Rs=1.6とした。 When the cross-sectional area of the open cell hole 31 is S1, and the cross-sectional area of the plugged cell hole 32 is S2, S2 is larger than S1. In this example, the flow path cross-sectional area ratio Rs = S2 / S1, which is the ratio of S2 to S1, satisfies 1.1 ≦ Rs ≦ 5. Further, in this example, the channel cross-sectional area ratio Rs = 1.6.
 排ガスフィルタ1の基材長Lは、下記式(1)によって決定される第1基準値L1以上である。さらに、排ガスフィルタ1の基材長Lは、下記式(M)によって定める臨界長Lm(吹き抜け臨界長Lm)以下である。セル壁2の厚さをw(mm)、排ガス透過係数をk(μm2)、セル密度をC(個/mm2)、排ガスフィルタ1の外径をφ(mm)、とする。
 L1=-3.7×Rs1.5-3.6/w+9.7/k-152.9×C+2241.5/φ+145.1 ・・・式(1),
 Lm=-5.5×Rs1.5-6.0/w+44.9/k-234.9×C+176.7/φ+255.6 ・・・式(M)。
The base material length L of the exhaust gas filter 1 is not less than the first reference value L1 determined by the following formula (1). Furthermore, the base material length L of the exhaust gas filter 1 is not more than the critical length Lm (blow-through critical length Lm) determined by the following formula (M). The thickness of the cell wall 2 is w (mm), the exhaust gas permeability coefficient is k (μm 2 ), the cell density is C (pieces / mm 2 ), and the outer diameter of the exhaust gas filter 1 is φ (mm).
L1 = −3.7 × Rs 1.5 −3.6 / w + 9.7 / k−152.9 × C + 2241.5 / φ + 145.1 Formula (1),
Lm = −5.5 × Rs 1.5 −6.0 / w + 44.9 / k−234.9 × C + 176.7 / φ + 255.6 (Equation (M))
 式(1)について、図5を用いて説明する。図5は、基材長Lと捕集率との関係の概略を示している。なお、捕集率とは、排ガスフィルタ1に導入される排ガスに含まれる粒子状物質の数に対する、排ガスフィルタ1から排出される排ガスに含まれる粒子状物質の数の割合をいう。図5に示すごとく、排ガスフィルタ1は、基材長L(全長L)を長くしていくにつれて捕集率が上昇していくが、基材長Lが長くなるにつれて捕集率の上昇は少なくなり、基材長Lがある長さ以上になると、基材長Lの増加に伴う捕集率の上昇がなくなる。これは、基材長Lがある長さよりも長い場合、上流側から開放セル孔31に導入された排ガスが、所定の位置よりも下流側においてはセル壁2を通過しなくなり、そのまま下流側へ吹き抜けてしまうためと考えられる。基材長Lの増加に伴う捕集率の上昇が生じなくなり始める長さを「吹き抜け臨界長Lm(すなわち、臨界長Lm)」とし、基材長Lが臨界長Lm以上のときの捕集率を「限界捕集率」ということとする。すなわち、基材長Lを臨界長Lm以上としても、排ガスフィルタ1の捕集率は、限界捕集率から上昇しない。それゆえ、排ガスフィルタ1の圧力損失低減及び大型化抑制を図る観点から、排ガスフィルタ1の基材長Lを、臨界長Lm以下としている。 Equation (1) will be described with reference to FIG. FIG. 5 shows an outline of the relationship between the substrate length L and the collection rate. The collection rate refers to the ratio of the number of particulate matter contained in the exhaust gas discharged from the exhaust gas filter 1 to the number of particulate matter contained in the exhaust gas introduced into the exhaust gas filter 1. As shown in FIG. 5, in the exhaust gas filter 1, the collection rate increases as the substrate length L (full length L) increases, but the increase in the collection rate decreases as the substrate length L increases. Thus, when the substrate length L is equal to or longer than a certain length, an increase in the collection rate accompanying the increase in the substrate length L is eliminated. This is because when the base material length L is longer than a certain length, the exhaust gas introduced into the open cell hole 31 from the upstream side does not pass through the cell wall 2 on the downstream side from the predetermined position, and goes directly to the downstream side. It is thought that it blows through. The length at which the increase in the collection rate accompanying the increase in the substrate length L does not occur is defined as “blow-through critical length Lm (ie, critical length Lm)”, and the collection rate when the substrate length L is equal to or greater than the critical length Lm. Is called “marginal collection rate”. That is, even if the substrate length L is set to the critical length Lm or more, the collection rate of the exhaust gas filter 1 does not increase from the limit collection rate. Therefore, from the viewpoint of reducing the pressure loss and suppressing the increase in size of the exhaust gas filter 1, the base material length L of the exhaust gas filter 1 is set to the critical length Lm or less.
 本例においては、基材長Lを、臨界長Lmに近付けることにより、高い浄化性能を得ることができ、かつ、基材長Lを、臨界長Lm以下とすることにより、上述のごとく、排ガスフィルタ1の圧力損失の低減及び小型化を図っている。そこで、図5に示すごとく、式(1)の第1基準値L1は、限界捕集率から10%を引いた捕集率以上となる基材長Lのうち、最短のもの(La1)と同等の値を想定している。すなわち、例えば限界捕集率が70%の場合、捕集率が60%となるような基材長をLa1と規定し、第1基準値L1は、これと同等となることを想定している。そして、基材長Lを第1基準値L1以上、かつ、臨界長Lm以下とすることにより、排ガスフィルタの圧力損失の低減及び小型化を図りつつ、高い浄化性能を得ることができる。 In this example, high purification performance can be obtained by bringing the substrate length L close to the critical length Lm, and the exhaust gas as described above can be obtained by setting the substrate length L to be equal to or less than the critical length Lm. The pressure loss of the filter 1 is reduced and the size is reduced. Therefore, as shown in FIG. 5, the first reference value L1 of the formula (1) is the shortest (La1) of the base material length L that is equal to or higher than the collection rate obtained by subtracting 10% from the limit collection rate. Equivalent values are assumed. That is, for example, when the limit collection rate is 70%, a base length such that the collection rate is 60% is defined as La1, and it is assumed that the first reference value L1 is equivalent to this. . And by making the base-material length L into 1st reference value L1 or more and critical length Lm or less, high purification performance can be acquired, aiming at reduction of the pressure loss of an exhaust gas filter, and size reduction.
 式(1)、及び式(M)の導出は、限界捕集率の値に影響を及ぼし得る、流路断面積比Rs、セル壁2の厚さw、排ガス透過係数k、セル密度C、排ガスフィルタ1の外径φを変数とした重回帰分析によって行った。この導出は、解析ソフトウェアJUSE-StatWorks(登録商標)を用いて行った。 The derivation of the formula (1) and the formula (M) can affect the value of the critical collection rate, the flow path cross-sectional area ratio Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, This was performed by multiple regression analysis using the outer diameter φ of the exhaust gas filter 1 as a variable. This derivation was performed using analysis software JUSE-StatWorks (registered trademark).
 流路断面積比Rsが1.6、セル壁2の厚さwが0.28mm、セル密度Cが0.47個/mm2、排ガス透過係数kが0.7μm2、外径φが132.0mm、である場合、第1基準値L1は、84mm、臨界長Lmは、178mmとなる。排ガスフィルタ1の基材長Lは、第1基準値L1以上、臨界長Lm以下である。 The cross-sectional area ratio Rs is 1.6, the thickness w of the cell wall 2 is 0.28 mm, the cell density C is 0.47 cells / mm 2 , the exhaust gas permeability coefficient k is 0.7 μm 2 , and the outer diameter φ is 132. In the case of 0.0 mm, the first reference value L1 is 84 mm, and the critical length Lm is 178 mm. The substrate length L of the exhaust gas filter 1 is not less than the first reference value L1 and not more than the critical length Lm.
 次に、本実施例1の排ガスフィルタ1の作用効果について説明する。排ガスフィルタ1においては、上述のごとく、セル孔3として開放セル孔31と栓詰めセル孔32とを有している。そのため、排ガスをセル壁2に形成された細孔に効率良く流通させ、排ガスフィルタ1の浄化性能を向上することができる。 Next, the function and effect of the exhaust gas filter 1 of the first embodiment will be described. As described above, the exhaust gas filter 1 has the open cell holes 31 and the plugged cell holes 32 as the cell holes 3. Therefore, the exhaust gas can be efficiently circulated through the pores formed in the cell wall 2 and the purification performance of the exhaust gas filter 1 can be improved.
 すなわち、開放セル孔31の流路断面積よりも、栓詰めセル孔32における流路断面積を大きくすることにより、開放セル孔31における圧力損失が栓詰めセル孔32における圧力損失に比べて大きくなり、開放セル孔31内の圧力と栓詰めセル孔32内の圧力との圧力差が大きくなる。この圧力差を利用することにより、開放セル孔31に流入した排ガスを、細孔を通じて、栓詰めセル孔32へと効率良く流通させることができる。また、開放セル孔31の流路断面積と栓詰めセル孔32の流路断面積の差を拡大することにより、この圧力差を増大させることもできる。これによって、セル壁2により多くの排ガスを透過させることができ、栓詰めセル孔32への排ガスの流通量を増加させることができる。また、開放セル孔31と栓詰めセル孔32との間の圧力差は、排ガスフィルタ1の上流から下流に向かうにつれて小さくなっていくが、圧力差が生じる範囲においては、細孔への排ガスの流通が継続される。そのため、上述のごとく、開放セル孔31と栓詰めセル孔32との間の圧力差を増大することで、排ガスフィルタ1のより広い範囲において、セル壁2に排ガスを透過させることができる。これにより、排ガスに含まれる粒子状物質を効率良く捕集することができる。 That is, by making the flow path cross-sectional area of the plugged cell hole 32 larger than the flow path cross-sectional area of the open cell hole 31, the pressure loss in the open cell hole 31 is larger than the pressure loss in the plugged cell hole 32. Thus, the pressure difference between the pressure in the open cell hole 31 and the pressure in the plugged cell hole 32 increases. By utilizing this pressure difference, the exhaust gas flowing into the open cell hole 31 can be efficiently circulated to the plugged cell hole 32 through the pore. In addition, the pressure difference can be increased by enlarging the difference between the channel cross-sectional area of the open cell hole 31 and the channel cross-sectional area of the plugged cell hole 32. As a result, a large amount of exhaust gas can be permeated through the cell wall 2 and the amount of exhaust gas flowing into the plugged cell hole 32 can be increased. Further, the pressure difference between the open cell hole 31 and the plugged cell hole 32 becomes smaller from the upstream side to the downstream side of the exhaust gas filter 1, but in the range where the pressure difference is generated, the exhaust gas to the pores is reduced. Distribution continues. Therefore, as described above, by increasing the pressure difference between the open cell hole 31 and the plugged cell hole 32, the exhaust gas can be transmitted through the cell wall 2 in a wider range of the exhaust gas filter 1. Thereby, the particulate matter contained in the exhaust gas can be efficiently collected.
 また、栓部321は、栓詰めセル孔32の上流側端部に配設されている。したがって、排ガスに粒子状物質と共に含まれているAsh(カルシウム化合物などの灰分)を排ガスフィルタ1から排出することができる。Ashは、燃焼除去をすることができないため、例えば栓部が栓詰めセル孔の下流側端部に配設された排ガスフィルタにおいては内部に残留する。一方、排ガスフィルタ1においては、排ガスがセル壁2を透過する際に、セル壁2によって分離され、Ashは開放セル孔31内に残る。開放セル孔31は、軸方向において貫通しているため、Ashを上記開放セル孔から容易に排出することができ、排ガスフィルタ1内におけるAshの残留を防止することができる。これにより、排ガスフィルタ1における浄化性能の低下を抑制することができる。 Further, the plug part 321 is disposed at the upstream end of the plugged cell hole 32. Therefore, Ash (ash content such as calcium compound) contained in the exhaust gas together with the particulate matter can be discharged from the exhaust gas filter 1. Since Ash cannot be removed by combustion, it remains inside, for example, in an exhaust gas filter in which the plug is disposed at the downstream end of the plugged cell hole. On the other hand, in the exhaust gas filter 1, when exhaust gas permeates the cell wall 2, it is separated by the cell wall 2, and Ash remains in the open cell hole 31. Since the open cell hole 31 penetrates in the axial direction, the Ash can be easily discharged from the open cell hole, and the remaining of the Ash in the exhaust gas filter 1 can be prevented. Thereby, the fall of the purification performance in the exhaust gas filter 1 can be suppressed.
 また、排ガスフィルタ1は、上記式(1)によって決定される第1基準値L1以上の基材長、すなわち全長を有する。そのため、粒子状物質の捕集性能を充分に確保することができ、排ガスフィルタにおける浄化性能をより向上させることができる。
 そして、排ガスフィルタは、上記式(M)によって決定される臨界長Lm以下の基材長を有する。そのため、排ガスフィルタ1の圧力損失の増大、及び排ガスフィルタ1の大型化を効果的に抑制することができる。すなわち、排ガスフィルタ1の基材長Lを、臨界長Lmよりも長くしても、開放セル孔31を流通する排ガスがセル壁2を透過することなく排出される吹き抜けが発生してしまうため、圧力損失及び排ガスフィルタ1の搭載性の関係から無駄が大きくなってしまう。そこで、排ガスフィルタ1の基材長を、上記式(M)によって決定される臨界長Lm以下とすることにより、排ガスフィルタ1の圧力損失増大及び大型化を、効果的に抑制することができる。
Further, the exhaust gas filter 1 has a base material length that is not less than the first reference value L1 determined by the above formula (1), that is, a total length. Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter.
The exhaust gas filter has a base material length that is not more than the critical length Lm determined by the above formula (M). Therefore, an increase in pressure loss of the exhaust gas filter 1 and an increase in the size of the exhaust gas filter 1 can be effectively suppressed. That is, even if the base material length L of the exhaust gas filter 1 is longer than the critical length Lm, the exhaust gas flowing through the open cell holes 31 is discharged without passing through the cell walls 2, Waste is increased due to the relationship between the pressure loss and the mountability of the exhaust gas filter 1. Therefore, by setting the base length of the exhaust gas filter 1 to be equal to or less than the critical length Lm determined by the above formula (M), it is possible to effectively suppress an increase in pressure loss and an increase in size of the exhaust gas filter 1.
 また、流路断面積比Rsが1.1≦Rs≦5であり、かつ排ガスフィルタ1の基材長Lが、35mm≦L≦270mmである。そのため、開放セル孔31と栓詰めセル孔32との間における圧力差を確実に発生させ、セル壁2に形成された細孔に排ガスを確実に流通させることができる。また、栓詰めセル孔32と開放セル孔31との流路断面積比Rsに応じて35mm~270mmの範囲内で基材長Lを決定することにより、上記排ガスフィルタの捕集性能を向上することができる。 Further, the flow path cross-sectional area ratio Rs is 1.1 ≦ Rs ≦ 5, and the base material length L of the exhaust gas filter 1 is 35 mm ≦ L ≦ 270 mm. Therefore, a pressure difference between the open cell hole 31 and the plugged cell hole 32 can be reliably generated, and the exhaust gas can be reliably circulated through the pores formed in the cell wall 2. Further, the collection performance of the exhaust gas filter is improved by determining the substrate length L within the range of 35 mm to 270 mm in accordance with the flow path cross-sectional area ratio Rs between the plugged cell hole 32 and the open cell hole 31. be able to.
 また、本例の排ガスフィルタ1は、上記式(1)によって決定される第1基準値L1以上の基材長、すなわち全長を有する。そのため、粒子状物質の捕集性能を充分に確保することができ、排ガスフィルタ1における浄化性能をより向上させることができる。 Further, the exhaust gas filter 1 of this example has a base material length that is not less than the first reference value L1 determined by the above formula (1), that is, a total length. Therefore, it is possible to sufficiently secure the particulate matter collection performance and to further improve the purification performance of the exhaust gas filter 1.
 また、複数のセル孔3は、2種類以上の形状を有する。それゆえ、開放セル孔31における流路断面積S1よりも栓詰めセル孔32における流路断面積S2が大きい構成を容易に得ることができる。 Further, the plurality of cell holes 3 have two or more types of shapes. Therefore, a configuration in which the flow path cross-sectional area S2 in the plugged cell hole 32 is larger than the flow path cross-sectional area S1 in the open cell hole 31 can be easily obtained.
 また、セル孔3は、内周形状が八角形のセル孔3と、内周形状が四角形のセル孔3とからなり、八角形のセル孔3の水力直径は、四角形のセル孔3の水力直径よりも大きく、八角形のセル孔3と四角形のセル孔3とを交互に並べて形成されている。そのため、八角形のセル孔3の水力直径と、四角形のセル孔3の水力直径との差を大きくすることができる。これにより、八角形のセル孔3及び四角形のセル孔3を、栓詰めセル孔32と開放セル孔31とに適宜割り振った際に、栓詰めセル孔32と開放セル孔31との間における圧力差を効果的に増大させることができる。また、八角形のセル孔3間に形成された排ガスを流通しないセル壁2を縮小することができる。これにより、排ガスフィルタ1における浄化性能を向上することができる。 The cell hole 3 is composed of an octagonal cell hole 3 with an inner peripheral shape and a square cell hole 3 with an inner peripheral shape, and the hydraulic diameter of the octagonal cell hole 3 is the hydraulic power of the square cell hole 3. The octagonal cell holes 3 and the quadrangular cell holes 3 are arranged alternately and larger than the diameter. Therefore, the difference between the hydraulic diameter of the octagonal cell hole 3 and the hydraulic diameter of the square cell hole 3 can be increased. Thereby, when the octagonal cell hole 3 and the square cell hole 3 are appropriately allocated to the plugged cell hole 32 and the open cell hole 31, the pressure between the plugged cell hole 32 and the open cell hole 31 is determined. The difference can be increased effectively. Moreover, the cell wall 2 which does not distribute | circulate the exhaust gas formed between the octagonal cell holes 3 can be reduced. Thereby, the purification performance in the exhaust gas filter 1 can be improved.
 以上のごとく、本例によれば、圧力損失の増大、車両への搭載性の低下、を抑制しながら、粒子状物質の捕集性能を向上し、浄化性能を向上することができる排ガスフィルタ1を提供することができる。 As described above, according to this example, the exhaust gas filter 1 that can improve the collection performance of particulate matter and improve the purification performance while suppressing an increase in pressure loss and a decrease in mountability on a vehicle. Can be provided.
 尚、本例の排ガスフィルタ1においては、四角形のセル孔3を開放セル孔31とし、八角形のセル孔3を栓詰めセル孔32として、開放セル孔31と栓詰めセル孔32とを交互に並べて形成したが、これ以外の形状であってもよい。例えば、図4に示すごとく、四角形のセル孔3の一部を栓詰めセル孔32としてもよい。この場合にも、実施例1の排ガスフィルタ1と同様の作用効果を得ることができる。 In the exhaust gas filter 1 of this example, the open cell holes 31 and the plugged cell holes 32 are alternately arranged with the square cell holes 3 as open cell holes 31 and the octagonal cell holes 3 as plugged cell holes 32. However, other shapes may be used. For example, as shown in FIG. 4, a part of the rectangular cell hole 3 may be a plugged cell hole 32. Also in this case, the same effect as the exhaust gas filter 1 of Example 1 can be obtained.
(実施例2)以下、実施例2に係る排ガスフィルタについて説明する。本実施例2は、排ガスフィルタ1の基材長、すなわち全長の決定方法を変更した例である。なお、排ガスフィルタ1の基本構造は実施例1と同様としている。本例において、排ガスフィルタ1の基材長Lは、下記式(2)によって決定される第2基準値L2以上である。さらに、排ガスフィルタ1の基材長Lは、上記式(M)によって決定される臨界長Lm(吹き抜け臨界長Lm)以下である。
 L2=-13.4×Rs1.5+0.76/w+3.2/k-132.1×C+1117.3/φ+174.4 ・・・式(2)。
(Embodiment 2) An exhaust gas filter according to Embodiment 2 will be described below. The present Example 2 is an example in which the base material length of the exhaust gas filter 1, that is, the method for determining the total length is changed. The basic structure of the exhaust gas filter 1 is the same as that of the first embodiment. In this example, the base material length L of the exhaust gas filter 1 is not less than the second reference value L2 determined by the following formula (2). Furthermore, the base material length L of the exhaust gas filter 1 is not more than the critical length Lm (blow-through critical length Lm) determined by the above formula (M).
L2 = −13.4 × Rs 1.5 + 0.76 / w + 3.2 / k−132.1 × C + 117.3 / φ + 174.4 (2)
 図6に、実施例1の図5と同様な、基材長Lと捕集率との関係の概略を示した。同図に示すごとく、式(2)の第2基準値L2は、捕集率が50%以上となる基材長Lのうち、最短のもの(La2)と同等の値を想定している。そして、基材長Lを第2基準値L2以上、臨界長Lm以下とすることにより、排ガスフィルタの圧力損失の低減及び小型化を図りつつ、50%以上の捕集率を得ることができる。上記式(2)の導出も、限界捕集率の値に影響を及ぼし得る、流路断面積比Rs、セル壁2の厚さw、排ガス透過係数k、セル密度C、外径φを変数とした重回帰分析によって行った。 FIG. 6 shows an outline of the relationship between the substrate length L and the collection rate, similar to FIG. 5 of Example 1. As shown in the figure, the second reference value L2 of the formula (2) assumes a value equivalent to the shortest (La2) of the base material length L at which the collection rate is 50% or more. Then, by setting the substrate length L to the second reference value L2 or more and the critical length Lm or less, it is possible to obtain a collection rate of 50% or more while reducing the pressure loss and reducing the size of the exhaust gas filter. The derivation of the above equation (2) can also affect the value of the limit collection rate. The flow path cross-sectional area ratio Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ are variables. Was performed by multiple regression analysis.
 流路断面積比Rs=S2/S1が1.6、セル壁2の厚さがwは0.28mm、セル密度Cが0.47個/mm2、排ガス透過係数kが0.7μm2、外径φが132.0mm、である場合、第2基準値L2は、101mmとなり、臨界長Lmは、上述の通り178mmとなる。排ガスフィルタ1の基材長Lは、第2基準値L2以上、臨界長Lm以下である。 The channel cross-sectional area ratio Rs = S2 / S1 is 1.6, the thickness of the cell wall 2 is 0.28 mm, the cell density C is 0.47 / mm 2 , the exhaust gas permeability coefficient k is 0.7 μm 2 , When the outer diameter φ is 132.0 mm, the second reference value L2 is 101 mm, and the critical length Lm is 178 mm as described above. The base material length L of the exhaust gas filter 1 is not less than the second reference value L2 and not more than the critical length Lm.
 その他の実施例1の排ガスフィルタ1の構造は、実施例1の排ガスフィルタ1の構造と同様である。なお、本実施例2、または本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。 Other structures of the exhaust gas filter 1 of Example 1 are the same as those of the exhaust gas filter 1 of Example 1. Of the reference numerals used in the drawings related to the second embodiment or the present embodiment, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
 本実施例2に係る排ガスフィルタ1は、ガソリンエンジンを搭載する車両において一般的に要求される捕集率を上回る50%以上の捕集率を確保することができ、高い浄化性能が得られる。その他、本実施例2に係る排ガスフィルタ1は、実施例1に係る排ガスフィルタ1と同様の作用効果を有する。 The exhaust gas filter 1 according to the second embodiment can secure a collection rate of 50% or more, which is higher than the collection rate generally required in a vehicle equipped with a gasoline engine, and high purification performance can be obtained. In addition, the exhaust gas filter 1 according to the second embodiment has the same effects as the exhaust gas filter 1 according to the first embodiment.
(実施例3)以下、実施例3に係る排ガスフィルタについて説明する。本実施例3は、排ガスフィルタ1の基材長、すなわち全長の決定方法を変更した例である。なお、排ガスフィルタ1の基本構造は実施例1と同様としている。本実施例3において、排ガスフィルタ1の基材長Lは、下記式(3)によって決定される第3基準値L3以上である。さらに、排ガスフィルタ1の基材長Lは、上記式(M)によって決定される臨界長Lm(吹き抜け臨界長Lm)以下である。
 L3=-6.8×Rs1.5-4.5/w+12.0/k-189.9×C+2629.1/φ+191.7 ・・・式(3)。
(Embodiment 3) An exhaust gas filter according to Embodiment 3 will be described below. The third embodiment is an example in which the method for determining the substrate length of the exhaust gas filter 1, that is, the total length is changed. The basic structure of the exhaust gas filter 1 is the same as that of the first embodiment. In the third embodiment, the base material length L of the exhaust gas filter 1 is not less than the third reference value L3 determined by the following formula (3). Furthermore, the base material length L of the exhaust gas filter 1 is not more than the critical length Lm (blow-through critical length Lm) determined by the above formula (M).
L3 = −6.8 × Rs 1.5 −4.5 / w + 12.0 / k−189.9 × C + 2629.1 / φ + 191.7 Formula (3).
 式(3)について、図7を用いて説明する。図7に、実施例1で用いた図5と同様な、基材長Lと捕集率との関係の概略を示した。同図に示すごとく、排ガスフィルタ1は、基材長Lを臨界長Lmから短くしていくにつれて、捕集率が低下していく。ここで、基材長Lが、限界捕集率の90%の捕集率となる基材長以下になると、基材長Lの減少に伴う捕集率の減少が顕著となる。そこで、同図に示すごとく、式(3)の第3基準値L3は、限界捕集率の90%以上の捕集率以上となる基材長Lのうち、最短のもの(La3)と同等の値を想定している。すなわち、例えば限界捕集率が70%の場合、捕集率の値が63%となるような基材長をLa3と規定し、第3基準値L3は、これと同等となることを想定している。そして、基材長Lを第3基準値L3以上、臨界長Lm以下とすることにより、排ガスフィルタの圧力損失の低減及び小型化を図りつつ、高い浄化性能を得ることができる。上記式(3)の導出も、限界捕集率の値に影響を及ぼし得る、流路断面積比Rs、セル壁2の厚さw、排ガス透過係数k、セル密度C、外径φを変数とした重回帰分析によって行った。 Equation (3) will be described with reference to FIG. FIG. 7 shows an outline of the relationship between the substrate length L and the collection rate, similar to FIG. 5 used in Example 1. As shown in the figure, the collection rate of the exhaust gas filter 1 decreases as the substrate length L is shortened from the critical length Lm. Here, when the base material length L is equal to or less than the base material length at which the collection rate is 90% of the limit collection rate, the reduction in the collection rate accompanying the reduction in the base material length L becomes significant. Therefore, as shown in the figure, the third reference value L3 of the formula (3) is equivalent to the shortest (La3) of the base material length L that is 90% or more of the limit collection rate. Is assumed. That is, for example, when the limit collection rate is 70%, it is assumed that the substrate length such that the value of the collection rate is 63% is defined as La3, and the third reference value L3 is equivalent to this. ing. And by making the base-material length L into 3rd reference value L3 or more and critical length Lm or less, high purification performance can be acquired, aiming at reduction of the pressure loss of an exhaust gas filter, and size reduction. The derivation of the above formula (3) can also affect the value of the limit collection rate. The flow path cross-sectional area ratio Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ are variables. Was performed by multiple regression analysis.
 流路断面積比Rs=S2/S1が1.6、セル壁2の厚さwが0.28mm、セル密度Cが0.47個/mm2、排ガス透過係数kが0.7μm2、外径φが132.0mmである場合、第3基準値L3は、110mmとなり、臨界長Lmは、上述の通り178mmとなる。排ガスフィルタ1の基材長Lは、第3基準値L3以上、臨界長Lm以下である。 The cross-sectional area ratio Rs = S2 / S1 is 1.6, the thickness w of the cell wall 2 is 0.28 mm, the cell density C is 0.47 cells / mm 2 , the exhaust gas permeability coefficient k is 0.7 μm 2 , the outside When the diameter φ is 132.0 mm, the third reference value L3 is 110 mm, and the critical length Lm is 178 mm as described above. The base material length L of the exhaust gas filter 1 is not less than the third reference value L3 and not more than the critical length Lm.
 その他は、実施例1の排ガスフィルタ1の構造と同様である。なお、本実施例3又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。 Others are the same as the structure of the exhaust gas filter 1 of the first embodiment. Of the reference numerals used in the drawings related to the third embodiment or the present embodiment, the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
 本実施例3においては、粒子状物質の捕集性能を充分に確保することができ、排ガスフィルタ1における浄化性能をより向上させることができる。その他、実施例1の排ガスフィルタ1と同様の作用効果を有する。 In Example 3, the particulate matter collection performance can be sufficiently secured, and the purification performance of the exhaust gas filter 1 can be further improved. In addition, the same effect as the exhaust gas filter 1 of Example 1 is obtained.
(実施例4)以下、実施例4に係る排ガスフィルタについて説明する。本実施例4は、図8に示すごとく、実施例1の排ガスフィルタにおけるセル孔の形状を変更した例である。本例の排ガスフィルタ1は、セル孔3の形状を一様な形状によって形成してある。セル孔3は、正方形状をなしており、軸方向と直交する断面上において、正方形における1辺と並行な縦方向と、縦方向と直交する横方向に整列するように形成されている。本例においては、縦方向及び横方向に3個ずつ並んだ計9個のセル孔3を一区画とし、これを適宜敷き詰めて排ガスフィルタ1を形成している。尚、一区画9個のセル孔3のうち隣り合わない3個のセル孔3を開放セル孔31とし、残りのセル孔3を栓詰めセル孔32とした。したがって、流路断面積比Rs=2.0となる。 (Embodiment 4) An exhaust gas filter according to Embodiment 4 will be described below. Example 4 is an example in which the shape of the cell hole in the exhaust gas filter of Example 1 is changed as shown in FIG. In the exhaust gas filter 1 of this example, the shape of the cell hole 3 is formed in a uniform shape. The cell hole 3 has a square shape, and is formed so as to be aligned in a vertical direction parallel to one side of the square and a horizontal direction orthogonal to the vertical direction on a cross section orthogonal to the axial direction. In this example, a total of nine cell holes 3 arranged three by three in the vertical direction and in the horizontal direction are defined as one section, and this is appropriately spread to form the exhaust gas filter 1. Of the nine cell holes 3 in one section, three cell holes 3 that are not adjacent to each other were used as open cell holes 31, and the remaining cell holes 3 were used as plugged cell holes 32. Therefore, the channel cross-sectional area ratio Rs = 2.0.
 実施例4に係る排ガスフィルタ1の他の構成は実施例1の排ガスフィルタ1の構成と同様である。尚、本実施例4又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1の排ガスフィルタ1と同様の構成要素等を表す。 Other configurations of the exhaust gas filter 1 according to the fourth embodiment are the same as the configurations of the exhaust gas filter 1 of the first embodiment. Of the reference numerals used in the drawings relating to the fourth embodiment or the present embodiment, the same reference numerals as those used in the first embodiment are the same as those in the exhaust gas filter 1 of the first embodiment unless otherwise specified. To express.
 本例の排ガスフィルタ1は、セル孔3の形状を一様とすることで、排ガスフィルタの形状をシンプルなものとすることができる。これにより、排ガスフィルタ1を容易に製造することができる。また、本実施例4の排ガスフィルタ1においても、実施例1の排ガスフィルタ1と同様の作用効果を得ることができる。 The exhaust gas filter 1 of this example can make the shape of the exhaust gas filter simple by making the shape of the cell holes 3 uniform. Thereby, the exhaust gas filter 1 can be manufactured easily. Further, also in the exhaust gas filter 1 of the fourth embodiment, it is possible to obtain the same effects as the exhaust gas filter 1 of the first embodiment.
(確認試験1)本確認試験1においては、流路断面積比Rsと、透過流量比及び捕集率との比較を行った。なお、透過流量比とは、開放セル孔31に流入した排ガスのうち、セル壁2を透過して栓詰めセル孔32内へと流入した排ガスの比を示すものである。 (Verification test 1) In the verification test 1, the flow path cross-sectional area ratio Rs was compared with the permeation flow rate ratio and the collection rate. The permeate flow rate ratio indicates the ratio of the exhaust gas that has flowed into the open cell hole 31 through the cell wall 2 and has flowed into the plugged cell hole 32.
 なお、本確認試験1には、開放セル孔31と栓詰めセル孔32との流路断面積比Rsを変化させた排ガスフィルタ101~104とを用いた。排ガスフィルタ101は、流路断面積比Rsを0.5とした。なお、排ガスフィルタ101は、実施例1の排ガスフィルタ1における開放セル孔31と栓詰めセル孔32とを反対に設定したものである。 In this confirmation test 1, exhaust gas filters 101 to 104 in which the flow path cross-sectional area ratio Rs between the open cell hole 31 and the plugged cell hole 32 was changed were used. The exhaust gas filter 101 has a flow passage cross-sectional area ratio Rs of 0.5. In the exhaust gas filter 101, the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter 1 of the first embodiment are set to be opposite to each other.
 図9に示すごとく、排ガスフィルタ102は、流路断面積比Rsを1とした。軸方向Xから見たとき、排ガスフィルタ102における開放セル孔31及び栓詰めセル孔32の形状はいずれも正方形である。排ガスフィルタ103は流路断面積比Rsを2.1、排ガスフィルタ104は流路断面積比Rsを4とした。排ガスフィルタ103及び排ガスフィルタ104における開放セル孔31及び栓詰めセル孔32の形状は、それぞれ、実施例1の排ガスフィルタ1における開放セル孔31及び栓詰めセル孔32と相似形状である。なお、排ガスフィルタ101~104において、基材長L、すなわち全長Lは、いずれも200mmとした。また、上述以外の構成は実施例1と同様である。なお、図9において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。 As shown in FIG. 9, the exhaust gas filter 102 has a flow path cross-sectional area ratio Rs of 1. When viewed from the axial direction X, the shapes of the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter 102 are both square. The exhaust gas filter 103 has a channel cross-sectional area ratio Rs of 2.1, and the exhaust gas filter 104 has a channel cross-sectional area ratio Rs of 4. The shapes of the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter 103 and the exhaust gas filter 104 are similar to the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter 1 of Example 1, respectively. In the exhaust gas filters 101 to 104, the base material length L, that is, the total length L was set to 200 mm. The configuration other than the above is the same as that of the first embodiment. Of the reference numerals used in FIG. 9, the same reference numerals as those used in the first embodiment denote the same components as in the first embodiment unless otherwise specified.
 図10Aは、流路断面積比Rsと透過流量比との関係を示すものであり、縦軸を透過流量比(%)とし、横軸を流路断面積比Rsとした。また、図10Bは、流路断面積比Rsと捕集率との関係を示すものであり、縦軸を捕集率(%)とし、横軸を流路断面積比Rsとした。 FIG. 10A shows the relationship between the channel cross-sectional area ratio Rs and the permeate flow ratio, where the vertical axis represents the permeate flow ratio (%) and the horizontal axis represents the channel cross-sectional area ratio Rs. FIG. 10B shows the relationship between the channel cross-sectional area ratio Rs and the collection rate. The vertical axis represents the collection rate (%), and the horizontal axis represents the channel cross-sectional area ratio Rs.
 図10Aに示すごとく、透過流量比は、排ガスフィルタ101が約26%、排ガスフィルタ102が約50%、排ガスフィルタ103が約76%、排ガスフィルタ104が約90%となった。また、図10Bに示すごとく、捕集率は、排ガスフィルタ101が約21%、排ガスフィルタ102が約41%、排ガスフィルタ103が約62%、排ガスフィルタ104が約76%となった。
 したがって、流路断面積比Rsが1を超えるように設定することにより、開放セル孔31に流入する排ガスの50%以上をセル壁2に透過させることができる。また、流路断面積比Rsを2以上とすることにより、開放セル孔31に流入する排ガスの80%以上をセル壁2に透過させることができる。これにより、捕集率が向上することが確認された。また、流路断面積比Rsが4を超える範囲においては透過流量比及び捕集率がほぼ一定となる。
As shown in FIG. 10A, the permeate flow rate ratio was about 26% for the exhaust gas filter 101, about 50% for the exhaust gas filter 102, about 76% for the exhaust gas filter 103, and about 90% for the exhaust gas filter 104. As shown in FIG. 10B, the collection rate was about 21% for the exhaust gas filter 101, about 41% for the exhaust gas filter 102, about 62% for the exhaust gas filter 103, and about 76% for the exhaust gas filter 104.
Therefore, by setting the flow path cross-sectional area ratio Rs to exceed 1, 50% or more of the exhaust gas flowing into the open cell hole 31 can be transmitted through the cell wall 2. Further, by setting the flow path cross-sectional area ratio Rs to 2 or more, 80% or more of the exhaust gas flowing into the open cell holes 31 can be transmitted through the cell wall 2. Thereby, it was confirmed that a collection rate improves. Further, in the range where the flow path cross-sectional area ratio Rs exceeds 4, the permeate flow rate ratio and the collection rate are almost constant.
(確認試験2)本確認試験2においては、表1に示すごとく、排ガスフィルタにおける流路断面積比Rsを変化させたときの粒子状物質の捕集率を比較した。
 排ガスフィルタとしては、一様な形状のセル孔を有する試料1と、水力直径の異なるセル孔を有する試料2~試料4とを用いた。
(Confirmation test 2) In this confirmation test 2, as shown in Table 1, the particulate matter collection rates when the flow passage cross-sectional area ratio Rs in the exhaust gas filter was changed were compared.
As the exhaust gas filter, Sample 1 having uniformly shaped cell holes and Sample 2 to Sample 4 having cell holes having different hydraulic diameters were used.
 試料1は、正方形状のセル孔を有しており、栓詰めセル孔と開放セル孔とが交互に並んで配置されている。したがって、流路断面積比Rsが1となる。試料2は、基材長L、すなわち全長Lを除いて、実施例1の排ガスフィルタ1と同様である。また、試料3及び試料4は、実施例1の排ガスフィルタにおけるセル孔と相似形状の四角形のセル孔と八角形のセル孔とを有しており、流路断面積比Rsは、試料3が4.0、試料4が5.0である。また、試料1~試料4の排ガスフィルタにおける基材長Lはいずれも200mmとした。なお、上述以外の構成は、実施例1と同様である。 Sample 1 has square cell holes, and plugged cell holes and open cell holes are alternately arranged. Therefore, the channel cross-sectional area ratio Rs is 1. The sample 2 is the same as the exhaust gas filter 1 of Example 1 except for the substrate length L, that is, the total length L. Sample 3 and sample 4 have square cell holes and octagonal cell holes similar in shape to the cell holes in the exhaust gas filter of Example 1, and the flow path cross-sectional area ratio Rs is as follows. 4.0, Sample 4 is 5.0. Further, the base material length L in the exhaust gas filters of Samples 1 to 4 was all 200 mm. The configuration other than the above is the same as that of the first embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、試料1~試料4における粒子状物質の捕集率を示すものである。表1に示すごとく、各排ガスフィルタにおける捕集率は、試料1が42%、試料2が57%、試料3が76%、試料4が78%となった。したがって、流路断面積比Rsが大きくなるにつれて、粒子状物質の捕集率が向上することが確認された。 Table 1 shows the collection rate of particulate matter in Sample 1 to Sample 4. As shown in Table 1, the collection rate in each exhaust gas filter was 42% for sample 1, 57% for sample 2, 76% for sample 3, and 78% for sample 4. Therefore, it was confirmed that the collection rate of the particulate matter was improved as the channel cross-sectional area ratio Rs was increased.
(確認試験3)本確認試験3は、排ガスフィルタにおける流路断面積比Rsと基材長、すなわち全長との捕集率への影響、及びセル壁の平均気孔径と基材長との捕集率への影響を確認した。本試験においては、排ガスフィルタとして、試料2~試料26を用いた。試料2~試料4は、確認試験2と同一である。表2に示すごとく、試料5~試料8は、流路断面積比Rsが1.6であり、試料2の排ガスフィルタに対して基材長(全長L)を変更した例である。また、試料9~試料12は、流路断面積比Rsが4.0であり、試料3の排ガスフィルタに対して、基材長を変更した例である。また、試料13~試料16は、流路断面積比Rsが5.0であり、試料4の排ガスフィルタに対して、基材長を変更した例である。 (Confirmation test 3) In this confirmation test 3, the effect of the cross-sectional area ratio Rs of the exhaust gas filter and the base material length, that is, the total length on the collection rate, and the average pore diameter of the cell wall and the base material length are captured. The effect on the collection rate was confirmed. In this test, Sample 2 to Sample 26 were used as exhaust gas filters. Samples 2 to 4 are the same as in Confirmation Test 2. As shown in Table 2, Sample 5 to Sample 8 are examples in which the flow path cross-sectional area ratio Rs is 1.6 and the substrate length (full length L) is changed with respect to the exhaust gas filter of Sample 2. Samples 9 to 12 have a channel cross-sectional area ratio Rs of 4.0 and are examples in which the base material length is changed with respect to the exhaust gas filter of sample 3. Samples 13 to 16 have a channel cross-sectional area ratio Rs of 5.0, and are examples in which the substrate length is changed with respect to the exhaust gas filter of sample 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3に示すごとく、試料17~試料21は、セル壁における平均気孔径を5μmとした。また、試料2及び試料5~試料8は、上述したものと同一であり、セル壁における平均気孔径を18μmとした。また、試料22~試料26は、セル壁における平均気孔径を30μmとした。なお、試料2~試料26における上述以外の構成は、実施例1と同様である。 As shown in Table 3, Sample 17 to Sample 21 had an average pore diameter in the cell wall of 5 μm. Sample 2 and Samples 5 to 8 were the same as described above, and the average pore diameter in the cell wall was 18 μm. In Samples 22 to 26, the average pore diameter in the cell wall was set to 30 μm. The configurations of Sample 2 to Sample 26 other than those described above are the same as in Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すごとく、試料2及び試料5~試料8においては、基材長L(全長L)が大きくなるにつれて捕集率が上昇し、150mm以降は安定した。また、試料3、試料4及び試料9~試料16においては、基材長Lが200mm以下の範囲では、基材長Lが大きくなるにつれて捕集率が上昇し続けている。したがって、開放セル孔における圧力損失と栓詰めセル孔における圧力損失とが等しくなるまでに必要な排ガスフィルタの基材長Lは、流路断面積比Rsが大きくなるにつれて大きくなることが確認された。これは、排ガスフィルタにおける、開放セル孔に流入する排ガスの流量増加によるものと考えられる。 As shown in Table 2, in Sample 2 and Samples 5 to 8, the collection rate increased as the substrate length L (full length L) increased, and became stable after 150 mm. Further, in Sample 3, Sample 4, and Sample 9 to Sample 16, when the substrate length L is in the range of 200 mm or less, the collection rate continues to increase as the substrate length L increases. Therefore, it was confirmed that the substrate length L of the exhaust gas filter required until the pressure loss in the open cell hole and the pressure loss in the plugging cell hole become equal increases as the flow path cross-sectional area ratio Rs increases. . This is considered due to an increase in the flow rate of exhaust gas flowing into the open cell holes in the exhaust gas filter.
 また、表3に示すごとく、試料17~試料21においては、基材長L(全長L)が大きくなるにつれて捕集率が上昇し、150mm以降の範囲にて安定した。また、試料2、試料5~試料8及び試料22~試料26においては、基材長Lが100mm以降の範囲にて安定した。したがって、開放セル孔における圧力損失と栓詰めセル孔における圧力損失とが等しくなるまでに必要な排ガスフィルタの基材長Lは、平均気孔径が大きくなるにつれて小さくなることが確認された。これは、排ガスフィルタにおける、セル壁における排ガスの透過損失の減少によるものと考えられる。 Further, as shown in Table 3, in Samples 17 to 21, the collection rate increased as the substrate length L (full length L) increased, and was stabilized in the range of 150 mm and later. In Sample 2, Sample 5 to Sample 8, and Sample 22 to Sample 26, the substrate length L was stable in the range of 100 mm or more. Therefore, it was confirmed that the base material length L of the exhaust gas filter required until the pressure loss in the open cell hole and the pressure loss in the plugging cell hole become equal decreases as the average pore diameter increases. This is considered to be due to a reduction in the permeation loss of the exhaust gas in the cell wall in the exhaust gas filter.
(確認試験4)本確認試験4においては、上記式(1)、上記式(M)の精度を確認するとともに、排ガスフィルタの圧力損失と捕集率とに関する後述する評価を行った。上記式(1)の精度は、限界捕集率から10%を引いた捕集率を確保することができる基材長、すなわち全長のうち、最短のもの(実施例1の図5におけるLa1)の実測値(第1実測値)と、式(1)を用いて算出した第1基準値L1(計算値)とを比較することにより確認した。また、上記式(M)の精度は、基材長Lの増加に伴う捕集率の上昇が生じなくなり始める基材長(すなわち全長Lmであり、実施例1の図5におけるLmである)の実測値(以下、臨界長実測値という)と、式(M)を用いて算出した臨界長Lm(計算値)とを比較することにより確認した。 (Confirmation test 4) In this confirmation test 4, while confirming the precision of said Formula (1) and said Formula (M), the below-mentioned evaluation regarding the pressure loss and collection rate of an exhaust gas filter was performed. The accuracy of the above formula (1) is the shortest of the base material lengths that can secure a collection rate obtained by subtracting 10% from the limit collection rate (ie, La1 in FIG. 5 of Example 1). This was confirmed by comparing the actual measured value (first measured value) with the first reference value L1 (calculated value) calculated using Equation (1). In addition, the accuracy of the above formula (M) is that of the base material length (that is, the total length Lm, which is Lm in FIG. 5 of Example 1) where the increase in the collection rate accompanying the increase in the base material length L does not occur. This was confirmed by comparing the actual measurement value (hereinafter referred to as the critical length actual measurement value) with the critical length Lm (calculated value) calculated using the equation (M).
 本確認試験4においては、第1実測値および吹き抜け臨界長(臨界長)を求めるための排ガスフィルタとして、基本構造は実施例1の排ガスフィルタ1と同様としつつ、表4~表8に示すごとく、流路断面積比Rs、セル壁の厚さw、排ガス透過係数k、セル密度C、外径φを種々変更した試料A1~試料A78を用いた。いずれの試料も、セル壁2の厚さw(mm)は0.13≦w≦0.47であり、排ガス透過係数k(μm2)は0.3≦k≦1.1であり、上記セル密度C(個/mm2)は0.31≦C≦0.62であり、排ガスフィルタの外径φ(mm)は80≦φ≦150である。試験は、排ガスフィルタをガソリンエンジンの排気管に取り付け、当該排ガスフィルタに、温度を700℃、流量を4m3/minとして排ガスを流通させた。 In this confirmation test 4, as the exhaust gas filter for obtaining the first actual measurement value and the blow-through critical length (critical length), the basic structure is the same as that of the exhaust gas filter 1 of Example 1, and as shown in Tables 4 to 8. Samples A1 to A78 in which the flow path cross-sectional area ratio Rs, the cell wall thickness w, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ were variously changed were used. In any sample, the thickness w (mm) of the cell wall 2 is 0.13 ≦ w ≦ 0.47, the exhaust gas permeability coefficient k (μm 2 ) is 0.3 ≦ k ≦ 1.1, and The cell density C (pieces / mm 2 ) is 0.31 ≦ C ≦ 0.62, and the outer diameter φ (mm) of the exhaust gas filter is 80 ≦ φ ≦ 150. In the test, an exhaust gas filter was attached to an exhaust pipe of a gasoline engine, and the exhaust gas was circulated through the exhaust gas filter at a temperature of 700 ° C. and a flow rate of 4 m 3 / min.
 本確認試験4においては、各試料について、まず、捕集率が限界捕集率となる、充分な基材長L、すなわち全長が(400mm)を有する排ガスフィルタにおいて、限界捕集率(図5参照)を測定した。この値が、表4~表8における「限界捕集率」である。なお、捕集率の測定は、排ガスフィルタに導入される排ガスに含まれる粒子状物質の数、排ガスフィルタから排出される排ガスに含まれる粒子状物質の数を検出することにより行った。そして、基材長Lを5mm刻みに種々変更した排ガスフィルタの捕集率をそれぞれ測定した。そして、限界捕集率から10%を引いた捕集率以上となる基材長のうち、最短となったものを第1実測値とした。また、限界捕集率から捕集率が1%を引いた捕集率よりも高い捕集率となる基材長のうち、最短となったものを臨界長実測値とした。 In this confirmation test 4, for each sample, first, in the exhaust gas filter having a sufficient base length L, that is, the total length (400 mm), in which the collection rate becomes the limit collection rate, the limit collection rate (FIG. 5). Reference) was measured. This value is the “limit collection rate” in Tables 4 to 8. The collection rate was measured by detecting the number of particulate matter contained in the exhaust gas introduced into the exhaust gas filter and the number of particulate matter contained in the exhaust gas discharged from the exhaust gas filter. And the collection rate of the exhaust gas filter which changed the base material length L every 5 mm was measured, respectively. And the thing which became the shortest among the base material length which becomes more than the collection rate which subtracted 10% from the limit collection rate was made into the 1st measured value. Moreover, the shortest of the substrate lengths having a collection rate higher than the collection rate obtained by subtracting 1% from the limit collection rate was defined as the critical length actual measurement value.
 第1実測値の基材長Lを有する排ガスフィルタの捕集率を「捕集率」として表4~表8に記載した。なお、基材長Lは5mm刻みで変化させているため、表4~表8における捕集率には、限界捕集率から10%を引いた値より若干高い値も含まれている。 The collection rates of the exhaust gas filters having the first measured substrate length L are listed in Tables 4 to 8 as “collection rates”. Since the substrate length L is changed in increments of 5 mm, the collection rates in Tables 4 to 8 include values slightly higher than the value obtained by subtracting 10% from the limit collection rate.
 また、第1実測値の基材長Lを有する排ガスフィルタの圧力損失及び捕集率と、臨界長実測値の基材長Lを有する排ガスフィルタの圧力損失及び捕集率と、を測定した。そして、測定した圧力損失及び捕集率を、以下の判定基準に沿って評価した。 Further, the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the first actual measurement value and the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the critical length actual measurement value were measured. And the measured pressure loss and collection rate were evaluated along the following criteria.
 各試料の圧力損失及び捕集率の評価の基準とする評価基準試料を用意した。本試験において、評価基準試料は、確認試験2で用いた試料1(すなわち流路断面積比Rsが1.0となる排ガスフィルタ)とした。そして、各試料の圧力損失及び捕集率の評価は、評価基準試料の圧力損失及び捕集率と比較することにより行った。具体的には、圧力損失の評価は、評価基準試料の圧力損失を1.0とした場合において、圧力損失が1.5未満であれば「A」とし、圧力損失が1.5以上、2.0未満であれば「B」とし、圧力損失が2.0以上であれば「C」とした。また、捕集率の評価は、評価基準試料の捕集率以上となったときは「A」とし、評価基準試料の捕集率未満となったときは「B」とした。 An evaluation reference sample was prepared as a reference for evaluating the pressure loss and collection rate of each sample. In this test, the evaluation reference sample was the sample 1 used in the confirmation test 2 (that is, the exhaust gas filter having a channel cross-sectional area ratio Rs of 1.0). And evaluation of the pressure loss and collection rate of each sample was performed by comparing with the pressure loss and collection rate of an evaluation standard sample. Specifically, the evaluation of the pressure loss is “A” when the pressure loss of the evaluation reference sample is 1.0 and the pressure loss is less than 1.5, and the pressure loss is 1.5 or more, 2 When the pressure loss was 2.0 or more, “C” was assigned. The evaluation of the collection rate was “A” when the collection rate was equal to or higher than the collection rate of the evaluation standard sample, and “B” when it was less than the collection rate of the evaluation standard sample.
 表4~表8において、第1実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価1」、捕集率の評価を「捕集率評価1」とした。また、表4~表8において、臨界長実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価2」、捕集率の評価を「捕集率評価2」とした。 In Tables 4 to 8, in the exhaust gas filter having the first measured substrate length L, the pressure loss evaluation is “pressure loss evaluation 1” and the collection rate evaluation is “collection rate evaluation 1”. In Tables 4 to 8, in the exhaust gas filter having the measured base length L of the critical length, the pressure loss evaluation is “pressure loss evaluation 2”, and the collection rate evaluation is “collection rate evaluation 2”. .
 以上の結果を、表4~表8に示す。なお、表4~表8においては、排ガス透過係数kに影響を及ぼし得るパラメータである、セル壁の平均気孔径と気孔率とを記載している。 The above results are shown in Tables 4 to 8. In Tables 4 to 8, the average pore diameter and porosity of the cell wall, which are parameters that can affect the exhaust gas permeability coefficient k, are described.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表4~表8から分かるように、式(1)によって求められる第1基準値L1と、実験によって確認される第1実測値とはほぼ一致している。それゆえ、式(1)によれば、排ガスフィルタ1の各種パラメータの影響を考慮し、限界捕集率から10を引いた捕集率以上となる基材長Lのうち、最短のものを精度よく算出することができることが確認された。 As can be seen from Tables 4 to 8, the first reference value L1 obtained by the equation (1) and the first actually measured value confirmed by the experiment are almost the same. Therefore, according to the equation (1), the shortest one of the substrate lengths L that is equal to or higher than the collection rate obtained by subtracting 10 from the limit collection rate is taken into account in consideration of the influence of various parameters of the exhaust gas filter 1. It was confirmed that it can be calculated well.
 また、表4~表8から分かるように、式(M)によって求められる吹き抜け臨界長Lm(臨界長Lm)と、実験によって確認される臨界長実測値とはほぼ一致している。それゆえ、式(M)によれば、排ガスフィルタ1の各種パラメータの影響を考慮し、限界捕集率から捕集率が1%を引いた捕集率よりも高い捕集率となる基材長のうち、最短となったものを精度よく算出することができることが確認された。 Also, as can be seen from Tables 4 to 8, the blow-through critical length Lm (critical length Lm) obtained by the equation (M) and the critical length actual value confirmed by the experiment are almost the same. Therefore, according to the equation (M), in consideration of the influence of various parameters of the exhaust gas filter 1, the substrate has a collection rate higher than the collection rate obtained by subtracting 1% from the limit collection rate. It was confirmed that the shortest of the lengths can be accurately calculated.
 さらに、表4~表8から分かるように、捕集率は、基材長Lを長くするほど良好になる(すなわち、上昇する)傾向にあり、圧力損失は、基材長Lを短くするほど良好になる(すなわち、減少する)傾向にあることが確認できる。換言すると、基材長Lを長くするほど圧力損失は悪化する傾向にあり、基材長Lを短くするほど捕集率は悪化する傾向にあることが分かる。つまり、排ガスフィルタの基材長Lが長過ぎても短過ぎても、圧力損失及び捕集率の双方を同時に良好にできないことが分かる。そこで実施例1の排ガスフィルタ1においては、基材長Lを精度の高い式(1)によって求めた第1基準値L1以上とすることにより、捕集率を高くすることができ、かつ、基材長Lを精度の高い式(M)によって求めた臨界長Lm以下とすることにより、圧力損失を低くすることができる。つまり、基材長Lを、第1基準値L1以上、臨界長Lm以下とすることにより、圧力損失及び捕集率の双方を同時に良好にできる。 Further, as can be seen from Tables 4 to 8, the collection rate tends to become better (that is, increase) as the substrate length L becomes longer, and the pressure loss increases as the substrate length L becomes shorter. It can be confirmed that there is a tendency to improve (that is, decrease). In other words, it can be seen that the pressure loss tends to deteriorate as the substrate length L increases, and the collection rate tends to deteriorate as the substrate length L decreases. That is, it can be seen that both the pressure loss and the collection rate cannot be improved simultaneously if the substrate length L of the exhaust gas filter is too long or too short. Therefore, in the exhaust gas filter 1 of Example 1, the collection rate can be increased by setting the substrate length L to be equal to or greater than the first reference value L1 obtained by the highly accurate expression (1), and By setting the material length L to be equal to or less than the critical length Lm obtained by the highly accurate formula (M), the pressure loss can be reduced. That is, by setting the substrate length L to the first reference value L1 or more and the critical length Lm or less, both the pressure loss and the collection rate can be improved simultaneously.
(確認試験5)本確認試験5においては、上記式(2)の精度を、捕集率が50%以上となる基材長のうち、最短のもの(実施例2の図6におけるLa2)の実測値(第2実測値)と、式(2)を用いて算出した第2基準値L2(計算値)とを比較することにより確認した。本試験においては、第2実測値を求めるための排ガスフィルタとして、基本構造は実施例1の排ガスフィルタ1としつつ、表9~表11に示すごとく、流路断面積比Rs、セル壁の厚さw、排ガス透過係数k、セル密度C、外径φを種々変更した試料B1~試料B50を用いた。試験条件は、確認試験4と同じである。 (Confirmation test 5) In this confirmation test 5, the accuracy of the above formula (2) is the shortest of the substrate lengths (La2 in FIG. 6 of Example 2) among which the collection rate is 50% or more. It confirmed by comparing measured value (2nd measured value) and 2nd reference value L2 (calculated value) calculated using Formula (2). In this test, as the exhaust gas filter for obtaining the second actual measurement value, the basic structure is the exhaust gas filter 1 of Example 1, and as shown in Tables 9 to 11, the flow path cross-sectional area ratio Rs, the thickness of the cell wall Samples B1 to B50 in which the w, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ were variously changed were used. The test conditions are the same as the confirmation test 4.
 本確認試験5においては、基材長L(全長L)を5mm刻みに種々変更して、捕集率をそれぞれ測定した。そして、捕集率が50%以上となる基材長のうち、最短のものを第2実測値とした。この第2実測値の基材長Lを有する排ガスフィルタの捕集率を、「捕集率」として表9~表11に記載した。なお、基材長Lは5mm刻みで変化させているため、表9~表11における捕集率には、50%より若干高い値も含まれている。 In this confirmation test 5, the substrate length L (full length L) was changed in 5 mm increments, and the collection rate was measured. And the shortest thing was made into the 2nd measured value among the base-material length from which a collection rate will be 50% or more. The collection rates of the exhaust gas filter having the substrate length L of the second actually measured value are shown in Tables 9 to 11 as “collection rate”. Since the substrate length L is changed in increments of 5 mm, the collection rates in Tables 9 to 11 include values slightly higher than 50%.
 また、確認試験4と同様に、確認試験5では、排ガスフィルタの圧力損失と捕集率とに関する評価も行った。本確認試験5においても、確認試験4と同じ評価基準試料、判定基準で、排ガスフィルタの圧力損失及び捕集率の評価を行った。結果を表9~表11に示す。なお、表9~表11においても、排ガス透過係数kに影響を及ぼし得るパラメータである、セル壁の平均気孔径と気孔率とを記載している。また、表9~表11において、第2実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価1」としている。また、本試験の試料は、すべて50%以上の捕集率を有し、確認試験2における評価基準試料の捕集率は、上述のごとく42%の捕集率を有する。それゆえ、本試験の各試料における捕集率は、評価基準試料の捕集率を超えることから、表9~表11においては捕集率に関する評価の記載を省略している。 In addition, as in the confirmation test 4, in the confirmation test 5, an evaluation was made regarding the pressure loss and the collection rate of the exhaust gas filter. Also in the confirmation test 5, the pressure loss and the collection rate of the exhaust gas filter were evaluated using the same evaluation reference sample and determination reference as in the confirmation test 4. The results are shown in Tables 9 to 11. Tables 9 to 11 also describe the average pore diameter and porosity of the cell wall, which are parameters that can affect the exhaust gas permeability coefficient k. In Tables 9 to 11, the evaluation of the pressure loss in the exhaust gas filter having the substrate length L of the second actual measurement value is “pressure loss evaluation 1”. Moreover, all the samples of this test have a collection rate of 50% or more, and the collection rate of the evaluation reference sample in the confirmation test 2 has a collection rate of 42% as described above. Therefore, since the collection rate in each sample of this test exceeds the collection rate of the evaluation reference sample, the description of the evaluation regarding the collection rate is omitted in Tables 9 to 11.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表9~表11から分かるように、式(2)によって求められる第2基準値L2と、実験によって確認される第2実測値とはほぼ一致している。それゆえ、式(2)によれば、排ガスフィルタ1の各種パラメータの影響を考慮し、捕集率が50%以上となる基材長のうち、最短のものを精度よく算出することができることが確認された。また、流路断面積比Rsを1よりも大きくし、かつ、基材長Lを、第2基準値以上、かつ吹き抜け臨界長Lm(臨界長Lm)以下とすることにより、複数の排ガスフィルタを直列に配さなくても、1つの排ガスフィルタ1で50%以上の捕集性能を確保することができることも確認された。 As can be seen from Tables 9 to 11, the second reference value L2 obtained by the equation (2) and the second actually measured value confirmed by the experiment are almost the same. Therefore, according to the equation (2), it is possible to accurately calculate the shortest substrate length among the substrate lengths with a collection rate of 50% or more in consideration of the influence of various parameters of the exhaust gas filter 1. confirmed. Further, by setting the flow path cross-sectional area ratio Rs to be larger than 1 and the base material length L to be not less than the second reference value and not more than the blow-through critical length Lm (critical length Lm), a plurality of exhaust gas filters can be provided. It was also confirmed that the collection performance of 50% or more can be secured by one exhaust gas filter 1 without arranging in series.
(確認試験6)本確認試験6においては、上記式(3)の精度を、限界捕集率の90%以上の捕集率以上となる基材長L(全長L)のうち、最短のもの(実施例3の図7におけるLa3)の実測値(第3実測値)と、式(3)を用いて算出した第3基準値L3(計算値)とを比較することにより確認した。 (Confirmation test 6) In this confirmation test 6, the accuracy of the above formula (3) is the shortest of the substrate lengths L (full length L) that is 90% or more of the limit collection rate. This was confirmed by comparing the measured value (third measured value) of (La3 in FIG. 7 of Example 3) with the third reference value L3 (calculated value) calculated using Equation (3).
 本確認試験6においては、第2実測値を求めるための排ガスフィルタとして、基本構造は実施例1の排ガスフィルタ1としつつ、表12~表15に示すごとく、流路断面積比Rs、セル壁の厚さw、排ガス透過係数k、セル密度C、外径φを種々変更した試料C1~試料C78を用いた。確認試験6における試験条件は、確認試験4で用いた試験条件と同じである。 In this confirmation test 6, as the exhaust gas filter for obtaining the second actual measurement value, the basic structure is the exhaust gas filter 1 of Example 1, and as shown in Tables 12 to 15, the channel cross-sectional area ratio Rs, the cell wall Samples C1 to C78 in which the thickness w, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ were variously changed were used. The test conditions in confirmation test 6 are the same as the test conditions used in confirmation test 4.
 確認試験6では、確認試験4と同様に、捕集率が限界捕集率となる、充分な基材長L(400mm)を有する排ガスフィルタにおいて、限界捕集率(図7参照)を測定し、基材長Lを5mm刻みに種々変更した排ガスフィルタの捕集率をそれぞれ測定した。そして、限界捕集率の90%以上の捕集率以上となる基材長Lのうち、最短となったものを第3実測値とした。この第3実測値の基材長Lを有する排ガスフィルタの捕集率を、「捕集率」として表12~表15に記載した。なお、基材長Lは5mm刻みで変化させているため、表12~表15における捕集率には、限界捕集率の90%の値より若干高い値も含まれている。 In Confirmation Test 6, as in Confirmation Test 4, the limit collection rate (see FIG. 7) is measured in an exhaust gas filter having a sufficient base material length L (400 mm) at which the collection rate becomes the limit collection rate. The collection rates of the exhaust gas filters in which the substrate length L was changed in various increments of 5 mm were measured. And among the base material length L which becomes 90% or more of the limit collection rate or more, what became the shortest was made into the 3rd measured value. The collection rates of the exhaust gas filter having the third measured actual substrate length L are shown in Tables 12 to 15 as “collection rates”. Since the substrate length L is changed in increments of 5 mm, the collection rates in Tables 12 to 15 include values slightly higher than 90% of the limit collection rate.
 また、確認試験6では、確認試験4と同様に、排ガスフィルタの圧力損失と捕集率とに関する評価も行った。本確認試験6においても、確認試験4と同じ評価基準試料、判定基準で、排ガスフィルタの圧力損失及び捕集率の評価を行った。結果を表12~表15に示す。なお、表12~表15においては、排ガス透過係数kに影響を及ぼし得るパラメータである、セル壁の平均気孔径と気孔率とを記載している。また、表12~表15において、第3実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価1」、捕集率の評価を「捕集率評価1」としている。 Also, in the confirmation test 6, as in the confirmation test 4, an evaluation was made regarding the pressure loss and the collection rate of the exhaust gas filter. Also in this confirmation test 6, the pressure loss and the collection rate of the exhaust gas filter were evaluated using the same evaluation standard sample and determination standard as those in the confirmation test 4. The results are shown in Tables 12 to 15. In Tables 12 to 15, the average pore diameter and porosity of the cell wall, which are parameters that can affect the exhaust gas permeability coefficient k, are described. In Tables 12 to 15, in the exhaust gas filter having the substrate length L of the third actual measurement value, the pressure loss evaluation is “pressure loss evaluation 1”, and the collection rate evaluation is “collection rate evaluation 1”. .
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表12~表15から分かるように、式(3)によって求められる第3基準値L3と、実験によって確認される第3実測値とはほぼ一致している。それゆえ、式(3)によれば、排ガスフィルタ1の各種パラメータの影響を考慮し、限界捕集率の90%以上の捕集率以上となる基材長L(全長L)のうち、最短のものを精度よく算出することができることが確認された。 As can be seen from Tables 12 to 15, the third reference value L3 obtained by the equation (3) and the third actually measured value confirmed by the experiment are almost the same. Therefore, according to the expression (3), the influence of various parameters of the exhaust gas filter 1 is taken into consideration, and the shortest of the substrate lengths L (full length L) that is 90% or more of the limit collection rate or more. It was confirmed that it is possible to accurately calculate the above.
(実施例5)以下、実施例5に係る排ガスフィルタについて説明する。本実施例5は、図11に示すごとく、触媒を担持させた排ガスフィルタ1を用いた。排ガスフィルタ1に触媒を担持させることにより、排ガスに含まれる有害物質を除去することができる。本実施例5の排ガスフィルタ1において、触媒は、Pt、Rh、及びPdのうちの少なくとも一種を含有する三元触媒とした。 (Embodiment 5) An exhaust gas filter according to Embodiment 5 will be described below. In Example 5, as shown in FIG. 11, an exhaust gas filter 1 carrying a catalyst was used. By supporting the catalyst on the exhaust gas filter 1, harmful substances contained in the exhaust gas can be removed. In the exhaust gas filter 1 of Example 5, the catalyst was a three-way catalyst containing at least one of Pt, Rh, and Pd.
 本実施例5の排ガスフィルタ1は、実施例1に示した排ガスフィルタと基本構成が同じものに、触媒を担持させたものである。具体的には、本実施例5の排ガスフィルタ1は、実施例1の排ガスフィルタにおける開放セル孔31と栓詰めセル孔32とに面するセル壁2の表面、及び、セル壁2の内部の細孔表面を、触媒を含む触媒コート層4にて被覆したものである。触媒コート層4は、アルミナを含む多孔質担体と、多孔質担体に担持された助触媒と、助触媒に担持された貴金属触媒と、を有する。助触媒はセリア-ジルコニア複合酸化物とし、貴金属触媒はPtとした。なお、貴金属触媒は、浄化対象の排ガスに応じて、例えば、Pt、Rh、及びPdのうちの少なくとも一種を含有するものとすることができる。触媒コート層4は、セル壁2表面の全体に均等に形成されている。 The exhaust gas filter 1 of the fifth embodiment has the same basic configuration as that of the exhaust gas filter shown in the first embodiment, and has a catalyst supported thereon. Specifically, the exhaust gas filter 1 of the fifth embodiment includes the surface of the cell wall 2 facing the open cell hole 31 and the plugged cell hole 32 in the exhaust gas filter of the first embodiment, and the inside of the cell wall 2. The pore surfaces are coated with a catalyst coating layer 4 containing a catalyst. The catalyst coat layer 4 includes a porous carrier containing alumina, a promoter supported on the porous carrier, and a noble metal catalyst supported on the promoter. The co-catalyst was a ceria-zirconia composite oxide, and the noble metal catalyst was Pt. Note that the noble metal catalyst may contain, for example, at least one of Pt, Rh, and Pd according to the exhaust gas to be purified. The catalyst coat layer 4 is uniformly formed on the entire surface of the cell wall 2.
 排ガスフィルタ1の触媒担持量は、10~150g/Lであることが好ましい。なお、触媒担持量とは、排ガスフィルタ1の容積1Lあたりに担持される触媒コート層4の質量である。排ガスフィルタ1の触媒担持量が10g/L未満であると、排ガス中の有害物質を除去する効果が低減してしまう。また、排ガスフィルタ1の触媒担持量が150g/Lを超えると、排ガスがセル壁2を通過しにくくなり、捕集率が低下してしまう。また、排ガスフィルタ1の触媒担持量は、10~100g/Lであることがさらに好ましい。排ガスフィルタ1の触媒担持量を100g/L以下とすることにより、捕集率の低下を抑制しやすい。また、触媒コート層4における貴金属触媒の量は、0.1~5g/Lであることが好ましい。 The catalyst loading amount of the exhaust gas filter 1 is preferably 10 to 150 g / L. The catalyst carrying amount is the mass of the catalyst coat layer 4 carried per 1 L of the volume of the exhaust gas filter 1. If the amount of catalyst supported by the exhaust gas filter 1 is less than 10 g / L, the effect of removing harmful substances in the exhaust gas is reduced. On the other hand, when the amount of the catalyst supported by the exhaust gas filter 1 exceeds 150 g / L, the exhaust gas hardly passes through the cell wall 2 and the collection rate is lowered. Further, the catalyst loading amount of the exhaust gas filter 1 is more preferably 10 to 100 g / L. By setting the catalyst loading of the exhaust gas filter 1 to 100 g / L or less, it is easy to suppress a decrease in the collection rate. The amount of the noble metal catalyst in the catalyst coat layer 4 is preferably 0.1 to 5 g / L.
 本例の排ガスフィルタ1の基材長Lは、実施例1で示した式(1)によって決定される第1基準値L1以上とした。なお、これに限られず、本例の排ガスフィルタ1の基材長Lは、実施例2で示した式(2)によって決定される第2基準値L2以上としても良いし、実施例3で示した式(3)によって決定される第3基準値L3以上としても良い。 The base material length L of the exhaust gas filter 1 of this example was set to be equal to or more than the first reference value L1 determined by the equation (1) shown in the first example. The substrate length L of the exhaust gas filter 1 of the present example is not limited to this, and may be equal to or more than the second reference value L2 determined by the equation (2) shown in the second embodiment. It is good also as more than the 3rd standard value L3 determined by Formula (3).
 次に、排ガスフィルタ1に触媒を担持させる方法の一例について説明する。
 まず、貴金属触媒としてPt、担体としてセリア-ジルコニア複合酸化物とγアルミナとを用いて粘度調整した触媒スラリーに、触媒を担持させる前の排ガスフィルタを浸漬させる。そして、排ガスフィルタのセル孔3内に触媒スラリーを付着させる。そして、排ガスフィルタを触媒スラリーから引き上げ、余分なスラリーを空気流にて取り除き、セル壁2の細孔の閉塞を抑制する。そして、得られた排ガスフィルタを80~150°で1~6時間程度乾燥させ、その後、450~700度で0.5~6時間程度焼付を行う。例えば、上記得られた排ガスフィルタを、100℃で3時間乾燥させ、その後、500℃で3時間焼付を行うことができる。このようにして、触媒を担持した排ガスフィルタ1を得た。なお、排ガスフィルタ1に触媒を担持させる方法は、これに限定されるものではない。
Next, an example of a method for supporting the catalyst on the exhaust gas filter 1 will be described.
First, the exhaust gas filter before supporting the catalyst is immersed in a catalyst slurry whose viscosity is adjusted using Pt as the noble metal catalyst and ceria-zirconia composite oxide and γ-alumina as the carrier. And catalyst slurry is made to adhere in the cell hole 3 of an exhaust gas filter. Then, the exhaust gas filter is pulled up from the catalyst slurry, and excess slurry is removed with an air flow to suppress the clogging of the pores of the cell wall 2. The obtained exhaust gas filter is dried at 80 to 150 ° for about 1 to 6 hours, and then baked at 450 to 700 degrees for about 0.5 to 6 hours. For example, the obtained exhaust gas filter can be dried at 100 ° C. for 3 hours and then baked at 500 ° C. for 3 hours. In this way, an exhaust gas filter 1 carrying a catalyst was obtained. The method for supporting the catalyst on the exhaust gas filter 1 is not limited to this.
 その他は、実施例1に係る排ガスフィルタの構成と同様である。なお、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。 Others are the same as the configuration of the exhaust gas filter according to the first embodiment. Of the reference numerals used in this example or the drawings relating to this example, the same reference numerals as those used in the first embodiment denote the same components as in the first embodiment unless otherwise specified.
 本実施例5の排ガスフィルタ1は、触媒を担持しているため、排ガス中の有害物質を除去することができる。その他、実施例5の排ガスフィルタ1は、実施例1等の排ガスフィルタ1が有する効果を有する。 Since the exhaust gas filter 1 of Example 5 carries a catalyst, harmful substances in the exhaust gas can be removed. In addition, the exhaust gas filter 1 of Example 5 has the effect of the exhaust gas filter 1 of Example 1 and the like.
(確認試験7)本確認試験7においては、表16~表18に示すごとく、排ガスフィルタに触媒を担持させることによる、排ガス透過係数kの値への影響について確認した。具体的には、確認試験4の試料A1、試料A9、試料A11のそれぞれに、異なる触媒担持量を有する触媒コート層4を形成し、排ガス透過係数kの値を測定した。 (Confirmation test 7) In the confirmation test 7, as shown in Tables 16 to 18, the effect on the value of the exhaust gas permeation coefficient k by supporting the catalyst on the exhaust gas filter was confirmed. Specifically, catalyst coat layers 4 having different catalyst loadings were formed on Sample A1, Sample A9, and Sample A11 of Confirmation Test 4, and the value of the exhaust gas permeability coefficient k was measured.
 本確認試験7においては、確認試験4で用いた試料A1と、試料A1に50g/Lの触媒担持量の触媒コート層4を形成した試料D1aと、試料A1に100g/Lの触媒担持量の触媒コート層4を形成した試料D1bと、試料A1に150g/Lの触媒担持量の触媒コート層4を形成した試料D1cとを用意した。そして、試料A1、試料D1a、試料D1b、試料D1cのそれぞれの排ガス透過係数kの値を測定した。 In the confirmation test 7, the sample A1 used in the confirmation test 4, the sample D1a in which the catalyst coating layer 4 having a catalyst loading amount of 50 g / L is formed on the sample A1, and the catalyst loading amount of 100 g / L on the sample A1. A sample D1b on which the catalyst coat layer 4 was formed and a sample D1c on which the catalyst coat layer 4 having a catalyst loading of 150 g / L was formed on the sample A1 were prepared. And the value of each flue gas permeability coefficient k of sample A1, sample D1a, sample D1b, and sample D1c was measured.
 排ガス透過係数kの測定は、以下のようにして行った。測定対象となる各試料のセル壁を、外径15mmとなるよう切り出した各試料の試験片を作製した。そして、各試料の試験片をPorous Materials社製のパームポロメータ(型番CEP-1100AXSHJ)に装着し、各試料の試験片に、室温、すなわち25℃のガスを一定のガス流量Qで透過させた。そして、各試料の試験片の上流側領域のガスの圧力と、下流側領域のガスの圧力との差である圧力損失ΔPを測定した。これを、種々のガス流量Qで行った。そして、各ガス流量Qに対する圧力損失ΔPを求め、以下に説明する原理で排ガス透過係数kを算出した。 The measurement of the exhaust gas permeability coefficient k was performed as follows. A test piece of each sample was prepared by cutting out the cell wall of each sample to be measured so as to have an outer diameter of 15 mm. Then, the specimen of each sample was mounted on a porous material manufactured by Porous Materials (model number CEP-1100AXSHJ), and a gas at room temperature, that is, 25 ° C. was allowed to pass through the specimen of each sample at a constant gas flow rate Q. . And the pressure loss (DELTA) P which is a difference of the gas pressure of the upstream area | region of the test piece of each sample, and the gas pressure of a downstream area | region was measured. This was done at various gas flow rates Q. And the pressure loss (DELTA) P with respect to each gas flow rate Q was calculated | required, and the waste gas permeability coefficient k was computed by the principle demonstrated below.
 排ガス透過係数kと圧力損失ΔPとは、Darcyのガス透過式、Q=(A/μw)kΔP、を満たす関係にある。μは、ガスの温度と種類によって定まるガス粘度である。Aは、ガスが透過する試験片の面積である。wは、セル壁の厚さである。すなわち、Darcyのガス透過式のうち、面積A、ガス粘度μ、及びセル壁の厚さwは、ガスの温度や種類、及び試験片の仕様により、一意に決まるものである。そこで、各ガス流量Qに対する圧力損失ΔPをプロットしたときの傾きから(A/μw)kの値を求め、そこに一意に決まる面積A、ガス粘度μ、及びセル壁の厚さwのそれぞれの値を代入し、kの値を算出する。 The exhaust gas permeability coefficient k and the pressure loss ΔP have a relationship satisfying Darcy's gas permeation type, Q = (A / μw) kΔP. μ is the gas viscosity determined by the temperature and type of gas. A is the area of the test piece through which gas passes. w is the thickness of the cell wall. That is, in the Darcy gas permeation type, the area A, the gas viscosity μ, and the cell wall thickness w are uniquely determined by the temperature and type of the gas and the specifications of the test piece. Therefore, the value of (A / μw) k is obtained from the slope when the pressure loss ΔP with respect to each gas flow rate Q is plotted, and each of the area A, the gas viscosity μ, and the cell wall thickness w uniquely determined there is obtained. Substitute the value and calculate the value of k.
 さらに、同様な測定を、確認試験4で用いた試料A9、A11についても行った。試料A1、試料A9、試料A11は、互いに排ガス透過係数kの値が異なる試料である。これらの結果を、表16~表18に示す。ここで、表17に示す「試料D9a」、「試料D9b」、「試料D9c」は、それぞれ、試料A9に50g/L、100g/L、150g/Lの触媒担持量の触媒コート層4を形成したものである。また、表18に示す「試料D11a」、「試料D11b」、「試料D11c」は、それぞれ、試料A11に50g/L、100g/L、150g/Lの触媒担持量の触媒コート層4を形成したものである。また、表16~図18に示した「低下率」とは、触媒が担持されていない試料の排ガス透過係数kに対する排ガス透過係数kの低下率である。 Furthermore, the same measurement was performed on the samples A9 and A11 used in the confirmation test 4. Sample A1, sample A9, and sample A11 are samples having different values of the exhaust gas permeability coefficient k. These results are shown in Tables 16-18. Here, “Sample D9a”, “Sample D9b”, and “Sample D9c” shown in Table 17 form the catalyst coating layer 4 with catalyst loadings of 50 g / L, 100 g / L, and 150 g / L on Sample A9, respectively. It is a thing. In addition, “Sample D11a”, “Sample D11b”, and “Sample D11c” shown in Table 18 were formed with the catalyst coating layer 4 having catalyst loadings of 50 g / L, 100 g / L, and 150 g / L on Sample A11, respectively. Is. Further, the “decrease rate” shown in Tables 16 to 18 is a decrease rate of the exhaust gas permeability coefficient k with respect to the exhaust gas permeability coefficient k of the sample on which the catalyst is not supported.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表16~表18から、試料A1、試料A9、試料11のいずれについても、排ガスフィルタ1の触媒担持量を増やすほど、排ガス透過係数kの値が小さくなることが分かる。なお、試料A1、試料A9、試料A11のいずれについても、同じ触媒担持量の触媒コート層4を形成したものについては、「低下率」の値は同等となった。つまり、排ガス透過係数kや基材の仕様が異なる排ガスフィルタであっても、それらに同じ触媒担持量の触媒コート層4を形成した場合には、排ガス透過係数kの低下率は同等となることが分かる。 From Tables 16 to 18, it can be seen that for any of Sample A1, Sample A9, and Sample 11, the value of the exhaust gas permeability coefficient k decreases as the amount of catalyst supported by the exhaust gas filter 1 increases. In all of Sample A1, Sample A9, and Sample A11, the values of the “decrease rate” were the same for those in which the catalyst coating layer 4 having the same catalyst loading amount was formed. That is, even if the exhaust gas filters have different exhaust gas permeability coefficients k or different base material specifications, when the catalyst coating layer 4 having the same catalyst loading amount is formed on them, the reduction rate of the exhaust gas permeability coefficient k is the same. I understand.
(確認試験8)本確認試験8は、上述の実施例5の排ガスフィルタ1について、確認試験4と同様の試験を行ったものである。すなわち、触媒を担持させた排ガスフィルタにおいても、限界捕集率から10%を引いた捕集率以上となる基材長、すなわち全長のうち、最短のものの実測値である第1実測値が、上記式(1)を満たす第1基準値L1と略一致することを確認した。また、触媒を担持させた排ガスフィルタにおいても、基材長Lの増加に伴う捕集率の上昇が生じなくなり始める基材長の実測値である臨界長実測値が、上記式(M)を満たす吹き抜け臨界長Lm、すなわち臨界長Lmと略一致することを確認した。さらに、触媒を担持させた排ガスフィルタにおいても、排ガスフィルタの圧力損失と捕集率とに関する後述する評価を行った。 (Confirmation test 8) The confirmation test 8 is a test similar to the confirmation test 4 performed on the exhaust gas filter 1 of Example 5 described above. That is, also in the exhaust gas filter carrying the catalyst, the first measured value that is the measured value of the shortest of the base material length that is equal to or higher than the collection rate obtained by subtracting 10% from the limit collection rate, that is, the total length, It was confirmed that it substantially coincided with the first reference value L1 satisfying the above formula (1). Further, in the exhaust gas filter carrying the catalyst, the critical length actual measurement value, which is the actual measurement value of the base material length, at which the collection rate does not increase as the base material length L increases, satisfies the above formula (M). It was confirmed that it substantially coincided with the blow-through critical length Lm, that is, the critical length Lm. Furthermore, also in the exhaust gas filter carrying the catalyst, the later-described evaluation on the pressure loss and the collection rate of the exhaust gas filter was performed.
 本確認試験8においては、第1実測値を求めるための排ガスフィルタ1として、基本構造は実施例5の排ガスフィルタ1と同様としつつ、表19に示すごとく、触媒担持量、流路断面積比Rs、セル壁2の厚さw、排ガス透過係数k、セル密度C、外径φを種々変更した試料D1a、試料D1b、試料D9a、試料D9b、試料D11a、試料D11bを用いた。ここで、試料D1a、試料D1bは、確認試験4の試料A1に、互いに異なる量の触媒コート層4を形成した排ガスフィルタ1である。また、試料D9a、試料D9bは、確認試験4の試料A9に、互いに異なる量の触媒コート層4を形成した排ガスフィルタ1である。また、試料D11a、試料D11bは、確認試験4の試料A9に、互いに異なる量の触媒コート層4を形成した排ガスフィルタ1である。 In this confirmation test 8, as the exhaust gas filter 1 for obtaining the first actual measurement value, the basic structure is the same as that of the exhaust gas filter 1 of Example 5, and as shown in Table 19, the catalyst loading amount and the flow path cross-sectional area ratio Samples D1a, D1b, D9a, D9b, D11a, and D11b in which Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ were variously used were used. Here, the sample D1a and the sample D1b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample A1 of the confirmation test 4. Sample D9a and Sample D9b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample A9 of the confirmation test 4. Sample D11a and Sample D11b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample A9 of the confirmation test 4.
 また、第1実測値の基材長Lを有する排ガスフィルタの圧力損失及び捕集率と、臨界長実測値の基材長Lを有する排ガスフィルタの圧力損失及び捕集率と、を測定した。そして、測定した圧力損失及び捕集率を、以下の判定基準に沿って評価した。 Further, the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the first actual measurement value and the pressure loss and the collection rate of the exhaust gas filter having the base material length L of the critical length actual measurement value were measured. And the measured pressure loss and collection rate were evaluated along the following criteria.
 圧力損失及び捕集率の評価では、確認試験2の試料1と基本構造を同様とした試料H1と、試料H1に50g/Lの触媒担持量の触媒コート層を形成した試料H1aと、試料H1に100g/Lの触媒担持量の触媒コート層を形成した試料H1bと、を基準として行った。試料H1、試料H1a、試料H1bは、いずれも、流路断面積比Rsが1.0となる排ガスフィルタである。 In the evaluation of the pressure loss and the collection rate, the sample H1 having the same basic structure as the sample 1 of the confirmation test 2, the sample H1a in which the catalyst coating layer having a catalyst loading amount of 50 g / L is formed on the sample H1, and the sample H1 Sample H1b on which a catalyst coating layer having a catalyst loading of 100 g / L was formed as a reference. Sample H1, Sample H1a, and Sample H1b are all exhaust gas filters having a channel cross-sectional area ratio Rs of 1.0.
 そして、互いに触媒担持量を0g/Lとした試料A1、試料A9、試料A11の圧力損失の評価は、同じく触媒担持量を0g/Lとした試料H1の圧力損失を1.0とした場合において、圧力損失が1.5未満であれば「A」とし、圧力損失が1.5以上、2.0未満であれば「B」とし、圧力損失が2.0以上であれば「C」とした。さらに、試料A1、試料A9、試料A11の捕集率の評価は、試料H1の捕集率以上となったときは「A」とし、試料H1の捕集率未満となったときは「B」とした。 The evaluation of the pressure loss of Sample A1, Sample A9, and Sample A11 with the catalyst loading amount of 0 g / L is the same when the pressure loss of Sample H1 with the catalyst loading amount of 0 g / L is 1.0. "A" if the pressure loss is less than 1.5, "B" if the pressure loss is 1.5 or more and less than 2.0, and "C" if the pressure loss is 2.0 or more. did. Furthermore, the evaluation of the collection rates of the sample A1, the sample A9, and the sample A11 is “A” when the collection rate is equal to or higher than the collection rate of the sample H1, and “B” when it is less than the collection rate of the sample H1. It was.
 また、互いに触媒担持量を50g/Lとした試料A1a、試料A9a、試料A11aの圧力損失の評価は、同じく触媒担持量を50g/Lとした試料H1aの圧力損失を1.0とした場合において、圧力損失が1.5未満であれば「A」とし、圧力損失が1.5以上、2.0未満であれば「B」とし、圧力損失が2.0以上であれば「C」とした。さらに、試料A1a、試料A9a、試料A11aの捕集率の評価は、試料H1aの捕集率以上となったときは「A」とし、試料H1aの捕集率未満となったときは「B」とした。 Moreover, the evaluation of the pressure loss of sample A1a, sample A9a, and sample A11a with a catalyst loading of 50 g / L is the same when the pressure loss of sample H1a with a catalyst loading of 50 g / L is 1.0. "A" if the pressure loss is less than 1.5, "B" if the pressure loss is 1.5 or more and less than 2.0, and "C" if the pressure loss is 2.0 or more. did. Furthermore, the evaluation of the collection rates of the sample A1a, the sample A9a, and the sample A11a is “A” when the collection rate is equal to or higher than the collection rate of the sample H1a, and “B” when it is less than the collection rate of the sample H1a. It was.
 また、互いに触媒担持量を100g/Lとした試料A1b、試料A9b、試料A11bの圧力損失の評価は、同じく触媒担持量を100g/Lとした試料H1bの圧力損失を1.0とした場合において、圧力損失が1.5未満であれば「A」とし、圧力損失が1.5以上、2.0未満であれば「B」とし、圧力損失が2.0以上であれば「C」とした。さらに、試料A1b、試料A9b、試料A11bの捕集率の評価は、試料H1bの捕集率以上となったときは「A」とし、試料H1bの捕集率未満となったときは「B」とした。 In addition, the evaluation of the pressure loss of Sample A1b, Sample A9b, and Sample A11b with the catalyst loading of 100 g / L is the same when the pressure loss of Sample H1b with the catalyst loading of 100 g / L is 1.0. "A" if the pressure loss is less than 1.5, "B" if the pressure loss is 1.5 or more and less than 2.0, and "C" if the pressure loss is 2.0 or more. did. Furthermore, the evaluation of the collection rates of the sample A1b, the sample A9b, and the sample A11b is “A” when the collection rate is equal to or higher than the collection rate of the sample H1b, and “B” when the collection rate is lower than the collection rate of the sample H1b. It was.
 表19において、第1実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価1」、捕集率の評価を「捕集率評価1」とした。また、表19において、臨界長実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価2」、捕集率の評価を「捕集率評価2」とした。 In Table 19, in the exhaust gas filter having the substrate length L of the first actual measurement value, the pressure loss evaluation was “pressure loss evaluation 1”, and the collection rate evaluation was “collection rate evaluation 1”. Further, in Table 19, the pressure loss evaluation in the exhaust gas filter having the substrate length L of the critical length actual measurement value is “pressure loss evaluation 2”, and the collection rate evaluation is “collection rate evaluation 2”.
 本確認試験8の試験条件、試験方法は、確認試験4で用いた試験条件、試験方法と同様とした。結果を表19に示す。なお、参考として、表19には、確認試験4の試料A1、試料A9、試料A11および試料H1も記載している。 The test conditions and test method of this confirmation test 8 were the same as the test conditions and test method used in confirmation test 4. The results are shown in Table 19. For reference, Table 19 also shows Sample A1, Sample A9, Sample A11, and Sample H1 of Confirmation Test 4.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表19から分かるように、触媒を担持させた排ガスフィルタ1においても、式(1)によって求められる第1基準値L1と、実験によって確認される第1実測値とはほぼ一致している。それゆえ、式(1)によれば、触媒を担持させた排ガスフィルタ1においても、排ガスフィルタ1の各種パラメータの影響を考慮し、限界捕集率から10を引いた捕集率以上となる基材長Lのうち、最短のものを精度よく算出することができることが確認された。 As can be seen from Table 19, also in the exhaust gas filter 1 carrying the catalyst, the first reference value L1 obtained by the equation (1) and the first actually measured value confirmed by the experiment are almost the same. Therefore, according to the formula (1), even in the exhaust gas filter 1 carrying the catalyst, the influence of various parameters of the exhaust gas filter 1 is taken into consideration, and the base becomes equal to or higher than the collection rate obtained by subtracting 10 from the limit collection rate. It was confirmed that the shortest material length L can be accurately calculated.
 また、表19から分かるように、触媒を担持させた排ガスフィルタ1においても、式(M)によって求められる吹き抜け臨界長Lm、すなわち臨界長Lmと、実験によって確認される臨界長実測値とはほぼ一致している。それゆえ、式(M)によれば、触媒を担持させた排ガスフィルタ1においても、排ガスフィルタ1の各種パラメータの影響を考慮し、限界捕集率から捕集率が1%を引いた捕集率よりも高い捕集率となる基材長のうち、最短となったものを精度よく算出することができることが確認された。 Further, as can be seen from Table 19, also in the exhaust gas filter 1 carrying the catalyst, the blow-through critical length Lm obtained by the equation (M), that is, the critical length Lm, and the critical length actual value confirmed by the experiment are almost the same. Match. Therefore, according to the equation (M), even in the exhaust gas filter 1 carrying the catalyst, in consideration of the influence of various parameters of the exhaust gas filter 1, the collection rate is obtained by subtracting 1% from the limit collection rate. It was confirmed that the shortest of the substrate lengths with a higher collection rate than the rate can be calculated with high accuracy.
 さらに、表19から分かるように、触媒を担持させた排ガスフィルタ1においても、確認試験4と同様、捕集率は、基材長Lを長くするほど良好になる(すなわち、上昇する)傾向にあり、圧力損失は、基材長Lを短くするほど良好になる(すなわち、減少する)傾向にあることが確認できる。換言すると、基材長Lを長くするほど圧力損失は悪化する傾向にあり、基材長Lを短くするほど捕集率は悪化する傾向にあることが分かる。つまり、排ガスフィルタの基材長Lが長過ぎても短過ぎても、圧力損失及び捕集率の双方を同時に良好にできないことが分かる。そこで実施例5の排ガスフィルタ1においては、基材長Lを精度の高い式(1)によって求めた第1基準値L1以上とすることにより、捕集率を高くすることができ、かつ、基材長Lを精度の高い式(M)によって求めた吹き抜け基準値Lm以下とすることにより、圧力損失を低くすることができる。つまり、基材長Lを、第1基準値L1以上、吹き抜け臨界長Lm以下とすることにより、圧力損失及び捕集率の双方を同時に良好にできる。 Further, as can be seen from Table 19, also in the exhaust gas filter 1 carrying the catalyst, the collection rate tends to become better (that is, increase) as the substrate length L is increased, as in the confirmation test 4. It can be confirmed that the pressure loss tends to become better (that is, decrease) as the substrate length L is shortened. In other words, it can be seen that the pressure loss tends to deteriorate as the substrate length L increases, and the collection rate tends to deteriorate as the substrate length L decreases. That is, it can be seen that both the pressure loss and the collection rate cannot be improved simultaneously if the substrate length L of the exhaust gas filter is too long or too short. Therefore, in the exhaust gas filter 1 of Example 5, the collection rate can be increased by setting the substrate length L to be equal to or greater than the first reference value L1 obtained by the highly accurate formula (1), and By setting the material length L to be equal to or less than the blow-by reference value Lm obtained by the highly accurate expression (M), the pressure loss can be reduced. That is, by setting the base material length L to the first reference value L1 or more and the blow-through critical length Lm or less, both the pressure loss and the collection rate can be improved simultaneously.
(確認試験9)本確認試験9は、上述の実施例5の排ガスフィルタ1について、確認試験5と同様の試験を行ったものである。すなわち、触媒を担持させた排ガスフィルタにおいても、捕集率が50%以上となる基材長、すなわち全長のうち、最短のものの実測値である第2実測値が、上記式(2)を満たす第2基準値L2と略一致することを確認した。 (Confirmation test 9) This confirmation test 9 is a test similar to the confirmation test 5 performed on the exhaust gas filter 1 of Example 5 described above. That is, also in the exhaust gas filter carrying the catalyst, the second actual measurement value which is the actual measurement value of the shortest of the base material length, that is, the total length of the collection rate of 50% or more satisfies the above formula (2). It was confirmed that it substantially coincided with the second reference value L2.
 本確認試験9においては、第2実測値を求める排ガスフィルタ1として、基本構造は実施例5の排ガスフィルタ1と同様としつつ、表20に示すごとく、触媒担持量、流路断面積比Rs、セル壁2の厚さw、排ガス透過係数k、セル密度C、外径φを種々変更した試料E4a、試料E15a、試料E17aを用いた。ここで、試料E4aは、確認試験5の試料B4に、50g/Lの触媒担持量の触媒コート層4を形成した排ガスフィルタ1である。また、試料E15aは、確認試験5の試料B15に、50g/Lの触媒担持量の触媒コート層4を形成した排ガスフィルタ1である。また、試料E17aは、確認試験5の試料B17に、50g/Lの触媒担持量の触媒コート層4を形成した排ガスフィルタ1である。なお、確認試験5の、試料B4、試料B15、試料B17に、100g/Lの触媒担持量の触媒コート層を形成したものは、いずれも限界捕集率が50%を下回った。 In this confirmation test 9, as the exhaust gas filter 1 for obtaining the second actual measurement value, the basic structure is the same as that of the exhaust gas filter 1 of Example 5, and as shown in Table 20, the amount of catalyst supported, the channel cross-sectional area ratio Rs, Sample E4a, sample E15a, and sample E17a in which the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ were variously changed were used. Here, the sample E4a is the exhaust gas filter 1 in which the catalyst coating layer 4 having a catalyst loading amount of 50 g / L is formed on the sample B4 of the confirmation test 5. Sample E15a is the exhaust gas filter 1 in which the catalyst coating layer 4 having a catalyst loading of 50 g / L is formed on the sample B15 of the confirmation test 5. Sample E17a is the exhaust gas filter 1 in which the catalyst coat layer 4 having a catalyst loading of 50 g / L is formed on the sample B17 of the confirmation test 5. In the confirmation test 5, Sample B4, Sample B15, and Sample B17 in which a catalyst coating layer having a catalyst loading of 100 g / L was formed had a limit collection rate of less than 50%.
 また、本確認試験9では、確認試験8と同様に、排ガスフィルタの圧力損失と捕集率とに関する評価も行った。本確認試験9において、互いに触媒担持量を0g/Lとした試料B4、試料B15、試料B17の評価の基準は、同じく触媒担持量を0g/Lとした確認試験8で用いた試料H1とした。互いに触媒担持量を50g/Lとした試料B4a、試料B15a、試料B17aの評価の基準は、同じく触媒担持量を50g/Lとした確認試験8で用いた試料H1aとした。確認試験9において、各試料における圧力損失と捕集率とに関する評価の判定基準は、確認試験8と同様である。 Moreover, in this confirmation test 9, as in the confirmation test 8, the evaluation was made regarding the pressure loss and the collection rate of the exhaust gas filter. In this confirmation test 9, the standard of evaluation for sample B4, sample B15, and sample B17 with a catalyst loading of 0 g / L was the sample H1 used in confirmation test 8 with the same catalyst loading of 0 g / L. . The evaluation criteria for Sample B4a, Sample B15a, and Sample B17a, in which the catalyst loading was 50 g / L, were the same as Sample H1a used in Confirmation Test 8 in which the catalyst loading was 50 g / L. In confirmation test 9, the evaluation criteria for the pressure loss and the collection rate in each sample are the same as in confirmation test 8.
 本確認試験9の試験条件、試験方法は、確認試験5で用いた試験条件、試験方法と同様とした。結果を表20に示す。なお、参考として、表20には、確認試験5の試料B4、試料B15、試料B17、試料H1も記載している。試料B4、試料B15、試料B17は、いずれも試料H1を基準として圧力損失及び捕集率の評価を行っている。また、表20において、第2実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価1」、捕集率の評価を「捕集率評価1」としている。本試験においても、確認試験5と同様、各試料における捕集率評価1、捕集率評価2は、すべて「A」となることから、捕集率に関する評価の記載を省略している。 The test conditions and test method of this confirmation test 9 were the same as the test conditions and test method used in confirmation test 5. The results are shown in Table 20. For reference, Table 20 also shows Sample B4, Sample B15, Sample B17, and Sample H1 of Confirmation Test 5. Sample B4, Sample B15, and Sample B17 are all evaluated for pressure loss and collection rate based on Sample H1. Further, in Table 20, the pressure loss evaluation of the exhaust gas filter having the substrate length L of the second actual measurement value is “pressure loss evaluation 1”, and the collection rate evaluation is “collection rate evaluation 1”. Also in this test, as in the confirmation test 5, the collection rate evaluation 1 and the collection rate evaluation 2 in each sample are all “A”, and thus the description of the evaluation regarding the collection rate is omitted.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表20から分かるように、触媒を担持させた排ガスフィルタ1においても、式(2)によって求められる第2基準値L2と、実験によって確認される第2実測値とはほぼ一致している。それゆえ、式(2)によれば、触媒を担持させた排ガスフィルタ1においても、排ガスフィルタ1の各種パラメータの影響を考慮し、捕集率が50%以上となる基材長のうち、最短のものを精度よく算出することができることが確認された。 As can be seen from Table 20, also in the exhaust gas filter 1 carrying the catalyst, the second reference value L2 obtained by the equation (2) and the second actually measured value confirmed by the experiment are almost the same. Therefore, according to the formula (2), the exhaust gas filter 1 carrying the catalyst also takes into consideration the influence of various parameters of the exhaust gas filter 1, and the shortest of the base material lengths with a collection rate of 50% or more. It was confirmed that it is possible to accurately calculate the above.
(確認試験10)本確認試験10は、上述の実施例5の排ガスフィルタ1について、確認試験6と同様の試験を行ったものである。すなわち、触媒を担持させた排ガスフィルタにおいても、限界捕集率の90%以上の捕集率以上となる基材長L(全長L)のうち、最短のものの実測値である第3実測値が、上記式(3)を満たす第3基準値L3と略一致することを確認した。 (Confirmation test 10) This confirmation test 10 is a test similar to the confirmation test 6 performed on the exhaust gas filter 1 of Example 5 described above. That is, even in the exhaust gas filter carrying the catalyst, the third measured value that is the measured value of the shortest of the substrate lengths L (full length L) that is not less than 90% of the limit collection rate is the measured value. It was confirmed that the third reference value L3 satisfying the above formula (3) substantially coincides with the third reference value L3.
 本確認試験10においては、第3実測値を求めるための排ガスフィルタ1として、基本構造は実施例5の排ガスフィルタ1と同様としつつ、表21に示すごとく、触媒担持量、流路断面積比Rs、セル壁2の厚さw、排ガス透過係数k、セル密度C、外径φを種々変更した試料F4a、試料F4b、試料F9a、試料F9b、試料F23a、試料F23bを用いた。ここで、試料F4a、試料F4bは、確認試験6の試料C4に、互いに異なる量の触媒コート層4を形成した排ガスフィルタ1である。また、試料F9a、試料F9bは、確認試験6の試料C9に、互いに異なる量の触媒コート層4を形成した排ガスフィルタ1である。また、試料F23a、試料F23bは、確認試験6の試料C23に、互いに異なる量の触媒コート層4を形成した排ガスフィルタ1である。 In the confirmation test 10, as the exhaust gas filter 1 for obtaining the third actual measurement value, the basic structure is the same as that of the exhaust gas filter 1 of the fifth embodiment, and as shown in Table 21, the catalyst loading amount, the flow path cross-sectional area ratio Samples F4a, F4b, F9a, F9b, F23a, and F23b in which Rs, the thickness w of the cell wall 2, the exhaust gas permeability coefficient k, the cell density C, and the outer diameter φ were variously used were used. Here, the sample F4a and the sample F4b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample C4 of the confirmation test 6. Sample F9a and sample F9b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample C9 of the confirmation test 6. Sample F23a and sample F23b are the exhaust gas filter 1 in which different amounts of the catalyst coat layer 4 are formed on the sample C23 of the confirmation test 6.
 また、本確認試験10では、確認試験8と同様に、排ガスフィルタの圧力損失と捕集率とに関する評価も行った。本確認試験10において、圧力損失及び捕集率の評価は、以下の試料J1、試料J1a、試料J1bを基準として行った。試料J1は、基本構造を確認試験2の試料1と同様としつつ、基材長Lを試料1と変更したものである。試料J1aは、試料J1に50g/Lの触媒担持量の触媒コート層を形成したものである。試料J1bは、試料J1に100g/Lの触媒担持量の触媒コート層を形成したものである。試料J1、試料J1a、試料J1bは、いずれも、流路断面積比Rsが1.0となる排ガスフィルタである。そして、互いに触媒担持量を0g/Lとした試料C4、試料C9、試料C23の評価基準試料は、同じく触媒担持量を0g/Lとした試料J1とした。また、互いに触媒担持量を50g/Lとした試料F4a、試料F9a、試料F23aの評価基準試料は、同じく触媒担持量を50g/Lとした試料J1aとした。また、互いに触媒担持量を100g/Lとした試料F4b、試料F9b、試料F23bの評価基準試料は、同じく触媒担持量を100g/Lとした試料J1bとした。確認試験10における各試料における圧力損失及び捕集率の評価の判定基準は、確認試験8で用いた評価の判定基準と同様である。 Further, in this confirmation test 10, as in the confirmation test 8, evaluation was also performed regarding the pressure loss and the collection rate of the exhaust gas filter. In this confirmation test 10, the pressure loss and the collection rate were evaluated based on the following sample J1, sample J1a, and sample J1b. Sample J1 is obtained by changing the base length L to that of sample 1 while the basic structure is the same as that of sample 1 of confirmation test 2. Sample J1a is obtained by forming a catalyst coat layer having a catalyst loading of 50 g / L on sample J1. Sample J1b is obtained by forming a catalyst coat layer with a catalyst loading of 100 g / L on sample J1. Sample J1, Sample J1a, and Sample J1b are all exhaust gas filters having a channel cross-sectional area ratio Rs of 1.0. The evaluation reference samples of Sample C4, Sample C9, and Sample C23 with the catalyst loading amount of 0 g / L were the same as Sample J1 with the catalyst loading amount of 0 g / L. In addition, the evaluation reference samples of Sample F4a, Sample F9a, and Sample F23a, in which the catalyst loading was 50 g / L, were the same as sample J1a in which the catalyst loading was 50 g / L. In addition, the evaluation reference samples of Sample F4b, Sample F9b, and Sample F23b, each having a catalyst loading of 100 g / L, were similarly Sample J1b having a catalyst loading of 100 g / L. The criteria for evaluating the pressure loss and the collection rate in each sample in the confirmation test 10 are the same as the criteria for evaluation used in the confirmation test 8.
 本確認試験10の試験条件、試験方法は、確認試験6で用いた試験条件、試験方法と同様とした。結果を表21に示す。なお、参考として、表21には、確認試験6の試料C4、試料C9、試料C23、および試料J1も記載している。また、表21において、第3実測値の基材長Lを有する排ガスフィルタにおける、圧力損失の評価を「圧損評価1」、捕集率の評価を「捕集率評価1」としている。 The test conditions and test method of this confirmation test 10 were the same as the test conditions and test method used in confirmation test 6. The results are shown in Table 21. For reference, Table 21 also lists Sample C4, Sample C9, Sample C23, and Sample J1 of Confirmation Test 6. Further, in Table 21, the pressure loss evaluation of the exhaust gas filter having the third measured actual substrate length L is “pressure loss evaluation 1”, and the collection rate evaluation is “collection rate evaluation 1”.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表21から分かるように、触媒を担持させた排ガスフィルタ1においても、式(3)によって求められる第3基準値L3と、実験によって確認される第3実測値とはほぼ一致している。それゆえ、式(3)によれば、触媒を担持させた排ガスフィルタ1においても、排ガスフィルタ1の各種パラメータの影響を考慮し、限界捕集率の90%以上の捕集率以上となる基材長Lのうち、最短のものを精度よく算出することができることが確認された。 As can be seen from Table 21, also in the exhaust gas filter 1 carrying the catalyst, the third reference value L3 obtained by the equation (3) and the third actually measured value confirmed by the experiment are almost the same. Therefore, according to the expression (3), even in the exhaust gas filter 1 carrying the catalyst, the influence of various parameters of the exhaust gas filter 1 is taken into account, and the base becomes a collection rate of 90% or more of the limit collection rate. It was confirmed that the shortest material length L can be accurately calculated.
 1 排ガスフィルタ、2 セル壁、3 セル孔、31 開放セル孔、32 栓詰めセル孔、321 栓部。 1 exhaust gas filter, 2 cell walls, 3 cell holes, 31 open cell holes, 32 plugged cell holes, 321 plug part.

Claims (11)

  1.  内燃機関から排出される粒子状物質を含む排ガスを浄化する排ガスフィルタ(1)であって、
     複数のセル壁(2)と、
     該セル壁(2)によって囲まれた複数のセル孔(3)とを有し、
     上記セル壁(2)は、隣り合うセル孔(3)間を連通する細孔を有し、
     上記セル孔(3)は、上記排ガスフィルタ(1)の軸方向に貫通する開放セル孔(31)と、上流側端部を閉塞する栓部(321)を備えた栓詰めセル孔(32)とからなり、
     上記軸方向と直交する断面において、上記開放セル孔(31)における流路断面積S1よりも、上記栓詰めセル孔(32)における流路断面積S2が大きく、上記セル壁(2)の厚さをw(mm)、排ガス透過係数をk(μm2)、セル密度をC(個/mm2)、上記排ガスフィルタ(1)の外径をφ(mm)、S1に対するS2の比である流路断面積比Rs=S2/S1としたとき、上記排ガスフィルタ(1)の全長Lが、下記式(1)によって決定される第1基準値L1以上であるとともに、下記式(M)によって定める臨界長Lm以下であることを特徴とする排ガスフィルタ(1)。
     L1=-3.7×Rs1.5-3.6/w+9.7/k-152.9×C+2241.5/φ+145.1 ・・・式(1),
     Lm=-5.5×Rs1.5-6.0/w+44.9/k-234.9×C+176.7/φ+255.6 ・・・式(M)。
    An exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine,
    A plurality of cell walls (2);
    A plurality of cell holes (3) surrounded by the cell wall (2);
    The cell wall (2) has pores communicating between adjacent cell holes (3),
    The cell hole (3) is a plugged cell hole (32) having an open cell hole (31) penetrating in the axial direction of the exhaust gas filter (1) and a plug part (321) for closing the upstream end. And consist of
    In the cross section orthogonal to the axial direction, the flow path cross-sectional area S2 in the plugged cell hole (32) is larger than the flow path cross-sectional area S1 in the open cell hole (31), and the thickness of the cell wall (2) Is the w (mm), the exhaust gas permeability coefficient is k (μm 2 ), the cell density is C (pieces / mm 2 ), the outer diameter of the exhaust gas filter (1) is φ (mm), and the ratio of S2 to S1. When the flow path cross-sectional area ratio Rs = S2 / S1, the total length L of the exhaust gas filter (1) is not less than the first reference value L1 determined by the following equation (1), and by the following equation (M): An exhaust gas filter (1) having a critical length Lm or less.
    L1 = −3.7 × Rs 1.5 −3.6 / w + 9.7 / k−152.9 × C + 2241.5 / φ + 145.1 Formula (1),
    Lm = −5.5 × Rs 1.5 −6.0 / w + 44.9 / k−234.9 × C + 176.7 / φ + 255.6 (Equation (M))
  2.  内燃機関から排出される粒子状物質を含む排ガスを浄化する排ガスフィルタ(1)であって、
     複数のセル壁(2)と、
     該セル壁(2)によって囲まれた複数のセル孔(3)とを有し、
     上記セル壁(2)は、隣り合うセル孔(3)間を連通する細孔を有し、
     上記セル孔(3)は、上記排ガスフィルタ(1)の軸方向に貫通する開放セル孔(31)と、上流側端部を閉塞する栓部(321)を備えた栓詰めセル孔(32)とからなり、
     上記軸方向と直交する断面において、上記開放セル孔(31)における流路断面積S1よりも、上記栓詰めセル孔(32)における流路断面積S2が大きく、
     上記セル壁(2)の厚さをw(mm)、排ガス透過係数をk(μm2)、セル密度をC(個/mm2)、上記排ガスフィルタ(1)の外径をφ(mm)、S1に対するS2の比である流路断面積比Rs=S2/S1としたとき、上記排ガスフィルタ(1)の全長Lが、下記式(2)によって決定される第2基準値L2以上であるとともに、下記式(M)によって定める臨界長Lm以下であることを特徴とする排ガスフィルタ(1)。
     L2=-13.4×Rs1.5+0.76/w+3.2/k-132.1×C+1117.3/φ+174.4 ・・・式(2),
     Lm=-5.5×Rs1.5-6.0/w+44.9/k-234.9×C+176.7/φ+255.6 ・・・式(M)。
    An exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine,
    A plurality of cell walls (2);
    A plurality of cell holes (3) surrounded by the cell wall (2);
    The cell wall (2) has pores communicating between adjacent cell holes (3),
    The cell hole (3) is a plugged cell hole (32) having an open cell hole (31) penetrating in the axial direction of the exhaust gas filter (1) and a plug part (321) for closing the upstream end. And consist of
    In the cross section orthogonal to the axial direction, the flow passage cross-sectional area S2 in the plugged cell hole (32) is larger than the flow passage cross-sectional area S1 in the open cell hole (31),
    The thickness of the cell wall (2) is w (mm), the exhaust gas permeability coefficient is k (μm 2 ), the cell density is C (pieces / mm 2 ), and the outer diameter of the exhaust gas filter (1) is φ (mm). When the flow path cross-sectional area ratio Rs = S2 / S1, which is the ratio of S2 to S1, the total length L of the exhaust gas filter (1) is not less than a second reference value L2 determined by the following equation (2). And an exhaust gas filter (1) having a critical length Lm or less determined by the following formula (M).
    L2 = −13.4 × Rs 1.5 + 0.76 / w + 3.2 / k−132.1 × C + 117.3 / φ + 174.4 Formula (2),
    Lm = −5.5 × Rs 1.5 −6.0 / w + 44.9 / k−234.9 × C + 176.7 / φ + 255.6 (Equation (M))
  3.  内燃機関から排出される粒子状物質を含む排ガスを浄化する排ガスフィルタ(1)であって、
     複数のセル壁(2)と、
     該セル壁(2)によって囲まれた複数のセル孔(3)とを有し、
     上記セル壁(2)は、隣り合うセル孔(3)間を連通する細孔を有し、
     上記セル孔(3)は、上記排ガスフィルタ(1)の軸方向に貫通する開放セル孔(31)と、上流側端部を閉塞する栓部(321)を備えた栓詰めセル孔(32)とからなり、
     上記軸方向と直交する断面において、上記開放セル孔(31)における流路断面積S1よりも、上記栓詰めセル孔(32)における流路断面積S2が大きく、上記セル壁(2)の厚さをw(mm)、排ガス透過係数をk(μm2)、セル密度をC(個/mm2)、上記排ガスフィルタ(1)の外径をφ(mm)、S1に対するS2の比である流路断面積比Rs=S2/S1としたとき、上記排ガスフィルタ(1)の全長Lが、下記式(3)によって決定される第3基準値L3以上であるとともに、下記式(M)によって定める臨界長Lm以下であることを特徴とする排ガスフィルタ(1)。
     L3=-6.8×Rs1.5-4.5/w+12.0/k-189.9×C+2629.1/φ+191.7 ・・・式(3),
     Lm=-5.5×Rs1.5-6.0/w+44.9/k-234.9×C+176.7/φ+255.6 ・・・式(M)。
    An exhaust gas filter (1) for purifying exhaust gas containing particulate matter discharged from an internal combustion engine,
    A plurality of cell walls (2);
    A plurality of cell holes (3) surrounded by the cell wall (2);
    The cell wall (2) has pores communicating between adjacent cell holes (3),
    The cell hole (3) is a plugged cell hole (32) having an open cell hole (31) penetrating in the axial direction of the exhaust gas filter (1) and a plug part (321) for closing the upstream end. And consist of
    In the cross section orthogonal to the axial direction, the flow path cross-sectional area S2 in the plugged cell hole (32) is larger than the flow path cross-sectional area S1 in the open cell hole (31), and the thickness of the cell wall (2) Is the w (mm), the exhaust gas permeability coefficient is k (μm 2 ), the cell density is C (pieces / mm 2 ), the outer diameter of the exhaust gas filter (1) is φ (mm), and the ratio of S2 to S1. When the flow path cross-sectional area ratio Rs = S2 / S1, the total length L of the exhaust gas filter (1) is not less than a third reference value L3 determined by the following equation (3), and by the following equation (M): An exhaust gas filter (1) having a critical length Lm or less.
    L3 = −6.8 × Rs 1.5 −4.5 / w + 12.0 / k−189.9 × C + 2629.1 / φ + 191.7 Formula (3),
    Lm = −5.5 × Rs 1.5 −6.0 / w + 44.9 / k−234.9 × C + 176.7 / φ + 255.6 (Equation (M))
  4.  上記セル壁(2)の厚さw(mm)は0.13≦w≦0.47であり、上記排ガス透過係数k(μm2)は0.3≦k≦1.1であり、上記セル密度C(個/mm2)は0.31≦C≦0.62であり、上記排ガスフィルタ(1)の外径φ(mm)は80≦φ≦150であることを特徴とする請求項1~3のいずれか一項に記載の排ガスフィルタ(1)。 The thickness w (mm) of the cell wall (2) is 0.13 ≦ w ≦ 0.47, the exhaust gas permeability coefficient k (μm 2 ) is 0.3 ≦ k ≦ 1.1, and the cell The density C (pieces / mm 2 ) is 0.31 ≦ C ≦ 0.62, and the exhaust gas filter (1) has an outer diameter φ (mm) of 80 ≦ φ ≦ 150. The exhaust gas filter (1) according to any one of claims 1 to 3.
  5.  上記流路断面積比Rs=S2/S1は、1.1≦Rs≦5であることを特徴とする請求項1~4のいずれか一項に記載の排ガスフィルタ(1)。 The exhaust gas filter (1) according to any one of claims 1 to 4, wherein the flow path cross-sectional area ratio Rs = S2 / S1 is 1.1≤Rs≤5.
  6.  上記複数のセル孔(3)は、2種類以上の形状を有することを特徴とする請求項1~5のいずれか一項に記載の排ガスフィルタ(1)。 The exhaust gas filter (1) according to any one of claims 1 to 5, wherein the plurality of cell holes (3) have two or more types of shapes.
  7.  上記セル孔(3)は、内周形状が八角形のセル孔(3)と、内周形状が四角形のセル孔(3)とからなり、上記八角形のセル孔(3)の水力直径は、上記四角形のセル孔(3)の水力直径よりも大きく、上記八角形のセル孔(3)と上記四角形のセル孔(3)とを交互に並べて形成されていることを特徴とする請求項6に記載の排ガスフィルタ(1)。 The cell hole (3) comprises an octagonal cell hole (3) with an inner peripheral shape and a square cell hole (3) with an inner peripheral shape, and the hydraulic diameter of the octagonal cell hole (3) is The octagonal cell hole (3) and the square cell hole (3) are alternately arranged and are larger than the hydraulic diameter of the square cell hole (3). 6. The exhaust gas filter (1) according to 6.
  8.  上記八角形のセル孔(3)は栓詰めセル孔(32)であり、上記四角形のセル孔(3)は上記開放セル孔(31)であることを特徴とする請求項7に記載の排ガスフィルタ(1)。 The exhaust gas according to claim 7, wherein the octagonal cell hole (3) is a plugged cell hole (32) and the square cell hole (3) is the open cell hole (31). Filter (1).
  9.  上記八角形のセル孔(3)のすべて、および上記四角形のセル孔(3)の一部は上記栓詰めセル孔(32)であることを特徴とする請求項7に記載の排ガスフィルタ(1)。 The exhaust gas filter (1) according to claim 7, wherein all of the octagonal cell holes (3) and a part of the rectangular cell holes (3) are the plugged cell holes (32). ).
  10.  上記複数のセル孔(3)は、内周形状が四角形のセル孔からなり、上記開放セル孔(31)の数より、上記栓詰めセル孔(32)の数が多くなるよう配置されていることを特徴とする請求項1~5のいずれか一項に記載の排ガスフィルタ(1)。 The plurality of cell holes (3) are composed of square cell holes with an inner peripheral shape, and are arranged such that the number of plugged cell holes (32) is larger than the number of open cell holes (31). The exhaust gas filter (1) according to any one of claims 1 to 5, wherein:
  11.  上記複数のセル孔(3)は、内周形状が四角形のセル孔からなり、上記開放セル孔(31)と上記栓詰めセル孔(32)とを交互に配置されていることを特徴とする請求項1~5のいずれか一項に記載の排ガスフィルタ(1)。 The plurality of cell holes (3) are formed of square cell holes with an inner peripheral shape, and the open cell holes (31) and the plugged cell holes (32) are alternately arranged. The exhaust gas filter (1) according to any one of claims 1 to 5.
PCT/JP2016/050113 2015-01-09 2016-01-05 Exhaust gas filter WO2016111287A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680005165.5A CN107109978B (en) 2015-01-09 2016-01-05 Exhaust gas filter
DE112016000299.8T DE112016000299B4 (en) 2015-01-09 2016-01-05 exhaust filter
US15/542,215 US10569207B2 (en) 2015-01-09 2016-01-05 Exhaust gas filter

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015003244 2015-01-09
JP2015-003244 2015-01-09
JP2015073492 2015-03-31
JP2015-073492 2015-03-31
JP2015203861 2015-10-15
JP2015-203861 2015-10-15
JP2015-239637 2015-12-08
JP2015239637A JP6451615B2 (en) 2015-01-09 2015-12-08 Exhaust gas filter

Publications (1)

Publication Number Publication Date
WO2016111287A1 true WO2016111287A1 (en) 2016-07-14

Family

ID=56355974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050113 WO2016111287A1 (en) 2015-01-09 2016-01-05 Exhaust gas filter

Country Status (1)

Country Link
WO (1) WO2016111287A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043350A1 (en) * 2016-09-05 2018-03-08 株式会社デンソー Exhaust gas purification filter
JP2018143906A (en) * 2017-03-01 2018-09-20 日本碍子株式会社 Honeycomb filter
JP2018167200A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb filter
JP2018167199A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236322A (en) * 2001-12-03 2003-08-26 Hitachi Metals Ltd Ceramic honeycomb filter
WO2008026675A1 (en) * 2006-08-30 2008-03-06 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP2010247145A (en) * 2009-03-24 2010-11-04 Ngk Insulators Ltd Method of producing honeycomb filter
JP2011522694A (en) * 2008-05-29 2011-08-04 コーニング インコーポレイテッド Partial wall flow filter and method
JP2014057951A (en) * 2007-04-17 2014-04-03 Ibiden Co Ltd Catalyst support honeycomb

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236322A (en) * 2001-12-03 2003-08-26 Hitachi Metals Ltd Ceramic honeycomb filter
WO2008026675A1 (en) * 2006-08-30 2008-03-06 Hitachi Metals, Ltd. Ceramic honeycomb filter
JP2014057951A (en) * 2007-04-17 2014-04-03 Ibiden Co Ltd Catalyst support honeycomb
JP2011522694A (en) * 2008-05-29 2011-08-04 コーニング インコーポレイテッド Partial wall flow filter and method
JP2010247145A (en) * 2009-03-24 2010-11-04 Ngk Insulators Ltd Method of producing honeycomb filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043350A1 (en) * 2016-09-05 2018-03-08 株式会社デンソー Exhaust gas purification filter
JP2018038941A (en) * 2016-09-05 2018-03-15 株式会社デンソー Exhaust gas purification filter
JP2018143906A (en) * 2017-03-01 2018-09-20 日本碍子株式会社 Honeycomb filter
JP2018167200A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb filter
JP2018167199A (en) * 2017-03-30 2018-11-01 日本碍子株式会社 Honeycomb filter

Similar Documents

Publication Publication Date Title
CN110573250B (en) Exhaust gas purifying catalyst device
WO2013145266A1 (en) Particulate filter
WO2016111287A1 (en) Exhaust gas filter
US8747509B2 (en) Honeycomb filter and manufacturing method of the same
CN110314683B (en) Honeycomb filter
JP7097210B2 (en) Honeycomb filter
JP6451615B2 (en) Exhaust gas filter
US20120251398A1 (en) Honeycomb filter
US20190299142A1 (en) Honeycomb filter
WO2020202846A1 (en) Exhaust gas purification filter
WO2021020100A1 (en) Exhaust gas purification filter
WO2021020015A1 (en) Exhaust gas purification filter
WO2020202847A1 (en) Exhaust gas purification filter
WO2021020014A1 (en) Exhaust gas purification filter
WO2019221292A1 (en) Exhaust gas purification catalyst
RU2575520C1 (en) Particulates filter
JP2009011909A (en) Honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542215

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000299

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735026

Country of ref document: EP

Kind code of ref document: A1