JP3404302B2 - Vibration measurement method for civil engineering building structures - Google Patents

Vibration measurement method for civil engineering building structures

Info

Publication number
JP3404302B2
JP3404302B2 JP33932498A JP33932498A JP3404302B2 JP 3404302 B2 JP3404302 B2 JP 3404302B2 JP 33932498 A JP33932498 A JP 33932498A JP 33932498 A JP33932498 A JP 33932498A JP 3404302 B2 JP3404302 B2 JP 3404302B2
Authority
JP
Japan
Prior art keywords
vibration
point
civil engineering
interest
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33932498A
Other languages
Japanese (ja)
Other versions
JP2000162096A (en
Inventor
正明 田中
守可 串田
直道 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Technos Co Ltd
Original Assignee
Kurimoto Ltd
Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Technos Co Ltd filed Critical Kurimoto Ltd
Priority to JP33932498A priority Critical patent/JP3404302B2/en
Publication of JP2000162096A publication Critical patent/JP2000162096A/en
Application granted granted Critical
Publication of JP3404302B2 publication Critical patent/JP3404302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、橋梁等の土木建
築物の振動状態を測定する方法及びその測定値に基づい
て前記土木建築物の固有振動数を測定(算出)する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a vibration state of a civil engineering building such as a bridge and a method of measuring (calculating) a natural frequency of the civil engineering building based on the measured value. .

【0002】[0002]

【従来の技術】橋梁などの土木建築構造物の定期的な維
持管理、点検を行う事は適切なメンテナンス、安全性の
確保、経済性等の社会資本の有効利用からして重要であ
る。その点検手段として、構造物の振動状態を測定する
ものがある。
2. Description of the Related Art Periodic maintenance and inspection of civil engineering structures such as bridges is important for proper maintenance, ensuring safety, and effective use of social capital such as economy. As the inspection means, there is one that measures the vibration state of the structure.

【0003】例えば、橋梁の構造物(橋桁、橋脚、タワ
ーなど)の剛性が低下した場合、又は吊り橋(斜張橋)
のケーブル張力に変化(弛み)が起こった場合などには
固有振動数の変化として検知することができる。すなわ
ち、架設完了状態での正常状態の構造物の固有振動数を
事前に把握しておき、定期的に測定する固有振動数を、
その正常状態の固有振動数と比較することにより、構造
物の劣化を判定して維持管理・点検を行っている。
For example, when the rigidity of a bridge structure (bridge girder, pier, tower, etc.) is lowered, or a suspension bridge (cable stayed bridge)
When a change (slack) occurs in the cable tension of, it can be detected as a change in natural frequency. That is, the natural frequency of the structure in the normal state in the completed installation is known in advance, and the natural frequency measured periodically is
By comparing with the natural frequency in the normal state, the deterioration of the structure is judged and maintenance / inspection is performed.

【0004】その構造物の振動測定手段としては、実公
平1−36976号公報、特開平5−339909号公
報などに示されるように、構造物に振動センサや加速度
計を直接に取付けて振動測定を行っている。
As means for measuring the vibration of the structure, as shown in Japanese Utility Model Publication No. 1-36976 and Japanese Patent Laid-Open No. 5-339909, a vibration sensor or an accelerometer is directly attached to the structure for vibration measurement. It is carried out.

【0005】[0005]

【発明が解決しようとする課題】上記従来の構造物振動
測定手段は、いずれも構造物に振動センサ等を直接に取
付けているため、その取付け作業が煩わしいうえに、そ
の測定信号をリード線でもって地上の演算判定器まで導
く必要があり、その作業も煩わしい等の問題がある。す
なわち、振動測定の都度、振動センサ等の設置及びその
リード配線を行うことは、非常に煩わしく、また、振動
センサ等を常設することは、損傷の恐れが多く、正確な
測定を行い得ない。とくに、海上部では塩害、北海道な
どの寒冷地では氷結の問題があり、常設は好ましくな
い。さらに、振動センサなどの設置個所は高所になる場
合が多く、高所及び海上部では危険な作業となる。
In all of the above-mentioned conventional structure vibration measuring means, since the vibration sensor and the like are directly attached to the structure, the attachment work is troublesome and the measurement signal is measured by the lead wire. Therefore, it is necessary to lead it to the arithmetic decision unit on the ground, and the work is troublesome. That is, it is very troublesome to install a vibration sensor or the like and to perform lead wiring for each vibration measurement, and if the vibration sensor or the like is permanently installed, damage is likely to occur and accurate measurement cannot be performed. In particular, there is a problem of salt damage in the upper sea and freezing in cold regions such as Hokkaido, so permanent installation is not preferable. Further, the installation location of the vibration sensor and the like is often a high place, which is a dangerous work at a high place and the sea.

【0006】この発明は、構造物に測定機器を取付ける
ことなく、地上において構造物の振動を測定し得るよう
にすることを課題とする。
An object of the present invention is to make it possible to measure the vibration of a structure on the ground without attaching a measuring device to the structure.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
に、この発明は、被測定物である土木建築構造物の一着
目点を光学的に視準し、その着目点の振動時刻歴データ
を電気的に取り出してその時刻歴データに基づき、前記
構造物の振動状態を測定するようにしたのである。
In order to achieve the above object, the present invention optically collimates one point of interest of a civil engineering building structure which is an object to be measured, and obtains vibration time history data of the point of interest. Is electrically taken out, and the vibration state of the structure is measured based on the time history data.

【0008】光学的であれば、地上から着目点を観察す
ることができる。また、その着目点も、動きのよくわか
る所を任意に選べばよい。このため、測定日時に、測定
現場に行って測定することができる。なお、着目点に
は、表示板などの表示を取付けて観察(測定)し易くす
ることが好ましい。例えば、夜間では、蛍光テープを採
用し得る。
If it is optical, the point of interest can be observed from the ground. Also, as for the point of interest, a place where the movement is well understood may be arbitrarily selected. Therefore, it is possible to go to the measurement site and measure at the measurement date and time. It is preferable to attach a display such as a display plate to the point of interest to facilitate observation (measurement). For example, at night, fluorescent tape may be used.

【0009】[0009]

【発明の実施の形態】この発明の一実施形態としては、
橋梁などの土木建築構造物の一着目点を輝度計又はCC
Dカメラで視準し、その着目点の振動時刻歴データを電
気的に取り出して、その時刻歴データに基づき前記土木
建築構造物の振動状態を測定する構成が採用でき、さら
に、前記振動時刻歴データをフーリエ変換して前記土木
建築構造物の固有振動数を測定することができる。その
振動時刻歴データによれば、固有振動数のみならず、実
際の振幅なども算出でき、また、張力なども算出できる
(実施例参照)。なお、振幅などは、撮影距離、ズーム
の度合などで、実際値と測定値が異なるため、その測定
の都度、キャリブレーションする。
BEST MODE FOR CARRYING OUT THE INVENTION As an embodiment of the present invention,
Luminance meter or CC for one point of interest in civil engineering structures such as bridges
A configuration can be adopted in which the vibration time history data of the point of interest is electrically taken out by the D camera, and the vibration state of the civil engineering / building structure is measured based on the time history data. The natural frequency of the civil engineering building structure can be measured by Fourier transforming the data. According to the vibration time history data, not only the natural frequency but also the actual amplitude or the like can be calculated, and the tension or the like can be calculated (see the embodiment). It should be noted that the amplitude and the like differ from the actual value and the measured value depending on the photographing distance, the degree of zooming, etc., and are calibrated each time the measurement is performed.

【0010】上記輝度計は、視覚角度:0.2°のもの
が好ましい。このものは、「輝度を計測するサークル」
(図5参照)が小さいので、着目点が地上から遠距離の
場合、例えば橋梁のケーブルの場合、ケーブル振動によ
るサークル内の輝度の変化が著しくなり、精度の高い測
定ができるからである。
The luminance meter preferably has a visual angle of 0.2 °. This is a "circle that measures brightness"
This is because (See FIG. 5) is small, so that when the point of interest is a long distance from the ground, for example, in the case of a bridge cable, the change in brightness within the circle due to the cable vibration becomes remarkable, and highly accurate measurement can be performed.

【0011】CCDカメラにおける着目点は、構造物上
で輝度が変化する点、あるいは構造物自身と背景の明暗
の違いから輝度の差が明確となる点などを採用する。そ
の撮影された画像は格子配列された数多くの画素により
構成され、それぞれの画素が濃淡を表している。このた
め、前記の着目点は画像上の濃淡変化点として認識する
ことが出来、この濃淡変化点の変位を記録することによ
って、前述の着目点の振動時刻歴を記録することが可能
である。輝度に代えて、彩度、明度などの変化点とし得
る。また、CCDカメラは、画素の数を多くすれば、容
易に精度を上げることができ、さらに、ズームが可能で
あれば、遠近に関係なく、安定した精度を得ることがで
きる。
The point of interest in the CCD camera is, for example, that the brightness changes on the structure or that the brightness difference becomes clear due to the difference in brightness between the structure itself and the background. The photographed image is composed of a large number of pixels arranged in a lattice, and each pixel represents light and shade. Therefore, the point of interest can be recognized as a grayscale change point on the image, and the vibration time history of the point of interest can be recorded by recording the displacement of the grayscale change point. Instead of luminance, it may be a change point of saturation, brightness, or the like. Further, the CCD camera can easily improve the accuracy by increasing the number of pixels, and if the zoom is possible, the stable accuracy can be obtained regardless of the distance.

【0012】[0012]

【実施例】この実施例は、図1に示す斜張橋のケーブル
Pの張力変化を測定したものであり、図2に示すよう
に、地上にCCDカメラ10、画像センサ11、パソコ
ン12等をそれぞれ設置し、振動するケーブルPをCC
Dカメラ10にて撮影する。このとき、撮影された画像
は図3のように、縦480列、横512列の格子状に配
列された画素から構成されており、それぞれの画素が0
〜255の階調で濃淡を表す。同図中、斜線部分がケー
ブルPを示す。
EXAMPLE In this example, the change in tension of the cable P of the cable-stayed bridge shown in FIG. 1 was measured. As shown in FIG. 2, a CCD camera 10, an image sensor 11, a personal computer 12, etc. were installed on the ground. CC installed in each and vibrating cable P
Take an image with the D camera 10. At this time, as shown in FIG. 3, the photographed image is composed of pixels arranged in a grid pattern of 480 vertical rows and 512 horizontal rows, and each pixel is 0.
Gradation of ˜255 represents light and shade. In the figure, the shaded portion indicates the cable P.

【0013】いま、ケーブルPの色と背景の色の輝度の
差を利用して図3(a)に示す箇所Sを着目点とする。
その画像上で着目点Sを通るA−A’線を定義すると、
A−A’線上に一列に並ぶ512個の画素の濃淡階調は
同図(b)のようになる。この実施例では、濃淡変化点
は、濃淡の変化量が最大となる箇所を濃淡変化点とし
た。
Now, a point S shown in FIG. 3A is set as a point of interest by utilizing the difference in brightness between the color of the cable P and the color of the background.
If the AA 'line passing through the point of interest S is defined on the image,
The gray scale of 512 pixels arranged in a line on the line AA 'is as shown in FIG. In this embodiment, the lightness change point is the lightness change point at the point where the lightness change amount is the maximum.

【0014】その振動によって刻々と変化する濃淡変化
点の位置(図3(b)のX点座標)を記録すると、図4
(a)のとおりの時刻歴波形が得られる。この波形はあ
くまでも画像上での濃淡変化点の振動であり、振幅は実
際のケーブルPの振動とは異なるが、これを同図(b)
のようにフーリエ変換した、スペクトル領域での特性
(スペクトル強度)は実際のケーブルPの振動と同様の
ものとなる。
When the position of the gradation change point (X point coordinate in FIG. 3B) which changes every moment due to the vibration is recorded, FIG.
A time history waveform as shown in (a) is obtained. This waveform is only the vibration of the light and shade change point on the image, and the amplitude is different from the actual vibration of the cable P, but this is shown in FIG.
The characteristic (spectral intensity) in the spectral region obtained by the Fourier transform as described above is similar to the actual vibration of the cable P.

【0015】図5乃至図9には、視準角度0.2°の輝
度計15によって、同様にケーブルPの振動を記録した
実施例を示し、まず、図5、6に示すように、地上の輝
度計15によって、そのサークル内の輝度が黒色ケーブ
ルPと背景の明暗の差により変化する状態を、図7
(a)に示す、振動時刻歴として記録し、それを同図
(b)に示すようにFFTアナライザーにてフーリエ変
換してスペクトル強度を得た。
FIGS. 5 to 9 show an embodiment in which the vibration of the cable P is similarly recorded by the luminance meter 15 having the collimation angle of 0.2 °. First, as shown in FIGS. The luminance meter 15 of FIG. 7 shows a state in which the luminance in the circle changes due to the difference in brightness between the black cable P and the background.
The vibration time history shown in (a) was recorded and subjected to Fourier transform with an FFT analyzer to obtain spectrum intensity as shown in (b).

【0016】上記スペクトル強度に基づき、ケーブルP
の一次固有振動数を特定することが可能である。また、
実際のケーブルの振幅も算出できる。このとき、その一
次固有振動数の特定、振幅の算出等は、ケーブルPの長
さが既知のものをあらかじめキャリブレーション的に撮
影して、画像上の長さとの比率を算出しておき、その算
出値によって補正すればよい。但し、その比率は、撮影
距離、ズームの度合いなどで変化するので、その都度、
キャリブレーションする。
Based on the above spectrum intensity, the cable P
It is possible to specify the primary natural frequency of. Also,
The actual cable amplitude can also be calculated. At this time, in order to specify the primary natural frequency, calculate the amplitude, etc., the cable P having a known length is photographed in advance by calibration, and the ratio with the length on the image is calculated. It may be corrected by the calculated value. However, since the ratio changes depending on the shooting distance and the degree of zoom,
Calibrate.

【0017】また、ケーブルPの振動形状は一見複雑な
ものであるが、一般に、図8(a)〜(d)に示す固有
振動モードの重ね合わせで構成され、フーリエ変換され
た固有振動数は、振動数の小さいものから順々に、1次
モード(同図(a))、2次モード(同図(b))、3
次モード(同図(c))、4次モード(同図(d))…
…n次モードとなる。このため、振動法によるケーブル
張力の算出には、前記の1次モード、又は2次モードの
固有振動数によって、図9に示す手法(1980.2
土木学会論文報告集掲載)で求める。但し、ニールセン
橋の場合、ケーブル断面の諸元や設計張力の関係上、ほ
とんど全ての場合、1次モードのみにより張力の算出を
行う(同図2、3式参照)。
Although the vibration shape of the cable P is complicated at first glance, it is generally constructed by superposition of natural vibration modes shown in FIGS. 8A to 8D, and the Fourier-transformed natural frequency is , In order from the smallest frequency, the first-order mode (Fig. (A)), the second-order mode (Fig. (B)), 3
Next mode ((c) in the figure), Fourth mode ((d) in the figure) ...
... The nth mode is set. Therefore, in the calculation of the cable tension by the vibration method, the method shown in FIG. 9 (1980.2) is used by the natural frequency of the first-order mode or the second-order mode.
(Publication report of JSCE) However, in the case of Nielsen bridge, in almost all cases, the tension is calculated only in the primary mode due to the specifications of the cable cross section and the design tension (see the formulas 2 and 3 in the same figure).

【0018】各実施例では、構造物そのものの一点を着
目点Sとしたが、図10に示すように、橋梁の架設工事
などにおいて、明暗が鮮明となる表示板20を着目点S
に固着することができる。このようにすれば、輝度など
の変化も認識し易いものとなる。図中、斜線部が黒で、
他は白とする。
In each embodiment, one point of the structure itself is set as the focus point S. However, as shown in FIG. 10, the display plate 20 where the contrast is clear in bridge construction work, etc. is the focus point S.
Can be stuck to. By doing so, it becomes easy to recognize a change in brightness and the like. In the figure, the shaded area is black,
Others are white.

【0019】[0019]

【発明の効果】以上のように、この発明では、振動する
構造物自身には計測機器等の取付けを行わずにその振動
を計測することが出来る利点があり、計測の手間を低減
させることが出来る。
As described above, according to the present invention, there is an advantage that the vibrating structure itself can measure its vibration without attaching a measuring device or the like, and the labor of measurement can be reduced. I can.

【図面の簡単な説明】[Brief description of drawings]

【図1】被測定物たる橋梁の概略図[Figure 1] Schematic diagram of the bridge as the DUT

【図2】一実施例の概略図FIG. 2 is a schematic diagram of an embodiment.

【図3】同実施例の作用説明図FIG. 3 is an explanatory view of the operation of the same embodiment.

【図4】同実施例の作用説明図FIG. 4 is an operation explanatory view of the same embodiment.

【図5】他の実施例の作用図FIG. 5 is an operation diagram of another embodiment.

【図6】同実施例の概略図FIG. 6 is a schematic view of the same embodiment.

【図7】同実施例の作用説明図FIG. 7 is an explanatory view of the operation of the same embodiment.

【図8】同実施例の作用図FIG. 8 is an operation diagram of the same embodiment.

【図9】ケーブル張力算出式図[Figure 9] Cable tension calculation formula

【図10】表示板の一例図FIG. 10 shows an example of a display board.

【符号の説明】[Explanation of symbols]

P 橋梁ケーブル S 着目点 10 CCDカメラ 11 画像センサ 12 パソコン 15 輝度計 20 表示板 P bridge cable S point of interest 10 CCD camera 11 Image sensor 12 PC 15 Luminance meter 20 display board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 串田 守可 大阪市西区北堀江1丁目12番19号 株式 会社栗本鐵工所内 (72)発明者 平田 直道 大阪市西区北堀江1丁目12番19号 株式 会社栗本鐵工所内 (56)参考文献 特開 平5−52714(JP,A) 特開 平3−315957(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01M 19/00 E01D 1/00 G01H 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Moriyoshi Kushida 1-12-19 Kitahori, Nishi-ku, Osaka City Kurimoto Iron Works Co., Ltd. (72) Naoichi Hirata 1-12-19 Kitahorie, Nishi-ku, Osaka Kurimoto Iron Works Co., Ltd. (56) References JP-A-5-52714 (JP, A) JP-A-3-315957 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01M 19/00 E01D 1/00 G01H 9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 橋梁などの土木建築構造物の一着目点S
輝度計により光学的に視準し、その着目点の振動時刻
歴データを電気的に取り出して、その時刻歴データに基
づき前記土木建築構造物の振動状態を測定する方法であ
って、 上記着目点の振動時刻歴データを、前記着目点の振動に
よる上記輝度計のサークル内の輝度の変化状態から得る
ようにしたことを特徴とする 土木建築構造物の振動測定
方法。
1. A point of interest S of a civil engineering building structure such as a bridge.
Optically collimated by the luminance meter, vibration time history data of the target point in electrical extraction, der method of measuring the vibration state of the civil engineering structures based on the time data
Then, the vibration time history data of the point of interest is converted into the vibration of the point of interest.
Obtained from the change state of the luminance in the circle of the above luminance meter
A method for measuring vibration of civil engineering and building structures characterized by the above .
【請求項2】 橋梁などの土木建築構造物の一着目点S
CCDカメラにより光学的に視準し、その着目点の振
動時刻歴データを電気的に取り出して、その時刻歴デー
タに基づき前記土木建築構造物の振動状態を測定する方
法であって、 上記着目点の振動を、上記CCDカメラの画像をなす格
子配列された各画素の濃淡変化として認識し、その濃淡
変化した画素の変位を上記着目点の振動時刻歴データと
することを特徴とする 土木建築構造物の振動測定方法。
2. A point of interest S of a civil engineering building structure such as a bridge.
Optically collimated by a CCD camera, the vibration time history data of the target point in electrical extraction, a method for measuring the vibration state of the civil engineering structures based on the time data, the interest The vibration of the point is the case that forms the image of the CCD camera.
Recognize as a change in the density of each pixel in the child array, and
The changed pixel displacement is used as the vibration time history data of the point of interest.
A method for measuring vibration of civil engineering and building structures , characterized by :
JP33932498A 1998-11-30 1998-11-30 Vibration measurement method for civil engineering building structures Expired - Lifetime JP3404302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33932498A JP3404302B2 (en) 1998-11-30 1998-11-30 Vibration measurement method for civil engineering building structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33932498A JP3404302B2 (en) 1998-11-30 1998-11-30 Vibration measurement method for civil engineering building structures

Publications (2)

Publication Number Publication Date
JP2000162096A JP2000162096A (en) 2000-06-16
JP3404302B2 true JP3404302B2 (en) 2003-05-06

Family

ID=18326389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33932498A Expired - Lifetime JP3404302B2 (en) 1998-11-30 1998-11-30 Vibration measurement method for civil engineering building structures

Country Status (1)

Country Link
JP (1) JP3404302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021036662A1 (en) * 2019-04-26 2021-03-04 深圳市豪视智能科技有限公司 Signal processing method and device, and related product

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437259B1 (en) * 2002-01-19 2004-06-23 한국표준과학연구원 A Vibration Measuring Device Of A Large Structure And Measuring Method Thereof
JP4001806B2 (en) * 2002-12-06 2007-10-31 財団法人鉄道総合技術研究所 Identification method and apparatus for non-contact measurement of vibration characteristics of structure
US7027353B2 (en) * 2003-04-03 2006-04-11 Sri International Method and apparatus for real-time vibration imaging
GB2427264A (en) * 2005-06-02 2006-12-20 Pixoft Diagnostic Imaging Ltd Measurement of oscillations
JP2007309899A (en) * 2006-05-22 2007-11-29 Keisoku Res Consultant:Kk Noncontact-type vibration/displacement measuring device
KR100902389B1 (en) * 2007-09-11 2009-06-11 김영기 Vibration measurement system, vibration measurement method and computer readble medium on which vibration measurement program is recorded
JP5360561B2 (en) * 2009-05-22 2013-12-04 国立大学法人広島大学 Micro displacement display device and abnormal vibration monitoring system of building using the same
JP2011122824A (en) * 2009-12-08 2011-06-23 Koden Electronics Co Ltd Bridge deterioration monitoring and recording device and bridge deterioration monitoring and recording system
JP5418307B2 (en) * 2010-03-04 2014-02-19 三菱電機株式会社 Elevator rope tension measuring device
JP5909890B2 (en) * 2011-06-23 2016-04-27 株式会社大林組 Displacement observation method and displacement observation system
JP6151489B2 (en) * 2011-07-28 2017-06-21 株式会社神戸製鋼所 Vibration measuring apparatus and vibration measuring method
CN102322938A (en) * 2011-08-22 2012-01-18 华南理工大学 Visual measuring device for vibration of piezoelectric flexible board structure and control method
WO2015041101A1 (en) * 2013-09-17 2015-03-26 シャープ株式会社 Resonance frequency calculation device, image capture device, resonance frequency calculation program, and resonance frequency calculation method
JP6364845B2 (en) * 2014-03-18 2018-08-01 日本電気株式会社 Vibration measuring device
JP6251142B2 (en) * 2014-09-05 2017-12-20 公益財団法人鉄道総合技術研究所 Non-contact detection method and apparatus for measurement object
CN104729665B (en) * 2015-03-10 2018-04-13 华南理工大学 A kind of flexible cantilever panel vibration detection device and method based on binocular vision
CN105067245B (en) * 2015-08-11 2018-01-12 招商局重庆交通科研设计院有限公司 Bridge vibration frequency measuring method tension member and system
JP6624986B2 (en) * 2016-03-23 2019-12-25 株式会社エンビジョンAescジャパン Ultrasonic welding equipment
JP6675929B2 (en) * 2016-05-17 2020-04-08 西日本高速道路エンジニアリング四国株式会社 Frequency analysis method using image analysis
CN106017839B (en) * 2016-07-18 2019-05-14 华南理工大学 Based on flexible, hinged plate benging and twisting vibration detection control apparatus and method
CN108633303A (en) * 2017-01-25 2018-10-09 松下知识产权经营株式会社 Rigid measurement device and rigid assay method
JP6688242B2 (en) * 2017-02-27 2020-04-28 日本電信電話株式会社 Condition measurement system
JP7048590B2 (en) * 2017-05-10 2022-04-05 コニカミノルタ株式会社 Structure abnormality diagnosis device and structure abnormality diagnosis program
JP6535861B2 (en) * 2017-06-27 2019-07-03 調和工業株式会社 Pile placement management system
WO2019167245A1 (en) * 2018-03-02 2019-09-06 三菱電機ビルテクノサービス株式会社 Suspending body tension measuring device for elevator
JP6944405B2 (en) * 2018-03-26 2021-10-06 株式会社Nttドコモ Building judgment system
JP6994996B2 (en) * 2018-03-26 2022-01-14 株式会社Nttドコモ Traffic route judgment system
CN112539822A (en) * 2020-12-03 2021-03-23 浙江大学德清先进技术与产业研究院 Method and device for evaluating vibration frequency and amplitude of building construction site

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021036662A1 (en) * 2019-04-26 2021-03-04 深圳市豪视智能科技有限公司 Signal processing method and device, and related product

Also Published As

Publication number Publication date
JP2000162096A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
JP3404302B2 (en) Vibration measurement method for civil engineering building structures
US10627219B2 (en) Apparatus and methods for monitoring movement of physical structures by laser deflection
Olaszek Investigation of the dynamic characteristic of bridge structures using a computer vision method
Stephen et al. Measurements of static and dynamic displacement from visual monitoring of the Humber Bridge
Macdonald et al. DYNAMIC MEASUREMENTS OF THE SECOND SEVERN CROSSING.
CN109631771A (en) Crack dynamic change sensor and crack measurement method based on the processing of more target images
CN109506615A (en) Long term monitoring methods based on beam bridge cross section neutral axis safety index
Alamdari et al. Non-contact structural health monitoring of a cable-stayed bridge: Case study
CN109326070A (en) A kind of perimeter security system and circumference security monitor method
CN112284657A (en) Bridge monitoring system and monitoring method
US11516440B2 (en) Method for modal analysis of bridge structures based on surveillance videos
CN106705933A (en) Safety early warning system for scaffold settling observation and settlement measurement
JP2012083320A (en) Wire deflection measuring device
KR20060018909A (en) Dynamic movement measuring system for structure based on image processing for diagnosing and monitoring construction
CN206269779U (en) Aerial optical cable sag measuring device
CN1912535A (en) Tension line video deflection measuring device and method
CN101029822A (en) Photoelectric sensing equipment for measuring building structure displacement
CN112147627A (en) Building structure and surface abnormal change detection method based on micro-motion attribute laser detection
JP6866717B2 (en) Structure analysis device, structure analysis system and structure analysis method
JP3361726B2 (en) Liquid level measuring method and device
Chen et al. Modal frequency identification of stay cables with ambient vibration measurements based on nontarget image processing techniques
KR101699856B1 (en) Damage Detection method of Pile and Tower Structures Using Acceleration and Angular Velocity of Top
JP7169849B2 (en) Inclination calculator, structure and program
JP2009198280A (en) Overhead electric wire measurement apparatus
CN207923332U (en) A kind of round-the-clock cable force measurement device equipped with dog-ear otic placode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term