WO2019167245A1 - Suspending body tension measuring device for elevator - Google Patents

Suspending body tension measuring device for elevator Download PDF

Info

Publication number
WO2019167245A1
WO2019167245A1 PCT/JP2018/007986 JP2018007986W WO2019167245A1 WO 2019167245 A1 WO2019167245 A1 WO 2019167245A1 JP 2018007986 W JP2018007986 W JP 2018007986W WO 2019167245 A1 WO2019167245 A1 WO 2019167245A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
rope
elevator
waveform
tension measuring
Prior art date
Application number
PCT/JP2018/007986
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 関
寛 福永
清高 渡邊
哲士 森川
佳子 大野
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to JP2018544135A priority Critical patent/JP6504592B1/en
Priority to PCT/JP2018/007986 priority patent/WO2019167245A1/en
Priority to CN201880090544.8A priority patent/CN111788141A/en
Publication of WO2019167245A1 publication Critical patent/WO2019167245A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/12Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions in case of rope or cable slack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • This invention relates to an elevator suspension tension measuring device in which a camera photographs an elevator suspension.
  • a rope is provided in a cage supported by a rope, and includes a camera for photographing the rope, and an image analysis device for calculating a vibration frequency of the rope using an image photographed by the camera.
  • an elevator tension measuring device for measuring the tension of a rope by using (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an elevator suspension tension measuring device capable of reducing errors included in measurement results.
  • An elevator suspension tension measuring device is provided in a cage supported by an elevator suspension, and uses a camera for photographing the suspension and a plurality of images photographed by the camera, and the vibration waveform of the suspension
  • a waveform extraction unit that extracts the suspension
  • an analysis unit that calculates a vibration period of the suspension or a vibration frequency of the suspension using the extracted vibration waveform of the suspension
  • an acceleration sensor that measures acceleration acting on the camera
  • a determination unit that determines whether or not the acceleration acting on the camera exceeds a preset range using the measurement result of the acceleration sensor.
  • the acceleration sensor measures the acceleration acting on the camera
  • the determination unit determines whether or not the acceleration acting on the camera exceeds a preset range.
  • FIG. 1 is a side view showing an elevator in which an elevator suspension tension measuring apparatus according to Embodiment 1 of the present invention is installed.
  • the elevator is a rope 1 that is a suspended body, a cage 2 that is supported by the rope 1 and moves up and down the hoistway, a counterweight 3 that is supported by the rope 1 and moves up and down the hoistway, and a winding around which the rope 1 is wound.
  • An upper machine 4 and a plurality of suspension wheels 5 around which a rope 1 is wound are provided.
  • the suspended body on which the car 2 and the counterweight are supported is not limited to the rope 1 and may be, for example, a belt.
  • a machine room-less type elevator will be described, but the present invention is not limited to this, and a machine room type elevator may be used.
  • the elevator suspension tension measuring device 6 is provided in the car 2.
  • the elevator suspension tension measuring device 6 is provided on the ceiling of the car 2.
  • the operator 7 who measures the tension of the rope 1 gets on the ceiling of the car 2 when measuring the tension of the rope 1.
  • FIG. 2 is a block diagram showing the elevator suspension tension measuring device 6 of FIG.
  • the elevator tension measuring device 6 is composed of a portable terminal device. Therefore, the worker 7 can easily carry the elevator suspension tension measuring device 6.
  • the elevator suspension tension measuring device 6 includes a camera 601 that captures the rope 1 and a waveform extraction unit 602 that extracts a vibration waveform of the rope 1 using a plurality of images captured by the camera 601.
  • the camera 601 is arranged so that all of the plurality of ropes 1 can be photographed simultaneously. In other words, the position of the camera 601 and the direction in which the camera 601 faces are set so that all of the plurality of ropes 1 are in the field of view of the camera 601.
  • the elevator suspension tension measuring device 6 uses the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 to measure the acceleration acting on the camera 601 and the analysis unit 603 that calculates the vibration frequency of the rope 1. And a determination unit 605 to which a measurement result of the acceleration sensor 604 is input.
  • the elevator suspension tension measuring device 6 includes a control unit 606 that controls each of the waveform extraction unit 602, the analysis unit 603, the acceleration sensor 604, and the determination unit 605, and an operation unit 607 that is operated by the operator 7. And a display unit 608 for displaying information related to the measurement of the tension of the rope 1.
  • the camera 601 continuously shoots at a preset time.
  • a plurality of images taken by the camera 601 and shooting time information of each of the plurality of images are input to the waveform extraction unit 602 correspondingly.
  • the waveform extraction unit 602 extracts the position information of the rope 1 corresponding to the shooting time information for each of the plurality of images taken by the camera 601. Further, the waveform extraction unit 602 generates an interpolated waveform using the extracted position information of the rope 1 and shooting time information. Further, the waveform extraction unit 602 extracts the vibration waveform of the rope 1 by re-sampling the generated interpolation waveform at equal intervals.
  • the time for extracting the vibration waveform of the rope 1 performed by the waveform extracting unit 602 is, for example, several seconds to several tens of seconds.
  • the waveform extraction unit 602 extracts the vibration waveform of the rope 1 by upsampling the generated interpolation waveform instead of re-sampling the generated interpolation waveform at equal intervals to extract the vibration waveform of the rope 1. May be. In upsampling, sampling is performed at an interval shorter than the original sampling interval.
  • the analysis unit 603 performs a Fourier transform on the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 to calculate a frequency spectrum.
  • the analysis unit 603 calculates the vibration frequency of the rope 1 using the calculated frequency spectrum.
  • the analysis unit 603 calculates a frequency spectrum by performing Fourier transform on the vibration waveform of the rope 1, and uses the calculated frequency spectrum to calculate the vibration frequency of the rope 1 instead of calculating the vibration frequency of the rope 1.
  • the vibration frequency of the rope 1 may be calculated using the autocorrelation function of the waveform.
  • the acceleration sensor 604 measures acceleration acting on the camera 601 that periodically vibrates.
  • the acceleration sensor 604 measures acceleration acting on the camera 601 that performs impulse vibration.
  • Impulse vibration refers to large vibration that occurs in a very short time.
  • the acceleration sensor 604 may be configured to measure only one of acceleration acting on the camera 601 that performs periodic vibration and acceleration acting on the camera 601 that performs impulse vibration.
  • the determination unit 605 determines whether or not the acceleration acting on the camera 601 exceeds a preset range using the measurement result of the acceleration sensor 604 input to the determination unit 605.
  • the determination result of the determination unit 605 is input to the control unit 606.
  • the preset range set in the determination unit 605 is an acceleration that acts on the camera to the extent that the measurement of the tension of the rope 1 is not affected.
  • the preset range set in the determination unit 605 can be freely changed.
  • the control unit 606 extracts the vibration waveform by the waveform extraction unit 602 and the vibration frequency of the rope 1 by the analysis unit 603. Continue the calculation. Thereby, the measurement of the tension
  • the control unit 606 extracts the vibration waveform by the waveform extraction unit 602 and the vibration frequency of the rope 1 by the analysis unit 603. The calculation of is stopped. Thereby, the measurement of the tension
  • the operation unit 607 is composed of a touch panel overlaid on the display unit 608.
  • the operation unit 607 is not limited to a touch panel, and may be an operation device such as a keyboard, a mouse, and a voice recognition device.
  • the operator 7 operates the operation unit 607, the rope 1 to be measured is selected from the plurality of ropes 1, and the measurement of the tension of the rope 1 by the suspended body tension measuring device 6 of the elevator is started.
  • the display unit 608 displays an image captured by the camera 601, a symbol indicating the selected rope 1, a vibration frequency of the rope 1, a comment indicating that the selected rope 1 is vibrated, and the measured rope 1. Is displayed.
  • the elevator suspension tension measuring device 6 may include a voice output device that emits information related to the measurement of the tension of the rope 1 instead of the display unit 608.
  • FIG. 3 is a diagram showing a change in the display unit 608 in FIG.
  • FIG. 3 shows a state in which the first rope 1 to be measured is selected from the plurality of ropes 1 and the vibration frequency of the selected rope 1 is measured.
  • FIG. 3A an image of the rope 1 photographed by the camera 601 is displayed on the display unit 608.
  • the operator 7 operates the operation unit 607 to select the rope 1 to be measured first from the plurality of ropes 1. Selection of the rope 1 to be measured is performed by an operator touching a portion of the touch panel that is superimposed on the rope 1 displayed on the display unit 608.
  • a symbol indicating the selected rope 1 is displayed on the display unit 608 as shown in FIG.
  • a red frame 609 superimposed on the image of the selected rope 1 is displayed on the display unit 608 as a symbol indicating the selected rope 1.
  • the selected rope 1 can be notified more clearly to the operator 7.
  • FIG. 4 is a diagram showing a change of the display unit 608 in FIG. FIG. 4 shows a state in which the second rope 1 to be measured is selected from the plurality of ropes 1 and the vibration frequency of the selected rope 1 is measured.
  • the display unit 608 displays the vibration frequency of the rope 1 measured first.
  • the vibration frequency of the rope 1 is displayed superimposed on the measured image of the rope 1. Thereby, the operator 1 can be notified of the rope 1 whose vibration frequency is measured more clearly.
  • the display unit 608 displays a black frame 610 superimposed on the image of the measured rope 1 as a symbol indicating the measured rope 1. Thereby, it is possible to inform the operator 7 of the measured rope 1 more clearly.
  • the operator 7 operates the operation unit 607 to select the rope 1 to be measured second from among the plurality of ropes 1.
  • a symbol indicating the selected rope 1 is displayed on the display unit 608 as shown in FIG.
  • a red frame 609 is displayed on the display unit 608 as a symbol indicating the selected rope 1 so as to overlap the image of the selected rope 1.
  • the selected rope 1 can be notified more clearly to the operator 7.
  • the display unit 608 displays a comment to the operator 7 that the selected rope 1 is vibrated.
  • the worker 7 strikes the selected rope 1 to vibrate the selected rope 1.
  • the procedure for measuring the vibration frequency of the third and subsequent ropes 1 from among the plurality of ropes 1 is the same as the measurement of the vibration frequency of the first and second ropes 1 from among the plurality of ropes 1.
  • FIG. 5 is a side view showing the elevator when the car 2 of FIG. 1 vibrates.
  • the car 2 may vibrate due to the movement of the worker 7.
  • the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 in this case includes the vibration component of the car 2.
  • the vibration frequency of the rope 1 calculated by the analysis unit 603 includes an error.
  • the acceleration acting on the camera 601 exceeds the preset range, the measurement of the tension of the rope 1 by the elevator suspension tension measuring device 6 is stopped.
  • the measurement of the tension of the rope 1 by the elevator suspension tension measuring device 6 is resumed when the acceleration acting on the camera 601 falls within a preset range. . Therefore, an error included in the measurement result of the elevator suspension tension measuring device 6 is reduced.
  • the acceleration sensor 604 measures the acceleration acting on the camera 601 and uses the measurement result of the acceleration sensor 604.
  • the determination unit 605 determines whether or not the acceleration acting on the camera 601 exceeds a preset range. Thereby, when the determination part 605 determines with the acceleration which acts on the camera 601 having exceeded the preset range, the measurement of the tension
  • the waveform extraction unit 602 extracts the position information of the rope 1 for each of a plurality of images captured by the camera 601 in association with the shooting time information, and uses the extracted position information and the shooting time information of the rope 1.
  • An interpolation waveform is generated, the generated interpolation waveform is resampled at equal intervals, and the vibration waveform of the rope 1 is extracted. Thereby, even if there is a variation in the sampling interval at which the camera 601 continuously shoots, the error included in the measured vibration frequency of the rope 1 can be reduced.
  • the waveform extraction unit 602 extracts the position information of the rope 1 for each of a plurality of images captured by the camera 601 in association with the shooting time information, and uses the extracted position information and the shooting time information of the rope 1. An interpolation waveform is generated, and the generated interpolation waveform is upsampled to extract the vibration waveform of the rope 1. Thereby, the vibration frequency of the rope 1 can be measured with high resolution.
  • the acceleration sensor 604 measures acceleration acting on the camera 601 that periodically vibrates. Thereby, when the cage
  • the acceleration sensor 604 measures acceleration acting on the camera 601 that performs impulse vibration. Thereby, when the cage
  • the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 includes an error. In this case, the error contained in the measurement result of the elevator suspension tension measuring device 6 can be reduced by stopping the measurement of the tension of the rope 1 by the elevator suspension tension measuring device 6.
  • FIG. FIG. 6 is a configuration diagram showing an elevator suspension tension measuring apparatus according to Embodiment 2 of the present invention.
  • the elevator suspension tension measuring device 6 includes a camera tilt angle measurement unit 611 that measures the tilt angle of the camera 601 with respect to the direction of gravity using the measurement result of the acceleration sensor 604.
  • FIG. 7 is a diagram showing the display unit 608 of FIG.
  • the display unit 608 displays a level 612 using the measurement result of the camera tilt angle measurement unit 611.
  • the operator 7 installs the elevator suspended body tension measuring device 6 on the ceiling of the car 2 while looking at the level 612 displayed on the display unit 608.
  • FIG. 8 is a diagram showing the display unit 608 when the camera 601 is tilted with respect to the direction of gravity.
  • the rope 1 is arranged to be inclined with respect to the direction of gravity in the image captured by the camera 601.
  • an error is included in the measurement result of the suspension tension measuring device 6 of the elevator. Therefore, as shown in FIG. 7, the worker 7 sets the position of the camera 601 and the direction in which the camera 601 faces while looking at the level 612 displayed on the display unit 608.
  • Other configurations are the same as those in the first embodiment.
  • the tilt angle of the camera 601 with respect to the direction of gravity is measured by the camera tilt angle using the measurement result of the acceleration sensor 604.
  • Unit 611 measures.
  • the waveform extraction part 602 can extract the vibration waveform of the rope 1 extending in the direction of gravity with high accuracy.
  • FIG. 9 is a block diagram showing an elevator suspension tension measuring apparatus according to Embodiment 3 of the present invention.
  • the elevator suspension tension measuring device 6 includes a marker storage unit 613 that stores a plurality of markers corresponding to each of the plurality of ropes 1.
  • the camera 601 captures the marker as the rope 1.
  • FIG. 10 is a diagram showing the display unit 608 in FIG. A marker 614 is attached to the rope 1.
  • the marker 614 has a clip (not shown).
  • the marker 614 is easily attached to the rope 1 by the clip sandwiching the rope 1.
  • FIG. 10 shows a configuration in which the marker 614 is superimposed on the rope 1, the marker 614 may be configured to be shifted with respect to the rope 1 in the lateral width direction. In this case, even if the plurality of ropes 1 photographed by the camera 601 are superposed on each other, the vibration of the rope 1 can be measured by the camera 601 photographing the marker 614.
  • the marker 614 has a pattern composed of two colors of black and white. Although one marker 614 is shown in FIG. 10, the marker 614 is attached to each of the plurality of ropes 1. Other configurations are the same as those in the first embodiment. Other configurations may be the same as those in the second embodiment.
  • FIG. 11 is a diagram showing a change in the display unit 608 in FIG.
  • FIG. 11 shows a state in which the first rope 1 to be measured is selected from the plurality of ropes 1 and the vibration frequency of the selected rope 1 is measured.
  • FIG. 11A an image of the rope 1 photographed by the camera 601 is displayed on the display unit 608.
  • the worker 7 attaches the marker 614 to the rope 1 measured first among the plurality of ropes 1 as shown in FIG.
  • the camera 601 captures the marker 614.
  • the waveform extraction unit 602 specifies the rope 1 to be measured using the image captured by the camera 601.
  • the display unit 608 displays a comment to the operator 7 that vibrates the rope 1 to be measured. Thereby, the operator 7 strikes the measured rope 1 and vibrates the measured rope 1.
  • Other procedures are the same as those in the first embodiment.
  • the marker storage unit 613 stores the marker 614 attached to the rope 1, and the camera 601 is connected to the rope 1. As a photograph, the marker 614 is photographed. Thereby, the correlation between the rope 1 displayed on the camera 601 and the rope 1 to be measured can be facilitated. Even if the rope 1 to be measured is dirty, the tension of the rope 1 can be reliably measured.
  • the marker 614 stored in the marker storage unit 613 is a pattern composed of two colors of black and white.
  • the waveform extraction unit 602 is less affected by the illumination condition and the sunshine condition, and can more reliably extract the vibration waveform of the rope 1.
  • the waveform extraction processing by the waveform extraction unit 602 is realized by binary image processing. Thereby, the load of image processing calculation can be reduced.
  • the marker storage unit 613 stores a plurality of markers 614 corresponding to each of the plurality of ropes 1. Thereby, without the operator 7 operating the operation part 607, the rope 1 to be measured can be specified to the lifting body tension measuring device 6 of the elevator.
  • the configuration in which the analysis unit 603 calculates the vibration frequency of the rope 1 has been described.
  • the structure which the analysis part 603 calculates the vibration period of the rope 1 may be sufficient.
  • the camera 601, the waveform extraction unit 602, the analysis unit 603, the acceleration sensor 604, the control unit 606, the operation unit 607, and the display unit 608 are all housed in the same casing.
  • the camera 601 and the acceleration sensor 604 may be housed in the same housing, and other members may be housed in different housings.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

Provided is a suspending body tension measuring device for an elevator, configured so that errors included in a measurement result can be reduced. A suspending body tension measuring device 6 for an elevator is provided with: a camera 601 which is provided to an elevator car 2 supported by the rope 1 of the elevator, and which captures an image of the rope 1; a waveform extracting unit 602 which extracts the waveform of vibration of the rope 1 using the image captured by the camera 601; an analysis unit 603 which calculates the vibration frequency of the rope 1 using the extracted vibration waveform; an acceleration sensor 604 which measures acceleration acting on the camera 601; and a determination unit 605 which, using the measurement result obtained by the acceleration sensor 604, determines whether or not the acceleration acting on the camera 601 exceeds a predetermined range.

Description

エレベーターの吊体張力測定装置Elevator suspension tension measuring device
 この発明は、エレベーターの吊体をカメラが撮影するエレベーターの吊体張力測定装置に関する。 This invention relates to an elevator suspension tension measuring device in which a camera photographs an elevator suspension.
 従来、ロープに支持されたかごに設けられ、ロープを撮影するカメラと、カメラによって撮影された画像を用いて、ロープの振動周波数を算出する画像解析装置とを備え、算出されたロープの振動周波数を用いて、ロープの張力を測定するエレベーターの吊体張力測定装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, a rope is provided in a cage supported by a rope, and includes a camera for photographing the rope, and an image analysis device for calculating a vibration frequency of the rope using an image photographed by the camera. There is known an elevator tension measuring device for measuring the tension of a rope by using (see, for example, Patent Document 1).
特許第5418307号公報Japanese Patent No. 5418307
 しかしながら、かごに揺れが生じた場合に、カメラは、かごとともに揺れる。これにより、画像解析装置によって算出されたロープの振動周波数には、大きな誤差が含まれる。その結果、エレベーターの吊体張力測定装置の測定結果に大きな誤差が含まれてしまうという問題点があった。 However, when the car shakes, the camera shakes with the car. Thereby, a large error is included in the vibration frequency of the rope calculated by the image analysis apparatus. As a result, there is a problem that a large error is included in the measurement result of the elevator suspension tension measuring device.
 この発明は、上述のような課題を解決するためになされたものであり、その目的は、測定結果に含まれる誤差を低減させることができるエレベーターの吊体張力測定装置を提供するものである。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an elevator suspension tension measuring device capable of reducing errors included in measurement results.
 この発明に係るエレベーターの吊体張力測定装置は、エレベーターの吊体に支持されたかごに設けられ、吊体を撮影するカメラと、カメラが撮影した複数の画像を用いて、吊体の振動波形を抽出する波形抽出部と、抽出された吊体の振動波形を用いて、吊体の振動周期または吊体の振動周波数を算出する解析部と、カメラに作用する加速度を測定する加速度センサと、加速度センサの測定結果を用いて、カメラに作用する加速度が予め設定された範囲を超えるか否かを判定する判定部とを備えている。 An elevator suspension tension measuring device according to the present invention is provided in a cage supported by an elevator suspension, and uses a camera for photographing the suspension and a plurality of images photographed by the camera, and the vibration waveform of the suspension A waveform extraction unit that extracts the suspension, an analysis unit that calculates a vibration period of the suspension or a vibration frequency of the suspension using the extracted vibration waveform of the suspension, an acceleration sensor that measures acceleration acting on the camera, And a determination unit that determines whether or not the acceleration acting on the camera exceeds a preset range using the measurement result of the acceleration sensor.
 この発明に係るエレベーターの吊体張力測定装置によれば、加速度センサがカメラに作用する加速度を測定し、カメラに作用する加速度が予め設定された範囲を超えるか否かについて判定部が判定する。これにより、カメラに作用する加速度が予め設定された範囲を超えた場合には、エレベーターの吊体張力測定装置による吊体の張力の測定を停止させることができる。その結果、エレベーターの吊体張力測定装置の測定結果に含まれる誤差を低減させることができる。 According to the elevator suspension tension measuring apparatus according to the present invention, the acceleration sensor measures the acceleration acting on the camera, and the determination unit determines whether or not the acceleration acting on the camera exceeds a preset range. Thereby, when the acceleration which acts on a camera exceeds the preset range, the measurement of the tension | tensile_strength of a suspension body by the suspension body tension | tensile_strength measuring apparatus of an elevator can be stopped. As a result, the error included in the measurement result of the elevator suspension tension measuring device can be reduced.
この発明の実施の形態1に係るエレベーターの吊体張力測定装置が設置されたエレベーターを示す側面図である。It is a side view which shows the elevator in which the elevator suspension body tension | tensile_strength measuring apparatus which concerns on Embodiment 1 of this invention was installed. 図1のエレベーターの吊体張力測定装置を示す構成図である。It is a block diagram which shows the suspended body tension | tensile_strength measuring apparatus of the elevator of FIG. 図2の表示部の変化を示す図である。It is a figure which shows the change of the display part of FIG. 図2の表示部の変化を示す図である。It is a figure which shows the change of the display part of FIG. 図1のかごが振動した場合のエレベーターを示す側面図である。It is a side view which shows an elevator when the car of FIG. 1 vibrates. この発明の実施の形態2に係るエレベーターの吊体張力測定装置を示す構成図である。It is a block diagram which shows the suspended body tension | tensile_strength measuring apparatus of the elevator which concerns on Embodiment 2 of this invention. 図6の表示部を示す図である。It is a figure which shows the display part of FIG. 重力方向に対してカメラが傾斜した場合の表示部を示す図である。It is a figure which shows a display part when a camera inclines with respect to the gravity direction. この発明の実施の形態3に係るエレベーターの吊体張力測定装置を示す構成図である。It is a block diagram which shows the suspended body tension | tensile_strength measuring apparatus of the elevator which concerns on Embodiment 3 of this invention. 図9の表示部を示す図である。It is a figure which shows the display part of FIG. 図10の表示部の変化を示す図である。It is a figure which shows the change of the display part of FIG.
 実施の形態1.
 図1は、この発明の実施の形態1に係るエレベーターの吊体張力測定装置が設置されたエレベーターを示す側面図である。エレベーターは、吊体であるロープ1と、ロープ1に支持され、昇降路を昇降するかご2と、ロープ1に支持され、昇降路を昇降するつり合いおもり3と、ロープ1が巻き掛けられた巻上機4と、昇降路の上部に設けられ、ロープ1が巻き掛けられた複数の吊車5とを備えている。
Embodiment 1 FIG.
FIG. 1 is a side view showing an elevator in which an elevator suspension tension measuring apparatus according to Embodiment 1 of the present invention is installed. The elevator is a rope 1 that is a suspended body, a cage 2 that is supported by the rope 1 and moves up and down the hoistway, a counterweight 3 that is supported by the rope 1 and moves up and down the hoistway, and a winding around which the rope 1 is wound. An upper machine 4 and a plurality of suspension wheels 5 around which a rope 1 is wound are provided.
 巻上機4が駆動することによって、ロープ1が移動する。ロープ1が移動することによって、かご2およびつり合いおもり3が互いに反対方向に昇降路を昇降する。かご2およびつり合いおもりが支持される吊体としては、ロープ1に限らず、例えば、ベルトであってもよい。この例では、機械室レス型エレベーターについて説明するが、これに限らず、機械室あり型エレベーターであってもよい。 When the hoist 4 is driven, the rope 1 moves. As the rope 1 moves, the car 2 and the counterweight 3 move up and down the hoistway in opposite directions. The suspended body on which the car 2 and the counterweight are supported is not limited to the rope 1 and may be, for example, a belt. In this example, a machine room-less type elevator will be described, but the present invention is not limited to this, and a machine room type elevator may be used.
 エレベーターの吊体張力測定装置6は、かご2に設けられる。この例では、エレベーターの吊体張力測定装置6は、かご2の天井の上に設けられる。ロープ1の張力を測定する作業者7は、ロープ1の張力を測定する際に、かご2の天井の上に乗る。 The elevator suspension tension measuring device 6 is provided in the car 2. In this example, the elevator suspension tension measuring device 6 is provided on the ceiling of the car 2. The operator 7 who measures the tension of the rope 1 gets on the ceiling of the car 2 when measuring the tension of the rope 1.
 図2は、図1のエレベーターの吊体張力測定装置6を示す構成図である。エレベーターの吊体張力測定装置6は、携帯型端末装置から構成されている。したがって、作業者7は、エレベーターの吊体張力測定装置6を容易に持ち運ぶことができる。 FIG. 2 is a block diagram showing the elevator suspension tension measuring device 6 of FIG. The elevator tension measuring device 6 is composed of a portable terminal device. Therefore, the worker 7 can easily carry the elevator suspension tension measuring device 6.
 エレベーターの吊体張力測定装置6は、ロープ1を撮影するカメラ601と、カメラ601が撮影した複数の画像を用いて、ロープ1の振動波形を抽出する波形抽出部602とを備えている。カメラ601は、複数のロープ1の全てを同時に撮影できるように配置される。言い換えれば、カメラ601の位置およびカメラ601が向く方向は、複数のロープ1の全てがカメラ601の視野に入るように設定される。 The elevator suspension tension measuring device 6 includes a camera 601 that captures the rope 1 and a waveform extraction unit 602 that extracts a vibration waveform of the rope 1 using a plurality of images captured by the camera 601. The camera 601 is arranged so that all of the plurality of ropes 1 can be photographed simultaneously. In other words, the position of the camera 601 and the direction in which the camera 601 faces are set so that all of the plurality of ropes 1 are in the field of view of the camera 601.
 また、エレベーターの吊体張力測定装置6は、波形抽出部602によって抽出されたロープ1の振動波形を用いて、ロープ1の振動周波数を算出する解析部603と、カメラ601に作用する加速度を測定する加速度センサ604と、加速度センサ604の測定結果が入力される判定部605とを備えている。 Further, the elevator suspension tension measuring device 6 uses the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 to measure the acceleration acting on the camera 601 and the analysis unit 603 that calculates the vibration frequency of the rope 1. And a determination unit 605 to which a measurement result of the acceleration sensor 604 is input.
 また、エレベーターの吊体張力測定装置6は、波形抽出部602、解析部603、加速度センサ604および判定部605のそれぞれを制御する制御部606と、作業者7によって操作される操作部607と、ロープ1の張力の測定に関係する情報を表示する表示部608とを備えている。 The elevator suspension tension measuring device 6 includes a control unit 606 that controls each of the waveform extraction unit 602, the analysis unit 603, the acceleration sensor 604, and the determination unit 605, and an operation unit 607 that is operated by the operator 7. And a display unit 608 for displaying information related to the measurement of the tension of the rope 1.
 カメラ601は、予め設定された時間に、連続して撮影する。波形抽出部602には、カメラ601が撮影した複数の画像と、複数の画像のそれぞれの撮影時刻情報とが対応して入力される。 The camera 601 continuously shoots at a preset time. A plurality of images taken by the camera 601 and shooting time information of each of the plurality of images are input to the waveform extraction unit 602 correspondingly.
 波形抽出部602は、カメラ601が撮影した複数の画像のそれぞれについて、ロープ1の位置情報を撮影時刻情報に対応させて抽出する。また、波形抽出部602は、抽出されたロープ1の位置情報および撮影時刻情報を用いて補間波形を生成する。また、波形抽出部602は、生成された補間波形を等間隔時間でリサンプリングして、ロープ1の振動波形を抽出する。波形抽出部602が行うロープ1の振動波形の抽出の時間は、例えば、数秒から数十秒となっている。 The waveform extraction unit 602 extracts the position information of the rope 1 corresponding to the shooting time information for each of the plurality of images taken by the camera 601. Further, the waveform extraction unit 602 generates an interpolated waveform using the extracted position information of the rope 1 and shooting time information. Further, the waveform extraction unit 602 extracts the vibration waveform of the rope 1 by re-sampling the generated interpolation waveform at equal intervals. The time for extracting the vibration waveform of the rope 1 performed by the waveform extracting unit 602 is, for example, several seconds to several tens of seconds.
 なお、波形抽出部602は、生成された補間波形を等間隔時間でリサンプリングしてロープ1の振動波形を抽出する代わりに、生成された補間波形をアップサンプリングしてロープ1の振動波形を抽出してもよい。アップサンプリングでは、元のサンプリング間隔よりも短い間隔でサンプリングが行われる。 In addition, the waveform extraction unit 602 extracts the vibration waveform of the rope 1 by upsampling the generated interpolation waveform instead of re-sampling the generated interpolation waveform at equal intervals to extract the vibration waveform of the rope 1. May be. In upsampling, sampling is performed at an interval shorter than the original sampling interval.
 解析部603は、波形抽出部602によって抽出されたロープ1の振動波形をフーリエ変換して、周波数スペクトルを算出する。また、解析部603は、算出された周波数スペクトルを用いて、ロープ1の振動周波数を算出する。 The analysis unit 603 performs a Fourier transform on the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 to calculate a frequency spectrum. The analysis unit 603 calculates the vibration frequency of the rope 1 using the calculated frequency spectrum.
 なお、解析部603は、ロープ1の振動波形をフーリエ変換して周波数スペクトルを算出し、算出された周波数スペクトルを用いて、ロープ1の振動周波数を算出する代わりに、抽出されたロープ1の振動波形の自己相関関数を用いて、ロープ1の振動周波数を算出してもよい。 Note that the analysis unit 603 calculates a frequency spectrum by performing Fourier transform on the vibration waveform of the rope 1, and uses the calculated frequency spectrum to calculate the vibration frequency of the rope 1 instead of calculating the vibration frequency of the rope 1. The vibration frequency of the rope 1 may be calculated using the autocorrelation function of the waveform.
 加速度センサ604は、周期的な振動をするカメラ601に作用する加速度を測定する。また、加速度センサ604は、インパルス振動をするカメラ601に作用する加速度を測定する。インパルス振動とは、ごく短時間に発生する大きな振動を指す。なお、加速度センサ604は、周期的な振動をするカメラ601に作用する加速度およびインパルス振動をするカメラ601に作用する加速度の何れか一方のみを測定する構成であってもよい。 The acceleration sensor 604 measures acceleration acting on the camera 601 that periodically vibrates. The acceleration sensor 604 measures acceleration acting on the camera 601 that performs impulse vibration. Impulse vibration refers to large vibration that occurs in a very short time. Note that the acceleration sensor 604 may be configured to measure only one of acceleration acting on the camera 601 that performs periodic vibration and acceleration acting on the camera 601 that performs impulse vibration.
 判定部605は、判定部605に入力された加速度センサ604の測定結果を用いて、カメラ601に作用する加速度が予め設定された範囲を超えるか否かについて判定する。判定部605の判定結果は、制御部606に入力される。判定部605に設定される予め設定された範囲とは、ロープ1の張力の測定に影響がない程度にカメラに作用する加速度である。判定部605に設定される予め設定された範囲は、自由に変更可能である。 The determination unit 605 determines whether or not the acceleration acting on the camera 601 exceeds a preset range using the measurement result of the acceleration sensor 604 input to the determination unit 605. The determination result of the determination unit 605 is input to the control unit 606. The preset range set in the determination unit 605 is an acceleration that acts on the camera to the extent that the measurement of the tension of the rope 1 is not affected. The preset range set in the determination unit 605 can be freely changed.
 制御部606は、カメラ601に作用する加速度が予め設定された範囲内であると判定部605が判定する場合に、波形抽出部602による振動波形の抽出および解析部603によるロープ1の振動周波数の算出を継続させる。これにより、エレベーターの吊体張力測定装置6によるロープ1の張力の測定が継続される。 When the determination unit 605 determines that the acceleration acting on the camera 601 is within a preset range, the control unit 606 extracts the vibration waveform by the waveform extraction unit 602 and the vibration frequency of the rope 1 by the analysis unit 603. Continue the calculation. Thereby, the measurement of the tension | tensile_strength of the rope 1 by the suspended body tension | tensile_strength measuring apparatus 6 of an elevator is continued.
 一方、制御部606は、カメラ601に作用する加速度が予め設定された範囲を超えると判定部605が判定する場合に、波形抽出部602による振動波形の抽出および解析部603によるロープ1の振動周波数の算出を停止させる。これにより、エレベーターの吊体張力測定装置6によるロープ1の張力の測定が停止される。 On the other hand, when the determination unit 605 determines that the acceleration acting on the camera 601 exceeds a preset range, the control unit 606 extracts the vibration waveform by the waveform extraction unit 602 and the vibration frequency of the rope 1 by the analysis unit 603. The calculation of is stopped. Thereby, the measurement of the tension | tensile_strength of the rope 1 by the suspended body tension | tensile_strength measuring apparatus 6 of an elevator is stopped.
 操作部607は、表示部608に重ねられたタッチパネルから構成されている。なお、操作部607は、タッチパネルに限らず、例えば、キーボード、マウス、音声認識装置などの操作装置であってもよい。作業者7が操作部607を操作することによって、複数のロープ1の中から測定対象となるロープ1が選択され、エレベーターの吊体張力測定装置6によるロープ1の張力の測定が開始される。 The operation unit 607 is composed of a touch panel overlaid on the display unit 608. Note that the operation unit 607 is not limited to a touch panel, and may be an operation device such as a keyboard, a mouse, and a voice recognition device. When the operator 7 operates the operation unit 607, the rope 1 to be measured is selected from the plurality of ropes 1, and the measurement of the tension of the rope 1 by the suspended body tension measuring device 6 of the elevator is started.
 表示部608には、カメラ601が撮影する画像と、選択されたロープ1を示す記号と、ロープ1の振動周波数と、選択されたロープ1を振動させる旨のコメントと、測定済みのロープ1を示す記号とが表示される。なお、エレベーターの吊体張力測定装置6は、表示部608の代わりに、ロープ1の張力の測定に関係する情報を発する音声出力装置を備えてもよい。 The display unit 608 displays an image captured by the camera 601, a symbol indicating the selected rope 1, a vibration frequency of the rope 1, a comment indicating that the selected rope 1 is vibrated, and the measured rope 1. Is displayed. Note that the elevator suspension tension measuring device 6 may include a voice output device that emits information related to the measurement of the tension of the rope 1 instead of the display unit 608.
 次に、エレベーターの吊体張力測定装置6を用いたロープ1の張力の測定の手順について説明する。図3は、図2の表示部608の変化を示す図である。図3では、複数のロープ1の中から1番目に測定されるロープ1が選択され、選択されたロープ1の振動周波数が測定される様子を示している。まず、図3の(a)に示すように、表示部608には、カメラ601によって撮影されたロープ1の画像が表示される。 Next, the procedure for measuring the tension of the rope 1 using the elevator suspension tension measuring device 6 will be described. FIG. 3 is a diagram showing a change in the display unit 608 in FIG. FIG. 3 shows a state in which the first rope 1 to be measured is selected from the plurality of ropes 1 and the vibration frequency of the selected rope 1 is measured. First, as shown in FIG. 3A, an image of the rope 1 photographed by the camera 601 is displayed on the display unit 608.
 その後、作業者7は、操作部607を操作して、複数のロープ1の中から1番目に測定されるロープ1を選択する。測定されるロープ1の選択は、タッチパネルの中で表示部608に表示されたロープ1に重ねられた部分に作業者が触れることによって行われる。1番目に測定されるロープ1が選択された場合に、図3の(b)に示すように、表示部608には、選択されたロープ1を示す記号が表示される。この例では、表示部608には、選択されたロープ1を示す記号として、選択されたロープ1の画像に重ねられた赤色の枠609が表示される。これにより、作業者7に対して選択されたロープ1をより明確に知らせることができる。 Thereafter, the operator 7 operates the operation unit 607 to select the rope 1 to be measured first from the plurality of ropes 1. Selection of the rope 1 to be measured is performed by an operator touching a portion of the touch panel that is superimposed on the rope 1 displayed on the display unit 608. When the first measured rope 1 is selected, a symbol indicating the selected rope 1 is displayed on the display unit 608 as shown in FIG. In this example, a red frame 609 superimposed on the image of the selected rope 1 is displayed on the display unit 608 as a symbol indicating the selected rope 1. Thereby, the selected rope 1 can be notified more clearly to the operator 7.
 その後、図3の(c)に示すように、表示部608には、作業者7に対して、選択されたロープ1を振動させる旨のコメントが表示される。これにより、作業者7は、選択されたロープ1を叩いて、選択されたロープ1を振動させる。 Thereafter, as shown in FIG. 3C, a comment indicating that the selected rope 1 is vibrated is displayed on the display unit 608. As a result, the worker 7 strikes the selected rope 1 to vibrate the selected rope 1.
 図4は、図2の表示部608の変化を示す図である。図4では、複数のロープ1の中から2番目に測定されるロープ1が選択され、選択されたロープ1の振動周波数が測定される様子を示している。1番目に測定されるロープ1が振動した後、図4の(a)に示すように、表示部608には、1番目に測定されるロープ1の振動周波数が表示される。ロープ1の振動周波数は、測定されたロープ1の画像に重ねて表示される。これにより、作業者7に対して振動周波数が測定されたロープ1をより明確に知らせることができる。また、表示部608には、測定済みのロープ1を示す記号として、測定済みのロープ1の画像に重ねられた黒色の枠610が表示される。これにより、作業者7に対して測定済みのロープ1をより明確に知らせることができる。 FIG. 4 is a diagram showing a change of the display unit 608 in FIG. FIG. 4 shows a state in which the second rope 1 to be measured is selected from the plurality of ropes 1 and the vibration frequency of the selected rope 1 is measured. After the first measured rope 1 vibrates, as shown in FIG. 4A, the display unit 608 displays the vibration frequency of the rope 1 measured first. The vibration frequency of the rope 1 is displayed superimposed on the measured image of the rope 1. Thereby, the operator 1 can be notified of the rope 1 whose vibration frequency is measured more clearly. The display unit 608 displays a black frame 610 superimposed on the image of the measured rope 1 as a symbol indicating the measured rope 1. Thereby, it is possible to inform the operator 7 of the measured rope 1 more clearly.
 その後、作業者7は、操作部607を操作して、複数のロープ1の中から2番目に測定されるロープ1を選択する。2番目に測定されるロープ1が選択された場合に、図4の(b)に示すように、表示部608には、選択されたロープ1を示す記号が表示される。この例では、表示部608には、選択されたロープ1を示す記号として、選択されたロープ1の画像に重ねて赤色の枠609が表示される。これにより、作業者7に対して選択されたロープ1をより明確に知らせることができる。 Thereafter, the operator 7 operates the operation unit 607 to select the rope 1 to be measured second from among the plurality of ropes 1. When the rope 1 to be measured second is selected, a symbol indicating the selected rope 1 is displayed on the display unit 608 as shown in FIG. In this example, a red frame 609 is displayed on the display unit 608 as a symbol indicating the selected rope 1 so as to overlap the image of the selected rope 1. Thereby, the selected rope 1 can be notified more clearly to the operator 7.
 その後、図4の(c)に示すように、表示部608には、作業者7にたいして、選択されたロープ1を振動させる旨のコメントが表示される。これにより、作業者7は、選択されたロープ1を叩いて、選択されたロープ1を振動させる。複数のロープ1の中から3番目以降のロープ1の振動周波数の測定の手順は、複数のロープ1の中から1番目および2番目のロープ1の振動周波数の測定と同様である。 Thereafter, as shown in FIG. 4C, the display unit 608 displays a comment to the operator 7 that the selected rope 1 is vibrated. As a result, the worker 7 strikes the selected rope 1 to vibrate the selected rope 1. The procedure for measuring the vibration frequency of the third and subsequent ropes 1 from among the plurality of ropes 1 is the same as the measurement of the vibration frequency of the first and second ropes 1 from among the plurality of ropes 1.
 次に、ロープ1の張力の測定中にかご2が振動した場合について説明する。図5は、図1のかご2が振動した場合のエレベーターを示す側面図である。かご2の天井の上に乗る作業者7がかご2に対して移動すると、作業者7の移動によってかご2が振動する場合がある。かご2が振動すると、かご2の振動がロープ1に伝達される。したがって、この場合に波形抽出部602によって抽出されるロープ1の振動波形には、かご2の振動成分が含まれる。これにより、解析部603によって算出されるロープ1の振動周波数には、誤差が含まれる。しかしながら、カメラ601に作用する加速度が予め設定された範囲を超える場合には、エレベーターの吊体張力測定装置6によるロープ1の張力の測定が停止される。 Next, the case where the car 2 vibrates during the measurement of the tension of the rope 1 will be described. FIG. 5 is a side view showing the elevator when the car 2 of FIG. 1 vibrates. When the worker 7 on the ceiling of the car 2 moves relative to the car 2, the car 2 may vibrate due to the movement of the worker 7. When the car 2 vibrates, the vibration of the car 2 is transmitted to the rope 1. Accordingly, the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 in this case includes the vibration component of the car 2. Accordingly, the vibration frequency of the rope 1 calculated by the analysis unit 603 includes an error. However, when the acceleration acting on the camera 601 exceeds the preset range, the measurement of the tension of the rope 1 by the elevator suspension tension measuring device 6 is stopped.
 ロープ1の張力の測定が停止された後、カメラ601に作用する加速度が予め設定された範囲内になった場合に、エレベーターの吊体張力測定装置6によるロープ1の張力の測定が再開される。したがって、エレベーターの吊体張力測定装置6の測定結果に含まれる誤差が低減される。 After the measurement of the tension of the rope 1 is stopped, the measurement of the tension of the rope 1 by the elevator suspension tension measuring device 6 is resumed when the acceleration acting on the camera 601 falls within a preset range. . Therefore, an error included in the measurement result of the elevator suspension tension measuring device 6 is reduced.
 以上説明したように、この発明の実施の形態1に係るエレベーターの吊体張力測定装置6によれば、加速度センサ604がカメラ601に作用する加速度を測定し、加速度センサ604の測定結果を用いて、カメラ601に作用する加速度が予め設定された範囲を超えるか否かについて判定部605が判定する。これにより、カメラ601に作用する加速度が予め設定された範囲を超えたと判定部605が判定した場合には、エレベーターの吊体張力測定装置6によるロープ1の張力の測定を停止させることができる。その結果、エレベーターの吊体張力測定装置6の測定結果に含まれる誤差を低減させることができる。 As described above, according to the elevator suspension tension measuring apparatus 6 according to Embodiment 1 of the present invention, the acceleration sensor 604 measures the acceleration acting on the camera 601 and uses the measurement result of the acceleration sensor 604. The determination unit 605 determines whether or not the acceleration acting on the camera 601 exceeds a preset range. Thereby, when the determination part 605 determines with the acceleration which acts on the camera 601 having exceeded the preset range, the measurement of the tension | tensile_strength of the rope 1 by the suspension body tension | tensile_strength measuring apparatus 6 of an elevator can be stopped. As a result, the error included in the measurement result of the elevator suspension tension measuring device 6 can be reduced.
 また、波形抽出部602は、カメラ601が撮影した複数の画像のそれぞれについてロープ1の位置情報を撮影時刻情報と対応させて抽出し、抽出されたロープ1の位置情報および撮影時刻情報を用いて補間波形を生成し、生成された補間波形を等間隔時間でリサンプリングして、ロープ1の振動波形を抽出する。これにより、カメラ601が連続して撮影するサンプリング間隔にばらつきがある場合であっても、測定されたロープ1の振動周波数に含まれる誤差を低減させることができる。 In addition, the waveform extraction unit 602 extracts the position information of the rope 1 for each of a plurality of images captured by the camera 601 in association with the shooting time information, and uses the extracted position information and the shooting time information of the rope 1. An interpolation waveform is generated, the generated interpolation waveform is resampled at equal intervals, and the vibration waveform of the rope 1 is extracted. Thereby, even if there is a variation in the sampling interval at which the camera 601 continuously shoots, the error included in the measured vibration frequency of the rope 1 can be reduced.
 また、波形抽出部602は、カメラ601が撮影した複数の画像のそれぞれについてロープ1の位置情報を撮影時刻情報と対応させて抽出し、抽出されたロープ1の位置情報および撮影時刻情報を用いて補間波形を生成し、生成された補間波形をアップサンプリングして、ロープ1の振動波形を抽出する。これにより、高い分解能でロープ1の振動周波数を測定することができる。 In addition, the waveform extraction unit 602 extracts the position information of the rope 1 for each of a plurality of images captured by the camera 601 in association with the shooting time information, and uses the extracted position information and the shooting time information of the rope 1. An interpolation waveform is generated, and the generated interpolation waveform is upsampled to extract the vibration waveform of the rope 1. Thereby, the vibration frequency of the rope 1 can be measured with high resolution.
 また、加速度センサ604は、周期的な振動をするカメラ601に作用する加速度を測定する。これにより、かご2が周期的に振動する場合に、エレベーターの吊体張力測定装置6によるロープ1の張力の測定を停止させることができる。かご2が周期的に振動した場合には、かご2の振動成分がロープ1に伝達する。この場合に、エレベーターの吊体張力測定装置6によるロープ1の張力の測定を停止させることによって、エレベーターの吊体張力測定装置6の測定結果に含まれる誤差を低減させることができる。 The acceleration sensor 604 measures acceleration acting on the camera 601 that periodically vibrates. Thereby, when the cage | basket | car 2 vibrates periodically, the measurement of the tension | tensile_strength of the rope 1 by the suspended body tension | tensile_strength measuring apparatus 6 of an elevator can be stopped. When the car 2 vibrates periodically, the vibration component of the car 2 is transmitted to the rope 1. In this case, the error contained in the measurement result of the elevator suspension tension measuring device 6 can be reduced by stopping the measurement of the tension of the rope 1 by the elevator suspension tension measuring device 6.
 また、加速度センサ604は、インパルス振動をするカメラ601に作用する加速度を測定する。これにより、かご2がインパルス振動をする場合に、エレベーターの吊体張力測定装置6によるロープ1の張力の測定を停止させることができる。ロープ1の張力の測定中に作業者7がエレベーターの吊体張力測定装置6に接触した場合に、波形抽出部602によって抽出されるロープ1の振動波形には、誤差が含まれる。この場合に、エレベーターの吊体張力測定装置6によるロープ1の張力の測定を停止させることによって、エレベーターの吊体張力測定装置6の測定結果に含まれる誤差を低減させることができる。 Also, the acceleration sensor 604 measures acceleration acting on the camera 601 that performs impulse vibration. Thereby, when the cage | basket | car 2 carries out an impulse vibration, the measurement of the tension | tensile_strength of the rope 1 by the suspension body tension | tensile_strength measuring apparatus 6 of an elevator can be stopped. When the operator 7 contacts the elevator suspension tension measuring device 6 during the measurement of the tension of the rope 1, the vibration waveform of the rope 1 extracted by the waveform extraction unit 602 includes an error. In this case, the error contained in the measurement result of the elevator suspension tension measuring device 6 can be reduced by stopping the measurement of the tension of the rope 1 by the elevator suspension tension measuring device 6.
 実施の形態2.
 図6は、この発明の実施の形態2に係るエレベーターの吊体張力測定装置を示す構成図である。エレベーターの吊体張力測定装置6は、加速度センサ604の測定結果を用いて、重力方向に対するカメラ601の傾斜角を測定するカメラ傾斜角測定部611を備えている。
Embodiment 2. FIG.
FIG. 6 is a configuration diagram showing an elevator suspension tension measuring apparatus according to Embodiment 2 of the present invention. The elevator suspension tension measuring device 6 includes a camera tilt angle measurement unit 611 that measures the tilt angle of the camera 601 with respect to the direction of gravity using the measurement result of the acceleration sensor 604.
 図7は、図6の表示部608を示す図である。表示部608には、カメラ傾斜角測定部611の測定結果を用いて水準器612が表示される。作業者7は、表示部608に表示された水準器612を見ながらエレベーターの吊体張力測定装置6をかご2の天井に設置する。 FIG. 7 is a diagram showing the display unit 608 of FIG. The display unit 608 displays a level 612 using the measurement result of the camera tilt angle measurement unit 611. The operator 7 installs the elevator suspended body tension measuring device 6 on the ceiling of the car 2 while looking at the level 612 displayed on the display unit 608.
 図8は、重力方向に対してカメラ601が傾斜した場合の表示部608を示す図である。重力方向に対してカメラ601が傾斜した場合には、カメラ601が撮影する画像には、ロープ1が重力方向に対して傾斜して配置される。これにより、エレベーターの吊体張力測定装置6の測定結果に誤差が含まれる。したがって、作業者7は、図7に示すように、表示部608に表示された水準器612を見ながらカメラ601の位置およびカメラ601の向く方向を設定する。その他の構成は、実施の形態1と同様である。 FIG. 8 is a diagram showing the display unit 608 when the camera 601 is tilted with respect to the direction of gravity. When the camera 601 is inclined with respect to the direction of gravity, the rope 1 is arranged to be inclined with respect to the direction of gravity in the image captured by the camera 601. Thereby, an error is included in the measurement result of the suspension tension measuring device 6 of the elevator. Therefore, as shown in FIG. 7, the worker 7 sets the position of the camera 601 and the direction in which the camera 601 faces while looking at the level 612 displayed on the display unit 608. Other configurations are the same as those in the first embodiment.
 以上説明したように、この発明の実施の形態2に係るエレベーターの吊体張力測定装置6によれば、加速度センサ604の測定結果を用いて、重力方向に対するカメラ601の傾斜角をカメラ傾斜角測定部611が測定する。これにより、波形抽出部602は、重力方向に延びるロープ1の振動波形を高精度に抽出することができる。 As described above, according to the elevator suspension tension measuring apparatus 6 according to the second embodiment of the present invention, the tilt angle of the camera 601 with respect to the direction of gravity is measured by the camera tilt angle using the measurement result of the acceleration sensor 604. Unit 611 measures. Thereby, the waveform extraction part 602 can extract the vibration waveform of the rope 1 extending in the direction of gravity with high accuracy.
 実施の形態3.
 図9は、この発明の実施の形態3に係るエレベーターの吊体張力測定装置を示す構成図である。エレベーターの吊体張力測定装置6は、複数のロープ1のそれぞれに対応する複数のマーカーを記憶するマーカー記憶部613を備えている。カメラ601は、ロープ1の撮影として、マーカーを撮影する。
Embodiment 3 FIG.
FIG. 9 is a block diagram showing an elevator suspension tension measuring apparatus according to Embodiment 3 of the present invention. The elevator suspension tension measuring device 6 includes a marker storage unit 613 that stores a plurality of markers corresponding to each of the plurality of ropes 1. The camera 601 captures the marker as the rope 1.
 図10は、図9の表示部608を示す図である。ロープ1には、マーカー614が取り付けられる。マーカー614は、図示しないクリップを有している。マーカー614は、クリップがロープ1を挟むことによって、ロープ1に容易に取り付けられる。図10では、マーカー614がロープ1に重ねられる構成について示しているが、マーカー614がロープ1に対して横幅方向にずれて配置される構成であってもよい。この場合、カメラ601によって撮影される複数のロープ1が互いに重ねられた状態であっても、カメラ601がマーカー614を撮影することによって、ロープ1の振動を測定することができる。 FIG. 10 is a diagram showing the display unit 608 in FIG. A marker 614 is attached to the rope 1. The marker 614 has a clip (not shown). The marker 614 is easily attached to the rope 1 by the clip sandwiching the rope 1. Although FIG. 10 shows a configuration in which the marker 614 is superimposed on the rope 1, the marker 614 may be configured to be shifted with respect to the rope 1 in the lateral width direction. In this case, even if the plurality of ropes 1 photographed by the camera 601 are superposed on each other, the vibration of the rope 1 can be measured by the camera 601 photographing the marker 614.
 マーカー614は、白黒の二色により構成されるパターンとなっている。図10には、1つのマーカー614を示しているが、複数のロープ1のそれぞれにマーカー614が取り付けられる。その他の構成は、実施の形態1と同様である。なお、その他の構成として、実施の形態2と同様にしてもよい。 The marker 614 has a pattern composed of two colors of black and white. Although one marker 614 is shown in FIG. 10, the marker 614 is attached to each of the plurality of ropes 1. Other configurations are the same as those in the first embodiment. Other configurations may be the same as those in the second embodiment.
 次に、エレベーターの吊体張力測定装置6を用いたロープ1の張力の測定の手順について説明する。図11は、図10の表示部608の変化を示す図である。図11では、複数のロープ1の中から1番目に測定されるロープ1が選択され、選択されたロープ1の振動周波数が測定される様子を示している。まず、図11の(a)に示すように、表示部608には、カメラ601によって撮影されたロープ1の画像が表示される。 Next, the procedure for measuring the tension of the rope 1 using the elevator suspension tension measuring device 6 will be described. FIG. 11 is a diagram showing a change in the display unit 608 in FIG. FIG. 11 shows a state in which the first rope 1 to be measured is selected from the plurality of ropes 1 and the vibration frequency of the selected rope 1 is measured. First, as shown in FIG. 11A, an image of the rope 1 photographed by the camera 601 is displayed on the display unit 608.
 その後、作業者7は、図11の(b)に示すように、複数のロープ1の中から1番目に測定されるロープ1にマーカー614を取り付ける。これにより、カメラ601がマーカー614を撮影する。波形抽出部602は、カメラ601が撮影した画像を用いて、測定されるロープ1を特定する。 After that, the worker 7 attaches the marker 614 to the rope 1 measured first among the plurality of ropes 1 as shown in FIG. As a result, the camera 601 captures the marker 614. The waveform extraction unit 602 specifies the rope 1 to be measured using the image captured by the camera 601.
 その後、図11の(c)に示すように、表示部608には、作業者7に対して、測定されるロープ1を振動させる旨のコメントが表示される。これにより、作業者7は、測定されるロープ1を叩いて、測定されるロープ1を振動させる。その他の手順は、実施の形態1と同様である。 After that, as shown in FIG. 11C, the display unit 608 displays a comment to the operator 7 that vibrates the rope 1 to be measured. Thereby, the operator 7 strikes the measured rope 1 and vibrates the measured rope 1. Other procedures are the same as those in the first embodiment.
 以上説明したように、この発明の実施の形態3に係るエレベーターの吊体張力測定装置6によれば、ロープ1に取り付けられるマーカー614をマーカー記憶部613が記憶し、カメラ601は、ロープ1の撮影として、マーカー614を撮影する。これにより、カメラ601に表示されたロープ1と測定対象のロープ1との対応付けを容易にすることができる。また、測定されるロープ1に汚れが付いている場合であっても、ロープ1の張力を確実に測定することができる。 As described above, according to the elevator suspended body tension measuring apparatus 6 according to Embodiment 3 of the present invention, the marker storage unit 613 stores the marker 614 attached to the rope 1, and the camera 601 is connected to the rope 1. As a photograph, the marker 614 is photographed. Thereby, the correlation between the rope 1 displayed on the camera 601 and the rope 1 to be measured can be facilitated. Even if the rope 1 to be measured is dirty, the tension of the rope 1 can be reliably measured.
 また、マーカー記憶部613に記憶されるマーカー614は、白黒の二色により構成されるパターンである。これにより、波形抽出部602は、照明条件、日照条件の影響を受けにくくなり、ロープ1の振動波形をより確実に抽出することができる。また、波形抽出部602による波形抽出処理は、二値画像処理によって実現される。これにより、画像処理演算の負荷を軽減させることができる。 Also, the marker 614 stored in the marker storage unit 613 is a pattern composed of two colors of black and white. Thereby, the waveform extraction unit 602 is less affected by the illumination condition and the sunshine condition, and can more reliably extract the vibration waveform of the rope 1. Further, the waveform extraction processing by the waveform extraction unit 602 is realized by binary image processing. Thereby, the load of image processing calculation can be reduced.
 また、マーカー記憶部613には、複数のロープ1のそれぞれに対応する複数のマーカー614が記憶される。これにより、作業者7が操作部607を操作することなく、測定されるロープ1をエレベーターの吊体張力測定装置6に特定させることができる。 Also, the marker storage unit 613 stores a plurality of markers 614 corresponding to each of the plurality of ropes 1. Thereby, without the operator 7 operating the operation part 607, the rope 1 to be measured can be specified to the lifting body tension measuring device 6 of the elevator.
 なお、各上記実施の形態では、解析部603がロープ1の振動周波数を算出する構成について説明した。これに対して、解析部603がロープ1の振動周期を算出する構成であってもよい。 In each of the above embodiments, the configuration in which the analysis unit 603 calculates the vibration frequency of the rope 1 has been described. On the other hand, the structure which the analysis part 603 calculates the vibration period of the rope 1 may be sufficient.
 また、各上記実施の形態では、カメラ601、波形抽出部602、解析部603、加速度センサ604、制御部606、操作部607および表示部608の全てが同一の筐体内に収納された構成について説明したが、これに限らない。例えば、少なくともカメラ601および加速度センサ604が同一の筐体内に収納され、その他の部材が別の筐体内に収納された構成であってもよい。 In each of the above embodiments, a configuration in which the camera 601, the waveform extraction unit 602, the analysis unit 603, the acceleration sensor 604, the control unit 606, the operation unit 607, and the display unit 608 are all housed in the same casing is described. However, it is not limited to this. For example, at least the camera 601 and the acceleration sensor 604 may be housed in the same housing, and other members may be housed in different housings.
 1 ロープ、2 かご、3 つり合いおもり、4 巻上機、5 吊車、6 エレベーターの吊体張力測定装置、7 作業者、601 カメラ、602 波形抽出部、603 解析部、604 加速度センサ、605 判定部、606 制御部、607 操作部、608 表示部、609 枠、610 枠、611 カメラ傾斜角測定部、612 水準器、613 マーカー記憶部、614 マーカー。 1 rope, 2 cages, 3 counterweights, 4 hoisting machines, 5 suspension vehicles, 6 elevator tension measuring devices, 7 workers, 601 cameras, 602 waveform extraction units, 603 analysis units, 604 acceleration sensors, 605 determination units 606 control unit, 607 operation unit, 608 display unit, 609 frame, 610 frame, 611 camera tilt angle measurement unit, 612 level, 613 marker storage unit, 614 marker.

Claims (11)

  1.  エレベーターの吊体に支持されたかごに設けられ、前記吊体を撮影するカメラと、
     前記カメラが撮影した複数の画像を用いて、前記吊体の振動波形を抽出する波形抽出部と、
     抽出された前記吊体の振動波形を用いて、前記吊体の振動周期または前記吊体の振動周波数を算出する解析部と、
     前記カメラに作用する加速度を測定する加速度センサと、
     前記加速度センサの測定結果を用いて、前記カメラに作用する加速度が予め設定された範囲を超えるか否かを判定する判定部と
     を備えたエレベーターの吊体張力測定装置。
    A camera that is provided in a car supported by a lifting body of the elevator and shoots the hanging body;
    Using a plurality of images taken by the camera, a waveform extraction unit that extracts a vibration waveform of the suspension,
    Using the extracted vibration waveform of the suspended body, an analysis unit that calculates a vibration period of the suspended body or a vibration frequency of the suspended body;
    An acceleration sensor for measuring acceleration acting on the camera;
    An elevator suspension tension measuring apparatus comprising: a determination unit that determines whether or not an acceleration acting on the camera exceeds a preset range using a measurement result of the acceleration sensor.
  2.  前記波形抽出部は、前記カメラが撮影した複数の画像のそれぞれについて前記吊体の位置情報を撮影時刻情報と対応させて抽出し、抽出された前記吊体の位置情報および前記撮影時刻情報を用いて補間波形を生成し、生成された前記補間波形を等間隔時間でリサンプリングして、前記吊体の振動波形を抽出する請求項1に記載のエレベーターの吊体張力測定装置。 The waveform extraction unit extracts the position information of the hanging body corresponding to the shooting time information for each of a plurality of images taken by the camera, and uses the extracted position information of the hanging body and the shooting time information. The elevator suspended body tension measuring device according to claim 1, wherein an interpolation waveform is generated, and the generated interpolation waveform is resampled at equal intervals to extract a vibration waveform of the suspended body.
  3.  前記波形抽出部は、前記カメラが撮影した複数の画像のそれぞれについて前記吊体の位置情報を撮影時刻情報と対応させて抽出し、抽出された前記吊体の位置情報および前記撮影時刻情報を用いて補間波形を生成し、生成された前記補間波形をアップサンプリングして、前記吊体の振動波形を抽出する請求項1に記載のエレベーターの吊体張力測定装置。 The waveform extraction unit extracts the position information of the hanging body corresponding to the shooting time information for each of a plurality of images taken by the camera, and uses the extracted position information of the hanging body and the shooting time information. The elevator suspended body tension measuring device according to claim 1, wherein an interpolation waveform is generated, and the generated interpolation waveform is upsampled to extract a vibration waveform of the suspended body.
  4.  前記解析部は、抽出された前記吊体の振動波形をフーリエ変換して周波数スペクトルを算出し、算出された前記周波数スペクトルを用いて、前記吊体の振動周期または前記吊体の振動周波数を算出する請求項1から請求項3までの何れか一項に記載のエレベーターの吊体張力測定装置。 The analysis unit performs a Fourier transform on the extracted vibration waveform of the suspended body to calculate a frequency spectrum, and calculates the vibration period of the suspended body or the vibration frequency of the suspended body using the calculated frequency spectrum. The elevator suspended body tension measuring device according to any one of claims 1 to 3.
  5.  前記解析部は、抽出された前記吊体の振動波形の自己相関関数を用いて、前記吊体の振動周期または前記吊体の振動周波数を算出する請求項1から請求項3までの何れか一項に記載のエレベーターの吊体張力測定装置。 The said analysis part calculates the vibration frequency of the said suspension or the vibration frequency of the said suspension using the autocorrelation function of the vibration waveform of the extracted said suspension. The elevator hanging body tension measuring device according to the item.
  6.  前記加速度センサの測定結果を用いて、重力方向に対する前記カメラの傾斜角を測定するカメラ傾斜角測定部をさらに備えた請求項1から請求項5までの何れか一項に記載のエレベーターの吊体張力測定装置。 The elevator suspended body according to any one of claims 1 to 5, further comprising a camera tilt angle measurement unit that measures a tilt angle of the camera with respect to a direction of gravity using a measurement result of the acceleration sensor. Tension measuring device.
  7.  前記加速度センサは、周期的な振動をする前記カメラに作用する加速度を測定する請求項1から請求項6までの何れか一項に記載のエレベーターの吊体張力測定装置。 The elevator suspension body tension measuring apparatus according to any one of claims 1 to 6, wherein the acceleration sensor measures acceleration acting on the camera that periodically vibrates.
  8.  前記加速度センサは、インパルス振動をする前記カメラに作用する加速度を測定する請求項1から請求項7までの何れか一項に記載のエレベーターの吊体張力測定装置。 The elevator tension measuring apparatus according to any one of claims 1 to 7, wherein the acceleration sensor measures acceleration acting on the camera that performs impulse vibration.
  9.  前記吊体に取り付けられるマーカーを記憶するマーカー記憶部をさらに備え、
     前記カメラは、前記吊体の撮影として、前記マーカーを撮影する請求項1から請求項8までの何れか一項に記載のエレベーターの吊体張力測定装置。
    A marker storage unit for storing a marker attached to the suspended body;
    The elevator suspension body tension measuring device according to any one of claims 1 to 8, wherein the camera photographs the marker as an image of the suspension body.
  10.  前記マーカー記憶部に記憶される前記マーカーは、白黒の二色により構成されるパターンである請求項9に記載のエレベーターの吊体張力測定装置。 The elevator suspended body tension measuring device according to claim 9, wherein the marker stored in the marker storage unit is a pattern composed of two colors of black and white.
  11.  前記マーカー記憶部には、複数の前記吊体のそれぞれに対応する複数の前記マーカーが記憶される請求項9または請求項10に記載の吊体張力測定装置。 The suspended body tension measuring device according to claim 9 or 10, wherein a plurality of the markers corresponding to each of the plurality of suspended bodies are stored in the marker storage unit.
PCT/JP2018/007986 2018-03-02 2018-03-02 Suspending body tension measuring device for elevator WO2019167245A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018544135A JP6504592B1 (en) 2018-03-02 2018-03-02 Lift body tension measuring device
PCT/JP2018/007986 WO2019167245A1 (en) 2018-03-02 2018-03-02 Suspending body tension measuring device for elevator
CN201880090544.8A CN111788141A (en) 2018-03-02 2018-03-02 Elevator suspension tension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007986 WO2019167245A1 (en) 2018-03-02 2018-03-02 Suspending body tension measuring device for elevator

Publications (1)

Publication Number Publication Date
WO2019167245A1 true WO2019167245A1 (en) 2019-09-06

Family

ID=66324134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007986 WO2019167245A1 (en) 2018-03-02 2018-03-02 Suspending body tension measuring device for elevator

Country Status (3)

Country Link
JP (1) JP6504592B1 (en)
CN (1) CN111788141A (en)
WO (1) WO2019167245A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021064815A1 (en) * 2019-09-30 2021-04-08
TWI739512B (en) * 2019-09-30 2021-09-11 日商三菱電機股份有限公司 Elevator rope tension measuring system
CN115258869A (en) * 2022-07-08 2022-11-01 江苏飞耐科技有限公司 Elevator early warning method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113955606B (en) * 2021-11-04 2024-01-26 嘉兴市特种设备检验检测院 Method, system, device and medium for detecting dynamic characteristics of steel wire rope for elevator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145504A (en) * 1995-11-17 1997-06-06 Mitsubishi Electric Corp Rope tension measuring apparatus for elevator
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
JP2004184377A (en) * 2002-12-06 2004-07-02 Railway Technical Res Inst Identification method and device by noncontact measurement of vibration characteristic of structure
WO2005083400A1 (en) * 2004-03-01 2005-09-09 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Inspection equipment, vibratory condition display, inspection method and vibratory condition displaying method
JP2011184114A (en) * 2010-03-04 2011-09-22 Mitsubishi Electric Corp Rope tension measuring device of elevator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317204B2 (en) * 2006-06-29 2009-08-19 株式会社日立製作所 Vibration control system for elevator
CN107207200B (en) * 2015-01-30 2019-10-22 蒂森克虏伯电梯股份公司 Real-time rope/cable/band for elevator applications waves monitoring system
CN206606891U (en) * 2016-12-23 2017-11-03 通力股份公司 Device for elevator rope condition monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145504A (en) * 1995-11-17 1997-06-06 Mitsubishi Electric Corp Rope tension measuring apparatus for elevator
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
JP2004184377A (en) * 2002-12-06 2004-07-02 Railway Technical Res Inst Identification method and device by noncontact measurement of vibration characteristic of structure
WO2005083400A1 (en) * 2004-03-01 2005-09-09 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Inspection equipment, vibratory condition display, inspection method and vibratory condition displaying method
JP2011184114A (en) * 2010-03-04 2011-09-22 Mitsubishi Electric Corp Rope tension measuring device of elevator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021064815A1 (en) * 2019-09-30 2021-04-08
WO2021064815A1 (en) * 2019-09-30 2021-04-08 三菱電機株式会社 Building facility vibration measurement device and management system
TWI739512B (en) * 2019-09-30 2021-09-11 日商三菱電機股份有限公司 Elevator rope tension measuring system
TWI753538B (en) * 2019-09-30 2022-01-21 日商三菱電機股份有限公司 Vibration measuring apparatus and management system for building facilities
CN114423700A (en) * 2019-09-30 2022-04-29 三菱电机株式会社 Vibration measuring device and management system for building equipment
JP7239010B2 (en) 2019-09-30 2023-03-14 三菱電機株式会社 Vibration measuring device and management system for building equipment
CN115258869A (en) * 2022-07-08 2022-11-01 江苏飞耐科技有限公司 Elevator early warning method and system
CN115258869B (en) * 2022-07-08 2023-10-20 江苏飞耐科技有限公司 Elevator early warning method and system

Also Published As

Publication number Publication date
CN111788141A (en) 2020-10-16
JP6504592B1 (en) 2019-04-24
JPWO2019167245A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2019167245A1 (en) Suspending body tension measuring device for elevator
JP7166073B2 (en) ride comfort mobile terminal device application
KR102346448B1 (en) Inspection device equipped with a function to present the condition of the inside of the elevator hoistway
KR101285697B1 (en) System for remotely checking an elevator
CN102862915A (en) Performance line display unit
JP6153909B2 (en) Main rope tension measuring device and main rope tension adjusting method
JP2014133619A (en) Alarm system for elevator maintenance work and alarm method for elevator maintenance work
JP5401281B2 (en) Elevator rope swing detection device and automatic earthquake recovery operation control method using the same
JP6021998B1 (en) Elevator system and elevator control method
CN113844965B (en) Visual inspection and diagnosis
CN114423700A (en) Vibration measuring device and management system for building equipment
JP7167994B2 (en) An inspection device and inspection system capable of inspecting the inside of an elevator hoistway
JP5278207B2 (en) Elevator main rope tension inspection device
CN112429610B (en) Inspection device for mechanical equipment
JP6982143B1 (en) Rope inspection device
JP7006864B2 (en) Elevator inspection assistance system
JP6611012B2 (en) Elevator remote monitoring system
JP2020040810A (en) Rope vibration period measurement device for elevator, rope vibration period measurement method for elevator, and rope vibration period calculation program
KR20210133271A (en) elevator device
JPH0672693A (en) Deflection detecting method for crane hoisting load
JP7260076B2 (en) Elevator device and report writing device
JP7260075B2 (en) Elevator device and positioning method
KR102475080B1 (en) Elevator diagnosis device and diagnosis analysis device
WO2020261500A1 (en) Inspection device and inspection method
KR20240108210A (en) A system for monitoring the winding of wire rope and a method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544135

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907948

Country of ref document: EP

Kind code of ref document: A1