JP3400108B2 - Piping device and air conditioner equipped with piping device - Google Patents

Piping device and air conditioner equipped with piping device

Info

Publication number
JP3400108B2
JP3400108B2 JP14477594A JP14477594A JP3400108B2 JP 3400108 B2 JP3400108 B2 JP 3400108B2 JP 14477594 A JP14477594 A JP 14477594A JP 14477594 A JP14477594 A JP 14477594A JP 3400108 B2 JP3400108 B2 JP 3400108B2
Authority
JP
Japan
Prior art keywords
pressure
passage
low
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14477594A
Other languages
Japanese (ja)
Other versions
JPH0814704A (en
Inventor
章 西村
尚弘 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP14477594A priority Critical patent/JP3400108B2/en
Publication of JPH0814704A publication Critical patent/JPH0814704A/en
Application granted granted Critical
Publication of JP3400108B2 publication Critical patent/JP3400108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配管装置及び配管装置を
備えた空調機に関する。本発明は例えばエンジンで冷媒
圧縮用の圧縮機を駆動させる方式の空調機に適用でき
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piping device and an air conditioner equipped with the piping device. The present invention can be applied to, for example, an air conditioner of a system in which a compressor for compressing a refrigerant is driven by an engine.

【0002】[0002]

【従来の技術】エンジン駆動式の空調機を例にとって従
来技術を説明する。従来より、エンジン駆動式空調機に
おいて、エンジンにより駆動される回転数可変式の圧縮
機、四方切換弁、室外熱交換器、膨張弁及び複数の室内
熱交換器が冷媒回路に配設されている。
2. Description of the Related Art A conventional technique will be described by taking an engine-driven air conditioner as an example. Conventionally, in an engine driven air conditioner, a variable speed compressor driven by an engine, a four-way switching valve, an outdoor heat exchanger, an expansion valve and a plurality of indoor heat exchangers are arranged in a refrigerant circuit. .

【0003】圧縮機を駆動させるエンジンの回転数制御
範囲は例えば約1000〜2500rpm程度であり、
最低回転数に対する最高回転数の比は約2〜3倍程度と
なる。従って、圧縮機の容量制御範囲についても、最低
容量に対し約2〜3倍程度の範囲となる。ところで使用
状況によっては、複数の室内熱交換器のうち一部の運転
を停止する場合がある。この場合に、圧縮機の回転数を
低下させて室内熱交換器に供給する冷媒の流量を減少さ
せる方式の空調機を本出願人は開発した。この方式の空
調機では、更に、往路のうち高圧通路部分と復路の低圧
通路部分とをつなぐバイパス路を設けると共に、バイパ
ス路を開閉する開閉弁を設けている。そして、室内熱交
換器の一部の運転を停止する場合には、開閉弁を開放す
ることによりバイパス路を開放し、これにより高圧高温
の気体状冷媒をバイパス路を経て復路の低圧通路部分に
戻すことにしている。
The engine speed control range for driving the compressor is, for example, about 1000 to 2500 rpm.
The ratio of the maximum rotation speed to the minimum rotation speed is about 2-3 times. Therefore, the capacity control range of the compressor is about 2-3 times the minimum capacity. By the way, some operation may be stopped among a some indoor heat exchanger depending on a use condition. In this case, the present applicant has developed an air conditioner of a system in which the rotation speed of the compressor is reduced to reduce the flow rate of the refrigerant supplied to the indoor heat exchanger. In this type of air conditioner, a bypass passage that connects the high-pressure passage portion of the forward passage and the low-pressure passage portion of the return passage is further provided, and an opening / closing valve that opens and closes the bypass passage is provided. When the operation of a part of the indoor heat exchanger is stopped, the bypass passage is opened by opening the on-off valve, whereby the high-pressure and high-temperature gaseous refrigerant is passed through the bypass passage to the low-pressure passage portion of the return passage. I'm going to bring it back.

【0004】[0004]

【発明が解決しようとする課題】上記した様に高圧高温
の気体状冷媒をバイパス路を介して復路の低圧通路部分
に戻す場合には、高圧高温の気体状冷媒が復路の低圧通
路部分に高速で噴出する。そのため、『シュー』という
耳障りな高周波音(例えば8000〜20000ヘル
ツ)が発生しがちであり、静粛性や快適性を損なうこと
があった。
As described above, when the high-pressure and high-temperature gaseous refrigerant is returned to the low-pressure passage portion of the return path through the bypass passage, the high-pressure and high-temperature gaseous refrigerant flows at high speed in the low-pressure passage portion of the return passage. Gush out at. Therefore, an offensive high-frequency sound (for example, 8000 to 20000 Hertz) is apt to be generated, which may impair quietness and comfort.

【0005】本発明は上記した実情に鑑みなされたもの
である。請求項1の課題は、高圧管体の高圧の流体が低
圧管体に噴出する際における耳障りな高周波音を低減ま
たは回避し、静粛性や快適性を確保するのに有利な配管
装置を提供することにある。請求項2の課題は、高圧の
冷媒が低圧の復路に噴出する際における耳障りな高周波
音を低減または回避し、静粛性や快適性を確保するのに
有利な配管装置を備えた空調機を提供することにある。
The present invention has been made in view of the above situation. An object of the present invention is to provide a piping device which is advantageous in reducing or avoiding annoying high-frequency sound when a high-pressure fluid in a high-pressure pipe is ejected to a low-pressure pipe, and ensuring quietness and comfort. Especially. An object of the present invention is to provide an air conditioner equipped with a piping device that is advantageous in reducing or avoiding annoying high-frequency noise when a high-pressure refrigerant is ejected to a low-pressure return path and ensuring quietness and comfort. To do.

【0006】[0006]

【課題を解決するための手段】請求項1の配管装置は、
低圧の流体が流れる低圧通路を備えた低圧管体と、低圧
通路の流体よりも高圧の流体が流れる高圧通路を備え、
高圧通路の先端開口が低圧通路に連通する高圧管体と、
低圧管体の低圧通路のうち高圧通路の先端開口に対面す
る領域には、先端開口から噴出する高圧の流体が当たる
網体が配置されていることを特徴とするものである。流
体としては気体状冷媒や空気、他のガス等を採用でき
る。
A piping device according to claim 1 is
A low pressure pipe having a low pressure passage through which a low pressure fluid flows, and a high pressure passage through which a fluid having a higher pressure than the fluid in the low pressure passage flows,
A high-pressure pipe body in which the tip opening of the high-pressure passage communicates with the low-pressure passage,
In the region of the low pressure passage of the low pressure pipe facing the tip opening of the high pressure passage, a mesh body against which the high pressure fluid ejected from the tip opening hits is arranged. As the fluid, a gaseous refrigerant, air, another gas or the like can be adopted.

【0007】請求項2の配管装置を備えた空調機は、気
体状冷媒を圧縮して高圧高温とする圧縮機と、圧縮機で
圧縮した高圧高温の気体状冷媒を凝縮して液化させる凝
縮器と、凝縮器で液化した冷媒を膨張させる膨張器と、
膨張器を経た冷媒を蒸発させて冷熱を生成する複数個の
蒸発器と、圧縮機から凝縮器及び膨張器を経て各蒸発器
に冷媒を送る往路と、各蒸発器から圧縮機に冷媒を戻す
復路を備えた主配管と、主配管の往路のうち圧縮機及び
凝縮器の間の高圧通路部分と復路の低圧通路部分とを連
通し、圧縮機で圧縮された高圧高温の気体状冷媒が通る
バイパス路と、バイパス路に開閉可能に設けられた開閉
弁とを具備して構成され、主配管の復路の低圧通路部分
のうちバイパス路の先端開口に対面する領域には、バイ
パス路の先端開口から噴出する高圧高温の気体状冷媒が
当たる網体が配置されていることを特徴とするものであ
る。
An air conditioner equipped with the piping device of claim 2 is a compressor for compressing a gaseous refrigerant to a high pressure and a high temperature, and a condenser for condensing and liquefying the high pressure and high temperature gaseous refrigerant compressed by the compressor. And an expander for expanding the liquefied refrigerant in the condenser,
A plurality of evaporators that generate cold heat by evaporating the refrigerant that has passed through the expander, a forward path that sends the refrigerant from the compressor to each evaporator through the condenser and the expander, and return the refrigerant from each evaporator to the compressor. The high-pressure high-temperature gaseous refrigerant compressed by the compressor passes through the main pipe provided with the return path and the high-pressure passage part between the compressor and the condenser in the outward path of the main pipe and the low-pressure passage part of the return path. A bypass passage and an opening / closing valve that is openably and closably provided in the bypass passage are provided, and the tip opening of the bypass passage is formed in a region of the return passage of the main pipe facing the tip opening of the bypass passage. It is characterized in that a net body against which a high-pressure and high-temperature gaseous refrigerant ejected from the jet hits is arranged.

【0008】[0008]

【作用及び発明の効果】請求項1では、高圧管体の高圧
通路内の高圧の流体は、先端開口から低圧管体の低圧通
路に向けて噴出する。噴出の際に高圧の流体は網体に当
たり、これにより従来発生していた耳障りな高周波音が
低減または回避される。従って静粛性や快適性の向上に
有利である。
According to the present invention, the high-pressure fluid in the high-pressure passage of the high-pressure pipe is jetted from the tip opening toward the low-pressure passage of the low-pressure pipe. At the time of ejection, the high-pressure fluid hits the net body, which reduces or avoids the annoying high-frequency sound that has been conventionally generated. Therefore, it is advantageous to improve quietness and comfort.

【0009】請求項2では、気体状冷媒は圧縮機で圧縮
されて高圧高温となり、更に凝縮器に到り、凝縮器で凝
縮して液化される。更に凝縮器を経た冷媒は膨張器で膨
張して低圧低温となり、更に蒸発器に流れ、蒸発器の周
囲の熱を奪って蒸発して冷熱を生成する。請求項2にお
いては、冷房負荷が小さいとき等には開閉弁が開放作動
してバイパス路が開放するので、圧縮機で圧縮された高
圧高温の気体状冷媒の一部は、凝縮器に流れることな
く、バイパス路から主配管の復路の低圧通路部分に直接
戻る。このとき高圧高温の気体状冷媒は網体に当たり、
これにより従来より発生していた耳障りな高周波音が低
減または回避される。
In the second aspect, the gaseous refrigerant is compressed by the compressor to a high pressure and high temperature, further reaches the condenser, and is condensed and liquefied by the condenser. Further, the refrigerant that has passed through the condenser expands in the expander to have a low pressure and a low temperature, further flows into the evaporator, takes heat around the evaporator, and evaporates to generate cold heat. In claim 2, when the cooling load is small, the on-off valve is opened and the bypass passage is opened, so that part of the high-pressure and high-temperature gaseous refrigerant compressed by the compressor flows to the condenser. Instead, return directly from the bypass line to the low pressure passage part of the return line of the main pipe. At this time, the high-pressure and high-temperature gaseous refrigerant hits the net,
This reduces or avoids an offensive high-frequency sound that has been conventionally generated.

【0010】従って空調機を作動させた場合における静
粛性や快適性の向上に有利である。なおバイパス路を流
れない残りの高圧高温の気体状冷媒は、凝縮器、膨張
器、蒸発器を流れ、蒸発器において冷熱を生成するもの
である。
Therefore, it is advantageous to improve quietness and comfort when the air conditioner is operated. The remaining high-pressure and high-temperature gaseous refrigerant that does not flow through the bypass passage flows through the condenser, expander, and evaporator, and produces cold heat in the evaporator.

【0011】[0011]

【実施例】以下、本発明の実施例について図1〜図3に
基づいて説明する。図1において、低圧管体5は金属パ
イプ製であり、低圧の流体(適宜選択できるが例えば2
〜6kg/cm2 )が流れる低圧通路50を備えてい
る。低圧管体5は、小径の第1管体51と大径の第2管
体52と小径の第3管体53とを備えている。高圧管体
6は金属パイプ製であり2本並設されている。高圧管体
6は高圧通路60を備えている。高圧通路60には、低
圧通路50の流体よりも高圧の流体(適宜選択できるが
例えば10〜60kg/cm2 )が流れる。高圧管体6
は低圧管体5に溶接やろう付け等で連結され、従って高
圧通路60の先端開口60aは低圧通路50に連通して
いる。
Embodiments of the present invention will be described below with reference to FIGS. In FIG. 1, the low-pressure pipe body 5 is made of a metal pipe, and has a low-pressure fluid (which can be appropriately selected, for example, 2
It has a low pressure passage 50 through which ~ 6 kg / cm 2 ) flows. The low-pressure pipe body 5 includes a small-diameter first pipe body 51, a large-diameter second pipe body 52, and a small-diameter third pipe body 53. The high-pressure pipes 6 are made of metal pipe and are arranged in parallel. The high-pressure pipe body 6 includes a high-pressure passage 60. A fluid having a higher pressure than the fluid in the low pressure passage 50 (which can be appropriately selected, for example, 10 to 60 kg / cm 2 ) flows through the high pressure passage 60. High pressure pipe 6
Is connected to the low-pressure pipe body 5 by welding, brazing, etc. Therefore, the tip opening 60a of the high-pressure passage 60 communicates with the low-pressure passage 50.

【0012】図1に示す様に、先端開口60aは寸法Δ
L1ぶん低圧通路50に突き出して配置されている。こ
こで高圧管体6は低圧管体5に略直交する向きに交差し
て配置されている。なお高圧管体6と低圧管体5との交
差角度は直交状態に限らず、適宜選択できるものであ
る。図1に示す様に、低圧管体5の低圧通路50のうち
高圧通路60の先端開口60aに対面する領域には、網
体部材7が低圧管体5と略同軸的に配置されている。網
体部材7は、二重リングを備えた金属リング部70と、
金属リング部70の二重リングに一端部が挟持されたス
テンレス鋼製の網体71とで構成されている。網体71
は、網目をもつ円筒形状の側壁71aと、網目をもつ底
壁71bとを備えている。網体71の網目は100メッ
シュ程度である。
As shown in FIG. 1, the tip opening 60a has a dimension Δ.
L1 is arranged so as to project into the low pressure passage 50. Here, the high-pressure pipe body 6 is arranged so as to intersect with the low-pressure pipe body 5 in a direction substantially orthogonal thereto. The intersection angle between the high-pressure pipe body 6 and the low-pressure pipe body 5 is not limited to the orthogonal state, and can be appropriately selected. As shown in FIG. 1, a net member 7 is arranged substantially coaxially with the low pressure pipe 5 in a region of the low pressure passage 50 of the low pressure pipe 5 facing the tip opening 60 a of the high pressure passage 60. The mesh member 7 includes a metal ring portion 70 having a double ring,
The metal ring portion 70 is composed of a double ring of stainless steel net 71 whose one end is clamped. Net 71
Has a mesh-shaped cylindrical side wall 71a and a mesh-shaped bottom wall 71b. The mesh of the mesh 71 is about 100 mesh.

【0013】本実施例では第2管体52内に網体部材7
を圧入した後に、第2管体52の端部52f、52iを
絞ることにより網体部材7は組付けられている。かかる
圧入及び絞りにより網体部材7の保持性は確保される。
なお本実施例では第1管体51が上側に、第3管体53
が下側に配置されると共に、金属リング部70が上側に
網体71が下側に配置されるものであるが、上下関係は
これに限定されるものではない。
In this embodiment, the net member 7 is provided in the second tubular body 52.
After press-fitting, the net member 7 is assembled by squeezing the ends 52f and 52i of the second tubular body 52. By such press-fitting and drawing, the retention of the mesh member 7 is secured.
In this embodiment, the first tubular body 51 is on the upper side and the third tubular body 53 is
Are arranged on the lower side, the metal ring portion 70 is arranged on the upper side, and the net body 71 is arranged on the lower side, but the vertical relationship is not limited to this.

【0014】本実施例では、低圧管体5の低圧通路50
には低圧の流体が図1に示す矢印P1方向に流れる。高
圧管体6の高圧通路60には高圧の流体が図1に示す矢
印P2方向に流れる。そして、高圧管体6の先端開口6
0aから高圧の流体が低圧通路50に噴出する。この際
に、高圧の流体が網体部材7の網体71の側壁71aに
当たる。これにより従来生じていた『シュー』という耳
障りな高周波音が低減される。これは試験により確認さ
れている。その理由は、異常な乱流の発生を網体部材7
の網体71により抑制できるためであると推察される。
In the present embodiment, the low pressure passage 50 of the low pressure pipe body 5 is provided.
A low-pressure fluid flows in the direction of arrow P1 shown in FIG. A high-pressure fluid flows in the high-pressure passage 60 of the high-pressure pipe 6 in the direction of arrow P2 shown in FIG. Then, the tip opening 6 of the high-pressure pipe 6
A high-pressure fluid is jetted from 0a into the low-pressure passage 50. At this time, the high-pressure fluid hits the side wall 71 a of the net 71 of the net member 7. As a result, the annoying high-frequency sound of “shoe” that has been conventionally generated is reduced. This has been confirmed by testing. The reason is that the occurrence of abnormal turbulence causes the mesh member 7
It is presumed that this is because the mesh body 71 of FIG.

【0015】なお高圧管体6の高圧の流体が網体部材7
の網体71に当たる際には、高圧の流体は網体71の網
目を通過したり、あるいは、網体71の周囲に流れたり
すると考えられる。ところで高圧通路60の流体の圧力
が高い場合、また網体71の強度が充分でない場合に
は、高圧の流体の噴出に起因して円筒形状の側壁71a
に異常変形が生じるおそれがある。この場合には耳障り
な高周波音を低減する網体71の効果を損なうおそれが
ある。この点、網体71が底壁71bをもつ本実施例で
は、底壁71bによる補強作用を期待できるので、網体
71の側壁71aの円筒形状維持性が高まり、網体71
の円筒形状の側壁71aの異常変形を軽減または回避す
るのに有利である。従って耳障りな高周波音を低減する
効果を長期にわたり維持するのに有利である。
The high-pressure fluid in the high-pressure pipe 6 is the mesh member 7
When hitting the mesh 71, it is considered that the high-pressure fluid passes through the mesh of the mesh 71 or flows around the mesh 71. By the way, when the fluid pressure in the high-pressure passage 60 is high, or when the strength of the mesh 71 is not sufficient, the cylindrical side wall 71a is caused by the ejection of the high-pressure fluid.
Abnormal deformation may occur. In this case, there is a possibility that the effect of the net body 71 for reducing the annoying high frequency sound may be impaired. In this respect, in the present embodiment in which the net body 71 has the bottom wall 71b, since the reinforcing effect of the bottom wall 71b can be expected, the cylindrical shape maintainability of the side wall 71a of the net body 71 is improved, and the net body 71 is improved.
This is advantageous for reducing or avoiding abnormal deformation of the cylindrical side wall 71a. Therefore, it is advantageous to maintain the effect of reducing high-frequency sound that is offensive to the ear for a long period of time.

【0016】加えて図1から理解できる様に網体部材7
のうち金属リング部70が上流側に網体71が下流側に
略同軸的に配置されている本実施例では、低圧通路50
における流体の円滑な流れを確保できるので、網体71
の側壁71aの異常変形防止に一層効果的である。更に
本実施例によれば、流体に含まれる塵埃等を網体部材7
により捕集する効果も期待できる。従ってストレーナ等
の捕集部材が既に装備されている場合には、ストレーナ
等の捕集部材と網体部材7との双方で塵埃捕集効果を奏
し得る。更にはストレーナ等の捕集部材の網目の大きさ
と、網体部材7の網目の大きさとを変えれば、それぞれ
の網目の大きさに応じた塵埃を捕集するのに有利であ
る。
In addition, as can be seen from FIG. 1, the net member 7
In this embodiment, in which the metal ring portion 70 is arranged on the upstream side and the mesh body 71 is arranged on the downstream side substantially coaxially, in the low pressure passage 50,
Since the smooth flow of the fluid in the
It is even more effective in preventing abnormal deformation of the side wall 71a. Furthermore, according to this embodiment, the dust contained in the fluid is removed from the net member 7
You can expect the effect of collecting by. Therefore, when a collecting member such as a strainer is already installed, the dust collecting effect can be achieved by both the collecting member such as the strainer and the net member 7. Furthermore, if the size of the mesh of the collecting member such as a strainer and the size of the mesh of the mesh member 7 are changed, it is advantageous to collect dust according to the size of each mesh.

【0017】なお網体71の網目のメッシュの程度は1
00メッシュに限らず、適宜選択でき、50〜100メ
ッシュ、100〜150メッシュ、150〜200メッ
シュ、200〜250メッシュ、250〜300メッシ
ュ、300〜350メッシュ、350〜400メッシュ
等の様に適宜選択できる。網体71は耐食性、耐熱性、
及び強度等を考慮して前述の様にステンレス鋼で形成さ
れている。従って高圧通路60から噴出する流体がかな
りの高温(例えば50〜200°C)の場合であって
も、網体71の熱変形の軽減または回避に有利である。
この意味においても、耳障りな高周波音を低減する網体
71の効果を維持するのに有利である。なお網体71は
ステンレス鋼に限らず、アルミ系、チタン系、鋼系等の
様に他の金属あるいは硬質樹脂で形成することもでき
る。
The mesh size of the mesh 71 is 1
The number of meshes is not limited to 00 mesh, and can be appropriately selected, such as 50 to 100 mesh, 100 to 150 mesh, 150 to 200 mesh, 200 to 250 mesh, 250 to 300 mesh, 300 to 350 mesh, 350 to 400 mesh, etc. it can. The net 71 has corrosion resistance, heat resistance,
Also, considering the strength and the like, it is formed of stainless steel as described above. Therefore, even if the fluid ejected from the high-pressure passage 60 has a considerably high temperature (for example, 50 to 200 ° C.), it is advantageous for reducing or avoiding the thermal deformation of the net 71.
In this sense as well, it is advantageous to maintain the effect of the net body 71 for reducing annoying high frequency sound. The mesh 71 is not limited to stainless steel, but may be formed of another metal such as aluminum, titanium, or steel, or a hard resin.

【0018】図1に示す例では、低圧管体5を構成する
大径の第2管体52のうち、上流側の第1管体51側の
内径よりも、下流側の第3管体53側の内径を僅かに小
さくすることもできる。この場合には低圧管体5内を流
体が矢印P1方向に流れるため、矢印P1方向に流れる
流体により網体部材7の金属リング部70が矢印P1方
向に付勢される傾向となるので、金属リング部70の緩
みを防止するのに有利であり、金属リング部70の保持
性を確保できる。
In the example shown in FIG. 1, among the large-diameter second pipe bodies 52 constituting the low-pressure pipe body 5, the third pipe body 53 on the downstream side of the inner diameter on the first pipe body 51 side on the upstream side. It is also possible to make the inner diameter of the side slightly smaller. In this case, since the fluid flows in the low pressure pipe body 5 in the arrow P1 direction, the metal ring portion 70 of the mesh member 7 tends to be urged in the arrow P1 direction by the fluid flowing in the arrow P1 direction. It is advantageous to prevent the ring portion 70 from loosening, and the retaining property of the metal ring portion 70 can be secured.

【0019】図3は本発明の他の実施例を示す。この例
の構成は基本的には図1及び図2に示す例と同様であ
る。但しこの例では高圧管体6は3本並設されている。
図3に示す例においても同様に、耳障りな高周波音を低
減する効果を期待できる。 (適用例)図1において、エンジン駆動式空調機10に
おける冷媒回路11は主配管12で構成されている。主
配管12には、圧縮機13、オイルセパレータ14、切
換え可能な四方切換弁15、冷媒(例えばフロン)を凝
縮させる凝縮器として作用する室外熱交換器16、冷媒
を膨張させる膨張器として機能する第1膨張弁17、レ
シーバ18、同じく膨張器として機能する第2膨張弁1
9、冷媒を蒸発させる蒸発器として機能する室内熱交換
器群20、冷媒−冷却水熱交換器21、蓄圧作用をもつ
アキュムレータ22が直列的に配設されている。
FIG. 3 shows another embodiment of the present invention. The configuration of this example is basically the same as the example shown in FIGS. However, in this example, three high-pressure pipes 6 are arranged in parallel.
Similarly, in the example shown in FIG. 3, it is possible to expect an effect of reducing annoying high frequency sound. (Application example) In FIG. 1, the refrigerant circuit 11 in the engine-driven air conditioner 10 is composed of a main pipe 12. The main pipe 12 functions as a compressor 13, an oil separator 14, a switchable four-way switching valve 15, an outdoor heat exchanger 16 acting as a condenser for condensing a refrigerant (for example, CFC), and an expander for expanding the refrigerant. First expansion valve 17, receiver 18, second expansion valve 1 that also functions as an expander
9. An indoor heat exchanger group 20, which functions as an evaporator for evaporating a refrigerant, a refrigerant-cooling water heat exchanger 21, and an accumulator 22 having a pressure accumulating action are arranged in series.

【0020】主配管12のうち、圧縮機13の吐出側1
3aから室内熱交換器群20に至るまでの通路は往路1
2Aとされている。室内熱交換器群20から圧縮機13
の吸込側13bまでの通路は復路12Bとされている。
ここで、室内熱交換器群20は多数個の室内熱交換器を
並設することにより構成されている。なおこの例では3
台の室内熱交換器20a、20b、20cが並設されて
いるが、台数に限定はなく何台でもよい。
Of the main pipe 12, the discharge side 1 of the compressor 13
The path from 3a to the indoor heat exchanger group 20 is the outward path 1
It is set to 2A. From the indoor heat exchanger group 20 to the compressor 13
The passage up to the suction side 13b is designated as the return path 12B.
Here, the indoor heat exchanger group 20 is configured by arranging a large number of indoor heat exchangers in parallel. In this example, 3
Although the indoor heat exchangers 20a, 20b, 20c are arranged in parallel, the number is not limited and any number may be used.

【0021】圧縮機13はエンジン23によりベルト2
4を介して駆動され、気体状冷媒を圧縮して高圧高温と
するものである。一方、エンジン23を冷却するため
に、冷却水配管26を備えたエンジン冷却水回路25が
設けられている。冷却水配管26には、ウオーターポン
プ27、エンジン23、冷却水−排気ガス熱交換器2
8、切換可能な三方切換弁29、冷媒−冷却水熱交換器
21、ラジエター30、バッフア31が配設されてい
る。
The compressor 13 drives the belt 2 by the engine 23.
It is driven via 4 to compress the gaseous refrigerant to a high pressure and high temperature. On the other hand, in order to cool the engine 23, an engine cooling water circuit 25 including a cooling water pipe 26 is provided. In the cooling water pipe 26, the water pump 27, the engine 23, the cooling water-exhaust gas heat exchanger 2
8, a switchable three-way switching valve 29, a refrigerant-cooling water heat exchanger 21, a radiator 30, and a buffer 31 are arranged.

【0022】更には、主配管12の往路12Aの高圧通
路部分のうち室外熱交換器16の手前において、バイパ
ス通路35、36、37が設けられている。バイパス通
路35、36、37には、開閉弁としてのバイパス弁3
2、33、34がそれぞれ配設されている。バイパス弁
32、33、34は通過流量がそれぞれ異なる。従って
バイパス弁32、33、34が開放作動すると、圧縮機
13で圧縮された高圧側の気体状冷媒がバイパス通路3
5、36、37に矢印E1方向に供給される。尚、本実
施例ではバイパス弁が3個の場合を示すが、個数に限定
はなく何個でもよい。
Further, bypass passages 35, 36 and 37 are provided in front of the outdoor heat exchanger 16 in the high pressure passage portion of the outward passage 12A of the main pipe 12. In the bypass passages 35, 36, 37, the bypass valve 3 as an opening / closing valve is provided.
2, 33, 34 are arranged respectively. The bypass valves 32, 33, and 34 have different passage flow rates. Therefore, when the bypass valves 32, 33, 34 are opened, the high-pressure side gaseous refrigerant compressed by the compressor 13 is bypassed by the bypass passage 3.
5, 36 and 37 are supplied in the direction of arrow E1. Although the number of bypass valves is three in this embodiment, the number is not limited and any number may be used.

【0023】以上の構成を有するエンジン駆動式空調機
10の作用を説明する。使用者の指令等に基づいてエン
ジン23が駆動運転されると、ベルト24を介して圧縮
機13が駆動される。まず、室内熱交換器20で冷房作
用を奏する冷房モードについて説明する。この場合には
冷媒回路11中の冷媒は圧縮機13の吐出側13aから
吐出されて高圧高温の気体状冷媒となり、往路12Aの
高圧通路部分を矢印A1方向に向かう。そして、オイル
セパレータ14に到り、冷媒中の圧縮機潤滑用オイルが
分離される。次に、四方切換弁15を経由して矢印A2
方向に送られ、室外熱交換器16に至る。室外熱交換器
16においては高圧高温の流体状の冷媒(例えば10〜
30kg/cm2 、60〜110°C)は、外気へ熱を
放出することにより凝縮し液化する。更に冷媒は矢印A
3方向に向かい、第1膨張弁17、レシーバ18、第2
膨張弁19を経ることで、液状の冷媒は急激に膨張し、
低温低圧の霧状冷媒となる。更に冷媒は室内熱交換器群
20の各室内熱交換器20a〜20cに矢印A4方向に
流れ込む。室内熱交換器群20に流れた霧状冷媒が、室
内熱交換器群20の周囲の熱を奪って蒸発し、冷熱を生
成する。即ち、ここで冷房が行われる。
The operation of the engine-driven air conditioner 10 having the above structure will be described. When the engine 23 is driven and driven based on a user's command or the like, the compressor 13 is driven via the belt 24. First, the cooling mode in which the indoor heat exchanger 20 has a cooling effect will be described. In this case, the refrigerant in the refrigerant circuit 11 is discharged from the discharge side 13a of the compressor 13 to become a high-pressure, high-temperature gaseous refrigerant, and goes through the high-pressure passage portion of the outward path 12A in the arrow A1 direction. Then, it reaches the oil separator 14, and the compressor lubricating oil in the refrigerant is separated. Next, the arrow A2 is passed through the four-way switching valve 15.
Is sent to the outdoor heat exchanger 16. In the outdoor heat exchanger 16, a high-pressure and high-temperature fluid refrigerant (for example, 10 to 10) is used.
30 kg / cm 2 , 60 to 110 ° C) is condensed and liquefied by releasing heat to the outside air. Further, the refrigerant is arrow A
Heading in three directions, the first expansion valve 17, the receiver 18, the second
By passing through the expansion valve 19, the liquid refrigerant rapidly expands,
It becomes a low-temperature low-pressure atomized refrigerant. Further, the refrigerant flows into the indoor heat exchangers 20a to 20c of the indoor heat exchanger group 20 in the arrow A4 direction. The mist-like refrigerant that has flowed into the indoor heat exchanger group 20 robs the heat of the surroundings of the indoor heat exchanger group 20 and evaporates to generate cold heat. That is, cooling is performed here.

【0024】更に室内熱交換器群20を経た低圧低温の
気体状冷媒(例えば2〜6kg/cm2 、0°C)は矢
印A5方向、矢印A6方向に流れ、四方切換弁15を経
て矢印A7方向に流れ、更に冷媒−冷却水熱交換器21
を経て矢印A8方向に流れ、更にアキュムレータ22を
経て矢印A9方向に流れ、圧縮機13の吸込側13bへ
と戻る。そして圧縮機13で冷媒は再び圧縮され、前述
同様に流れる。
Further, the low-pressure low-temperature gaseous refrigerant (for example, 2 to 6 kg / cm 2 , 0 ° C.) that has passed through the indoor heat exchanger group 20 flows in the directions of arrow A5 and arrow A6, and passes through the four-way switching valve 15 and arrow A7. Direction, and further the refrigerant-cooling water heat exchanger 21
To the suction side 13b of the compressor 13 through the accumulator 22 and the arrow A9 direction. Then, the refrigerant is compressed again in the compressor 13 and flows as described above.

【0025】尚、上記した冷房モードでは、エンジン冷
却水はウオーターポンプ27から吐出されてエンジン2
3及び冷却水−排気ガス熱交換器28を流れてエンジン
23を冷却した後、三方切換弁29によりラジエター3
0、バッフア31を流れて再度ウオーターポンプ27へ
と戻る。従って三方切換弁29の切換作用により冷媒−
冷却水熱交換器21にエンジン冷却水は流れず、よって
上記した冷房モードにおいては冷媒−冷却水熱交換器2
1では熱交換作用は生じない。
In the cooling mode described above, the engine cooling water is discharged from the water pump 27 and the engine 2 is discharged.
3 and the cooling water-exhaust gas heat exchanger 28 to cool the engine 23, and then the radiator 3 is operated by the three-way switching valve 29.
0, flows through the buffer 31 and returns to the water pump 27 again. Therefore, due to the switching action of the three-way switching valve 29, the refrigerant-
The engine cooling water does not flow into the cooling water heat exchanger 21, and therefore, in the cooling mode described above, the refrigerant-cooling water heat exchanger 2
In the case of 1, no heat exchange effect occurs.

【0026】次に室内熱交換器群20で暖房作用を奏す
る暖房モードについて説明する。暖房モードでは四方切
換弁15は図4の矢印Kに示す形態に切り換えられる。
暖房モードにおいても冷媒は圧縮機13で圧縮されて高
圧高温の気体状冷媒となり、圧縮機13の吐出側13a
から吐出され、オイルセパレータ14により冷媒中の圧
縮機潤滑用オイルが分離される。この暖房モードでは四
方切換弁15が図4の矢印Kに示す形態に電子制御装置
により切換られているので、高圧高温の気体状冷媒は四
方切換弁15を矢印B1方向に経由した後、矢印B2方
向に流れ、室内熱交換器群20に到る。そして室内熱交
換器群20において高圧高温の気体状冷媒が凝縮するこ
とで室内へと熱を放出して液化し、高圧高温の液状冷媒
となる。即ち暖房モードでは室内熱交換器群20は凝縮
器として機能し、暖房が行われる。更に冷媒は矢印B3
方向及び矢印B4方向に流れ、第2膨張弁19、レシー
バ18、第1膨張弁17を経ることで、液状冷媒は膨張
して低温低圧の霧状冷媒となる。そして、室外熱交換器
16において、冷媒が蒸発することで外気から熱を受け
取り低温低圧の気体状冷媒となる。即ちこの様な暖房モ
ードでは室外熱交換器16は蒸発器として作用する。室
外熱交換器16を経た冷媒は矢印B5方向に向かい、四
方切換弁15を経て冷媒−冷却水熱交換器21に到り、
アキュムレータ22を経て圧縮機13の吸込側13bへ
と戻る。
Next, the heating mode in which the indoor heat exchanger group 20 has a heating effect will be described. In the heating mode, the four-way switching valve 15 is switched to the form shown by the arrow K in FIG.
Even in the heating mode, the refrigerant is compressed by the compressor 13 to become a high-pressure and high-temperature gaseous refrigerant, and the discharge side 13a of the compressor 13
The oil for compressor lubrication in the refrigerant is separated by the oil separator 14. In this heating mode, the four-way switching valve 15 is switched to the form shown by the arrow K in FIG. 4 by the electronic control unit, so that the high-pressure high-temperature gaseous refrigerant passes through the four-way switching valve 15 in the direction of the arrow B1 and then the arrow B2. Flows in the direction and reaches the indoor heat exchanger group 20. Then, in the indoor heat exchanger group 20, the high-pressure and high-temperature gaseous refrigerant is condensed to release heat into the room to be liquefied and become a high-pressure and high-temperature liquid refrigerant. That is, in the heating mode, the indoor heat exchanger group 20 functions as a condenser and heating is performed. Further, the refrigerant is the arrow B3.
Direction and the direction of arrow B4 and passing through the second expansion valve 19, the receiver 18, and the first expansion valve 17, the liquid refrigerant expands and becomes a low-temperature low-pressure atomized refrigerant. Then, in the outdoor heat exchanger 16, the refrigerant evaporates to receive heat from the outside air and become a low-temperature low-pressure gaseous refrigerant. That is, in such a heating mode, the outdoor heat exchanger 16 acts as an evaporator. The refrigerant that has passed through the outdoor heat exchanger 16 heads in the direction of arrow B5, reaches the refrigerant-cooling water heat exchanger 21 through the four-way switching valve 15, and
It returns to the suction side 13b of the compressor 13 via the accumulator 22.

【0027】この様な暖房モードでは冷媒−冷却水熱交
換器21が作用する。即ち、エンジン冷却水はウオータ
ーポンプ27から吐出されてエンジン23及び冷却水−
排気ガス熱交換器28を流れてエンジン23を冷却して
高温となった後、三方切換弁29により矢印C1方向に
向かい、冷媒−冷却水熱交換器21を流れて矢印C2方
向に向かい、再度ウオーターポンプ27へと戻る。この
様に高温なったエンジン冷却水は冷媒−冷却水熱交換器
21を通り、該熱交換器21によって冷媒と熱交換して
冷媒を加熱するので、暖房能力の向上に一層寄与でき
る。
In such a heating mode, the refrigerant-cooling water heat exchanger 21 operates. That is, the engine cooling water is discharged from the water pump 27 and the engine 23 and the cooling water-
After flowing through the exhaust gas heat exchanger 28 to cool the engine 23 to a high temperature, the three-way switching valve 29 moves in the direction of arrow C1, flows through the refrigerant-cooling water heat exchanger 21 in the direction of arrow C2, and again. Return to the water pump 27. The engine cooling water having such a high temperature passes through the refrigerant-cooling water heat exchanger 21 and exchanges heat with the refrigerant by the heat exchanger 21 to heat the refrigerant, which can further contribute to the improvement of the heating capacity.

【0028】ところで上記した冷房モ−ド、暖房モード
のいずれのモ−ドにおいても、室の使用状況等に応じ
て、室内熱交換器20a、20b、20cの運転台数は
任意に設定できる。この場合には室内熱交換器20a、
20b、20cに設けた操作スイッチによる。この場合
には、運転台数によって室内熱交換器群20へと流入す
る冷媒量は可変に制御されなければならない。そこで、
バイパス弁32、33、34の開閉状態を図示しない電
子制御装置等により次の〜の様に制御する。
By the way, in both the cooling mode and the heating mode, the number of operating indoor heat exchangers 20a, 20b, 20c can be arbitrarily set according to the usage condition of the room. In this case, the indoor heat exchanger 20a,
By operation switches provided on 20b and 20c. In this case, the amount of refrigerant flowing into the indoor heat exchanger group 20 must be variably controlled depending on the number of operating units. Therefore,
The open / closed states of the bypass valves 32, 33 and 34 are controlled by the electronic control device (not shown) or the like as follows.

【0029】バイパス弁32、33、34を全て閉 バイパス弁32のみ開 バイパス弁33のみ開 バイパス弁34のみ開 バイパス弁32、33のみ開 バイパス弁32、34のみ開 バイパス弁33、34のみ開 バイパス弁32、33、34を全て開 当然のことながら、からへと向かうほどバイパス路
35、36、37へバイパスする冷媒量は増加し、室内
熱交換器群20へと流入する冷媒量は少なくなってい
く。
Bypass valves 32, 33, 34 are all closed Bypass valve 32 only Open bypass valve 33 only Open bypass valve 34 only Open bypass valves 32, 33 only Open bypass valves 32, 34 only Open bypass valves 33, 34 only Open bypass As a matter of course, all the valves 32, 33, 34 are opened, and the amount of the refrigerant bypassed to the bypass passages 35, 36, 37 increases toward the direction, and the amount of the refrigerant flowing into the indoor heat exchanger group 20 decreases. To go.

【0030】図4に示した例では、通過流量の異なるバ
イパス弁32、33、34の開閉作動により、室内熱交
換器群20へと流れる冷媒量を様々に変えることがで
き、室内熱交換器群20の運転台数の変動に応じて、適
正な量の冷媒を室内熱交換器群20に供給できる。この
様に室内熱交換器群20の運転台数が変動した場合であ
っても、室内熱交換器群20において流入される冷媒が
過剰とならないので、冷媒系の圧力異常等の問題が生じ
ない。
In the example shown in FIG. 4, the amount of refrigerant flowing to the indoor heat exchanger group 20 can be variously changed by opening / closing the bypass valves 32, 33, 34 having different passage flow rates. An appropriate amount of the refrigerant can be supplied to the indoor heat exchanger group 20 according to the change in the operating number of the group 20. Even when the number of operating indoor heat exchanger groups 20 fluctuates in this way, the refrigerant flowing into the indoor heat exchanger groups 20 does not become excessive, so problems such as abnormal pressure in the refrigerant system do not occur.

【0031】ところで、図4におけるWは、バイパス通
路35、36、37を流れる高圧高温の気体状冷媒が復
路12Bの低圧通路部分に合流する合流部を示す。合流
は冷房モードにおいても暖房モードにおいても行うこと
が可能である。上記したバイパス通路35、36、37
は、圧縮機13で圧縮された気体状冷媒が流れるので、
高圧高温状態である。即ち、バイパス弁32が開放して
いるときには、バイパス通路35の高圧高温の気体状冷
媒は矢印E1方向に流れ、合流部Wを経て低圧側の復路
12Bに流れる。またバイパス弁33が開放していると
きには、バイパス通路36の高圧高温の気体状冷媒は矢
印E1方向に流れ、合流部Wを経て低圧側の復路12B
に流れる。バイパス弁34が開放しているときには、バ
イパス通路37の高圧高温の気体状冷媒は矢印E1方向
に流れ、合流部Wを経て低圧側の復路12Bに流れる。
By the way, W in FIG. 4 shows a merging portion where the high-pressure and high-temperature gaseous refrigerant flowing through the bypass passages 35, 36, 37 joins the low-pressure passage portion of the return passage 12B. The merging can be performed in both the cooling mode and the heating mode. Bypass passages 35, 36, 37 described above
Since the gaseous refrigerant compressed by the compressor 13 flows,
High pressure and high temperature. That is, when the bypass valve 32 is open, the high-pressure and high-temperature gaseous refrigerant in the bypass passage 35 flows in the direction of the arrow E1 and then flows into the low-pressure side return passage 12B via the junction W. Further, when the bypass valve 33 is open, the high-pressure and high-temperature gaseous refrigerant in the bypass passage 36 flows in the direction of the arrow E1, passes through the joining portion W, and the return passage 12B on the low-pressure side.
Flow to. When the bypass valve 34 is open, the high-pressure and high-temperature gaseous refrigerant in the bypass passage 37 flows in the direction of the arrow E1 and then flows into the return passage 12B on the low-pressure side via the merging portion W.

【0032】かかる合流部Wにおいては、図1に示す網
体部材7が装備されている。即ち、低圧管体としての復
路12Bの低圧通路のうち、バイパス通路35、36の
先端開口に対面する領域には網体部材7が図1に示す様
な形態で装備されている。そしてバイパス通路35、3
6の先端開口から噴出する高圧高温の気体状冷媒が網体
部材7に当たる様にされている。従って、前述同様に高
圧高温の気体状冷媒の噴出によって発生する高周波音の
軽減または回避に有利である。
The merging portion W is equipped with the mesh member 7 shown in FIG. That is, in the low-pressure passage of the return passage 12B as the low-pressure pipe body, the mesh member 7 is provided in the area facing the tip openings of the bypass passages 35 and 36 in the form shown in FIG. And bypass passages 35, 3
The high-pressure and high-temperature gaseous refrigerant ejected from the front end opening of 6 hits the mesh member 7. Therefore, similarly to the above, it is advantageous for reducing or avoiding the high frequency sound generated by the ejection of the high-pressure and high-temperature gaseous refrigerant.

【図面の簡単な説明】[Brief description of drawings]

【図1】配管装置の要部の縦断面図である。FIG. 1 is a vertical cross-sectional view of a main part of a piping device.

【図2】網体部材の斜視図である。FIG. 2 is a perspective view of a mesh member.

【図3】配管装置の要部の縦断面図である。FIG. 3 is a vertical cross-sectional view of a main part of a piping device.

【図4】エンジン駆動式空調機の構成図を示す。FIG. 4 shows a configuration diagram of an engine-driven air conditioner.

【符号の説明】[Explanation of symbols]

図中、5は低圧管体、50は低圧通路、6は高圧管体、
60は高圧通路、7は網体部材、71は網体、13は圧
縮機、16は室外熱交換器(凝縮器)、17は膨張弁、
19は膨張弁(膨張器)、20a〜20cは室内熱交換
器(蒸発器)、32〜34はバイパス弁、35〜37は
バイパス路を示す。
In the figure, 5 is a low pressure pipe, 50 is a low pressure passage, 6 is a high pressure pipe,
60 is a high pressure passage, 7 is a mesh member, 71 is a mesh, 13 is a compressor, 16 is an outdoor heat exchanger (condenser), 17 is an expansion valve,
Reference numeral 19 is an expansion valve (expander), 20a to 20c are indoor heat exchangers (evaporators), 32 to 34 are bypass valves, and 35 to 37 are bypass passages.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−166270(JP,A) 特開 昭60−236825(JP,A) 実開 平4−113859(JP,U) 実開 昭56−018871(JP,U) 実開 昭59−139875(JP,U) 実開 昭61−74624(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 41/00 F25B 1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 62-166270 (JP, A) JP 60-236825 (JP, A) Actually open 4-113859 (JP, U) Actually open 56- 018871 (JP, U) Actually open 59-139875 (JP, U) Actually open 61-74624 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 41/00 F25B 1 / 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低圧の流体が流れる低圧通路を備えた低圧
管体と、 該低圧通路の流体よりも高圧の流体が流れる高圧通路を
備え、該高圧通路の先端開口が該低圧通路に連通する高
圧管体と、 該低圧管体の低圧通路のうち該高圧通路の先端開口に対
面する領域には、該高圧通路の先端開口から噴出する高
圧の流体が当たる網体が配置されていることを特徴とす
る配管装置。
1. A low-pressure pipe having a low-pressure passage through which a low-pressure fluid flows, and a high-pressure passage through which a fluid having a higher pressure than the fluid in the low-pressure passage flows, and a tip opening of the high-pressure passage communicates with the low-pressure passage. In the high-pressure pipe body, and in the low-pressure passage of the low-pressure pipe body, in a region facing the tip opening of the high-pressure passage, a mesh body against which the high-pressure fluid ejected from the tip opening of the high-pressure passage hits is arranged. Characteristic piping device.
【請求項2】気体状冷媒を圧縮して高圧高温とする圧縮
機と、 該圧縮機で圧縮した高圧高温の気体状冷媒を凝縮して液
化させる凝縮器と、 該凝縮器で液化した冷媒を膨張させる膨張器と、 該膨張器を経た冷媒を蒸発させて冷熱を生成する複数個
の蒸発器と、 該圧縮機から該凝縮器及び該膨張器を経て各該蒸発器に
冷媒を送る往路と、各該蒸発器から該圧縮機に冷媒を戻
す復路を備えた主配管と、 該主配管の往路のうち該圧縮機及び該凝縮器の間の高圧
通路部分と該復路の低圧通路部分とを連通し、該圧縮機
で圧縮された高圧高温の気体状冷媒が通るバイパス路
と、 該バイパス路に開閉可能に設けられた開閉弁とを具備し
て構成され、 該主配管の復路の低圧通路部分のうち該バイパス路の先
端開口に対面する領域には、該バイパス路の先端開口か
ら噴出する高圧高温の気体状冷媒が当たる網体が配置さ
れていることを特徴とする配管装置を備えた空調機。
2. A compressor for compressing a gaseous refrigerant to a high pressure and high temperature, a condenser for condensing and liquefying the high pressure and high temperature gaseous refrigerant compressed by the compressor, and a refrigerant liquefied by the condenser. An expander that expands; a plurality of evaporators that evaporate the refrigerant that has passed through the expander to generate cold heat; and a forward path that sends the refrigerant from the compressor to the evaporator through the condenser and the expander. A main pipe having a return path for returning the refrigerant from each of the evaporators to the compressor; a high-pressure passage portion between the compressor and the condenser and a low-pressure passage portion of the return passage in the outward passage of the main pipe. A low-pressure passage on the return passage of the main pipe, which is in communication with the bypass passage through which a high-pressure and high-temperature gaseous refrigerant compressed by the compressor passes and an opening / closing valve provided on the bypass passage so as to be opened and closed. In the region of the portion facing the tip opening of the bypass, the tip of the bypass is An air conditioner equipped with a piping device, in which a net body against which a high-pressure and high-temperature gaseous refrigerant ejected from an opening hits is arranged.
JP14477594A 1994-06-27 1994-06-27 Piping device and air conditioner equipped with piping device Expired - Fee Related JP3400108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14477594A JP3400108B2 (en) 1994-06-27 1994-06-27 Piping device and air conditioner equipped with piping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14477594A JP3400108B2 (en) 1994-06-27 1994-06-27 Piping device and air conditioner equipped with piping device

Publications (2)

Publication Number Publication Date
JPH0814704A JPH0814704A (en) 1996-01-19
JP3400108B2 true JP3400108B2 (en) 2003-04-28

Family

ID=15370146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14477594A Expired - Fee Related JP3400108B2 (en) 1994-06-27 1994-06-27 Piping device and air conditioner equipped with piping device

Country Status (1)

Country Link
JP (1) JP3400108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966960A (en) * 1998-06-26 1999-10-19 General Motors Corporation Bi-directional refrigerant expansion valve
EP2154451B1 (en) * 2002-10-02 2013-11-06 Mitsubishi Denki Kabushiki Kaisha Pressure pulsation reducer of refrigeration cycle equipment
JP2006132797A (en) * 2004-11-02 2006-05-25 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
JPH0814704A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
JP3538492B2 (en) Refrigeration cycle device
JP4779928B2 (en) Ejector refrigeration cycle
JPH0232546B2 (en)
MXPA00008667A (en) Combined evaporator/accumulator/suction line heat exchanger.
CN109386986B (en) Two-pipe heating recovery multi-split air conditioner system and air conditioner outdoor unit thereof
JP3400108B2 (en) Piping device and air conditioner equipped with piping device
CN109386987B (en) Two-pipe heating recovery multi-split air conditioner system and air conditioner outdoor unit thereof
WO2012056887A1 (en) Refrigeration cycle apparatus
JP6735896B2 (en) Refrigeration cycle equipment
JP4747439B2 (en) Multi-room air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
CN210951804U (en) Noise-reducing air conditioner
CN109386984B (en) Two-pipe heating recovery multi-split air conditioner system and air conditioner outdoor unit thereof
JP3694552B2 (en) Air conditioner
JP4561012B2 (en) Air conditioner
JP3723244B2 (en) Air conditioner
JP3680225B2 (en) Refrigerant circuit
JPH10281566A (en) Outdoor device of heat pump type air conditioner
JP2004361019A (en) Air conditioner
JP4008981B2 (en) Refrigerant circuit structure of compression heat transfer device
JP2006071197A (en) Heat pump device
CN212299570U (en) Gradual change combined type throttle capillary and air conditioner applying same
JP2004293896A (en) Air conditioner
JP2001255041A (en) Refrigeration system
CN114061162A (en) Refrigeration system and control method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees