JP3395224B2 - Thin film forming method and apparatus, and optical component - Google Patents

Thin film forming method and apparatus, and optical component

Info

Publication number
JP3395224B2
JP3395224B2 JP33474092A JP33474092A JP3395224B2 JP 3395224 B2 JP3395224 B2 JP 3395224B2 JP 33474092 A JP33474092 A JP 33474092A JP 33474092 A JP33474092 A JP 33474092A JP 3395224 B2 JP3395224 B2 JP 3395224B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
rotation axis
evaporation source
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33474092A
Other languages
Japanese (ja)
Other versions
JPH06179972A (en
Inventor
勝彦 村上
哲也 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP33474092A priority Critical patent/JP3395224B2/en
Publication of JPH06179972A publication Critical patent/JPH06179972A/en
Application granted granted Critical
Publication of JP3395224B2 publication Critical patent/JP3395224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、真空蒸着やスパッタ
リング等のいわゆるPVD(Physical Vapor Deposit
ionの略)法による薄膜形成方法およびこれに用いる装
、ならびに薄膜形成方法で製造された光学部品に関す
る。
The present invention relates to so-called PVD (Physical Vapor Deposit) such as vacuum deposition and sputtering.
(abbreviation of ion) method, a thin film forming method and an apparatus used therefor, and an optical component manufactured by the thin film forming method .

【0002】[0002]

【従来の技術】一般に、レンズやミラー等の光学部品の
表面には、反射率の調整や表面強度の向上を目的として
薄膜のコーティングが施される。この種の薄膜は、通
常、真空蒸着やスパッタリング等の薄膜形成法により形
成されるが、その膜厚分布の制御手段としては、成膜対
象となる基板を自転させつつその表面をマスクで覆う方
法が知られている。その一例を図8に示す。図示の例
は、真空チャンバ(不図示)内に配置されるレンズ10
0の表面100aの一部をマスク101で覆った状態
で、レンズ100をマスク101に対して光軸Oの回り
に相対回転させつつ、不図示の蒸発源から飛来する薄膜
材料の蒸発物をレンズ100の表面100aに対して光
軸Oと平行(紙面と直交する方向)に入射させて成膜を
行なうものである。この方法では、光軸Oから距離rだ
け離れた位置の膜厚が、同位置でのマスク101の動径
方向の幅r・ω(r)によって定まるので、マスク10
1の輪郭形状を適当に変化させることで膜厚分布を任意
に制御できる。
2. Description of the Related Art Generally, the surface of optical components such as lenses and mirrors is coated with a thin film for the purpose of adjusting reflectance and improving surface strength. This type of thin film is usually formed by a thin film forming method such as vacuum deposition or sputtering. As a means for controlling the film thickness distribution, a method of rotating the substrate to be film-formed and covering its surface with a mask is used. It has been known. An example thereof is shown in FIG. The illustrated example shows a lens 10 placed in a vacuum chamber (not shown).
In the state where a part of the surface 100a of 0 is covered with the mask 101, the lens 100 is relatively rotated around the optical axis O with respect to the mask 101, and the evaporation material of the thin film material coming from an evaporation source (not shown) is moved to the lens. The film is formed on the surface 100a of 100 by being incident on it in parallel with the optical axis O (direction orthogonal to the paper surface). In this method, the film thickness at the position separated from the optical axis O by the distance r is determined by the radial width r · ω (r) of the mask 101 at the same position.
By appropriately changing the contour shape of No. 1, the film thickness distribution can be arbitrarily controlled.

【0003】[0003]

【発明が解決しようとする課題】近年、光学機器の回折
限界の解像力を高めるために波長が10から200
(オングストローム)程度の軟X線を利用した光学系の
研究開発が盛んに行われている。このX線用の光学系に
は従来の可視光や紫外光用の光学部品を用いることがで
きず、特にX線用として成膜された多層膜を備えたもの
が必要となる。このX線用の多層膜は、対象波長が可視
光や紫外光よりも1〜2桁短いために膜の周期長が非常
に小さく、膜の各層でのX線の反射が非常に僅かである
ために層数が数十〜数百層にも及ぶ点で従来の多層膜と
異なる。かかる特徴のため、X線用多層膜での反射は結
晶のブラッグ回折に近い特性を示し、次のブラッグの式
(数式1)を満たすX線の波長、入射角および多層膜の
周期長を中心とした狭い範囲でのみ反射率にピークが現
れる。X線の波長、入射角および多層膜の周期長のいず
れか一つでも許容範囲から外れるとX線は全く反射され
ず、これらの許容範囲は多層膜の積層数に反比例して狭
くなる。
In recent years, diffraction of optical instruments
The wavelength is 10 to 200 to increase the limit resolution.Å
Of an optical system using soft X-rays of about (angstrom)
R & D is actively carried out. In this X-ray optical system
Can use conventional optical components for visible light and ultraviolet light.
Flaws, especially those with a multilayer film formed for X-rays
Is required. This X-ray multilayer film has visible wavelengths
The cycle length of the film is extremely short because it is 1 to 2 orders of magnitude shorter than light and ultraviolet light.
Very small and very little reflection of X-rays on each layer of the film
Therefore, the number of layers is several tens to several hundreds.
different. Due to this feature, the reflection on the multilayer film for X-rays is
Shows the characteristics close to the Bragg diffraction of crystal, and the following Bragg equation
The wavelength of X-ray, the incident angle, and the
A peak appears in the reflectance only in a narrow range centered on the cycle length.
Be done. X-ray wavelength, incident angle and cycle length of multilayer film
If any one of them goes out of the allowable range, X-rays will be totally reflected.
However, the allowable range is narrowed in inverse proportion to the number of stacked multilayer films.
Become

【数1】 ここで、dは多層膜の周期長、νは反射面から測った入
射角、λはX線の波長、nは整数である。なお、本明細
書では特に断りのない限り、反射面から測った入射光の
角度、すなわち反射面と入射光とがなす角度を入射角と
呼ぶ。
[Equation 1] Here, d is the cycle length of the multilayer film, ν is the incident angle measured from the reflecting surface, λ is the wavelength of the X-ray, and n is an integer. In this specification, unless otherwise specified, the angle of the incident light measured from the reflecting surface, that is, the angle formed by the reflecting surface and the incident light is referred to as the incident angle.

【0004】X線用多層膜を凹面鏡や凸面鏡の表面にコ
ーティングした多層膜ミラーを単色化されたX線の反射
光学系に用いる場合、X線の入射角がミラーの周辺部へ
向うほど小さくなるため、上記のブラッグの式を満たす
多層膜の周期長はミラーの周辺へ向うほど長くなる。す
なわちミラーの周辺ほど膜厚が大きくなる。このような
膜厚分布を上述した図8に示す膜厚制御方法で得ようと
すると、X線用多層膜の積層数の多さから多層膜の周期
長の許容誤差範囲が狭くなっているのに加えて、マスク
の輪郭形状で膜厚分布が決まるためにマスクの寸法誤差
の許容範囲が狭く、かつマスクの取付け誤差の許容範囲
も狭いため、満足できる精度の膜厚分布が得られること
は稀で、X線用多層膜の形成方法としては不適当であっ
た。
When a multilayer mirror having a concave mirror or a convex mirror coated with a multilayer film for X-rays is used in a monochromatic X-ray reflection optical system, the incident angle of the X-ray becomes smaller toward the peripheral portion of the mirror. Therefore, the cycle length of the multilayer film that satisfies the Bragg equation becomes longer toward the periphery of the mirror. That is, the film thickness increases toward the periphery of the mirror. If such a film thickness distribution is to be obtained by the film thickness control method shown in FIG. 8, the allowable error range of the cycle length of the multilayer film becomes narrow due to the large number of laminated X-ray multilayer films. In addition, since the mask profile shape determines the film thickness distribution, the mask dimensional error tolerance is narrow, and the mask mounting error tolerance is narrow, so it is possible to obtain a film thickness distribution with satisfactory accuracy. It was rare and unsuitable as a method for forming a multilayer film for X-ray.

【0005】本発明は、膜厚分布の精度を従来よりも高
め得る薄膜形成方法およびこれに用いる装置ならびにこ
の薄膜形成方法により製造した光学部品を提供すること
を目的とする。
The present invention is directed to a thin film forming method capable of improving the accuracy of film thickness distribution more than ever before, an apparatus used for the method, and
An object of the present invention is to provide an optical component manufactured by the method for forming a thin film .

【0006】[0006]

【課題を解決するための手段】図1を参照して説明する
と、本発明の方法では、球面が形成された基板1を蒸発
物Eの飛来方向から一定角度で傾斜する回転軸線CLを
中心に蒸発源2に対して相対回転させるとともに、蒸発
源2に対して一定位置に保持されるマスク部材3により
基板1の表面1aの一部を覆うことで、上述した目的の
達成を図っている。また、本発明の装置では、球面が形
成された基板1を蒸発物Eの飛来方向から一定角度αで
傾斜する回転軸線CLを中心に蒸発源2に対して相対回
転させる相対回転手段と、基板1の相対回転時に蒸発源
2に対して一定位置に保持されて基板1の表面1aの一
部を覆うマスク部材3とを備えることで、上述した目的
の達成を図っている。この際、薄膜が所定膜厚分布とな
るように、角度変更手段であるホルダ傾転装置12によ
り角度αを設定する。さらに、請求項3の発明は、請求
項1の薄膜形成方法により製作された光学部品である。
With reference to FIG. 1, in the method of the present invention, the substrate 1 having a spherical surface is centered on a rotation axis CL which is inclined at a constant angle from the direction in which the evaporation material E is flying. By achieving relative rotation with respect to the evaporation source 2 and covering a part of the surface 1a of the substrate 1 with the mask member 3 which is held at a fixed position with respect to the evaporation source 2, the above-described object is achieved. Further, in the apparatus of the present invention, relative rotation means for rotating the substrate 1 having the spherical surface relative to the evaporation source 2 about the rotation axis CL inclined at a constant angle α from the flying direction of the evaporation material E, and the substrate. By providing the mask member 3 which is held at a fixed position with respect to the evaporation source 2 and relatively covers a part of the surface 1a of the substrate 1 during relative rotation of 1, the above-described object is achieved. At this time, the angle α is set by the holder tilting device 12, which is an angle changing means, so that the thin film has a predetermined film thickness distribution. Furthermore, the invention of claim 3 is an optical component manufactured by the thin film forming method of claim 1.

【0007】[0007]

【作用】X線用光学系に用いる凸面鏡や凹面鏡の基板に
薄膜をコーティングする際、図2に示すように、基板1
をその回転軸線CLの回りに自転させながら、この回転
軸線CLを蒸発物Eの飛来する方向(図の矢印方向)に
対して傾斜させると膜厚分布が変化することが予想され
る。以下に、表面が球状の凹面とされた基板の回転軸線
を傾斜させたときの膜厚分布を計算する。
When the thin film is coated on the substrate of the convex mirror or concave mirror used in the X-ray optical system, as shown in FIG.
It is expected that the film thickness distribution will be changed by inclining the rotation axis CL with respect to the direction in which the evaporation material E is flying (the direction of the arrow in the drawing) while rotating the rotation axis CL around the rotation axis CL. Below, the film thickness distribution when the rotation axis of the substrate having a spherical concave surface is inclined will be calculated.

【0008】図3に示すように、基板の表面の曲率中心
を原点とし、基板の回転軸線をz軸とする3軸直交座標
系において二つのベクトルA,Bをとる。ベクトルAは
蒸発物質の入射方向を表す単位ベクトルでxz面内にと
る。蒸発物EはベクトルAの方向に一様な密度分布を保
ちつつ飛来すると考える。ベクトルAとz軸(基板の回
転軸線)とのなす角をαとする。ベクトルBは球の中心
から球面上の任意の微小面積を指すベクトルで、球面の
法線方向を向いている。ベクトルBのxy平面への投影
長さをr、x軸となす角をβ、球の半径をRとする。以
上の条件の下において、ベクトルA,Bは以下の数式2
で表される。
As shown in FIG. 3, two vectors A and B are taken in a three-axis orthogonal coordinate system in which the center of curvature of the surface of the substrate is the origin and the rotation axis of the substrate is the z axis. The vector A is a unit vector representing the incident direction of the vaporized substance and is taken in the xz plane. It is considered that the evaporated material E flies in the direction of the vector A while maintaining a uniform density distribution. The angle formed by the vector A and the z axis (the rotation axis of the substrate) is α. The vector B is a vector indicating an arbitrary minute area on the spherical surface from the center of the sphere, and faces the normal direction of the spherical surface. The projection length of the vector B on the xy plane is r, the angle formed with the x axis is β, and the radius of the sphere is R. Under the above conditions, the vectors A and B have the following formula 2
It is represented by.

【数2】 ベクトルA,Bのなす角、すなわちベクトルBで定義さ
れる微小面積の蒸発物の飛来方向に対する傾きをθとす
ると、ベクトルBで表される微小面積での膜厚d(r;
α,β)はcosθに比例するので、
[Equation 2] Assuming that the angle formed by the vectors A and B, that is, the inclination of the minute area defined by the vector B with respect to the flying direction of the evaporation material is θ, the film thickness d (r;
α, β) is proportional to cos θ, so

【数3】 となる。基板がz軸の回りを等速回転している場合は、
数式3をβについて0〜2πで積分して、
[Equation 3] Becomes If the substrate is rotating at a constant velocity around the z axis,
Formula 3 is integrated with respect to β by 0 to 2π,

【数4】 となる。[Equation 4] Becomes

【0009】すなわち、基板の回転軸線を蒸発物の飛来
方向に対して傾けただけでは、回転軸線と蒸発物との飛
来方向が一致する場合(α=0)と比べて、膜厚dが全
体に一様にcosαの割合で薄くなるだけであり、基板
の表面の各位置の法線と基板の回転軸線とがなす角φが
大きくなるほど膜厚が減少して、回転軸線の付近で厚く
回転軸線から離れた周辺部で薄くなる薄膜しか得られな
い。なお、図3では球面は凹面の場合を考えているが、
数式4は凸面の場合にも全く同じ式になることは容易に
確かめられる。
That is, if the rotation axis of the substrate is tilted only with respect to the flying direction of the evaporation material, the film thickness d as a whole becomes larger than that in the case where the rotation axis and the flying direction of the evaporation material match (α = 0). However, the film thickness decreases as the angle φ formed by the normal line at each position on the surface of the substrate and the rotation axis of the substrate increases, and the film rotates thicker in the vicinity of the rotation axis. Only thin films can be obtained that are thinned in the periphery away from the axis. Although the spherical surface is considered to be concave in FIG. 3,
It can be easily confirmed that the formula 4 is exactly the same for the convex surface.

【0010】以上から、基板の回転軸線を蒸発物の飛来
する方向に対して傾斜させただけでは、膜厚分布を任意
に制御できないことが判明した。しかし、ここで発明者
は、基板の回転軸線を蒸発物の飛来方向から傾けつつ基
板の表面の一部をマスク部材で覆うと、回転軸線の傾斜
角に応じて膜厚分布が変化し得ることに気付いた。これ
について以下に説明する。
From the above, it has been found that the film thickness distribution cannot be arbitrarily controlled only by inclining the rotation axis of the substrate with respect to the direction in which the evaporation material comes in. However, the inventor here finds that when a part of the surface of the substrate is covered with a mask member while inclining the rotation axis of the substrate from the flying direction of the evaporation material, the film thickness distribution may change according to the inclination angle of the rotation axis. I noticed. This will be described below.

【0011】例えば、図1に示すように、半月状の開口
3aを有するマスク部材3により、表面1aが球状の凸
面とされた基板1の上半分(図1の上側)を覆った場合
を考える。なお、凹面の下半分を覆った場合も全く同じ
である。数式4をβについて−π/2〜π/2の範囲で
積分すると、
For example, as shown in FIG. 1, consider a case where the mask member 3 having a half-moon shaped opening 3a covers the upper half (upper side of FIG. 1) of the substrate 1 whose surface 1a is a spherical convex surface. . The same applies when the lower half of the concave surface is covered. When Equation 4 is integrated with respect to β in the range of −π / 2 to π / 2,

【数5】 r=0で1となるよう規格化すると、[Equation 5] When standardized to be 1 when r = 0,

【数6】 となり、第1項のcosφに比例して減少する項の他
に、第2項にsinφに比例して増加する項が付加され
る。したがって、マスク部材3を設けない場合のcos
φよりも均一な膜厚分布を得ることができる。また、第
2項の第1項に対する比率はtanαによって変化す
る。すなわち、基板1の回転軸線CLの傾斜角αをパラ
メータとして膜厚分布を制御することができる。膜厚分
布を制御し得るパラメータが増加すれば、マスク部材3
のみに依存する従来例よりもマスク部材3の形状寸法の
誤差や取付け誤差が膜厚分布の精度に与える影響が相対
的に小さくなり、その分マスク部材3の精度や取付け位
置に対する許容範囲が拡大する。マスク部材3の形状誤
差の許容範囲が拡大すれば、マスク部材3の形状を単純
化して複数種類の基板間でマスク部材3を共用すること
も可能となる。
[Equation 6] In addition to the term that decreases in proportion to cosφ of the first term, the term that increases in proportion to sinφ is added to the second term. Therefore, cos when the mask member 3 is not provided
A more uniform film thickness distribution than φ can be obtained. The ratio of the second term to the first term changes depending on tan α. That is, the film thickness distribution can be controlled using the inclination angle α of the rotation axis CL of the substrate 1 as a parameter. If the parameter that can control the film thickness distribution increases, the mask member 3
The influence of the shape dimension error and the mounting error of the mask member 3 on the accuracy of the film thickness distribution becomes relatively smaller than that of the conventional example which depends only on the above, and the allowable range for the accuracy and the mounting position of the mask member 3 is expanded accordingly. To do. If the allowable range of the shape error of the mask member 3 is expanded, it becomes possible to simplify the shape of the mask member 3 and share the mask member 3 among a plurality of types of substrates.

【0012】以上では、説明を簡単にするために球面形
状の基板1に対してその半分をマスク部材3で覆った場
合を説明したが、マスク部材3の形状は図示例に限定さ
れない。例えば図4に示すように、扇状の開口4aを持
つマスク部材4を用いても良い。この場合の膜厚分布
は、数式4の積分範囲をβ1〜β2に変更する。すなわ
ち、
In the above description, the case where the half of the spherical substrate 1 is covered with the mask member 3 has been described for the sake of simplicity, but the shape of the mask member 3 is not limited to the illustrated example. For example, as shown in FIG. 4, a mask member 4 having a fan-shaped opening 4a may be used. In the film thickness distribution in this case, the integration range of Expression 4 is changed to β1 to β2. That is,

【数7】 β1=−β2であれば、[Equation 7] If β1 = −β2,

【数8】 これからβ2を変更したときの第2項の第1項に対する
比率は、
[Equation 8] The ratio of the second term to the first term when β2 is changed is

【数9】 に比例して変化する。この式はβ2が0のとき1であ
り、β2の増加とともに単調に減少してβ2がπのとき
0となる。このことは、扇型の開口4aの角度を狭くす
るほど基板を傾斜させることの効果が大きく現れること
を示している。
[Equation 9] Changes in proportion to. This expression is 1 when β2 is 0, and monotonically decreases as β2 increases, and becomes 0 when β2 is π. This means that the narrower the angle of the fan-shaped opening 4a, the greater the effect of tilting the substrate appears.

【0013】以上では、基板の表面が球面形状の場合に
ついて述べたが、回転放物面、回転楕円面、回転双曲面
などの非球面形状の基板に対しても本発明は有効であ
る。これらの場合の膜厚分布は、既に説明した計算の一
部を変更することによって容易に求められる。図3では
原点を中心とする半径Rの球面を考えたが、かかる球面
とx、y座標が十分小さい極限で接触する2次曲面を考
えると、この曲面は次式で与えられる。
Although the case where the surface of the substrate is spherical has been described above, the present invention is also effective for substrates having an aspherical surface such as a paraboloid of revolution, a ellipsoid of revolution, and a hyperboloid of revolution. The film thickness distribution in these cases can be easily obtained by changing a part of the calculation already described. Although a spherical surface having a radius R centered on the origin is considered in FIG. 3, when considering a quadratic curved surface that contacts such spherical surface in the limit where the x and y coordinates are sufficiently small, this curved surface is given by the following equation.

【数10】 ここで、Rはx=y=0における曲面の曲率半径であ
る。κは、以下のように2次曲面の形状を表わすパラメ
ータである。 κ<0 :回転双曲面 κ=0 :回転放物面 0<κ<1 :短軸の回りに回転した回転楕円面 κ=1 :球面 κ>1 :長軸の回りに回転した回転楕円面
[Equation 10] Here, R is the radius of curvature of the curved surface at x = y = 0. κ is a parameter representing the shape of the quadric surface as follows. κ <0: hyperboloid of revolution κ = 0: paraboloid of revolution 0 <κ <1: spheroid rotated about the minor axis κ = 1: spherical κ> 1: spheroid rotated about the major axis

【0014】球面の場合には、曲面上の各点の位置ベク
トルBが、その位置での曲面の法線ベクトルと一致する
が、一般の2次曲面ではそれらは一致しない。そこで改
めて法線ベクトルNを考えると、ベクトルNは曲面の接
線の傾きdz/dr(但し、r2=x2+y2)より次式で与
えられる。
In the case of a spherical surface, the position vector B of each point on the curved surface matches the normal vector of the curved surface at that position, but they do not match on a general quadric surface. Therefore, considering the normal vector N again, the vector N is given by the following equation from the slope dz / dr of the tangent of the curved surface (where r 2 = x 2 + y 2 ).

【数11】 例えば、回転放物面の場合にはベクトルBとベクトルN
は次式のようになる。
[Equation 11] For example, in the case of a paraboloid of revolution, vector B and vector N
Is as follows.

【数12】 [Equation 12]

【0015】以上のようにしてベクトルNを求め、数式
3のベクトルBをベクトルNに置き換えてそれ以降の計
算を行なえば、非球面の場合の膜厚分布も球面の場合と
同様に計算できる。
By obtaining the vector N as described above, replacing the vector B in the equation 3 with the vector N, and performing subsequent calculations, the film thickness distribution in the case of the aspherical surface can be calculated in the same manner as in the case of the spherical surface.

【0016】以上では、蒸発源2およびマスク部材3を
固定し、基板1を蒸発物Eの飛来方向に対して一定角度
αだけ傾いた回転軸線CLの回りに自転させたが、これ
らの動作は相対的なものであり、蒸発源2側を動かして
も同様の効果が得られる。図5(a)は蒸発源2を基板
1の回転軸線CLと直交する面内で移動可能に設けたも
ので、蒸発源2の位置を調整して蒸発物Eの飛来方向に
対する回転軸線CLの傾斜角を所望の値に設定した後、
基板1をその回転軸線CLの回りに自転させる一方で、
マスク部材3を蒸発源2に対して固定して図1と同様の
相対運動を得る。また、図5(b)の例では、基板1を
固定する一方で、回転軸線CLを中心とする所定半径の
円に沿って蒸発源2を旋回させるとともに、蒸発源2に
同期してマスク部材3を回転軸線CLの回りに自転させ
て図1と同様の相対運動を得る。なお、図5では、基板
1およびマスク部材3を平板状に描いているが、基板1
の表面は上述した凹または凸曲面のいずれかであり、マ
スク部材3も基板1の表面の湾曲に応じて適当に傾けら
れる。
In the above, the evaporation source 2 and the mask member 3 are fixed, and the substrate 1 is rotated about the rotation axis CL which is inclined by a constant angle α with respect to the flying direction of the evaporation material E, but these operations are performed. It is relative, and the same effect can be obtained by moving the evaporation source 2 side. FIG. 5A shows the evaporation source 2 provided so as to be movable in a plane orthogonal to the rotation axis CL of the substrate 1. The position of the evaporation source 2 is adjusted so that the rotation axis CL of the rotation direction CL with respect to the flying direction of the evaporation material E is changed. After setting the tilt angle to the desired value,
While rotating the substrate 1 about its rotation axis CL,
The mask member 3 is fixed to the evaporation source 2 to obtain the same relative movement as in FIG. Further, in the example of FIG. 5B, while the substrate 1 is fixed, the evaporation source 2 is swung along a circle having a predetermined radius centered on the rotation axis CL, and the mask member is synchronized with the evaporation source 2. 3 is rotated about the rotation axis CL to obtain the same relative movement as in FIG. Although the substrate 1 and the mask member 3 are drawn in a flat plate shape in FIG.
The surface of is a concave or convex curved surface described above, and the mask member 3 is also appropriately inclined according to the curvature of the surface of the substrate 1.

【0017】[0017]

【実施例】以下、イオンビームスパッタリング装置に本
発明を適用して軟X線用多層膜ミラーを作成した実施例
を図6および図7に基づいて説明する。まず、図6によ
り本実施例で使用する装置の概略を説明する。図におい
て10は基板1の表面1aの外周縁部と係合する複数の
爪10aにより基板1を保持するホルダ、11はモータ
等のアクチュエータ(不図示)によりホルダ10を回転
軸線CLの回りに回転させるホルダ回転装置、12はモ
ータ等のアクチュエータ(不図示)によりホルダ回転装
置11のハウジング11aを軸12aの回りに回動させ
るホルダ傾転装置である。ホルダ回転装置11のハウジ
ング11aの側部前端にはマスクブラケット13が取り
付けられる。マスクブラケット13は、その先端のスリ
ット13aにマスク部材3の外周部を受け入れてマスク
部材3をホルダ10に装着された基板1の表面1aと対
向した状態に保持する。
EXAMPLE An example in which the present invention is applied to an ion beam sputtering apparatus to form a multilayer film mirror for soft X-rays will be described below with reference to FIGS. 6 and 7. First, the outline of the apparatus used in this embodiment will be described with reference to FIG. In the figure, 10 is a holder that holds the substrate 1 by a plurality of claws 10a that engage with the outer peripheral edge of the surface 1a of the substrate 1, and 11 is an actuator (not shown) such as a motor that rotates the holder 10 around the rotation axis CL. A holder rotating device 12 is a holder tilting device that rotates a housing 11a of the holder rotating device 11 around a shaft 12a by an actuator (not shown) such as a motor. A mask bracket 13 is attached to the front side end of the housing 11 a of the holder rotating device 11. The mask bracket 13 receives the outer peripheral portion of the mask member 3 in the slit 13 a at the tip thereof and holds the mask member 3 in a state of facing the surface 1 a of the substrate 1 mounted on the holder 10.

【0018】ホルダ10の下方には蒸発物供給装置14
が設けられる。この蒸発物供給装置14は、不図示のイ
オン源から引き出されるイオンビームを薄膜材料からな
るターゲットTGに衝突させて薄膜材料の蒸発物Eを生
成するもので、ターゲットTGは不図示の水平移動機構
により水平方向(図6の矢印Y1方向)に移動可能とさ
れる。以上のホルダ10、ホルダ回転装置11、ホルダ
傾転装置12、マスクブラケット13およびターゲット
TGは、真空ポンプと接続された不図示のチャンバ内に
収容される。
Below the holder 10, an evaporator supply device 14 is provided.
Is provided. The vaporizer supply device 14 collides an ion beam extracted from an ion source (not shown) with a target TG made of a thin film material to generate a vaporized substance E of the thin film material. The target TG is a horizontal moving mechanism (not shown). Is movable in the horizontal direction (direction of arrow Y1 in FIG. 6). The holder 10, the holder rotating device 11, the holder tilting device 12, the mask bracket 13, and the target TG are housed in a chamber (not shown) connected to a vacuum pump.

【0019】以上の装置において、ホルダ10に基板1
をその中心が回転軸線CLと一致するように装着した上
で、ホルダ傾転装置12によりホルダ10およびホルダ
回転装置11を軸12aの回りに一定角度回転させて回
転軸線CLの傾きを調整するとともに、ターゲットTG
の水平位置を調節して蒸発物Eの飛来方向に対するホル
ダ10の回転軸線CLの傾斜角αを25゜に設定した。
なお、基板1は合成石英製で外径16mm、曲率半径50
mmの凸の球面鏡とした。この基板1は、2枚の球面鏡か
らなるシュバルツシルドミラーのうちの1枚であり、X
線の入射角の場所による相違から、図7に破線で示すよ
うにミラーの中心部で薄く周辺部で厚くなる膜厚分布が
要求されるものである。
In the above apparatus, the substrate 1 is placed on the holder 10.
Is mounted so that its center coincides with the rotation axis CL, and the holder tilting device 12 rotates the holder 10 and the holder rotating device 11 around the shaft 12a by a predetermined angle to adjust the tilt of the rotation axis CL. , Target TG
The horizontal position of was adjusted to set the inclination angle α of the rotation axis CL of the holder 10 to 25 ° with respect to the flying direction of the evaporated material E.
The substrate 1 is made of synthetic quartz and has an outer diameter of 16 mm and a radius of curvature of 50.
It was a convex spherical mirror of mm. This substrate 1 is one of the Schwarzschild mirrors composed of two spherical mirrors.
Due to the difference in the incident angle of the line depending on the location, as shown by the broken line in FIG. 7, a film thickness distribution is required in which the central part of the mirror is thin and the peripheral part is thick.

【0020】回転軸線CLの傾きを調整した後、図1に
示すものと同等のマスク部材3により基板1の表面1a
の上半分(図6において回転軸線CLよりも左側)を覆
い、チャンバ内を真空状態とした上で基板1をホルダ回
転装置11により回転軸線CLの回りに自転させつつ、
ターゲットTGにイオンビームを衝突させて蒸発物Eを
生成し、薄膜を形成した。この薄膜の形成は、2種類の
薄膜材料につき、いずれか一方の種類の膜が一定厚さに
形成される毎にターゲットTGを交換して繰り返し行な
うもので、本実施例ではニッケルクロム合金薄膜と炭素
薄膜とを、膜の周期長が基板1の中心で22.5とな
るように交互に50層ずつ形成した。
After adjusting the inclination of the rotation axis CL, the surface 1a of the substrate 1 is covered with a mask member 3 equivalent to that shown in FIG.
While covering the upper half (on the left side of the rotation axis CL in FIG. 6) of the chamber and evacuating the chamber 1 while rotating the substrate 1 around the rotation axis CL by the holder rotation device 11,
An ion beam was made to collide with the target TG to generate an evaporated material E, and a thin film was formed. This thin film is formed repeatedly for two kinds of thin film materials by exchanging the target TG every time one of the two kinds of thin films is formed to have a constant thickness. A carbon thin film and 50 layers were alternately formed so that the cycle length of the film was 22.5 Å at the center of the substrate 1.

【0021】以上の操作によって得られた多層膜の周期
長の分布を図7に白丸で示す。要求される膜厚分布から
のずれは0.2以内(中心部の周期長に対して1%以
内)に押えることができた。なお、以上と同一形状の基
板1に対し、図8に示すマスクのみで膜厚を制御する従
来方法を試みたところ、再現性のある膜厚分布を得るこ
とができなかった。本実施例により作成した多層膜ミラ
ーを用いてシュバルツシルドミラーを構成し、炭素のK
α特性X線(波長45)を用いてメッシュの拡大像を
得る実験を行なったところ、全体に渡って一様な明るさ
を持つ反射像が得られた。これは、多層膜ミラーの全面
で、膜の周期長がブラッグの式から定まる許容範囲内に
入っていることを示している。
The distribution of the period length of the multilayer film obtained by the above operation is shown by white circles in FIG. The deviation from the required film thickness distribution could be suppressed within 0.2 Å (within 1% of the cycle length of the central part). When the conventional method of controlling the film thickness with only the mask shown in FIG. 8 was tried on the substrate 1 having the same shape as the above, a reproducible film thickness distribution could not be obtained. A Schwarzschild mirror is constructed by using the multilayer film mirror prepared according to this embodiment, and K of carbon is used.
An experiment was performed to obtain a magnified image of the mesh using α characteristic X-rays (wavelength 45 Å ), and a reflection image with uniform brightness was obtained over the entire area. This indicates that the film cycle length is within the allowable range determined by the Bragg equation over the entire surface of the multilayer film mirror.

【0022】本実施例では、図1に示すものと同様のマ
スク部材3で基板1の表面1aの上半分(蒸発物Eに対
する入射角が小さくなる側)を覆って基板1の周辺部の
膜厚を増加せしめているが、本発明はこのような態様に
限らない。図7と反対に中心部で厚く周辺部で薄い膜厚
分布を必要とするときは、図6の例においてマスク部材
3を反対側へ取り付けて凸球面の下半分、すなわち基板
表面1aのうち蒸発物Eに対する入射角が大きくなる側
を覆えばよい。
In the present embodiment, the mask member 3 similar to that shown in FIG. 1 covers the upper half of the surface 1a of the substrate 1 (the side on which the incident angle with respect to the evaporated material E becomes smaller) to cover the film on the peripheral portion of the substrate 1. Although the thickness is increased, the present invention is not limited to such an aspect. Contrary to FIG. 7, when a thick film thickness in the central portion and a thin film thickness in the peripheral portion are required, the mask member 3 is attached to the opposite side in the example of FIG. 6 to evaporate the lower half of the convex spherical surface, that is, the substrate surface 1a. It suffices to cover the side on which the incident angle on the object E is large.

【0023】以上の実施例と請求項との対応において、
ホルダ10の回転軸線CLが基板の蒸発源に対する相対
回転の回転軸線を、ホルダ10、ホルダ回転装置11、
ホルダ傾転装置12およびターゲットTGの水平移動機
構が相対回転手段を、ターゲットTGが蒸発源を構成す
る。ただし、本発明はこのような態様に限定されず、例
えば真空蒸着によって薄膜を形成する場合には、蒸発源
となる薄膜材料をるつぼに投入して抵抗加熱や電子ビー
ム加熱により蒸発物を生成し、あるいはクヌードセンセ
ルを用いてもよい。スパッタリングの場合でも、イオン
ビームを衝突させる例に限らず、ターゲットに直流また
は高周波電流を印加してグロー放電を生じさせるように
してもよい。
In the correspondence between the above embodiment and the claims,
The rotation axis CL of the holder 10 is the rotation axis of relative rotation of the substrate with respect to the evaporation source, and the holder 10, the holder rotation device 11,
The holder tilting device 12 and the horizontal moving mechanism of the target TG form a relative rotating unit, and the target TG forms an evaporation source. However, the present invention is not limited to such an embodiment. For example, when a thin film is formed by vacuum vapor deposition, a thin film material serving as an evaporation source is put into a crucible to generate an evaporate by resistance heating or electron beam heating. Alternatively, Knudsen cell may be used. Even in the case of sputtering, not only an example of collision with an ion beam but also direct current or high frequency current may be applied to the target to generate glow discharge.

【0024】本発明は、X線用多層膜ミラーの製造に限
定されることなく、可視光や紫外光など他の波長域を対
象とする光学系の薄膜形成にも適用でき、さらには光学
系以外にも、膜厚分布を高精度に制御する必要があるあ
らゆる分野に適用できる。
The present invention is not limited to the manufacture of a multilayer mirror for X-rays, but can be applied to the formation of a thin film of an optical system for other wavelength regions such as visible light and ultraviolet light. Besides, it can be applied to all fields in which the film thickness distribution needs to be controlled with high accuracy.

【0025】[0025]

【発明の効果】以上説明したように、本発明の薄膜形成
方法によれば、膜厚分布をマスク部材の形状や取り付け
位置のみならず、基板の回転軸線の傾きによっても制御
できるので、マスク部材の形状誤差や取り付け位置誤差
が膜厚分布に与える影響がマスク部材のみで膜厚分布が
定まる従来例に比して小さくなり、従来よりも膜厚分布
を高精度に管理できるとともに、マスク部材の形状や取
り付け位置に関する誤差の許容範囲が拡大する。マスク
部材の形状に対する許容範囲の拡大に応じてマスク部材
の形状を単純化し、複数種類の基板に対するマスク部材
の共用化を図ることもできる。本発明の薄膜形成装置に
よれば、上述した薄膜形成方法を実施して膜厚分布の精
度が高い薄膜を容易に形成できる。また、本発明の光学
部品は高精度に管理された膜厚分布を有する。
As described above, according to the thin film forming method of the present invention, the film thickness distribution can be controlled not only by the shape and mounting position of the mask member but also by the inclination of the rotation axis of the substrate. The influence of the shape error and mounting position error on the film thickness distribution is smaller than the conventional example in which the film thickness distribution is determined only by the mask member, and the film thickness distribution can be managed with higher accuracy than before and the mask member The allowable range of error related to shape and mounting position is expanded. The shape of the mask member can be simplified in accordance with the expansion of the allowable range for the shape of the mask member, and the mask member can be commonly used for a plurality of types of substrates. According to the thin film forming apparatus of the present invention, it is possible to easily form a thin film having a high film thickness distribution accuracy by performing the above-described thin film forming method. In addition, the optical of the present invention
The component has a highly accurate controlled film thickness distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による薄膜形成方法を説明するための図
で、(a)は基板およびその周囲を基板の側方から見た
状態を示す図、(b)は同図(a)の矢印Ib方向から
見た状態を示す図。
1A and 1B are diagrams for explaining a thin film forming method according to the present invention, in which FIG. 1A is a diagram showing a state of a substrate and its surroundings viewed from a side of the substrate, and FIG. 1B is an arrow in FIG. The figure which shows the state seen from the Ib direction.

【図2】基板の回転軸線を蒸発物の飛来方向から傾けた
状態を示す図。
FIG. 2 is a diagram showing a state in which the rotation axis of the substrate is tilted from the flying direction of the evaporation material.

【図3】膜厚分布を計算するための座標系を示す図。FIG. 3 is a diagram showing a coordinate system for calculating a film thickness distribution.

【図4】図1からマスク部材を変更した例を示す図で、
(a)は基板およびその周囲を基板の側方から見た状態
を示す図、(b)は同図(a)の矢印IVb方向から見た
状態を示す図。
FIG. 4 is a view showing an example in which a mask member is changed from FIG.
(A) is a figure which shows the state which looked at a board | substrate and its periphery from the side of a board | substrate, (b) is a figure which shows the state seen from the arrow IVb direction of the same figure (a).

【図5】図1の他の例を示す図で、(a)は蒸発源を回
転軸線と直交する面内で移動させる場合を示す図、
(b)は蒸発源およびマスクを回転軸線の回りに同期さ
せて回転させる場合を示す図。
FIG. 5 is a diagram showing another example of FIG. 1, in which (a) is a diagram showing a case where the evaporation source is moved in a plane orthogonal to the rotation axis;
FIG. 6B is a diagram showing a case where the evaporation source and the mask are rotated in synchronization around the rotation axis.

【図6】実施例で用いる薄膜形成装置の主要部を示す
図。
FIG. 6 is a diagram showing a main part of a thin film forming apparatus used in Examples.

【図7】実施例で形成した膜厚の分布と理想的な膜厚分
布との関係を示す図。
FIG. 7 is a diagram showing a relationship between a film thickness distribution formed in the example and an ideal film thickness distribution.

【図8】従来の膜厚制御方法を説明するための図。FIG. 8 is a diagram for explaining a conventional film thickness control method.

【符号の説明】[Explanation of symbols]

1 基板 1a 基板表面 2 蒸発源 3,4 マスク部材 10 ホルダ 11 ホルダ回転装置 12 ホルダ傾転装置 13 マスクブラケット 14 蒸発物供給装置 CL 基板の回転軸線 E 蒸発物 TG ターゲット 1 substrate 1a Substrate surface 2 evaporation sources 3,4 Mask member 10 holder 11 Holder rotation device 12 Holder tilting device 13 Mask bracket 14 Evaporated matter supply device CL substrate rotation axis E evaporation TG target

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 G02B 1/10 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C23C 14/00-14/58 G02B 1/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蒸発源から飛来する薄膜材料の蒸発物
、基板に形成された球面、回転放物面、回転楕円面お
よび回転双曲面などの回転軸線を有する曲面に付着させ
て薄膜を形成する薄膜形成方法において、前記回転軸線を前記蒸発物の飛来方向から一定角度で傾
斜させ、前記基板を前記回転軸線 を中心に前記蒸発源に
対して相対回転させるとともに、前記蒸発源に対して一
定位置に保持されるマスク部材により前記曲面の一部を
覆うことを特徴とする薄膜形成方法。
1. An evaporation material of a thin film material coming from an evaporation source is treated as a spherical surface, a paraboloid of revolution, or an ellipsoid of revolution formed on a substrate.
And a thin film forming method for forming a thin film by adhering to a curved surface having a rotation axis such as a hyperboloid of rotation , the rotation axis is tilted at a constant angle from the flying direction of the evaporation material.
The substrate is inclined, the substrate is rotated relative to the evaporation source about the rotation axis, and a part of the curved surface is covered by a mask member held at a fixed position with respect to the evaporation source. Thin film forming method.
【請求項2】 蒸発源から飛来する薄膜材料の蒸発物
、基板に形成された球面、回転放物面、回転楕円面お
よび回転双曲面などの回転軸線を有する曲面に付着させ
て薄膜を形成する薄膜形成装置において、前記回転軸線を前記蒸発物の飛来方向から一定角度で傾
斜させ、前記基板を前記回転軸線 を中心に前記蒸発源に
対して相対回転させる相対回転手段と、前記回転軸線の傾斜角度を変更する角度変更手段と、 前記基板の相対回転時に前記蒸発源に対して一定位置に
保持されて前記曲面の一部を覆うマスク部材と、 を備え、所定膜厚分布となるように前記傾斜角度を設定
して薄膜を形成することを特徴とする薄膜形成装置。
2. The evaporation material of the thin film material coming from the evaporation source is converted into a spherical surface, a paraboloid of revolution, or an ellipsoid of revolution formed on the substrate.
And a thin film forming apparatus for forming a thin film by adhering to a curved surface having a rotation axis such as a rotating hyperboloid, the rotation axis is tilted at a constant angle from the flying direction of the vaporized material.
Is oblique, relative rotation means for relatively rotating with respect to the evaporation source said substrate about the axis of rotation, an angle changing means for changing the inclination angle of the rotation axis, to the evaporation source during the relative rotation of the substrate On the other hand, a mask member that is held at a fixed position and covers a part of the curved surface is set, and the tilt angle is set so as to obtain a predetermined film thickness distribution.
Thin film forming apparatus and forming a thin film by.
【請求項3】 請求項1の薄膜形成方法により製作され
た光学部品。
3. An optical component manufactured by the thin film forming method according to claim 1.
JP33474092A 1992-12-15 1992-12-15 Thin film forming method and apparatus, and optical component Expired - Fee Related JP3395224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33474092A JP3395224B2 (en) 1992-12-15 1992-12-15 Thin film forming method and apparatus, and optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33474092A JP3395224B2 (en) 1992-12-15 1992-12-15 Thin film forming method and apparatus, and optical component

Publications (2)

Publication Number Publication Date
JPH06179972A JPH06179972A (en) 1994-06-28
JP3395224B2 true JP3395224B2 (en) 2003-04-07

Family

ID=18280696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33474092A Expired - Fee Related JP3395224B2 (en) 1992-12-15 1992-12-15 Thin film forming method and apparatus, and optical component

Country Status (1)

Country Link
JP (1) JP3395224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161563A (en) * 2003-11-28 2005-06-23 Nippon Sheet Glass Co Ltd Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article
CN114606468B (en) * 2022-03-11 2023-03-31 业成科技(成都)有限公司 Non-spherical film sputtering system

Also Published As

Publication number Publication date
JPH06179972A (en) 1994-06-28

Similar Documents

Publication Publication Date Title
JP4474109B2 (en) Sputtering equipment
JP2003059821A (en) Optical imaging system having polarizer and quartz plate used therefor
US6425988B1 (en) Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy
US20020134668A1 (en) Apparatus and method for uniformly depositing thin films over substrates
CN115461682A (en) Extreme ultraviolet mask absorber material
JP3395224B2 (en) Thin film forming method and apparatus, and optical component
US5444753A (en) X-ray lithography mask, light exposure apparatus and process therefore
JP7447074B2 (en) Reducing defects in extreme ultraviolet mask blanks
JP2005026396A (en) Process and system for depositing multilayer film, multilayer film reflector, and photolithography system
JP3861329B2 (en) Vacuum thin film forming apparatus and reflector manufacturing method
US6010600A (en) Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy
JPH05126999A (en) Production of x-ray multilayered film reflecting mirror
Louis et al. Multilayer x-ray mirrors for the objective crystal spectrometer on the Spectrum Röntgen Gamma satellite
US5182763A (en) Reflection device
US20240167145A1 (en) Method for depositing a layer optical element, and optical assembly for the duv wavelength range
JP2752409B2 (en) Vacuum deposition equipment
KR20030014231A (en) Film forming method, multilayer film reflector manufacturing method, and film forming device
JP2004115861A (en) Film-forming method, multilayered-film-forming method, film-forming apparatus and euv exposure device
JP3384055B2 (en) Vacuum thin film forming equipment
JP2742122B2 (en) Illumination system and X-ray exposure apparatus
JP2005019485A (en) Method of correcting shape of optical element, optical element, and aligner
JP2003007585A (en) Optical component and projection aligner
US6402900B1 (en) System and method for performing sputter deposition using ion sources, targets and a substrate arranged about the faces of a cube
JP2006057119A (en) Film deposition system, film deposition method, optical component, and exposure device
JP2000147198A (en) Multi-layer film reflecting mirror and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees