JP2005161563A - Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article - Google Patents

Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article Download PDF

Info

Publication number
JP2005161563A
JP2005161563A JP2003400286A JP2003400286A JP2005161563A JP 2005161563 A JP2005161563 A JP 2005161563A JP 2003400286 A JP2003400286 A JP 2003400286A JP 2003400286 A JP2003400286 A JP 2003400286A JP 2005161563 A JP2005161563 A JP 2005161563A
Authority
JP
Japan
Prior art keywords
aspherical
substrate
spherical
shape
aspheric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003400286A
Other languages
Japanese (ja)
Inventor
Katsuhide Shinmo
勝秀 新毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003400286A priority Critical patent/JP2005161563A/en
Publication of JP2005161563A publication Critical patent/JP2005161563A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a plurality of aspheric shaped articles on a substrate with high interval precision and reduced irregularity, and an aspheric lens array reduced in aberration and uniform in characteristics using the aspheric shaped articles as molds. <P>SOLUTION: Particles 30 comprising a predetermined material are applied to the surface of a flat substrate 10 having a plurality of spherical or almost spherical recessed parts 20 formed to its surface from an inclined direction while rotating the flat substrate 10 around a rotary shaft 14 vertical to the surface of the flat substrate 10 under vacuum to form a film and the shape of the spherical or almost spherical recessed parts are processed to be adjusted to a desired aspheric shape. These aspheric recessed parts are used as molds to be filled with a transparent material having flowability and this transparent material is cured and released to form the aspheric lens array. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信、情報記録等の光学技術分野で使用される非球面レンズアレイに関し、とくにこの非球面レンズアレイを成形法によって作製する際、使用する転写型の製造方法に関する。   The present invention relates to an aspherical lens array used in the field of optical technology such as optical communication and information recording, and more particularly to a transfer mold manufacturing method used when the aspherical lens array is manufactured by a molding method.

光通信分野では近年の通信容量の増大に伴って、複数の伝送路をもちいて並列的に光信号を伝送する必要が生じている。また、光を用いた情報記録分野でも大量の情報を並列的に記録再生する必要がある。このような技術においては、複数の光ビームを同時に集光したりコリメートする必要があり、収差が小さく、特性の揃ったレンズが求められる。非球面レンズはこのような要求に応えるレンズであり、そのアレイ化が求められている。   In the optical communication field, with the recent increase in communication capacity, it is necessary to transmit optical signals in parallel using a plurality of transmission paths. In the field of information recording using light, it is necessary to record and reproduce a large amount of information in parallel. In such a technique, it is necessary to simultaneously collect or collimate a plurality of light beams, and a lens with small aberration and uniform characteristics is required. An aspherical lens is a lens that meets such requirements, and its array is required.

非球面レンズの製造方法は各種知られているが、複数のレンズを配列したレンズアレイの作製は、成形法によって行うのが効率的である。従来、レンズ成形用の転写型は、金属基板の切削加工(例えば、特許文献1参照)やガラス基板の湿式エッチング(例えば、特許文献2参照)によって作製されてきた。
特開2001−246674号公報 特開2001−277261号公報
Various methods for manufacturing an aspheric lens are known, but it is efficient to manufacture a lens array in which a plurality of lenses are arranged by a molding method. Conventionally, a transfer mold for lens molding has been manufactured by cutting a metal substrate (for example, see Patent Document 1) or wet etching of a glass substrate (for example, see Patent Document 2).
JP 2001-246684 A JP 2001-277261 A

ところが、上記の切削加工によるマイクロレンズ用成形型の作製は、自在に凹部の形状を制御できるが個々の凹部は独立して加工されるため、多数のマイクロレンズからなるマイクロレンズアレイの金型を作製する場合、レンズ間でレンズ径、レンズ間隔にばらつきが生じ易いという問題点があった。また、一度、加工した金型の形状を修正することは実質的に不可能であった。   However, the fabrication of the microlens mold by the above-described cutting process can freely control the shape of the recesses, but each recess is processed independently, so a microlens array mold made up of a large number of microlenses is used. In the case of manufacturing, there is a problem that the lens diameter and the lens interval are likely to vary between lenses. Moreover, it has been virtually impossible to correct the shape of the mold once processed.

また、湿式エッチング工程では基板は一般に等方的にエッチングされるため、球面状の凹部は作製できるが、非球面形状を形成することは困難であった。また、一度、加工した凹部の修正は追加エッチングによって行うことができるが、球面の半径を大きく調整すること以外は不可能であった。   Further, since the substrate is generally isotropically etched in the wet etching process, a spherical recess can be produced, but it is difficult to form an aspherical shape. Further, once the processed recess can be corrected by additional etching, it is impossible except for a large adjustment of the radius of the spherical surface.

本発明は、このような従来の問題点に着目してなされたもので、その目的は、非球面形状物、とくに複数の表面凹部を、高い間隔精度、小さいバラツキで作製する方法を提供することにある。また他の目的は、上記の方法で作製した非球面形状物を用いて、収差が小さく、特性が揃った非球面レンズアレイを提供することにある。   The present invention has been made paying attention to such conventional problems, and an object of the present invention is to provide a method of manufacturing an aspherical shaped object, particularly a plurality of surface recesses, with high spacing accuracy and small variations. It is in. Another object of the present invention is to provide an aspherical lens array with small aberration and uniform characteristics using the aspherical shape produced by the above method.

本発明の非球面形状物の製造方法では、表面に複数の球面状の凹部または凸部もしくはその双方を配列して設けた平板状基板を、真空中でその表面に垂直な回転軸の周りを回転させながら、基板の表面に対して傾斜した方向から物質粒子を入射させることにより、球面状の凹部または凸部の形状が所望の非球面形状となるように加工調整する。
物質粒子を入射して基板表面に堆積させるか、または物質粒子をイオンとし、これを入射して基板をエッチングすることにより、球面状の凹部または凸部の形状を加工調整するのが望ましい。
In the manufacturing method of an aspherical shape object of the present invention, a flat substrate having a plurality of spherical concave portions and / or convex portions arranged on the surface is arranged around a rotation axis perpendicular to the surface in a vacuum. The material particles are made incident from a direction inclined with respect to the surface of the substrate while being rotated, so that the shape of the spherical concave portion or convex portion is adjusted so as to be a desired aspherical shape.
It is desirable to process and adjust the shape of the spherical concave portion or convex portion by making the material particles incident and depositing on the substrate surface, or by making the material particles into ions and making them incident and etching the substrate.

球面状凹部または凸部を回転させ、かつ斜め方向から粒子を入射させることにより、異方性を有する成膜またはエッチングを行うことができ、球面から非球面への加工調整を行うことができる。   By rotating the spherical concave portion or convex portion and allowing the particles to enter from an oblique direction, film formation or etching having anisotropy can be performed, and processing adjustment from the spherical surface to the aspherical surface can be performed.

上記の球面状凹部は、基板の表面に設けた複数の円形開口を有するマスクを介して液相エッチングにより形成するのが望ましい。
フォトリソグラフィー技術でマスクを形成し、これを用いて液相エッチングを行えば、等方性材料の基板であれば容易に球面状凹部が得られ、かつ複数の凹部を形成してもその間隔精度が高く、また凹部の寸法ばらつきが低く抑えられる。ただしエッチング加工では必ずしも理想的な意味での球面が得られるとは限らない。本発明における球面とはこのような理想的な球面に対していくらか誤差をもつ略球面をも含むものとする。
The spherical recess is preferably formed by liquid phase etching through a mask having a plurality of circular openings provided on the surface of the substrate.
If a mask is formed by photolithography and liquid phase etching is performed using this mask, spherical recesses can be easily obtained with an isotropic material substrate. And the dimensional variation of the recesses can be kept low. However, in an etching process, a spherical surface in an ideal sense is not always obtained. The spherical surface in the present invention includes a substantially spherical surface having some error with respect to such an ideal spherical surface.

一方、球面状凸部は、上記のように形成された球面状凹部に流動性を有する材料を充填し硬化させた後、基板から引きはがすことにより球面状凹部を転写することによって作製することが望ましい。上記球面状凹部をそのまま転写するため、凹部における利点を凸部もそのまま有する。   On the other hand, the spherical convex portion can be produced by filling the spherical concave portion formed as described above with a fluid material and curing it, and then transferring the spherical concave portion by peeling it from the substrate. desirable. Since the spherical concave portion is transferred as it is, the convex portion has the advantage of the concave portion as it is.

本発明の非球面レンズアレイは上記の方法で形成した非球面形状物の表面凹部に流動性を有する透明材料を充填し、硬化させた後、引きはがすことにより作製する。非球面状凸部を一度転写して非球面状凹部を準備してから同様に作製してもよい。   The aspherical lens array of the present invention is produced by filling the surface concave portion of the aspherical shape formed by the above method with a fluid transparent material, curing it, and then peeling it off. Alternatively, the aspherical convex portion may be transferred once to prepare the aspherical concave portion, and then manufactured in the same manner.

非球面レンズは球面レンズにおける収差を低減するように設計できるが、本発明においては転写型となる凹部の形状が精密にかつ一括して修正できるため、複数のレンズからなるレンズアレイを作製しても個々のレンズの特性にばらつきが少なく、またアレイの配列精度を向上させることができる。   An aspherical lens can be designed to reduce aberrations in a spherical lens. However, in the present invention, the shape of the concave portion serving as a transfer mold can be accurately and collectively corrected, so a lens array comprising a plurality of lenses can be produced. However, there is little variation in the characteristics of the individual lenses, and the arrangement accuracy of the array can be improved.

本発明においては、球面状凹部または凸部を回転させながら異方性を有する成膜またはエッチングを行うことにより、球面から非球面への加工調整を行うため、非球面形状の微調整を行うことができる。またこの非球面状凹部または凸部を転写型として使用することにより、非球面レンズを容易に製造することができる。   In the present invention, fine adjustment of the aspherical shape is performed in order to adjust the processing from the spherical surface to the aspherical surface by performing film formation or etching having anisotropy while rotating the spherical concave portion or convex portion. Can do. Moreover, an aspherical lens can be easily manufactured by using this aspherical concave portion or convex portion as a transfer mold.

本発明による非球面状凹部または凸部を製造する方法の原理を説明する。
図1(a)に示すように複数の球面状凹部20を形成した基板10の表面に真空蒸着あるいはスパッタリングなどの方法で、例えば金属膜を成膜する。このとき、図2に示すように堆積される粒子(成膜粒子)30が基板表面の平坦部22に立てた垂線に対し角度θだけ傾斜して入射するように基板ステージ12を傾斜させる。
The principle of the method of manufacturing the aspherical concave portion or convex portion according to the present invention will be described.
As shown in FIG. 1A, for example, a metal film is formed on the surface of the substrate 10 on which a plurality of spherical recesses 20 are formed by a method such as vacuum evaporation or sputtering. At this time, as shown in FIG. 2, the substrate stage 12 is tilted so that the deposited particles (film-forming particles) 30 are incident at an angle θ with respect to the perpendicular standing on the flat portion 22 of the substrate surface.

このような配置で成膜を行うと、成膜粒子が入射する方向と一致する方向に法線をもつ凹部表面にもっとも厚い膜厚が得られ、蒸着源に対して影になる部分にはほとんど成膜されない。このため飛来する成膜粒子の入射方向に対して傾斜した面に付着する膜の膜厚は分布することになる。   When the film is formed in such an arrangement, the thickest film thickness is obtained on the concave surface having a normal line in the direction that coincides with the direction in which the film forming particles are incident, and almost no shadow is formed on the portion that is shadowed with respect to the evaporation source. No film is formed. For this reason, the film thickness of the film adhering to the surface inclined with respect to the incident direction of the flying film forming particles is distributed.

次に基板を基板面に垂直な回転軸14の周りに一定角度回転させた後、同様に成膜すると、1回目と同様の膜厚分布を持った膜が1回目の成膜で形成された膜上に回転角分だけずれてさらに形成される。これを繰り返すと球面状凹部の最底部には単純に初回に形成された膜厚の成膜回数倍の膜厚が得られ、その他の部分では膜厚は回数毎に異なるので分布する。   Next, after the substrate was rotated by a certain angle around the rotation axis 14 perpendicular to the substrate surface and then formed in the same manner, a film having a film thickness distribution similar to the first film was formed in the first film formation. It is further formed on the film by shifting by the rotation angle. If this process is repeated, a film thickness that is simply the number of film formation times that of the first film formation is obtained at the bottom of the spherical concave portion, and the film thickness varies in the other portions because the film thickness varies with the number of times.

回転角を変えて多数回成膜を繰り返すと、球面状凹部に成膜される膜の膜厚は最底部を中心に対称な分布に近づく。基板を連続的に回転しながら成膜しても同様である。したがって球面状凹部表面の膜厚分布は成膜時の基板傾斜角度、成膜速度、成膜時間、基板の回転角度刻みまたは回転速度、成膜粒子の指向性等の関係により決定され、これらのパラメータを変更することにより非球面形状を自在に制御可能である。なお、成膜粒子の指向性は成膜槽内の気圧の調整により制御できる。   When film formation is repeated many times while changing the rotation angle, the film thickness of the film formed on the spherical concave portion approaches a symmetric distribution around the bottom. The same applies even when the film is formed while the substrate is continuously rotated. Therefore, the film thickness distribution on the spherical concave surface is determined by the relationship between the substrate tilt angle during film formation, the film formation speed, the film formation time, the rotation angle increment or rotation speed of the substrate, the directivity of the film formation particles, etc. The aspherical shape can be freely controlled by changing the parameters. The directivity of the film formation particles can be controlled by adjusting the atmospheric pressure in the film formation tank.

また、ある入射角度で所定の膜厚まで回転させながら成膜した後、入射角を変更した後、再度所定の膜厚まで回転させながら成膜することも当然可能であり、これにより、より複雑な非球面形状を形成できる。   It is also possible to form a film while rotating it to a predetermined film thickness at a certain incident angle, and after changing the incident angle, it is possible to form a film while rotating it again to a predetermined film thickness. A non-spherical shape can be formed.

さらに図1(b)に示すような基板11表面に形成した球面状凸部21に対しても一定の角度から粒子を入射させて成膜を行えば、膜厚は分布する。したがって非球面凸部を形成することもできる。また基板表面に対して球面状凹部と凸部の双方が配列された場合も対象とすることができる。   Further, if the film is formed by making particles incident on the spherical convex portion 21 formed on the surface of the substrate 11 as shown in FIG. 1B from a certain angle, the film thickness is distributed. Therefore, an aspherical convex part can also be formed. Further, a case where both spherical concave portions and convex portions are arranged with respect to the substrate surface can be targeted.

具体的な成膜条件の例を説明する。
球面状凹部を形成した基板表面に金(Au)膜を真空蒸着により成膜する。基板は成膜粒子の入射角度θが45°となるように真空蒸着槽内に設置する。成膜は膜厚10nmを成膜するごとに基板を30°ずつ回転して行う。槽内を高真空にして指向性を高めた状態で蒸着する場合を想定すると、12回成膜後の各位置での法線方向の膜厚分布はおよそ以下のように算出される。
An example of specific film forming conditions will be described.
A gold (Au) film is formed by vacuum deposition on the surface of the substrate on which the spherical recess is formed. The substrate is placed in a vacuum vapor deposition tank so that the incident angle θ of the film forming particles is 45 °. Film formation is performed by rotating the substrate by 30 ° every time a film thickness of 10 nm is formed. Assuming the case where vapor deposition is performed in a state where the inside of the tank is highly vacuumed and the directivity is enhanced, the film thickness distribution in the normal direction at each position after the 12th film formation is calculated as follows.

球面凹部最底部 (10nm/√2)×12回=85nm
基板表面(平坦部分) (10nm/√2)×12回=85nm
球面凹部内(最底部から45°の位置)
10nm×1回+(10nm×√3/2)×2回+(10nm/2)×2回
=37nm
Spherical concave bottom (10nm / √2) x 12 times = 85nm
Substrate surface (flat part) (10 nm / √2) × 12 times = 85 nm
Inside spherical recess (position 45 ° from the bottom)
10 nm × 1 time + (10 nm × √3 / 2) × 2 times + (10 nm / 2) × 2 times = 37 nm

したがって本条件では、球面状凹部内において、最底部からそれより浅い部分に向かって膜厚が薄くなるように膜厚が分布したAu膜が得られ、球面状凹部は非球面状凹部に変換される。   Therefore, under this condition, an Au film is obtained in which the film thickness is distributed so that the film thickness decreases from the bottom to the shallower part in the spherical recess, and the spherical recess is converted to an aspheric recess. The

この非球面状凹部を型として転写成形すると当初の球面に対し、山が低く抑えられた凸部をもつ非球面形状物が作製できる。このようにして形成された形状物が、透明材料で形成されている場合は、そのまま非球面レンズとなる。   When transfer molding is performed using this aspherical concave portion as a mold, an aspherical shape having a convex portion with a crest suppressed to a lower level than the original spherical surface can be produced. When the shape formed in this way is formed of a transparent material, it becomes an aspheric lens as it is.

また作製した凸部をもつ非球面形状物を転写型として用いることにより、非球面凹レンズを作製することも可能である。
あるいは作製した凸部をもつ非球面形状物を転写して一旦、非球面凹部を形成し、これを再転写して非球面レンズを形成することも必要に応じて可能である。
Moreover, it is also possible to produce an aspherical concave lens by using the produced aspherical object having a convex part as a transfer mold.
Alternatively, it is also possible to transfer the produced aspherical shape having a convex portion to once form an aspherical concave portion and then retransfer this to form an aspherical lens as necessary.

以上は基板表面に膜厚の分布した膜を成膜することにより球面形状を微調整する方法について説明したが、基板表面を異方性をもったエッチングにより削る手段によっても同様に形状の微調整が可能である。電荷をもつイオンは電界により加速することにより、一定方向から基板に入射することができるので、これを用いた気相エッチングは本発明に好適である。
以下に本発明を実施例に基づいて説明する。
The method for finely adjusting the spherical shape by forming a film with a distributed film thickness on the substrate surface has been described above. However, the shape can be similarly finely adjusted by means of etching the substrate surface by anisotropic etching. Is possible. Since charged ions can be incident on the substrate from a certain direction by being accelerated by an electric field, vapor-phase etching using the ions is suitable for the present invention.
The present invention will be described below based on examples.

初めに、石英ガラス基板表面にクロム(Cr)膜を成膜し、フォトリソグラフィーによるパターニングにより、10μm径の開口を250μm間隔で設けた。次にこのCr膜マスクを介してフッ酸水溶液によりガラス基板をエッチングし、複数の球面状凹部を形成した。   First, a chromium (Cr) film was formed on the surface of a quartz glass substrate, and openings having a diameter of 10 μm were provided at intervals of 250 μm by patterning by photolithography. Next, the glass substrate was etched with a hydrofluoric acid aqueous solution through this Cr film mask to form a plurality of spherical recesses.

次に真空蒸着によりAu膜を成膜する。基板は蒸着源から成膜粒子が入射する方向に対して45°の角度で傾斜させた基板ステージに固定する。基板ステージはその表面に垂直な回転軸に固定され、所定角度の回転が可能な機構を備えている。成膜は成膜粒子が垂直入射する面での膜厚が10nmとなる成膜時間を単位として行った。この単位成膜時間ごとに基板を30°ずつ回転させて成膜を行ったところ、球面状凹部の底および凹部の形成されていない基板表面の平坦部分で厚く、凹部側面で薄い膜厚分布を得た。   Next, an Au film is formed by vacuum deposition. The substrate is fixed to a substrate stage inclined at an angle of 45 ° with respect to the direction in which the film forming particles are incident from the vapor deposition source. The substrate stage is fixed to a rotation axis perpendicular to the surface thereof and includes a mechanism capable of rotating at a predetermined angle. The film formation was performed in units of film formation time for which the film thickness on the surface on which the film formation particles are perpendicularly incident becomes 10 nm. When the film was formed by rotating the substrate by 30 ° for each unit film formation time, the distribution was thick at the bottom of the spherical recess and the flat portion of the substrate surface where no recess was formed, and thin at the side of the recess. Obtained.

元の球面状凹部を参照球面とし、得られた非球面状凹部の参照球面に対するズレを3次元形状測定機により評価したところ、半球面の底と縁の中間部分の側面に当たる部分が凹んだ非球面形状が得られていることが確認された。   The original spherical concave portion was used as a reference spherical surface, and the displacement of the obtained aspherical concave portion with respect to the reference spherical surface was evaluated by a three-dimensional shape measuring machine. It was confirmed that a spherical shape was obtained.

実施例1に示したのと同様の手順によりエッチングを行い、複数の球面状凹部を形成した。この凹部に紫外線硬化性の流動性樹脂を充填し、石英ガラス基板を張り合わせた後、硬化させ、硬化した樹脂を基板ごと引きはがして複数の球面状凸部を形成した。   Etching was performed in the same procedure as shown in Example 1 to form a plurality of spherical recesses. The concave portion was filled with an ultraviolet curable fluid resin, bonded to a quartz glass substrate, cured, and the cured resin was peeled off together with the substrate to form a plurality of spherical convex portions.

次に得られた球面状凸部に真空蒸着によりAu膜を成膜する。基板は実施例1と同様に蒸着源から成膜粒子が入射する方向に対して45°の角度で傾斜させた基板ステージに固定する。実施例1と同様の条件で成膜を行ったところ、球面状凸部の頂上および凸部の形成されていない基板表面の平坦部分で厚く、凸部側面で薄い膜厚分布を得た。   Next, an Au film is formed on the obtained spherical convex portion by vacuum deposition. The substrate is fixed to a substrate stage inclined at an angle of 45 ° with respect to the direction in which the film forming particles enter from the vapor deposition source, as in Example 1. When film formation was performed under the same conditions as in Example 1, a thick film thickness distribution was obtained on the top of the spherical convex portion and on the flat portion of the substrate surface where the convex portion was not formed, and on the convex portion side surface.

参照球面に対するズレを評価したところ、半球面の頂上と縁の中間部分の側面に当たる部分が凹んだ非球面形状が得られていることが確認された。   When the deviation with respect to the reference spherical surface was evaluated, it was confirmed that an aspherical shape in which a portion corresponding to the top surface of the hemispherical surface and the side surface of the intermediate portion of the edge was recessed was obtained.

実施例1と同様に石英ガラス基板をエッチングし、複数の球面状凹部を形成した。
次に反応性イオンビームエッチングによりこの球面状凹部を追加工する。エッチングガスとしては4フッ化炭素CF4を用いた。プラズマを発生させるための高周波電源とは独立な電源により基板にも高周波を印加することにより、イオンの方向性を高めることができる。基板はイオン源からイオンが入射する方向に対して60°の角度で傾斜させた基板ステージに固定する。基板ホルダーはその表面に垂直な回転軸に固定され、所定角度の回転が可能な機構を備えており、基板を30°ずつ回転させながら、エッチング速度を200nm/分になるように高周波電力を調整してエッチングを行った。
The quartz glass substrate was etched in the same manner as in Example 1 to form a plurality of spherical recesses.
Next, this spherical recess is additionally processed by reactive ion beam etching. As an etching gas, carbon tetrafluoride CF 4 was used. By applying a high frequency to the substrate by a power source independent of the high frequency power source for generating plasma, the directionality of ions can be enhanced. The substrate is fixed to a substrate stage inclined at an angle of 60 ° with respect to the direction in which ions are incident from the ion source. The substrate holder is fixed to a rotation axis perpendicular to the surface of the substrate holder and has a mechanism capable of rotating at a predetermined angle. The high frequency power is adjusted so that the etching rate is 200 nm / min while rotating the substrate by 30 °. Etching was performed.

強い指向性をもつエッチングにより、球面状凹部の側面を凹ませせるように加工することができる。得られた形状と参照球面を比較すると非球面形状が得られていることを確認できた。   By etching with strong directivity, the side surface of the spherical recess can be processed to be recessed. When the obtained shape and the reference sphere were compared, it was confirmed that an aspheric shape was obtained.

つぎにコリメータレンズアレイとして使用する非球面レンズアレイの作製について説明する。
非球面レンズの非球面形状は、一般に次式で表される。
Z=Cr2/{1+(1−C221/2}+AD・r4+AE・r6+・・
ここで、rはレンズの中心からの半径方向の距離で、Zはサグ量、すなわちrの位置におけるレンズ表面の、レンズ頂点から光軸方向の距離を示している。また光軸上の曲率半径をRDとすると、C=1/RDであり、AD、AE、…は高次係数である。ここで、AD、AE、…の高次係数がすべて0の場合、すなわち上式右辺第1項のみで表されるZは球面を示している。
Next, production of an aspheric lens array used as a collimator lens array will be described.
The aspherical shape of the aspherical lens is generally expressed by the following equation.
Z = Cr 2 / {1+ (1−C 2 r 2 ) 1/2 } + AD · r 4 + AE · r 6 + ···
Here, r is a distance in the radial direction from the center of the lens, and Z is a sag amount, that is, a distance in the optical axis direction from the lens vertex of the lens surface at the position of r. If the radius of curvature on the optical axis is R D , C = 1 / R D , and AD, AE,. Here, when all the higher-order coefficients of AD, AE,... Are 0, that is, Z represented only by the first term on the right side of the above expression indicates a spherical surface.

本設計例では、石英ガラス基板(屈折率1.457)上に屈折率1.41の樹脂でレンズを形成することを前提とする。高次項を6次の項まで考慮すると、コリメータとしてもっとも高い結合効率を得るためには、
D=1.0619mm
AD=−0.05665mm-3
AE=−0.0526mm-5
とするのが適当である。この非球面形状を、球面(AD=AE=0)の場合と比較して図3に示す。両曲線の差分が球面から成膜によって調整する膜厚に相当する、直径0.4mmのレンズを作製することを考えて必要な膜厚分布を求めると図4に示すようになる。球面状凹部の底部に約90nmの膜を成膜すればよいことがわかる。
In this design example, it is assumed that a lens is formed of a resin having a refractive index of 1.41 on a quartz glass substrate (refractive index of 1.457). In order to obtain the highest coupling efficiency as a collimator, considering the higher order terms up to the sixth order term,
R D = 1.0619 mm
AD = −0.05665 mm −3
AE = −0.0526 mm -5
Is appropriate. This aspherical shape is shown in FIG. 3 in comparison with a spherical surface (AD = AE = 0). FIG. 4 shows a necessary film thickness distribution in consideration of manufacturing a lens having a diameter of 0.4 mm in which the difference between the two curves corresponds to the film thickness adjusted by film formation from the spherical surface. It can be seen that a film of about 90 nm may be formed on the bottom of the spherical recess.

そこでまず、実施例1と同様に石英ガラス基板をエッチングし、直径0.4mmの球面状凹部を8個、1次元アレイ状を形成した。次にこの基板を真空蒸着装置の基板ステージに固定する。この基板ステージは蒸着源から成膜粒子が入射する方向に対して45°の角度で傾斜させてその表面に垂直な回転軸に固定されている。Au膜の成膜は上記同様に成膜粒子が垂直入射する面での膜厚が10nmとなる成膜時間を単位として行い、単位成膜時間ごとに基板を30°ずつ回転させて13回行った。これにより、ほぼ図4に示す膜厚分布が得られる。   Therefore, first, the quartz glass substrate was etched in the same manner as in Example 1 to form eight spherical recesses having a diameter of 0.4 mm to form a one-dimensional array. Next, this substrate is fixed to a substrate stage of a vacuum deposition apparatus. This substrate stage is tilted at an angle of 45 ° with respect to the direction in which the film forming particles are incident from the vapor deposition source, and is fixed to a rotation axis perpendicular to the surface thereof. As described above, the Au film is formed in units of a film formation time in which the film thickness is 10 nm on the surface where the film formation particles are perpendicularly incident, and the substrate is rotated by 30 ° for each unit film formation time and is performed 13 times. It was. Thereby, the film thickness distribution shown in FIG. 4 is obtained.

つぎに上記のように形成された非球面凹部を成形型として使用して非球面レンズを成形により作製した。まず、この成形型の凹部に離型剤を塗布したのち、硬化後の屈折率が1.41となる紫外線硬化樹脂を充填する。つぎに厚さ1.0mmの石英ガラス基板を成形型上方から押し当て、その状態のまま紫外線を照射する。樹脂が硬化したのち、石英ガラス基板ごと成形型から離型する。以上により図5に示すように実質的に上記の非球面形状をもつ非球面レンズ素子50が石英ガラス基板52上に配列された非球面レンズアレイ55が形成できる。   Next, an aspheric lens was fabricated by molding using the aspheric recess formed as described above as a molding die. First, after applying a release agent to the concave portion of the mold, an ultraviolet curable resin having a refractive index after curing of 1.41 is filled. Next, a quartz glass substrate having a thickness of 1.0 mm is pressed from above the mold and irradiated with ultraviolet rays in that state. After the resin is cured, the quartz glass substrate is released from the mold. As described above, an aspherical lens array 55 in which the aspherical lens elements 50 having the aspherical shape described above are arranged on the quartz glass substrate 52 can be formed as shown in FIG.

得られた非球面レンズアレイを用いてコリメータを構成し、その特性を評価した。単一モード光ファイバと作製した非球面レンズからなるコリメータを一対、光ファイバの光軸が一致するように配置し、2つの非球面レンズ間をコリメート光が伝搬するように調整した。この状態で光ファイバ間の挿入損失を評価すると約0.2dBと充分小さな値が得られた。   A collimator was constructed using the obtained aspheric lens array, and its characteristics were evaluated. A pair of collimators composed of a single-mode optical fiber and a fabricated aspheric lens were arranged so that the optical axes of the optical fibers coincided, and adjusted so that collimated light propagated between the two aspheric lenses. When the insertion loss between the optical fibers was evaluated in this state, a sufficiently small value of about 0.2 dB was obtained.

初めに球面状凸形状が準備されている場合には、これから出発してもよい。この凸形状に対して異方性を有する成膜またはエッチングを行うことにより、非球面状凸部を形成し、これを転写して非球面状凹部を形成する。この凹部を転写型とすれば非球面レンズを形成することが可能である。   If a spherical convex shape is prepared at the beginning, the process may be started. By performing film formation or etching having anisotropy on this convex shape, an aspherical convex portion is formed and transferred to form an aspherical concave portion. If this recess is a transfer mold, an aspherical lens can be formed.

また上記の非球面レンズの製造方法はいずれも凸レンズの形成について説明した。しかし非球面状凸部を転写型として凹レンズも同様に形成できることは言うまでもない。   In addition, the above-described aspherical lens manufacturing methods all described the formation of a convex lens. However, it goes without saying that a concave lens can be formed in the same manner by using an aspherical convex portion as a transfer mold.

本発明の方法により、球面状凹部または凸部の表面に成膜される膜の膜厚分布は、成膜時の基板傾斜角度、成膜速度、成膜時間、基板の回転角度刻みまたは回転速度、成膜粒子の指向性等の関係により決定されるので、これらのパラメータを変更することにより非球面形状を自在に制御可能なことは上述の通りである。   According to the method of the present invention, the film thickness distribution of the film formed on the surface of the spherical concave portion or convex portion is determined by the substrate tilt angle, the film forming speed, the film forming time, the rotation angle increment or the rotation speed of the substrate at the time of film forming. As described above, the aspherical shape can be freely controlled by changing these parameters since it is determined by the relationship such as the directivity of the deposited particles.

また、ある入射角度で所定の膜厚まで回転させながら成膜した後、入射角を変更した後、再度所定の膜厚まで回転させながら成膜することも可能であり、これにより、より複雑な非球面形状を形成できる。
したがって、本発明の方法は、回転対称な形状を容易に修正することができるので、精密な形状精度を必要とする加工において、形状の修正を行う場合に利用が可能である。
It is also possible to form a film while rotating it to a predetermined film thickness at a certain incident angle, and after changing the incident angle, it is possible to form a film while rotating it again to a predetermined film thickness. An aspherical shape can be formed.
Therefore, the method of the present invention can easily correct a rotationally symmetric shape, and thus can be used when correcting a shape in processing that requires precise shape accuracy.

本発明に使用する球面状凹部(a)または凸部(b)を有する基板の断面模式図である。It is a cross-sectional schematic diagram of the board | substrate which has a spherical recessed part (a) or convex part (b) used for this invention. 本発明の非球面形状物を製造する装置の主要部を示す図である。It is a figure which shows the principal part of the apparatus which manufactures the aspherical shaped object of this invention. 非球面レンズの曲面の一例を示す図である。It is a figure which shows an example of the curved surface of an aspherical lens. 球面凹部をレンズ用非球面凹部に修正するために必要な膜厚分布の一例を示す図である。It is a figure which shows an example of film thickness distribution required in order to correct a spherical recessed part to the aspherical recessed part for lenses. 非球面レンズアレイの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of an aspherical lens array.

符号の説明Explanation of symbols

10、11 基板
12 基板ステージ
14 回転軸
20 球面状凹部
21 球面状凸部
22 平坦部
30 成膜粒子
50 非球面レンズ素子
55 非球面レンズアレイ
10, 11 Substrate 12 Substrate stage 14 Rotating shaft 20 Spherical concave portion 21 Spherical convex portion 22 Flat portion 30 Film forming particle 50 Aspherical lens element 55 Aspherical lens array

Claims (7)

表面に複数の球面状の凹部または凸部もしくはその双方を配列して設けた平板状基板を、真空中でその表面に垂直な回転軸の周りを回転させながら、前記基板の表面に対して傾斜した方向から物質粒子を入射させることにより、前記球面状の凹部または凸部の形状が所望の非球面形状となるように加工調整することを特徴とする非球面形状物の製造方法。   A flat substrate provided with a plurality of spherical recesses and / or projections arranged on the surface is inclined with respect to the surface of the substrate while rotating around a rotation axis perpendicular to the surface in a vacuum. A manufacturing method of an aspherical shape product, characterized in that processing particles are adjusted so that the shape of the spherical concave portion or convex portion becomes a desired aspherical shape by causing the material particles to enter from the above-described direction. 前記物質粒子を入射させて前記基板の表面に堆積させることを特徴とする請求項1に記載の非球面形状物の製造方法。   The method of manufacturing an aspherical object according to claim 1, wherein the substance particles are incident and deposited on the surface of the substrate. 前記物質粒子はイオンであり、該イオンを入射させて前記基板をエッチングすることを特徴とする請求項1に記載の非球面形状物の製造方法。   2. The method of manufacturing an aspherical object according to claim 1, wherein the substance particles are ions, and the ions are incident to etch the substrate. 前記球面状の凹部は、前記基板の表面に設けられた複数の円形開口を有するマスクを介して液相エッチングにより形成されたことを特徴とする請求項1、2または3に記載の非球面形状物の製造方法。   4. The aspherical shape according to claim 1, wherein the spherical concave portion is formed by liquid phase etching through a mask having a plurality of circular openings provided on the surface of the substrate. Manufacturing method. 前記球面状の凸部は、基板の表面に設けられた複数の円形開口を有するマスクを介して液相エッチングにより形成された球面状の凹部に流動性を有する材料を充填し硬化させた後、前記基板から引きはがすことにより前記球面状の凹部を転写して形成したことを特徴とする請求項1、2または3に記載の非球面形状物の製造方法。   The spherical convex portion is filled with a fluid material in a spherical concave portion formed by liquid phase etching through a mask having a plurality of circular openings provided on the surface of the substrate, and then cured. 4. The method of manufacturing an aspherical object according to claim 1, wherein the spherical concave portion is transferred and formed by being peeled off from the substrate. 請求項1、2または3に記載の製造方法により製造された非球面形状物の表面凹部に流動性を有する透明材料を充填し硬化させた後、引きはがすことによって前記表面凹部の形状が転写されたことを特徴とする非球面レンズアレイ。   After filling the surface concave portion of the aspherical shape manufactured by the manufacturing method according to claim 1, 2 or 3 with a transparent material having fluidity and curing, the shape of the surface concave portion is transferred by peeling. An aspheric lens array characterized by that. 請求項1、2または3に記載の製造方法により製造された非球面形状物の表面凸部を流動性を有する材料によって覆い硬化させた後、引きはがすことによって前記表面凸部の形状が転写された非球面状凹部に流動性を有する透明材料を充填し硬化させた後、引きはがすことによって前記非球面状凹部の形状が転写されたことを特徴とする非球面レンズアレイ。
The shape of the surface convex portion is transferred by peeling and peeling the surface convex portion of the aspherical shape manufactured by the manufacturing method according to claim 1, 2 or 3 with a material having fluidity. An aspherical lens array in which the shape of the aspherical concave portion is transferred by filling the aspherical concave portion with a transparent material having fluidity and curing, followed by peeling.
JP2003400286A 2003-11-28 2003-11-28 Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article Pending JP2005161563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400286A JP2005161563A (en) 2003-11-28 2003-11-28 Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400286A JP2005161563A (en) 2003-11-28 2003-11-28 Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article

Publications (1)

Publication Number Publication Date
JP2005161563A true JP2005161563A (en) 2005-06-23

Family

ID=34724602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400286A Pending JP2005161563A (en) 2003-11-28 2003-11-28 Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article

Country Status (1)

Country Link
JP (1) JP2005161563A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581515A (en) * 1981-06-29 1983-01-06 Ricoh Co Ltd Preparation of metal mold for forming non-spherical surface
JPH06179972A (en) * 1992-12-15 1994-06-28 Nikon Corp Thin film forming method and device therefor
JP2003104736A (en) * 2001-09-28 2003-04-09 Konica Corp Forming mold for forming mold for forming optical element, forming mold for forming optical element, optical element and method for manufacturing forming mold for forming optical element
JP2003211462A (en) * 2002-01-18 2003-07-29 Nippon Sheet Glass Co Ltd Method for manufacturing aspherical surface structure, molding tool for aspherical surface lens array and aspherical surface lens array
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, its manufacturing method and optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581515A (en) * 1981-06-29 1983-01-06 Ricoh Co Ltd Preparation of metal mold for forming non-spherical surface
JPH06179972A (en) * 1992-12-15 1994-06-28 Nikon Corp Thin film forming method and device therefor
JP2003104736A (en) * 2001-09-28 2003-04-09 Konica Corp Forming mold for forming mold for forming optical element, forming mold for forming optical element, optical element and method for manufacturing forming mold for forming optical element
JP2003211462A (en) * 2002-01-18 2003-07-29 Nippon Sheet Glass Co Ltd Method for manufacturing aspherical surface structure, molding tool for aspherical surface lens array and aspherical surface lens array
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, its manufacturing method and optical device

Similar Documents

Publication Publication Date Title
US7329372B2 (en) Method for producing aspherical structure, and aspherical lens array molding tool and aspherical lens array produced by the same method
JP5024047B2 (en) Manufacturing method of microstructure
US7351520B2 (en) Micro-lens array and manufacturing method thereof
KR100537505B1 (en) Fabrication method of microlens array
CN116256829A (en) Preparation method of diffraction grating waveguide of near-eye display
WO2007020967A1 (en) Mold for microlens and process for producing the same
US20070194472A1 (en) Process of fabricating microlens mold
US7145860B2 (en) Method for preparing an optical device using position markers around an optical lens and a light barrier film
US6950239B2 (en) Method for making micro-lens array
US6913705B2 (en) Manufacturing method for optical integrated circuit having spatial reflection type structure
JP2004012856A (en) Optical element, mold for optical element, and method for manufacturing optical element
WO2006022162A1 (en) Method for fabricating surface emission laser light source and surface emission laser light source
US20190339423A1 (en) Optical component and method of manufacturing optical component
JP5182097B2 (en) Manufacturing method of optical waveguide module
WO2009069940A1 (en) Device and method for fabricating lens
JP2005161563A (en) Manufacturing method for aspheric shaped article and aspheric lens array formed by transferring aspheric shaped article
JP3885631B2 (en) Method of manufacturing aspheric lens mold, aspheric lens array mold manufactured by the method, and aspheric lens array
JP2003211462A (en) Method for manufacturing aspherical surface structure, molding tool for aspherical surface lens array and aspherical surface lens array
US9310528B2 (en) Optical element, imaging apparatus including the same, and method for fabricating the same
JPS6146408B2 (en)
US7003372B2 (en) Appearance processing method and aspheric lens fabricating method using the same
JP3726790B2 (en) Manufacturing method of micro lens array
KR20050088064A (en) Fabrication method of microlens array
JP2021532407A (en) A method for manufacturing a structure having at least one curved pattern
JP4534709B2 (en) Diamond parts manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014