WO2006022162A1 - Method for fabricating surface emission laser light source and surface emission laser light source - Google Patents

Method for fabricating surface emission laser light source and surface emission laser light source Download PDF

Info

Publication number
WO2006022162A1
WO2006022162A1 PCT/JP2005/014909 JP2005014909W WO2006022162A1 WO 2006022162 A1 WO2006022162 A1 WO 2006022162A1 JP 2005014909 W JP2005014909 W JP 2005014909W WO 2006022162 A1 WO2006022162 A1 WO 2006022162A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
emitting laser
laser light
refractive index
light source
Prior art date
Application number
PCT/JP2005/014909
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyuki Ohnoki
Atsushi Sugiyama
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2006022162A1 publication Critical patent/WO2006022162A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the present invention relates to a method for manufacturing a surface emitting laser light source and a surface emitting laser light source.
  • a vertical cavity surface emitting laser element having a structure that emits laser light perpendicular to a substrate surface can be integrated with other elements at high density on the substrate.
  • the emission angle of the surface-emitting laser element is normally 6 to 7 degrees (in single mode), which is narrower than that of the edge-emitting laser element (about 30 degrees). Therefore, it is expected to be used in the future as a light source for optical integrated circuits. Further, various studies have been made on the laser light emission conditions of the surface emitting laser element (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-284725
  • Patent Document 2 JP 2002-26452 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-242303
  • the surface emitting laser element can obtain laser light having a narrower emission angle than the edge emitting laser element.
  • the surface emitting laser element can obtain laser light having a narrower emission angle than the edge emitting laser element.
  • a combination of a surface emitting laser element and a microlens is studied.
  • Patent Document 1 a microlens is formed by extracting a resin with a nozzle on the upper part of a laser emitting unit and hardening the resin so as to have a convex lens shape.
  • the diameter of the laser emitting part is several / zm, it is difficult to align the position where the nozzles are used to draw the grease, and it is also difficult to form a microlens having a diameter of several meters.
  • one nozzle is used for each. This method of forming the coconut oil is not suitable for mass production.
  • Patent Document 2 a microlens having dielectric force is applied to a surface emitting laser light source.
  • the specific lens structure and lens manufacturing method have been fully studied.
  • Patent Document 3 a quartz lens is melted with heat to form a microlens! /
  • the melting temperature of quartz glass is 1000 ° C or higher, the semiconductor substrate is thermally damaged and cannot be applied to a surface emitting laser light source.
  • the present invention has been made to solve the above-described problems, and provides a surface emitting laser light source manufacturing method and a surface emitting laser light source capable of obtaining laser light under desired emission conditions. Objective.
  • a method of manufacturing a surface emitting laser light source includes a first dielectric on a light emitting surface of a vertical cavity surface emitting laser element formed on a substrate.
  • a first dielectric laminating step for laminating the material, a first lens forming step for forming the first dielectric material laminated on the emission surface on the original lens, and a second dielectric on the original lens.
  • a second dielectric layer stacking process for stacking materials and a laser beam emitted from the surface emitting laser element, and based on the projected pattern, the outer surface of the second dielectric material stacked on the original lens
  • a second lens forming step for adjusting the shape to form a microlens corresponding to the surface emitting laser element.
  • the microlens is formed on the emission surface of the surface emitting laser element. Therefore, the emission angle of the laser light emitted from the surface emitting laser light source can be reduced, and further, collimated light can be obtained as necessary.
  • the microlens is subjected to a two-step formation process in which an original lens is first formed and then a second dielectric material is laminated thereon. In such a method, the outer shape of the microlens finally obtained and the distributed refractive index structure in the lens can be variously controlled. Furthermore, once the laser beam is emitted and the emission pattern is confirmed, the shape of the microlens is adjusted.
  • a surface emitting laser light source includes a vertical cavity surface emitting laser element formed on a substrate, and a microlens formed on an emission surface of the surface emitting laser element.
  • This surface emitting laser is characterized in that it is formed of a dielectric and has a distributed refractive index structure in which the refractive index changes with a predetermined distribution from the center on the exit surface side toward the outer lens surface. According to the light source, the microlens is formed on the emission surface of the surface emitting laser element.
  • the emission angle of the laser light emitted from the surface emitting laser light source can be reduced, and further, collimated light can be obtained as necessary.
  • the microlens since the microlens has a distributed refractive index structure that changes its refractive index, the emission conditions of the laser light emitted from the surface emitting laser light source power can be variously controlled.
  • the microlens since the microlens is formed on the emission surface of the surface emitting laser element, no complicated adjustment for alignment is required to align the microphone aperture lens.
  • the emitting surface of the surface emitting laser element may be the surface opposite to the substrate or the surface on the substrate side.
  • FIG. 1 is a perspective view showing a configuration of a surface emitting laser array according to a first embodiment.
  • FIG. 2 is a perspective view showing a configuration of a surface emitting laser light source according to the first embodiment.
  • FIG. 3 is a diagram showing a state in which outgoing light is refracted by the microlens of the first embodiment.
  • FIG. 4 is a diagram showing a state in which emitted light is reflected by the microlens of the first embodiment and returns to the inside of the surface emitting laser element.
  • FIG. 5 is a process sectional view showing a first dielectric layer stacking process and a first lens forming process.
  • FIG. 6 is a process cross-sectional view illustrating a second dielectric layer stacking process and a second lens forming process.
  • FIG. 7 is an AFM measurement result showing a cross-sectional shape of the microlens.
  • FIG. 8 is a photograph of a microlens by an optical microscope.
  • FIG. 9 is a cross-sectional view showing a configuration of a surface emitting laser light source according to a second embodiment.
  • FIG. 1 is a perspective view of a surface emitting laser array 1 which is a surface emitting laser light source according to the present embodiment.
  • the surface emitting laser array 1 includes a plurality of surface emitting laser light sources 2 arranged in a two-dimensional array on the same surface of the substrate 10 at regular intervals.
  • FIG. 2 is a perspective view of the surface emitting laser light source 2 according to the present embodiment
  • FIG. 3 is a vertical sectional view of the surface emitting laser light source 2.
  • the surface emitting laser light source 2 is configured by integrally forming a surface emitting laser element 3 having a cylindrical mesa shape and a microlens 4 on a substrate 10. ing.
  • the surface emitting laser element 3 is a vertical cavity surface emitting laser (VCSEL), which is formed by stacking a lower mirror 5, an active layer 6, an oxide current confinement layer 7, and an upper mirror 8.
  • VCSEL vertical cavity surface emitting laser
  • a resonator is formed with the upper mirror 8. Therefore, as indicated by the arrows in FIG. 2, laser light is emitted in a direction parallel to the stacking direction of these layers.
  • the microlens 4 has a convex lens shape, and is formed integrally with the surface emitting laser element 3 on the emission surface 3a which is the surface opposite to the substrate 10 of the surface emitting laser element 3. Also micro The lens 4 is formed in a distributed refractive index structure in which the refractive index changes with a predetermined distribution by the central force on the exit surface 3a side also directed toward the outer lens surface 4c.
  • the microlens 4 also has a SiN force, which is a dielectric, and as shown in FIG. 3, a center point (center) that is on the surface on the emission surface 3a side and intersects the optical axis.
  • a SiN force which is a dielectric
  • An inner first lens part 4a including C and an outer second lens part 4b including a lens surface 4c which is an outer surface of the microlens 4 are configured.
  • the refractive index is uniformly distributed with a constant value.
  • the refractive index is distributed so that the force on the first lens portion 4a side also decreases radially toward the lens surface 4c side.
  • the laser light emitted from the surface emitting laser element 3 is refracted by the microlens 4 and its emission angle becomes small. Therefore, it is possible to obtain laser light with a narrowed emission angle or collimated laser light as necessary. Therefore, when the surface-emitting laser array 1 or the surface-emitting laser light source 2 is applied to optical interconnection, it is possible to increase its integration and to suppress crosstalk between channels.
  • the microlens 4 has a distributed refractive index structure in which the refractive index is distributed from the center point C toward the lens surface 4c. In such a configuration, the laser light emission conditions can be variously controlled by changing the specific distribution structure of the refractive index.
  • the microlens 4 is formed on the emission surface 3 a of the surface emitting laser element 3. Therefore, it is possible to align the microlens 4 without making complex adjustments for alignment.
  • the distributed refractive index structure of the microlens 4 can take various structures.
  • the second lens unit 4b has a structure in which the refractive index of the first lens unit 4a side force also changes toward the lens surface 4c side, so that a desired output can be obtained in combination with the first lens unit 4a. It is possible to control to the conditions.
  • the refractive index is uniformly distributed at a constant value in the first lens portion 4a, and the refractive index structure in the second lens portion 4b.
  • the rate changes so as to continuously decrease from the first lens portion 4a side toward the lens surface 4c side. Therefore, as shown in the optical path diagram of FIG. 3, the emitted laser light at each angle is gradually refracted in the vertical direction (upward), and the optical path length difference between these lights is reduced. So As a result, the aberration when the laser light emitted from the surface emitting laser light source 2 is condensed is reduced.
  • the distributed refractive index structure of the microlens 4 is not limited to the above example.
  • the microlens 4 has a configuration in which the refractive index changes stepwise between the first lens unit 4a and the second lens unit 4b. Also good. In this way, when the refractive index is changed stepwise, as shown in FIG. 4, a part of the light is reflected at the interface between the first lens portion 4a and the second lens portion 4b, and the surface emitting laser is reflected. Returned inside element 3. Since the reflectivity depends on the difference in refractive index, it is possible to control the mode by adjusting the difference in refractive index so that the desired amount of reflection is obtained.
  • the refractive index of the second lens portion 4b may be a continuously changing structure as described above, or may be constant.
  • the refractive index may be distributed so that the center point C force also continuously changes toward the interface with the second lens portion 4b.
  • the distribution may be such that the refractive index changes stepwise within the first lens portion 4a.
  • the surface emitting laser light source 2 has a reduced emission angle and reduced aberrations, so that the surface emitting laser array 1 in which the surface emitting laser light sources 2 are arranged at high density is possible. It becomes. Furthermore, if a large-scale high-power array having a high-density arrangement is realized, high-density light collection becomes possible.
  • the arrangement of the surface-emitting laser light sources 2 is not limited to the two-dimensional array described above, and may be one-dimensional or two-dimensional array. Furthermore, when the surface emitting laser array 1 includes only one surface emitting laser light source 2, the surface emitting laser array 1 is not an array but a single surface emitting laser light source.
  • the surface emitting laser element 3 is not limited to the mesa type, but may be a buried type or a planar type.
  • the dielectric material that forms the microlens is not limited to SiN.
  • the microlens is formed by the laminated dielectric. Especially in the formation of microlenses, It is preferable to combine the features of Zuma CVD, reactive ion etching, plasma etching, and sputtering. Thereby, it is possible to freely adjust the lens curved surface of the microlens mounted on the surface emitting laser element 3. Since the plasma CVD method has no directionality with respect to stacking, the stack is stacked with a uniform thickness. In addition, since the plasma etching method has no directionality with respect to etching, it is etched with a uniform thickness with respect to the surface of the object to be etched.
  • the laminated material is laminated on the curved surface while maintaining the curvature of the curved surface.
  • the reactive ion etching method is perpendicular to etching, the curved surface is etched while maintaining the curvature.
  • the refractive index of the laminate changes by changing the temperature during lamination.
  • the method for manufacturing the surface emitting laser light source 2 according to the present embodiment includes a first dielectric layer stacking step, a first lens forming step, a second dielectric layer stacking step, and a second lens forming step. It is out.
  • SiN is used as an example of a dielectric to be stacked.
  • FIG. 5A is a process cross-sectional view showing the first dielectric laminating process.
  • first, SiN which is the first dielectric material
  • SiN is the first dielectric material
  • the first SiN film 11 is formed.
  • the refractive index of the first SiN film 11 differs depending on the temperature at which the first dielectric material SiN is laminated. For example, when the film is laminated at 350 ° C., the refractive index of the first SiN film 11 is 2.5.
  • FIG. 5B to FIG. 5F are diagrams for explaining the first lens forming step.
  • a resist material for example, S1818, manufactured by Shipley
  • the resist material is applied, for example, by spin coating (rotation speed: 7000 rpm, processing time: 40 seconds).
  • the resist film 12 is shaped according to the mask pattern by performing exposure and development. The mask pattern is formed so that the resist film 12 remains on the emission surface 3 a of the surface emitting laser element 3.
  • the remaining resist film 12 is formed in a spherical shape by applying post-beta.
  • Post beta is performed at a temperature of 200 ° C for 1 minute, for example.
  • the resist film 12 and the first SiN film 11 are etched by plasma etching to form the original lens 13 having a spherical shape, that is, a convex lens shape.
  • gases used for plasma etching include tetrafluorocarbon (CF) and acid.
  • the size and curvature of the original lens 13 can be adjusted by the etching time. That is, if the etching time is lengthened, the original lens 13 becomes smaller and its curvature becomes larger. On the other hand, if the etching time is shortened, the original lens 13 becomes larger and its curvature becomes smaller.
  • FIG. 5 (f) shows a state where the original lens 13 is adjusted to be higher.
  • a reactive ion etching method can be applied.
  • etching is performed while maintaining the curvature of the original lens 13.
  • a sputtering method is applied. In the sputtering method, the original lens 13 is laminated while maintaining the curvature.
  • the spherical original lens 13 is formed.
  • FIG. 6A is a process cross-sectional view showing the second dielectric laminating process.
  • SiN as the second dielectric material is laminated on the original lens 13 by plasma CVD to form a second SiN film 14.
  • the refractive index of the second SiN film 14 depends on the temperature during deposition (film formation temperature).
  • the refractive index of the second SiN film 14 can be reduced by changing the second dielectric material continuously at a temperature of 350 ° C at which the first dielectric material is laminated, and lowering it to 250 ° C.
  • the refractive index of the lens 13 continuously changes from 2.5 power to a refractive index of about 2.0 at the surface 14 a of the second SiN film 14.
  • the second dielectric material may be laminated at a temperature stepwise different from the temperature at which the first dielectric material is laminated.
  • the temperature change at the time of stacking in the second dielectric stacking step may be stepwise rather than continuous. Or you may make the temperature at the time of lamination
  • FIG. 6B shows a second lens forming process
  • the microlens 15 After emitting the laser beam from the surface emitting laser element 3 and confirming the emission pattern, the microlens 15 is configured to satisfy a desired emission condition (for example, collimated light or single mode maximization). Adjust the outer shape. A reactive ion etching method or a sputtering method is used to adjust the outer surface shape. As shown in FIG. 6B, the microlens 15 is composed of an original lens 13 and a second SiN film 14. In addition, the microlens 15 includes a first lens portion and a second lens portion. The first lens (power 4a in FIG. 3) including the center point C of the original lens 13 force microlens 15, the second lens portion, and the second lens portion. SiN film 14 force The second lens part (4b in Fig. 3) on the outside including the lens surface.
  • a desired emission condition for example, collimated light or single mode maximization.
  • a reactive ion etching method or a sputtering method is used to adjust the outer surface shape.
  • FIG. 6 (c) is a diagram showing a step of removing a portion unnecessary for forming the microlens 15. Specifically, a resist material is applied to the substrate 10 and notched, and then etched to remove a portion that is not necessary for forming the microlens 15. This process can be incorporated as needed and can be omitted.
  • the effects of the method for manufacturing the surface emitting laser array and the surface emitting laser light source according to the present embodiment will be described.
  • this manufacturing method since the microlens 15 is formed on the emission surface 3a of the surface emitting laser element 3, the emission angle of the laser beam emitted from the manufactured surface emitting laser light source 2 can be reduced. it can. Therefore, laser light with a narrowed emission angle or collimated laser light can be obtained as necessary. This also makes it possible to suppress crosstalk when the surface emitting laser array 1 or the surface emitting laser light source 2 is applied to optical interconnection.
  • microlens 15 is subjected to a two-stage formation process in which the original lens 13 is first formed and the second dielectric material is laminated thereon. For this reason, it is possible to variously control the outer surface shape of the finally obtained microlens and the distributed refractive index structure in the lens.
  • the outer surface shape of the microlens 15 is adjusted. Therefore, high precision is required to obtain laser light according to the desired emission conditions. It is possible to control the lens shape in degrees.
  • the collimated light can be obtained by adjusting the outer surface shape of the microlens 15.
  • the shape of the upper surface of the microlens 15 functioning as a concave mirror can be adjusted to control the light returning to the inside of the surface emitting laser element 3 to maximize the single mode output.
  • the microlenses 15 can be formed in a large amount in a lump without taking time for alignment. For this reason, in the surface emitting laser light source 2 using the oxide film current confinement structure, the shape of a lens of several / zm diameter aligned on the active layer in the order of m order can be controlled. Mode output can be obtained. In particular, in the manufacture of the surface emitting laser array 1, since the microlenses 15 can be formed in a large amount in a lump, it can be manufactured at a low cost.
  • the second dielectric material is laminated so that the refractive index changes radially from the original lens 13 side to the outside (lens surface side) over the second dielectric lamination step. Is possible.
  • the microlens 4 can have a distributed refractive index structure that matches a desired emission condition.
  • the second dielectric material can be laminated so that the radial change in the refractive index in the second dielectric lamination step is continuous.
  • the optical path between the laser beams emitted from the surface emitting laser element 3 is emitted from the surface of the surface emitting laser element 3 outside the original lens 13.
  • the length difference is reduced.
  • the aberration when the laser light emitted from the surface emitting laser light source 2 is condensed is reduced, and this enables an array in which the surface emitting laser light sources 2 are arranged with high density.
  • the second dielectric material can be laminated so that the radial change of the refractive index in the second dielectric lamination step becomes stepwise.
  • the surface emitting laser element can be introduced into the surface emitting laser element. Reflected light can be obtained.
  • the amount of reflection is an amount corresponding to the difference in refractive index before and after the interface.
  • the refractive index of the second dielectric material is changed by changing the temperature at the time of stacking. Can be laminated. For example, when the temperature is continuously changed, the refractive index is continuously changed to be laminated.
  • a step is performed at the interface between the original lens 13 and the second dielectric material. A refractive index difference is provided. At this interface, light is reflected back to the inside of the surface emitting laser element 3 with a reflection amount corresponding to the difference in refractive index.
  • the amount of reflection of the microlens 15 into the surface-emitting laser element 3 can be set to a desired value, and mode control becomes possible.
  • the refractive index of the second dielectric material can be changed stepwise by changing the temperature stepwise in the second dielectric material stack.
  • the refractive index can be uniformly distributed at a constant value in the second SiN film 14 by keeping the temperature at the time of lamination constant.
  • the outer surface shape of the microlens by a reactive ion etching method or a sputtering method after the second lens forming step. Thereby, the curved surface of the lens surface of the micro lens is adjusted.
  • the film formation method is not limited to the plasma CVD method in the first dielectric laminating step, and may be a sputtering method, a vapor deposition method, or the like.
  • FIG. 7 shows a cross-sectional shape measured by an atomic force microscope (AFM), and FIG. 8 shows a photograph by an optical microscope.
  • the AFM measurement shows the cross-sectional shape of the original lens formed through the first lens formation step (b in Fig. 7) and the cross-sectional shape of the microlens after the second lens formation step (a in Fig. 7). ) And went about.
  • the horizontal axis of the graph in FIG. 7 represents the position on the bottom of the cross section of the microlens, and the vertical axis represents the height of the microlens.
  • Figure 7 shows the cross section of the microlens. The shape changes after the second dielectric layering process and the second lens forming process.
  • FIG. 9 is a vertical sectional view of the surface emitting laser light source 20 according to this embodiment.
  • the surface emitting laser light source 20 is structurally different from the surface emitting laser light source 2 according to the first embodiment in that the refractive index change at the second lens unit 4b of the surface emitting laser light source 2 according to the first embodiment is continuous. On the other hand, the refractive index change in the second lens portion 21b of the surface emitting laser light source 20 is gradual.
  • the microlens 21 is made of SiN as a dielectric, and as shown in FIG. 9, the inner first lens portion 21a including the center point (center portion) C and the lens surface that is the outer surface of the microlens 21 And an outer second lens portion 21b including 21c.
  • the second lens unit 21b includes a first layer 21d, a second layer 21e, and a third layer 21f. These are formed in the order of the first layer 21d, the second layer 21e, and the third layer 21f from the first lens portion 21a side toward the lens surface 21c side. Further, the refractive index value takes a constant value in the first lens portion 21a and in each of the first to third layers 21d, 21e, and 21f.
  • these layers have different refractive index values. Specifically, the refractive index of the first lens portion 21a gradually changes from large to small to large to small until the third layer 21f of the second lens portion 21b. That is, the refractive index of the first lens portion 21a is n, and the first to third layers 21 of the second lens portion 21b.
  • the laser light emitted from the surface emitting laser element 3 is refracted by the microlens 21 and the emission angle is reduced. Therefore, laser light with a narrowed emission angle or collimated laser light can be obtained as necessary. Therefore, when the surface-emitting laser light source 20 is applied to optical interconnection, it is possible to suppress the high integration and the crosstalk between channels.
  • the microlens 21 has a distributed refractive index structure. Therefore, by changing the specific distribution structure of the refractive index, the laser beam emission conditions are variously controlled. I can do it.
  • the microlens 21 is formed on the emission surface 3 a of the surface emitting laser element 3. Therefore, it is possible to align the micro lens 21 without performing complicated adjustments for alignment.
  • the distributed refractive index structure of the microlens 21 in the present embodiment is a configuration in which the refractive index changes stepwise between the first lens portion 21a and the second lens portion 21b. Therefore, a part of the light is reflected at the interface between the first lens portion 21a and the second lens portion 21b and returned to the inside of the surface emitting laser element 3.
  • the refractive index is uniformly distributed at a constant value in the first lens unit 21a, and the refractive index in the second lens unit 21b is stepwise toward the first lens unit 21a side force lens surface 21c side. It has changed. Therefore, as shown in FIG. 9, in addition to the interface between the first lens portion 21a and the second lens portion 21b, part of the light is also present at the interfaces between the layers 21d, 21e, and 21f in the second lens portion 21b. The light is reflected and returned to the inside of the surface emitting laser element 3.
  • the surface emitting laser light source 21 has a large number of interfaces whose refractive index changes stepwise, a high single mode property can be realized. Further, since the reflectance at each interface depends on the difference in refractive index before and after the interface, it is possible to control the mode by adjusting the difference in refractive index between the layers so as to obtain a desired amount of reflection.
  • the refractive index change in the second lens portion 21b is not limited to that according to the present embodiment.
  • the refractive index may be changed in order from small ⁇ large ⁇ small ⁇ large in order from the first lens portion 21a to the third layer 21f of the second lens portion 21b.
  • a configuration that changes from large to large or small to small may be included.
  • the number of layers constituting the second lens portion 21b is not limited to three.
  • the refractive index may continuously change in each layer.
  • the refractive index may be distributed such that the center point C force also continuously changes toward the interface with the second lens portion 21b.
  • the distribution may be such that the refractive index changes stepwise within the first lens unit 2 la.
  • the above-described distribution example of the first lens portion 21a and the distribution example of the second lens portion 21b can be combined. As a result, an emitted laser beam that satisfies the desired emission condition can be obtained.
  • the present invention is not limited to the above embodiment.
  • the surface emitting laser element The output surface of the force may have been the surface on the opposite side of the substrate.
  • a distributed refractive index structure conforming to the structure of the surface emitting laser element 3 is calculated. In order to achieve this, it is possible to obtain the curvature of the original lens 13, the refractive index distribution of the second dielectric material, and the outer surface shape of the microlens 15 while confirming the emission angle. It is done.
  • the method for manufacturing the surface emitting laser light source includes a first dielectric laminate in which a first dielectric material is laminated on an emission surface of a vertical cavity surface emitting laser element formed on a substrate.
  • a first lens forming step for forming a first dielectric material laminated on the exit surface on the original lens; and a second dielectric laminate for laminating the second dielectric material on the original lens Laser light is emitted from the surface emitting laser element, and the outer surface shape of the second dielectric material stacked on the original lens is adjusted based on the emission pattern to support the surface emitting laser element.
  • a second lens forming step of forming a microphone opening lens is a first dielectric laminate in which a first dielectric material is laminated on an emission surface of a vertical cavity surface emitting laser element formed on a substrate.
  • the second dielectric layer stacking step it is preferable to stack the second dielectric material by providing a stepwise difference in refractive index from the refractive index of the original lens.
  • the second dielectric material it is preferable to laminate the second dielectric material so that the refractive index changes toward the outside from the original lens side over the second dielectric laminating step. Thereby, it is possible to obtain a microlens having a distributed refractive index structure adapted to a desired emission condition.
  • the second dielectric material may be laminated so that the refractive index continuously changes from the original lens side toward the outside. preferable.
  • the refractive index By changing the refractive index in this way, light at each angle emitted from the surface emitting laser light source can be gradually refracted in a desired direction, and the optical path length difference can be reduced. Thereby, the aberration of the light emitted from the surface emitting laser light source can be reduced.
  • the refractive index increases toward the outside from the original lens side.
  • the second dielectric material is preferably laminated so as to change in a stepwise manner. At the interface where the refractive index changes stepwise, it is possible to obtain reflected light into the surface emitting laser element with an amount of reflection corresponding to the difference in refractive index before and after the interface. By adjusting the number of interfaces and the refractive index difference at the interfaces, it is possible to control the mode by setting the amount of reflection of the microlens into the surface emitting laser element to a desired value.
  • the second dielectric material is laminated by a plasma CVD method in the second dielectric laminating step.
  • the refractive index is 2.5 around 350 ° C, but when the film formation temperature is lowered, H (hydrogen) is mixed and the refractive index decreases. For this reason, it is possible to change the refractive index distribution in the thickness direction by changing the temperature at the time of lamination.
  • H hydrogen
  • the microlens can be formed by changing the refractive index of the dielectric to be laminated by changing each film forming condition.
  • the outer surface shape of the microlens by a reactive ion etching method or a sputtering method after the second lens forming step. Thereby, the curved surface of the lens surface of the micro lens can be adjusted.
  • the surface emitting laser light source includes a vertical cavity surface emitting laser element formed on a substrate and a microlens formed on an emission surface of the surface emitting laser element. Is formed in a distributed refractive index structure in which the refractive index changes with a predetermined distribution toward the outer lens surface as well as the dielectric force! I prefer to speak.
  • the microlens includes an inner first lens portion including a center portion and an outer second lens portion including a lens surface, and the first lens portion and the second lens portion. It is preferable that the refractive index changes stepwise with the lens unit. At the interface between the first lens unit and the second lens unit and the surface of the second lens unit, reflected light into the surface emitting laser element can be obtained with a reflection amount corresponding to the difference in refractive index. Therefore, it is possible to control the mode by adjusting the difference in refractive index so that the reflection amount into the surface emitting laser element inside the microlens becomes a desired value.
  • the microlens includes an inner first lens portion including a central portion and an outer first surface including a lens surface. It is preferable that the second lens unit includes a second lens unit, and the refractive index of the second lens unit changes from the first lens unit side toward the lens surface side. Thereby, it is possible to control to a desired projection condition in combination with the first lens unit.
  • the change in the refractive index from the first lens unit side toward the lens surface side in the second lens unit is continuous.
  • the refractive index in this way light at each angle emitted from the surface emitting laser light source can be gradually refracted in a desired direction, and the optical path length difference can be reduced. Thereby, the convergence of the light emitted from the surface emitting laser light source can be reduced.
  • the refractive index change from the first lens unit side to the lens surface side in the second lens unit is stepwise.
  • the reflected light to the inside of the surface emitting laser element can be obtained with a reflection amount according to the refractive index difference before and after the interface. Can do.
  • the amount of reflection of the microlens into the surface emitting laser element can be set to a desired value, and the mode can be controlled.
  • a plurality of surface emitting laser elements and corresponding microlenses may be formed on the substrate in a one-dimensional or two-dimensional array.
  • the emission angle of the laser light can be suppressed, it is possible to form an array with high density.
  • the present invention can be used as a surface emitting laser light source manufacturing method and a surface emitting laser light source capable of obtaining laser light under desired emission conditions.

Abstract

A surface emission laser light source (2) comprising a surface emission laser element (3) having a columnar mesa shape and a microlens (4) formed integrally on a substrate (10). The surface emission laser element (3) is a vertical resonator surface emission laser (VCSEL) where a resonator is constituted between a lower mirror (5) and an upper mirror (8). The microlens (4) consists of a first lens part (4a) and a second lens part (4b) and has a distributed refractive index structure where the refractive index varies, in a specified distribution, from the central part on the exit face (3a) side toward the outer lens face (4c). Consequently, a fabrication method of a surface emission laser light source capable of obtaining laser light under desired exit conditions and a surface emission laser light source are realized.

Description

明 細 書  Specification
面発光レーザ光源の製造方法及び面発光レーザ光源  Surface emitting laser light source manufacturing method and surface emitting laser light source
技術分野  Technical field
[0001] 本発明は、面発光レーザ光源の製造方法、及び面発光レーザ光源に関するもので ある。  The present invention relates to a method for manufacturing a surface emitting laser light source and a surface emitting laser light source.
背景技術  Background art
[0002] 基板表面に対し垂直にレーザ光を出射する構造である垂直共振器型の面発光レ 一ザ素子は、基板上において他素子と高密度で集積することが可能である。また面 発光レーザ素子の出射角度は、通常 (シングルモード時) 6〜7度と、端面発光レー ザ素子 (約 30度)に比べて狭い。そのため、光集積回路の光源として、将来的に利 用されることが予想される。また、面発光レーザ素子のレーザ光の出射条件等に関し 、種々の検討が行われている(例えば、特許文献 1〜3参照)。  A vertical cavity surface emitting laser element having a structure that emits laser light perpendicular to a substrate surface can be integrated with other elements at high density on the substrate. The emission angle of the surface-emitting laser element is normally 6 to 7 degrees (in single mode), which is narrower than that of the edge-emitting laser element (about 30 degrees). Therefore, it is expected to be used in the future as a light source for optical integrated circuits. Further, various studies have been made on the laser light emission conditions of the surface emitting laser element (see, for example, Patent Documents 1 to 3).
特許文献 1:特開 2001— 284725号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-284725
特許文献 2:特開 2002 - 26452号公報  Patent Document 2: JP 2002-26452 A
特許文献 3:特開 2001— 242303号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-242303
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 面発光レーザ素子は、上記したように、端面発光レーザ素子に比べて出射角度の 狭いレーザ光が得られる。しかしながら、面発光レーザ素子などの素子が高集積化さ れた状態での光インターコネクションに応用する場合、面発光レーザ素子からの光の 出射角度をさらに小さくすることが必要となる。これに対して、上記文献では、面発光 レーザ素子とマイクロレンズとの組み合わせにつ 、て検討されて 、る。 [0003] As described above, the surface emitting laser element can obtain laser light having a narrower emission angle than the edge emitting laser element. However, when applied to an optical interconnection in a state where elements such as a surface emitting laser element are highly integrated, it is necessary to further reduce the light emission angle from the surface emitting laser element. On the other hand, in the above document, a combination of a surface emitting laser element and a microlens is studied.
[0004] 特許文献 1では、レーザ出射部上部にノズルで榭脂を出して、その榭脂を凸レンズ 形状となるように固めて、マイクロレンズを形成している。しかし、レーザ出射部分の径 は数/ z mであるため、ノズルで榭脂を出す位置の位置合わせが難しぐまた、径が数 mとなるようなマイクロレンズを形成するのも困難である。さらに、面発光レーザ光 源を高密度で集積ィヒするため、アレイで形成することを考慮すると、 1つ 1つノズルで 榭脂を出して形成するこの方法では、大量生産に不向きである。また、特許文献 2で は、誘電体力 なるマイクロレンズを面発光レーザ光源に適用している。しかし、具体 的なレンズ構造、レンズの製造方法につ!、て充分に検討されて 、な 、。 [0004] In Patent Document 1, a microlens is formed by extracting a resin with a nozzle on the upper part of a laser emitting unit and hardening the resin so as to have a convex lens shape. However, since the diameter of the laser emitting part is several / zm, it is difficult to align the position where the nozzles are used to draw the grease, and it is also difficult to form a microlens having a diameter of several meters. Furthermore, in order to integrate surface emitting laser light sources at high density, considering that they are formed in an array, one nozzle is used for each. This method of forming the coconut oil is not suitable for mass production. In Patent Document 2, a microlens having dielectric force is applied to a surface emitting laser light source. However, the specific lens structure and lens manufacturing method have been fully studied.
[0005] 一方、特許文献 3では、石英ガラスを熱で溶力してマイクロレンズを形成して!/、る。 On the other hand, in Patent Document 3, a quartz lens is melted with heat to form a microlens! /
しかし、石英ガラスの溶ける温度は 1000°C以上であるため、半導体基板に熱的な損 傷を与えることとなり、面発光レーザ光源には適用できない。  However, since the melting temperature of quartz glass is 1000 ° C or higher, the semiconductor substrate is thermally damaged and cannot be applied to a surface emitting laser light source.
[0006] 本発明は、上記課題を解決するためになされたものであり、所望の出射条件でレー ザ光を得ることができる面発光レーザ光源の製造方法及び面発光レーザ光源を提供 することを目的とする。 [0006] The present invention has been made to solve the above-described problems, and provides a surface emitting laser light source manufacturing method and a surface emitting laser light source capable of obtaining laser light under desired emission conditions. Objective.
課題を解決するための手段  Means for solving the problem
[0007] このような目的を解決するために、本発明による面発光レーザ光源の製造方法は、 基板上に形成された垂直共振器型の面発光レーザ素子の出射面上に第 1の誘電体 材料を積層する第 1の誘電体積層工程と、出射面上に積層された第 1の誘電体材料 を元レンズに形成する第 1のレンズ形成工程と、元レンズ上に、第 2の誘電体材料を 積層する第 2の誘電体積層工程と、面発光レーザ素子よりレーザ光を出射し、その出 射パターンに基づ 1ヽて、元レンズ上に積層された第 2の誘電体材料の外面形状を調 整して、面発光レーザ素子に対応するマイクロレンズを形成する第 2のレンズ形成ェ 程とを備えることを特徴とする。  In order to solve such an object, a method of manufacturing a surface emitting laser light source according to the present invention includes a first dielectric on a light emitting surface of a vertical cavity surface emitting laser element formed on a substrate. A first dielectric laminating step for laminating the material, a first lens forming step for forming the first dielectric material laminated on the emission surface on the original lens, and a second dielectric on the original lens. A second dielectric layer stacking process for stacking materials and a laser beam emitted from the surface emitting laser element, and based on the projected pattern, the outer surface of the second dielectric material stacked on the original lens And a second lens forming step for adjusting the shape to form a microlens corresponding to the surface emitting laser element.
[0008] この製造方法によれば、面発光レーザ素子の出射面上にマイクロレンズが形成され る。そのため、面発光レーザ光源から出射されるレーザ光の出射角度を小さくするこ とができ、さらには必要に応じて、コリメート光を得ることも可能となる。また、マイクロレ ンズは、まず元レンズを形成してから、その上に第 2の誘電体材料が積層され形成さ れるという 2段階の形成工程を経る。このような方法では、最終的に得られるマイクロ レンズの外面形状、及びレンズ内での分布屈折率構造等を様々に制御することがで きる。さらに、一度レーザ光を出射して出射パターンを確認してから、マイクロレンズ の形状が調整される。したがって、所望の出射条件を得るために、高精度でマイクロ レンズの形状を制御することができる。カロえて、ァライメントのための複雑な調整を必 要としな!/、ため、容易にレンズを形成することができる。 [0009] 本発明による面発光レーザ光源は、基板上に形成された垂直共振器型の面発光 レーザ素子と、面発光レーザ素子の出射面上に形成されたマイクロレンズとを備え、 マイクロレンズは、誘電体からなり、出射面側の中心部から外側のレンズ面に向けて 所定の分布で屈折率が変化する分布屈折率構造に形成されていることを特徴とする [0010] この面発光レーザ光源によれば、マイクロレンズは面発光レーザ素子の出射面上 に形成される。そのため、面発光レーザ光源から出射されるレーザ光の出射角度を 小さくすることができ、さらには必要に応じて、コリメート光を得ることも可能となる。ま た、マイクロレンズは、その屈折率を変化させる分布屈折率構造をしているため、面 発光レーザ光源力 出射されるレーザ光の出射条件を様々に制御することができる 。また、マイクロレンズは面発光レーザ素子の出射面上に形成されているため、マイク 口レンズの位置合わせをするのに、ァライメントのための複雑な調整を必要としない。 なお、面発光レーザ素子の出射面は基板と反対側の面であっても、あるいは基板側 の面であってもよい。 [0008] According to this manufacturing method, the microlens is formed on the emission surface of the surface emitting laser element. Therefore, the emission angle of the laser light emitted from the surface emitting laser light source can be reduced, and further, collimated light can be obtained as necessary. In addition, the microlens is subjected to a two-step formation process in which an original lens is first formed and then a second dielectric material is laminated thereon. In such a method, the outer shape of the microlens finally obtained and the distributed refractive index structure in the lens can be variously controlled. Furthermore, once the laser beam is emitted and the emission pattern is confirmed, the shape of the microlens is adjusted. Therefore, in order to obtain a desired emission condition, the shape of the microlens can be controlled with high accuracy. Because it does not require complex adjustments for alignment! /, Lenses can be easily formed. A surface emitting laser light source according to the present invention includes a vertical cavity surface emitting laser element formed on a substrate, and a microlens formed on an emission surface of the surface emitting laser element. [0010] This surface emitting laser is characterized in that it is formed of a dielectric and has a distributed refractive index structure in which the refractive index changes with a predetermined distribution from the center on the exit surface side toward the outer lens surface. According to the light source, the microlens is formed on the emission surface of the surface emitting laser element. Therefore, the emission angle of the laser light emitted from the surface emitting laser light source can be reduced, and further, collimated light can be obtained as necessary. In addition, since the microlens has a distributed refractive index structure that changes its refractive index, the emission conditions of the laser light emitted from the surface emitting laser light source power can be variously controlled. In addition, since the microlens is formed on the emission surface of the surface emitting laser element, no complicated adjustment for alignment is required to align the microphone aperture lens. The emitting surface of the surface emitting laser element may be the surface opposite to the substrate or the surface on the substrate side.
発明の効果  The invention's effect
[0011] 本発明によれば、所望の出射条件でレーザ光を得ることができる面発光レーザ光 源の製造方法及び面発光レーザ光源を提供することができる。  [0011] According to the present invention, it is possible to provide a surface emitting laser light source manufacturing method and a surface emitting laser light source capable of obtaining laser light under desired emission conditions.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、第 1実施形態の面発光レーザアレイの構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of a surface emitting laser array according to a first embodiment.
[図 2]図 2は、第 1実施形態の面発光レーザ光源の構成を示す斜視図である。  FIG. 2 is a perspective view showing a configuration of a surface emitting laser light source according to the first embodiment.
[図 3]図 3は、第 1実施形態のマイクロレンズで出射光が屈折される様子を示す図であ る。  FIG. 3 is a diagram showing a state in which outgoing light is refracted by the microlens of the first embodiment.
[図 4]図 4は、第 1実施形態のマイクロレンズで出射光が反射し、面発光レーザ素子内 部に戻る様子を示す図である。  FIG. 4 is a diagram showing a state in which emitted light is reflected by the microlens of the first embodiment and returns to the inside of the surface emitting laser element.
[図 5]図 5は、第 1の誘電体積層工程、及び第 1のレンズ形成工程を示す工程断面図 である。  FIG. 5 is a process sectional view showing a first dielectric layer stacking process and a first lens forming process.
[図 6]図 6は、第 2の誘電体積層工程、及び第 2のレンズ形成工程を示す工程断面図 である。 [図 7]図 7は、マイクロレンズの断面形状を表す AFM測定結果である。 FIG. 6 is a process cross-sectional view illustrating a second dielectric layer stacking process and a second lens forming process. FIG. 7 is an AFM measurement result showing a cross-sectional shape of the microlens.
[図 8]図 8は、光学顕微鏡によるマイクロレンズの写真である。  [FIG. 8] FIG. 8 is a photograph of a microlens by an optical microscope.
[図 9]図 9は、第 2実施形態の面発光レーザ光源の構成を示す断面図である。  FIG. 9 is a cross-sectional view showing a configuration of a surface emitting laser light source according to a second embodiment.
符号の説明  Explanation of symbols
[0013] 1…面発光レーザアレイ、 2、 20· ··面発光レーザ光源、 3…面発光レーザ素子、 3a …出射面、 4、 21· ··マイクロレンズ、 4a、 21a…第 1レンズ部、 4b、 21b…第 2レンズ 部、 4c、 21c…レンズ面、 5…下部ミラー、 6…活性層、 7…酸化膜電流狭窄層、 8· ·· 上部ミラー、 10…基板、 11· ··第 1の SiN膜、 12· ··レジスト膜、 13· ··元レンズ、 14· ·· 第 2の SiN膜、 15· ··マイクロレンズ、 21d…第 1層、 21e…第 2層、 21f…第 3層、。··· マイクロレンズの中心点。  [0013] 1 ... surface emitting laser array, 2, 20 ... surface emitting laser light source, 3 ... surface emitting laser element, 3a ... emitting surface, 4, 21 ... micro lens, 4a, 21a ... first lens section 4b, 21b ... second lens part, 4c, 21c ... lens surface, 5 ... lower mirror, 6 ... active layer, 7 ... oxide current confinement layer, 8 ... upper mirror, 10 ... substrate, 11 ... 1st SiN film, 12 ... resist film, 13 ... original lens, 14 ... 2nd SiN film, 15 ... micro lens, 21d ... first layer, 21e ... second layer, 21f ... Third layer. ··· The center point of the microlens.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、図面とともに、本発明による面発光レーザ光源の製造方法及び面発光レー ザ光源の好適な実施形態について詳細に説明する。なお、図面の説明においては 同一要素には同一符号を付し、重複する説明を省略する。図面の寸法比率は、説明 のものと必ずしも一致して ヽな 、。  Hereinafter, preferred embodiments of a method for manufacturing a surface-emitting laser light source and a surface-emitting laser light source according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The dimensional ratios in the drawings must be consistent with those in the description.
[0015] 図 1は、本実施形態に係る面発光レーザ光源である面発光レーザアレイ 1の斜視図 である。面発光レーザアレイ 1は、複数の面発光レーザ光源 2が基板 10の同一面上 に一定の間隔で 2次元アレイ状に配列されてなる。  FIG. 1 is a perspective view of a surface emitting laser array 1 which is a surface emitting laser light source according to the present embodiment. The surface emitting laser array 1 includes a plurality of surface emitting laser light sources 2 arranged in a two-dimensional array on the same surface of the substrate 10 at regular intervals.
[0016] 図 2は、本実施形態に係る面発光レーザ光源 2の斜視図、図 3は面発光レーザ光 源 2の垂直断面図である。  FIG. 2 is a perspective view of the surface emitting laser light source 2 according to the present embodiment, and FIG. 3 is a vertical sectional view of the surface emitting laser light source 2.
[0017] 面発光レーザ光源 2は、図 2に示すように、円柱状のメサ型形状を有する面発光レ 一ザ素子 3とマイクロレンズ 4とが一体に、基板 10上に形成されて構成されている。面 発光レーザ素子 3は、垂直共振器型面発光レーザ (VCSEL)であり、下部ミラー 5、 活性層 6、酸化膜電流狭窄層 7、及び上部ミラー 8が積層されて形成され、下部ミラー 5と上部ミラー 8との間で共振器が構成される。そのため、図 2の矢印で示す通り、こ れらの層の積層方向と平行な方向に、レーザ光が出射される。  As shown in FIG. 2, the surface emitting laser light source 2 is configured by integrally forming a surface emitting laser element 3 having a cylindrical mesa shape and a microlens 4 on a substrate 10. ing. The surface emitting laser element 3 is a vertical cavity surface emitting laser (VCSEL), which is formed by stacking a lower mirror 5, an active layer 6, an oxide current confinement layer 7, and an upper mirror 8. A resonator is formed with the upper mirror 8. Therefore, as indicated by the arrows in FIG. 2, laser light is emitted in a direction parallel to the stacking direction of these layers.
[0018] マイクロレンズ 4は、凸レンズ形状であり、面発光レーザ素子 3の基板 10とは反対側 の面である出射面 3a上に、面発光レーザ素子 3と一体に形成される。また、マイクロ レンズ 4は、出射面 3a側の中心部力も外側のレンズ面 4cに向力つて所定の分布で屈 折率が変化する分布屈折率構造に形成されて ヽる。 [0018] The microlens 4 has a convex lens shape, and is formed integrally with the surface emitting laser element 3 on the emission surface 3a which is the surface opposite to the substrate 10 of the surface emitting laser element 3. Also micro The lens 4 is formed in a distributed refractive index structure in which the refractive index changes with a predetermined distribution by the central force on the exit surface 3a side also directed toward the outer lens surface 4c.
[0019] 具体的には、マイクロレンズ 4は、誘電体である SiN力もなり、図 3に示すように、出 射面 3a側の面上にあって光軸と交わる点である中心点(中心部) Cを含む内側の第 1 レンズ部 4aと、マイクロレンズ 4の外面であるレンズ面 4cを含む外側の第 2レンズ部 4 bとで構成される。第 1レンズ部 4a内では、屈折率は一定値で一様に分布している。 また、第 2レンズ部 4bでは、屈折率は第 1レンズ部 4a側力もレンズ面 4c側に向けて、 放射状に連続的に小さくなるように分布して 、る。  Specifically, the microlens 4 also has a SiN force, which is a dielectric, and as shown in FIG. 3, a center point (center) that is on the surface on the emission surface 3a side and intersects the optical axis. Part) An inner first lens part 4a including C and an outer second lens part 4b including a lens surface 4c which is an outer surface of the microlens 4 are configured. In the first lens unit 4a, the refractive index is uniformly distributed with a constant value. Further, in the second lens portion 4b, the refractive index is distributed so that the force on the first lens portion 4a side also decreases radially toward the lens surface 4c side.
[0020] 次に、面発光レーザアレイ 1及び面発光レーザ光源 2の効果について説明する。面 発光レーザ素子 3から出射されるレーザ光は、マイクロレンズ 4によって屈折させられ 、その出射角度が小さくなる。そのため、必要に応じて出射角度を絞ったレーザ光、 あるいはコリメートされたレーザ光を得ることができる。したがって、面発光レーザァレ ィ 1あるいは面発光レーザ光源 2を光インターコネクションに応用した場合、その高集 積化や、チャネル間でのクロストークの抑制等が可能となる。また、マイクロレンズ 4に おいては、その屈折率が中心点 Cからレンズ面 4cに向けて分布する分布屈折率構 造をしている。このような構成では、屈折率の具体的な分布構造を変えることによって 、レーザ光の出射条件を様々に制御することができる。また、マイクロレンズ 4は面発 光レーザ素子 3の出射面 3a上に形成されている。そのため、ァライメントのための複 雑な調整をすることなぐマイクロレンズ 4の位置合わせをすることが可能である。  Next, effects of the surface emitting laser array 1 and the surface emitting laser light source 2 will be described. The laser light emitted from the surface emitting laser element 3 is refracted by the microlens 4 and its emission angle becomes small. Therefore, it is possible to obtain laser light with a narrowed emission angle or collimated laser light as necessary. Therefore, when the surface-emitting laser array 1 or the surface-emitting laser light source 2 is applied to optical interconnection, it is possible to increase its integration and to suppress crosstalk between channels. The microlens 4 has a distributed refractive index structure in which the refractive index is distributed from the center point C toward the lens surface 4c. In such a configuration, the laser light emission conditions can be variously controlled by changing the specific distribution structure of the refractive index. The microlens 4 is formed on the emission surface 3 a of the surface emitting laser element 3. Therefore, it is possible to align the microlens 4 without making complex adjustments for alignment.
[0021] マイクロレンズ 4の分布屈折率構造としては、様々な構造をとることが可能である。  [0021] The distributed refractive index structure of the microlens 4 can take various structures.
例えば、第 2レンズ部 4bにお 、て、屈折率が第 1レンズ部 4a側力もレンズ面 4c側に 向けて変化する構造をとることによって、第 1レンズ部 4aとの組み合わせで、所望の 出射条件に制御することが可能である。  For example, the second lens unit 4b has a structure in which the refractive index of the first lens unit 4a side force also changes toward the lens surface 4c side, so that a desired output can be obtained in combination with the first lens unit 4a. It is possible to control to the conditions.
[0022] 具体的には、本実施形態におけるマイクロレンズ 4の分布屈折率構造は、第 1レン ズ部 4aにおいて、屈折率が一定値で一様に分布し、第 2レンズ部 4bにおいて、屈折 率が第 1レンズ部 4a側からレンズ面 4c側に向けて連続的に小さくなるように変化する 構造である。そのため、図 3の光路図に示すように、各角度の出射レーザ光は、垂直 方向(上方向)に徐々に屈折し、これらの光の間における光路長差は減少される。そ の結果、面発光レーザ光源 2から出射されたレーザ光を集光した際の収差が軽減さ れる。これにより、フェムト秒パルス波を用いた高速光並列処理回路などのデバイス に応用した場合に、収差からくる分散が低減され、フェムト秒パルス光コンピュータな ど高速処理に必要な光学系の実現も可能となる。 [0022] Specifically, in the distributed refractive index structure of the microlens 4 in the present embodiment, the refractive index is uniformly distributed at a constant value in the first lens portion 4a, and the refractive index structure in the second lens portion 4b. In this structure, the rate changes so as to continuously decrease from the first lens portion 4a side toward the lens surface 4c side. Therefore, as shown in the optical path diagram of FIG. 3, the emitted laser light at each angle is gradually refracted in the vertical direction (upward), and the optical path length difference between these lights is reduced. So As a result, the aberration when the laser light emitted from the surface emitting laser light source 2 is condensed is reduced. As a result, when applied to devices such as high-speed optical parallel processing circuits that use femtosecond pulse waves, dispersion due to aberrations is reduced, and femtosecond pulse optical computers and other optical systems required for high-speed processing can be realized. It becomes.
[0023] マイクロレンズ 4の分布屈折率構造は上記の例に限らず、例えば、第 1レンズ部 4a と第 2レンズ部 4bとの間で段階的に屈折率が変化するような構成であっても良い。こ のように、屈折率を段階的に変化させると、図 4に示したように、第 1レンズ部 4aと第 2 レンズ部 4bとの界面で、光の一部が反射し、面発光レーザ素子 3内部に戻される。そ の反射率は屈折率差によるので、所望の反射量となるよう屈折率差を調整して、モー ド制御を行うことが可能である。また、この場合、第 2レンズ部 4bでの屈折率について は、上記のように連続的に変化する構成であっても良ぐあるいは一定であっても良 い。また、第 1レンズ部 4a内で、屈折率が中心点 C力も第 2レンズ部 4bとの界面に向 けて連続的に変化するような分布としても良い。あるいは、第 1レンズ部 4a内で、屈折 率が段階的に変化するような分布としても良い。さらには、こうした分布を組み合わせ ることもできる。これにより、所望の出射条件を満たす出射レーザ光が得られる。  [0023] The distributed refractive index structure of the microlens 4 is not limited to the above example. For example, the microlens 4 has a configuration in which the refractive index changes stepwise between the first lens unit 4a and the second lens unit 4b. Also good. In this way, when the refractive index is changed stepwise, as shown in FIG. 4, a part of the light is reflected at the interface between the first lens portion 4a and the second lens portion 4b, and the surface emitting laser is reflected. Returned inside element 3. Since the reflectivity depends on the difference in refractive index, it is possible to control the mode by adjusting the difference in refractive index so that the desired amount of reflection is obtained. In this case, the refractive index of the second lens portion 4b may be a continuously changing structure as described above, or may be constant. In the first lens portion 4a, the refractive index may be distributed so that the center point C force also continuously changes toward the interface with the second lens portion 4b. Alternatively, the distribution may be such that the refractive index changes stepwise within the first lens portion 4a. Furthermore, these distributions can be combined. As a result, an outgoing laser beam that satisfies a desired emission condition can be obtained.
[0024] また、面発光レーザ光源 2は、上述したように、出射角度が抑えられ、また収差も軽 減されるため、高密度に面発光レーザ光源 2を配置した面発光レーザアレイ 1が可能 となる。さらに、高密度な配置を有する大規模高出力アレイが実現されると、高密度 集光が可能となる。なお、面発光レーザアレイ 1において、面発光レーザ光源 2の配 置は上記した 2次元アレイに限定されず、 1次元または 2次元アレイ状に形成されて いれば良い。さらに、面発光レーザアレイ 1が備える面発光レーザ光源 2の数はいく つでもよぐ 1つのみ備える場合はアレイではなく単体の面発光レーザ光源となる。  [0024] Further, as described above, the surface emitting laser light source 2 has a reduced emission angle and reduced aberrations, so that the surface emitting laser array 1 in which the surface emitting laser light sources 2 are arranged at high density is possible. It becomes. Furthermore, if a large-scale high-power array having a high-density arrangement is realized, high-density light collection becomes possible. In the surface-emitting laser array 1, the arrangement of the surface-emitting laser light sources 2 is not limited to the two-dimensional array described above, and may be one-dimensional or two-dimensional array. Furthermore, when the surface emitting laser array 1 includes only one surface emitting laser light source 2, the surface emitting laser array 1 is not an array but a single surface emitting laser light source.
[0025] また、面発光レーザ素子 3はメサ型に限らず、埋込型、平面型でも良い。また、マイ クロレンズを形成する誘電体材料は SiNに限られない。  The surface emitting laser element 3 is not limited to the mesa type, but may be a buried type or a planar type. The dielectric material that forms the microlens is not limited to SiN.
[0026] 次に、図 5、図 6を参照して、本実施形態に係る面発光レーザ光源 2の製造方法に ついて説明する。  Next, with reference to FIGS. 5 and 6, a method for manufacturing the surface-emitting laser light source 2 according to the present embodiment will be described.
[0027] ここで、本実施形態における面発光レーザ光源 2の製造方法では、積層した誘電 体によってマイクロレンズを形成している。特に、マイクロレンズの形成において、プラ ズマ CVD法、反応性イオンエッチング法、プラズマエッチング法、スパッタリング法の それぞれの特徴を生かすよう組み合わせるのが好ましい。これにより、面発光レーザ 素子 3に搭載されたマイクロレンズのレンズ曲面を自在に調整することが可能である。 プラズマ CVD法は、積層に関して方向性がないため、積層物は均一な厚さで積層さ れる。また、プラズマエッチング法は、エッチングに関して方向性がないため、エッチ ングされる物の表面に対して均一な厚さでエッチングされる。また、スパッタリング法 は、積層に関して垂直性があるため、曲面の曲率が維持されたままその上に積層物 が積層される。また、反応性イオンエッチング法は、エッチングに関して垂直性がある ので、曲率が維持されたまま曲面がエッチングされる。 Here, in the method for manufacturing the surface emitting laser light source 2 in the present embodiment, the microlens is formed by the laminated dielectric. Especially in the formation of microlenses, It is preferable to combine the features of Zuma CVD, reactive ion etching, plasma etching, and sputtering. Thereby, it is possible to freely adjust the lens curved surface of the microlens mounted on the surface emitting laser element 3. Since the plasma CVD method has no directionality with respect to stacking, the stack is stacked with a uniform thickness. In addition, since the plasma etching method has no directionality with respect to etching, it is etched with a uniform thickness with respect to the surface of the object to be etched. In addition, since the sputtering method has verticality with respect to the lamination, the laminated material is laminated on the curved surface while maintaining the curvature of the curved surface. In addition, since the reactive ion etching method is perpendicular to etching, the curved surface is etched while maintaining the curvature.
[0028] また、プラズマ CVD法で SiNを積層する場合、積層に際して温度を変化させること によって積層物の屈折率が変わる。このことを利用して、積層物を、屈折率が段階的 又は連続的に変化する分布屈折率構造とすることが可能である。これにより、出射レ 一ザ光のモード制御、出射パターン(出射角度)制御だけでなぐ収差軽減も可能と なる。 [0028] When SiN is laminated by the plasma CVD method, the refractive index of the laminate changes by changing the temperature during lamination. By taking advantage of this, it is possible to make the laminate a distributed refractive index structure in which the refractive index changes stepwise or continuously. As a result, it is possible to reduce aberrations by simply controlling the mode of the outgoing laser beam and controlling the outgoing pattern (outgoing angle).
[0029] 本実施形態に係る面発光レーザ光源 2の製造方法は、第 1の誘電体積層工程、第 1のレンズ形成工程、第 2の誘電体積層工程、及び第2のレンズ形成工程を含んでい る。ここでは、積層する誘電体の例として SiNを用いる。 The method for manufacturing the surface emitting laser light source 2 according to the present embodiment includes a first dielectric layer stacking step, a first lens forming step, a second dielectric layer stacking step, and a second lens forming step. It is out. Here, SiN is used as an example of a dielectric to be stacked.
[0030] 図 5 (a)は、第 1の誘電体積層工程を示す工程断面図である。 FIG. 5A is a process cross-sectional view showing the first dielectric laminating process.
[0031] 図 5 (a)に示すように、まず、基板 10上に形成された面発光レーザ素子 3の出射面 3a上に、例えばプラズマ CVD法によって、第 1の誘電体材料である SiNを積層して、 第 1の SiN膜 11を形成する。第 1の SiN膜 11の屈折率は、第 1の誘電体材料 SiNを 積層する温度によって異なり、例えば 350°Cで積層すると、第 1の SiN膜 11の屈折率 は 2. 5となる。 As shown in FIG. 5 (a), first, SiN, which is the first dielectric material, is formed on the emission surface 3a of the surface emitting laser element 3 formed on the substrate 10 by, eg, plasma CVD. By stacking, the first SiN film 11 is formed. The refractive index of the first SiN film 11 differs depending on the temperature at which the first dielectric material SiN is laminated. For example, when the film is laminated at 350 ° C., the refractive index of the first SiN film 11 is 2.5.
[0032] 図 5 (b)〜図 5 (f)は、第 1のレンズ形成工程を説明する図である。  FIG. 5B to FIG. 5F are diagrams for explaining the first lens forming step.
[0033] 図 5 (b)に示すように、まず、第 1の誘電体積層工程で積層された第 1の SiN膜 11 の上にレジスト材料 (例えば S1818、 Shipley製)を塗布し、レジスト膜 12を形成する 。レジスト材料の塗布は、例えば、スピンコート(回転速度 7000rpm、処理時間 40秒 )による。 [0034] 次に、図 5 (c)に示すように、露光と現像を行うことにより、レジスト膜 12をマスクのパ ターンに応じた形状にする。マスクのパターンは、面発光レーザ素子 3の出射面 3a上 にレジスト膜 12が残るように形成される。 [0033] As shown in FIG. 5 (b), first, a resist material (for example, S1818, manufactured by Shipley) is applied onto the first SiN film 11 laminated in the first dielectric laminating step, and the resist film Form 12. The resist material is applied, for example, by spin coating (rotation speed: 7000 rpm, processing time: 40 seconds). Next, as shown in FIG. 5C, the resist film 12 is shaped according to the mask pattern by performing exposure and development. The mask pattern is formed so that the resist film 12 remains on the emission surface 3 a of the surface emitting laser element 3.
[0035] 続いて、図 5 (d)に示すように、ポストベータを施すことにより、残留したレジスト膜 12 を球面状に形成する。ポストベータは、例えば 200°Cの温度で、 1分間行う。  Subsequently, as shown in FIG. 5 (d), the remaining resist film 12 is formed in a spherical shape by applying post-beta. Post beta is performed at a temperature of 200 ° C for 1 minute, for example.
[0036] その後、図 5 (e)に示すように、プラズマエッチング法により、レジスト膜 12及び第 1 の SiN膜 11をエッチングして、球面状、即ち凸レンズ状の元レンズ 13を形成する。プ ラズマエッチング法に使用する気体は、例えばテトラフルォロカーボン (CF )及び酸  Thereafter, as shown in FIG. 5 (e), the resist film 12 and the first SiN film 11 are etched by plasma etching to form the original lens 13 having a spherical shape, that is, a convex lens shape. Examples of gases used for plasma etching include tetrafluorocarbon (CF) and acid.
4 素(O )とする。この方法では、元レンズ 13の表面に均一な厚さでエッチングされる It is assumed to be 4 elementary (O). In this method, the surface of the original lens 13 is etched with a uniform thickness.
2 2
ため、エッチングの時間で、元レンズ 13の大きさ及び曲率を調整することができる。 すなわち、エッチングの時間を長くすれば、元レンズ 13は小さくなり、その曲率は大き くなる。一方、エッチングの時間を短くすれば、元レンズ 13は大きくなり、その曲率は 小さくなる。  Therefore, the size and curvature of the original lens 13 can be adjusted by the etching time. That is, if the etching time is lengthened, the original lens 13 becomes smaller and its curvature becomes larger. On the other hand, if the etching time is shortened, the original lens 13 becomes larger and its curvature becomes smaller.
[0037] その後、必要に応じて、基板 10上に形成された元レンズ 13の高さが一定となるよう な調整を行う。図 5 (f)は、元レンズ 13を高くするよう調整した様子を示す。元レンズ 1 3の高さを低くする場合には、反応性イオンエッチング法を適用することができる。反 応性イオンエッチング法では、元レンズ 13の曲率が維持されたままエッチングされる 。一方、元レンズ 13の高さを高くする場合には、スパッタリング法が適用される。スパ ッタリング法では、元レンズ 13の曲率を維持したまま積層される。  [0037] Thereafter, adjustment is performed as necessary so that the height of the original lens 13 formed on the substrate 10 is constant. FIG. 5 (f) shows a state where the original lens 13 is adjusted to be higher. When the height of the original lens 13 is lowered, a reactive ion etching method can be applied. In the reactive ion etching method, etching is performed while maintaining the curvature of the original lens 13. On the other hand, when the height of the original lens 13 is increased, a sputtering method is applied. In the sputtering method, the original lens 13 is laminated while maintaining the curvature.
[0038] 以上によって、球面状の元レンズ 13が形成される。 As described above, the spherical original lens 13 is formed.
[0039] 図 6 (a)は、第 2の誘電体積層工程を示す工程断面図である。 FIG. 6A is a process cross-sectional view showing the second dielectric laminating process.
[0040] 図 6 (a)〖こ示すように、元レンズ 13上に、プラズマ CVD法によって、第 2の誘電体材 料である SiNを積層し、第 2の SiN膜 14を形成する。第 2の SiN膜 14の屈折率は、積 層する際の温度 (成膜温度)に依存する。例えば、第 2の誘電体材料を、第 1の誘電 体材料を積層した温度 350°C力も連続的に変化させ、 250°Cまで下げることにより、 第 2の SiN膜 14の屈折率は、元レンズ 13の屈折率 2. 5力ら、第 2の SiN膜 14表面 1 4aにおける屈折率約 2. 0へと連続的に変化する。また、第 1の誘電体材料を積層し た際の温度とは段階的に異なる温度で第 2の誘電体材料を積層していってもよい。 あるいは、第 2の誘電体積層工程における積層時の温度変化は、連続的ではなく段 階的であってもよい。あるいは、積層時の温度を一定にしても良い。 As shown in FIG. 6 (a), SiN as the second dielectric material is laminated on the original lens 13 by plasma CVD to form a second SiN film 14. The refractive index of the second SiN film 14 depends on the temperature during deposition (film formation temperature). For example, the refractive index of the second SiN film 14 can be reduced by changing the second dielectric material continuously at a temperature of 350 ° C at which the first dielectric material is laminated, and lowering it to 250 ° C. The refractive index of the lens 13 continuously changes from 2.5 power to a refractive index of about 2.0 at the surface 14 a of the second SiN film 14. Further, the second dielectric material may be laminated at a temperature stepwise different from the temperature at which the first dielectric material is laminated. Alternatively, the temperature change at the time of stacking in the second dielectric stacking step may be stepwise rather than continuous. Or you may make the temperature at the time of lamination | stacking constant.
[0041] 図 6 (b)は、第 2のレンズ形成工程である。 FIG. 6B shows a second lens forming process.
[0042] 面発光レーザ素子 3からレーザ光を出射し、その出射パターンを確認してから、所 望の出射条件 (例えば、コリメート光、あるいはシングルモード最大化など)を満たす よう、マイクロレンズ 15の外面形状を調整する。外面形状の調整には、反応性イオン エッチング法やスパッタリング法が用いられる。マイクロレンズ 15は、図 6 (b)に示すよ うに、元レンズ 13と第 2の SiN膜 14とで構成される。また、マイクロレンズ 15は第 1レ ンズ部と第 2レンズ部を備えており、元レンズ 13力 マイクロレンズ 15の中心点 Cを含 む内側の第 1レンズ(図 3の 4a)、第 2の SiN膜 14力 レンズ面を含む外側の第 2レン ズ部(図 3の 4b)となる。  [0042] After emitting the laser beam from the surface emitting laser element 3 and confirming the emission pattern, the microlens 15 is configured to satisfy a desired emission condition (for example, collimated light or single mode maximization). Adjust the outer shape. A reactive ion etching method or a sputtering method is used to adjust the outer surface shape. As shown in FIG. 6B, the microlens 15 is composed of an original lens 13 and a second SiN film 14. In addition, the microlens 15 includes a first lens portion and a second lens portion. The first lens (power 4a in FIG. 3) including the center point C of the original lens 13 force microlens 15, the second lens portion, and the second lens portion. SiN film 14 force The second lens part (4b in Fig. 3) on the outside including the lens surface.
[0043] 図 6 (c)は、マイクロレンズ 15の形成に不要な部分を除去する工程を示す図である 。具体的には、基板 10にレジスト材料を塗布して、ノターユングした後、エッチングを 施し、マイクロレンズ 15の形成に必要のない部分を除去している。この工程は、必要 に応じて取り入れられ、省略することもできる。  FIG. 6 (c) is a diagram showing a step of removing a portion unnecessary for forming the microlens 15. Specifically, a resist material is applied to the substrate 10 and notched, and then etched to remove a portion that is not necessary for forming the microlens 15. This process can be incorporated as needed and can be omitted.
[0044] 次に、本実施形態による面発光レーザアレイ及び面発光レーザ光源の製造方法の 効果を説明する。この製造方法によれば、面発光レーザ素子 3の出射面 3a上にマイ クロレンズ 15が形成されるため、製造された面発光レーザ光源 2から出射されるレー ザ光の出射角度を小さくすることができる。そのため、必要に応じて出射角度を絞つ たレーザ光、あるいはコリメートされたレーザ光を得ることができる。また、これにより、 面発光レーザアレイ 1あるいは面発光レーザ光源 2を、光インターコネクションに応用 した場合、クロストークを抑制することが可能になる。  Next, the effects of the method for manufacturing the surface emitting laser array and the surface emitting laser light source according to the present embodiment will be described. According to this manufacturing method, since the microlens 15 is formed on the emission surface 3a of the surface emitting laser element 3, the emission angle of the laser beam emitted from the manufactured surface emitting laser light source 2 can be reduced. it can. Therefore, laser light with a narrowed emission angle or collimated laser light can be obtained as necessary. This also makes it possible to suppress crosstalk when the surface emitting laser array 1 or the surface emitting laser light source 2 is applied to optical interconnection.
[0045] また、マイクロレンズ 15は、まず元レンズ 13が形成され、その上に第 2の誘電体材 料が積層されて形成されるという 2段階の形成工程を経る。このため、最終的に得ら れるマイクロレンズの外面形状及びレンズ内での分布屈折率構造等を様々に制御す ることが可能である。  In addition, the microlens 15 is subjected to a two-stage formation process in which the original lens 13 is first formed and the second dielectric material is laminated thereon. For this reason, it is possible to variously control the outer surface shape of the finally obtained microlens and the distributed refractive index structure in the lens.
[0046] また、一度レーザ光を出射して出射パターンを確認してから、マイクロレンズ 15の外 面形状を調整する。そのため、所望の出射条件に応じたレーザ光を得るのに、高精 度でレンズ形状を制御することが可能である。例えば、マイクロレンズ 15の外面形状 を調整して、コリメートされた光を得ることができる。あるいは、凹面鏡として機能する マイクロレンズ 15上面の形状を調整して、面発光レーザ素子 3内部に戻ってくる光を 制御し、シングルモード出力を最大化することもできる。特に、イオンエッチング法又 はスパッタリング法を用いて調整することにより、マイクロレンズ 15の上面(レンズ面) の曲面を所望の出射条件に合わせて調整することが可能である。 [0046] Further, after the laser beam is once emitted and the emission pattern is confirmed, the outer surface shape of the microlens 15 is adjusted. Therefore, high precision is required to obtain laser light according to the desired emission conditions. It is possible to control the lens shape in degrees. For example, the collimated light can be obtained by adjusting the outer surface shape of the microlens 15. Alternatively, the shape of the upper surface of the microlens 15 functioning as a concave mirror can be adjusted to control the light returning to the inside of the surface emitting laser element 3 to maximize the single mode output. In particular, it is possible to adjust the curved surface of the upper surface (lens surface) of the microlens 15 according to a desired emission condition by adjusting using an ion etching method or a sputtering method.
[0047] さらに、第 1のレンズ形成工程において使用するマスクを一度製作してしまえば、ァ ライメントに手間取ることなぐ大量に、一括してマイクロレンズ 15を形成することがで きる。このため、酸ィ匕膜電流狭窄構造を用いた面発光レーザ光源 2において、 mォ ーダ一で活性層直上にァライメントされた、数/ z m径のレンズの形状を制御すること ができ、シングルモード出力を得ることが可能となる。特に、面発光レーザアレイ 1の 製造においては、大量に一括してマイクロレンズ 15を形成することができるため、低 コストで製造することが可能となる。  [0047] Furthermore, once the mask used in the first lens forming step is manufactured, the microlenses 15 can be formed in a large amount in a lump without taking time for alignment. For this reason, in the surface emitting laser light source 2 using the oxide film current confinement structure, the shape of a lens of several / zm diameter aligned on the active layer in the order of m order can be controlled. Mode output can be obtained. In particular, in the manufacture of the surface emitting laser array 1, since the microlenses 15 can be formed in a large amount in a lump, it can be manufactured at a low cost.
[0048] また、第 2の誘電体積層工程にぉ ヽて、元レンズ 13側から外側(レンズ面側)に向 かって放射状に屈折率が変化するよう、第 2の誘電体材料を積層させることができる 。これにより、マイクロレンズ 4は、所望の出射条件に合わせた分布屈折率構造を有 することが可能となる。  [0048] In addition, the second dielectric material is laminated so that the refractive index changes radially from the original lens 13 side to the outside (lens surface side) over the second dielectric lamination step. Is possible. As a result, the microlens 4 can have a distributed refractive index structure that matches a desired emission condition.
[0049] 例えば、第 2の誘電体積層工程における屈折率の放射状の変化が連続的となるよ うに、第 2の誘電体材料を積層させることができる。これにより、面発光レーザ素子 3か ら出射される各角度の光を所望の方向に徐々に屈折させることが可能となる。具体的 には、屈折率が放射状にレンズ面に向力つて小さくなるように積層することにより、元 レンズ 13から外側においては、面発光レーザ素子 3から出射される各角度のレーザ 光間の光路長差が減少させられる。その結果、面発光レーザ光源 2から出射されるレ 一ザ光を集光した際の収差が軽減され、これにより、高密度に面発光レーザ光源 2を 配置するアレイが可能となる。  [0049] For example, the second dielectric material can be laminated so that the radial change in the refractive index in the second dielectric lamination step is continuous. As a result, it is possible to gradually refract the light of each angle emitted from the surface emitting laser element 3 in a desired direction. Specifically, by laminating so that the refractive index is radially reduced toward the lens surface, the optical path between the laser beams emitted from the surface emitting laser element 3 is emitted from the surface of the surface emitting laser element 3 outside the original lens 13. The length difference is reduced. As a result, the aberration when the laser light emitted from the surface emitting laser light source 2 is condensed is reduced, and this enables an array in which the surface emitting laser light sources 2 are arranged with high density.
[0050] あるいは、第 2の誘電体積層工程における屈折率の放射状の変化が段階的となる ように、第 2の誘電体材料を積層させることもできる。このような構成では、第 2の SiN 膜 14内の屈折率が段階的に変化する界面において、面発光レーザ素子内部への 反射光を得ることができる。また、その反射量は、界面の前後での屈折率差に応じた 量である。このような界面の数及び界面での屈折率差を調整することによって、マイク 口レンズでの面発光レーザ素子内部への反射量を所望の値にし、モード制御するこ とが可能となる。 [0050] Alternatively, the second dielectric material can be laminated so that the radial change of the refractive index in the second dielectric lamination step becomes stepwise. In such a configuration, at the interface where the refractive index in the second SiN film 14 changes stepwise, the surface emitting laser element can be introduced into the surface emitting laser element. Reflected light can be obtained. The amount of reflection is an amount corresponding to the difference in refractive index before and after the interface. By adjusting the number of interfaces and the refractive index difference at the interfaces, it is possible to control the mode by setting the amount of reflection of the microphone aperture lens into the surface emitting laser element to a desired value.
[0051] 特に、この第 2の誘電体材料の積層を、プラズマ CVD法で材料を SiNとすると、積 層時の温度を変化させることによって、第 2の誘電体材料を屈折率を変化させて積層 させることができる。例えば、温度を連続的に変化させることによって、屈折率も連続 的に変化して積層される。また、第 1の誘電体材料を積層した際の温度とは段階的に 異なる温度で第 2の誘電体材料を積層することによって、元レンズ 13と第 2の誘電体 材料との界面において、段階的な屈折率差が設けられる。この界面では、その屈折 率差に応じた反射量で、面発光レーザ素子 3内部へ光が反射して戻っていく。したが つて、界面での屈折率差を調整することによって、マイクロレンズ 15での面発光レー ザ素子 3内部への反射量を所望の値にすることができ、モード制御が可能となる。あ るいは、第 2の誘電体材料の積層において、温度を段階的に変化させることによって 、第 2の誘電体材料の屈折率を段階的に変化させることもできる。あるいは、積層時 の温度を一定にすることにより、第 2の SiN膜 14内において、屈折率を一定の値で一 様〖こ分布させることちできる。  [0051] In particular, when the layer of the second dielectric material is SiN by the plasma CVD method, the refractive index of the second dielectric material is changed by changing the temperature at the time of stacking. Can be laminated. For example, when the temperature is continuously changed, the refractive index is continuously changed to be laminated. In addition, by laminating the second dielectric material at a temperature that is stepwise different from the temperature at which the first dielectric material was laminated, a step is performed at the interface between the original lens 13 and the second dielectric material. A refractive index difference is provided. At this interface, light is reflected back to the inside of the surface emitting laser element 3 with a reflection amount corresponding to the difference in refractive index. Therefore, by adjusting the refractive index difference at the interface, the amount of reflection of the microlens 15 into the surface-emitting laser element 3 can be set to a desired value, and mode control becomes possible. Alternatively, the refractive index of the second dielectric material can be changed stepwise by changing the temperature stepwise in the second dielectric material stack. Alternatively, the refractive index can be uniformly distributed at a constant value in the second SiN film 14 by keeping the temperature at the time of lamination constant.
[0052] また、第 2のレンズ形成工程にぉ 、て、反応性イオンエッチング法又はスパッタリン グ法によりマイクロレンズの外面形状を調整することが好ましい。これにより、マイクロ レンズのレンズ面の曲面が調整される。  [0052] In addition, it is preferable to adjust the outer surface shape of the microlens by a reactive ion etching method or a sputtering method after the second lens forming step. Thereby, the curved surface of the lens surface of the micro lens is adjusted.
[0053] なお、第 1の誘電体積層工程にお!ヽて、成膜方法はプラズマ CVD法に限られず、 スパッタリング法、蒸着法などでも良い。  [0053] Note that the film formation method is not limited to the plasma CVD method in the first dielectric laminating step, and may be a sputtering method, a vapor deposition method, or the like.
[0054] ここで、本実施形態の製造方法によって製造されたマイクロレンズ 15について、図 7に原子間力顕微鏡 (AFM)によって測定した断面形状を、図 8に光学顕微鏡による 写真を示す。 AFMによる測定は、第 1のレンズ形成工程を経て形成された元レンズ の断面形状(図 7の b)と、第 2のレンズ形成工程を経た後のマイクロレンズの断面形 状(図 7の a)とについて行った。図 7のグラフの横軸は、マイクロレンズ断面の底辺上 の位置を表し、縦軸は、マイクロレンズの高さを表す。図 7から、マイクロレンズの断面 形状が、第 2の誘電体積層工程、第 2のレンズ形成工程を経て、変化している様子が Here, for the microlens 15 manufactured by the manufacturing method of the present embodiment, FIG. 7 shows a cross-sectional shape measured by an atomic force microscope (AFM), and FIG. 8 shows a photograph by an optical microscope. The AFM measurement shows the cross-sectional shape of the original lens formed through the first lens formation step (b in Fig. 7) and the cross-sectional shape of the microlens after the second lens formation step (a in Fig. 7). ) And went about. The horizontal axis of the graph in FIG. 7 represents the position on the bottom of the cross section of the microlens, and the vertical axis represents the height of the microlens. Figure 7 shows the cross section of the microlens. The shape changes after the second dielectric layering process and the second lens forming process.
[0055] 次に、本発明による面発光レーザ光源の第 2実施形態について詳細に説明する。 Next, a second embodiment of the surface emitting laser light source according to the present invention will be described in detail.
図 9は本実施形態に係る面発光レーザ光源 20の垂直断面図である。面発光レーザ 光源 20が第 1実施形態に係る面発光レーザ光源 2と構成上異なる点は、第 1実施形 態に係る面発光レーザ光源 2の第 2レンズ部 4bでの屈折率変化が連続的であるのに 対して、面発光レーザ光源 20の第 2レンズ部 21bでの屈折率変化は段階的であるこ とである。  FIG. 9 is a vertical sectional view of the surface emitting laser light source 20 according to this embodiment. The surface emitting laser light source 20 is structurally different from the surface emitting laser light source 2 according to the first embodiment in that the refractive index change at the second lens unit 4b of the surface emitting laser light source 2 according to the first embodiment is continuous. On the other hand, the refractive index change in the second lens portion 21b of the surface emitting laser light source 20 is gradual.
[0056] マイクロレンズ 21は、誘電体である SiNからなり、図 9に示すように、中心点(中心部 ) Cを含む内側の第 1レンズ部 21aと、マイクロレンズ 21の外面であるレンズ面 21cを 含む外側の第 2レンズ部 21bとで構成される。第 2レンズ部 21bは、図 9に示すように 、第 1層 21d、第 2層 21e、第 3層 21fによって構成される。これらは、第 1レンズ部 21a 側からレンズ面 21c側に向けて、第 1層 21d、第 2層 21e、第 3層 21fの順で形成され る。また、第 1レンズ部 21a内及びこれら第 1〜第 3層 21d、 21e、 21fの各層内では、 その屈折率値は一定値をとる。  The microlens 21 is made of SiN as a dielectric, and as shown in FIG. 9, the inner first lens portion 21a including the center point (center portion) C and the lens surface that is the outer surface of the microlens 21 And an outer second lens portion 21b including 21c. As shown in FIG. 9, the second lens unit 21b includes a first layer 21d, a second layer 21e, and a third layer 21f. These are formed in the order of the first layer 21d, the second layer 21e, and the third layer 21f from the first lens portion 21a side toward the lens surface 21c side. Further, the refractive index value takes a constant value in the first lens portion 21a and in each of the first to third layers 21d, 21e, and 21f.
[0057] これらの層は、それぞれ異なる屈折率値を有する。具体的には、第 1レンズ部 21a 力も第 2レンズ部 21bの第 3層 21fまで、屈折率は順に大→小→大→小と段階的に変 化する。即ち、第 1レンズ部 21aの屈折率を n 、第 2レンズ部 21bの第 1〜第 3層 21  [0057] These layers have different refractive index values. Specifically, the refractive index of the first lens portion 21a gradually changes from large to small to large to small until the third layer 21f of the second lens portion 21b. That is, the refractive index of the first lens portion 21a is n, and the first to third layers 21 of the second lens portion 21b.
21a  21a
d、 21e、 21fの屈折率をそれぞれ n 、 n 、 n とすると、これらは、  If the refractive indices of d, 21e and 21f are n, n and n, respectively,
21d 21e 21f  21d 21e 21f
n >n 、 n <n ゝ n >n  n> n, n <n ゝ n> n
21a 21d 21d 21e 21e 21f  21a 21d 21d 21e 21e 21f
を満たす。  Meet.
[0058] 次に、面発光レーザ光源 20の効果について説明する。面発光レーザ素子 3から出 射されるレーザ光は、マイクロレンズ 21によって屈折させられ、その出射角度が小さく なる。そのため、必要に応じて出射角度を絞ったレーザ光、あるいはコリメートされた レーザ光を得ることができる。したがって、面発光レーザ光源 20を光インターコネクシ ヨンに応用した場合、その高集積ィ匕や、チャネル間でのクロストークの抑制等が可能 となる。また、マイクロレンズ 21においては、分布屈折率構造をしている。そのため、 屈折率の具体的な分布構造を変えることによって、レーザ光の出射条件を様々に制 御することができる。また、マイクロレンズ 21は面発光レーザ素子 3の出射面 3a上に 形成されている。そのため、ァライメントのための複雑な調整をすることなぐマイクロ レンズ 21の位置合わせをすることが可能である。 Next, the effect of the surface emitting laser light source 20 will be described. The laser light emitted from the surface emitting laser element 3 is refracted by the microlens 21 and the emission angle is reduced. Therefore, laser light with a narrowed emission angle or collimated laser light can be obtained as necessary. Therefore, when the surface-emitting laser light source 20 is applied to optical interconnection, it is possible to suppress the high integration and the crosstalk between channels. The microlens 21 has a distributed refractive index structure. Therefore, by changing the specific distribution structure of the refractive index, the laser beam emission conditions are variously controlled. I can do it. The microlens 21 is formed on the emission surface 3 a of the surface emitting laser element 3. Therefore, it is possible to align the micro lens 21 without performing complicated adjustments for alignment.
[0059] 本実施形態におけるマイクロレンズ 21の分布屈折率構造は、まず第 1レンズ部 21a と第 2レンズ部 21bとの間で段階的に屈折率が変化する構成である。そのため、第 1 レンズ部 21aと第 2レンズ部 21bとの界面で、光の一部が反射し、面発光レーザ素子 3内部に戻される。 [0059] The distributed refractive index structure of the microlens 21 in the present embodiment is a configuration in which the refractive index changes stepwise between the first lens portion 21a and the second lens portion 21b. Therefore, a part of the light is reflected at the interface between the first lens portion 21a and the second lens portion 21b and returned to the inside of the surface emitting laser element 3.
[0060] さらには、第 1レンズ部 21aにおいて屈折率が一定値で一様に分布し、第 2レンズ 部 21bにおいて屈折率が第 1レンズ部 21a側力 レンズ面 21c側に向けて段階的に 変化している。そのため、図 9に示したように、第 1レンズ部 21aと第 2レンズ部 21bと の界面の他、第 2レンズ部 21b内の層 21d、 21e、 21f間における界面でも、光の一 部が反射し面発光レーザ素子 3内部に戻される。このように、面発光レーザ光源 21 は屈折率が段階的に変化する界面を多数持っため、高いシングルモード性を実現 できる。また、各界面での反射率は界面の前後における屈折率差によるので、所望 の反射量となるよう各層間の屈折率差を調整して、モード制御を行うことが可能であ る。  [0060] Further, the refractive index is uniformly distributed at a constant value in the first lens unit 21a, and the refractive index in the second lens unit 21b is stepwise toward the first lens unit 21a side force lens surface 21c side. It has changed. Therefore, as shown in FIG. 9, in addition to the interface between the first lens portion 21a and the second lens portion 21b, part of the light is also present at the interfaces between the layers 21d, 21e, and 21f in the second lens portion 21b. The light is reflected and returned to the inside of the surface emitting laser element 3. Thus, since the surface emitting laser light source 21 has a large number of interfaces whose refractive index changes stepwise, a high single mode property can be realized. Further, since the reflectance at each interface depends on the difference in refractive index before and after the interface, it is possible to control the mode by adjusting the difference in refractive index between the layers so as to obtain a desired amount of reflection.
[0061] なお、第 2レンズ部 21b内での屈折率変化は本実施形態によるものに限らない。例 えば、第 1レンズ部 21aから第 2レンズ部 21bの第 3層 21fまで、屈折率が順に小→大 →小→大と段階的に変化する構成であっても良い。あるいは、大→大、または小→ 小と変化する構成が含まれていても良い。また、第 2レンズ部 21bを構成する層の数 は 3に限らない。さらに、各層内で屈折率が連続的に変化していても良い。  Note that the refractive index change in the second lens portion 21b is not limited to that according to the present embodiment. For example, the refractive index may be changed in order from small → large → small → large in order from the first lens portion 21a to the third layer 21f of the second lens portion 21b. Alternatively, a configuration that changes from large to large or small to small may be included. The number of layers constituting the second lens portion 21b is not limited to three. Furthermore, the refractive index may continuously change in each layer.
[0062] また、この場合、第 1レンズ部 21a内で、屈折率が中心点 C力も第 2レンズ部 21bと の界面に向けて連続的に変化するような分布としても良い。あるいは、第 1レンズ部 2 la内で、屈折率が段階的に変化するような分布としても良い。さらには、上記した第 1 レンズ部 21aの分布例と第 2レンズ部 21bの分布例とを組み合わせることもできる。こ れにより、所望の出射条件を満たす出射レーザ光が得られる。  [0062] In this case, in the first lens portion 21a, the refractive index may be distributed such that the center point C force also continuously changes toward the interface with the second lens portion 21b. Alternatively, the distribution may be such that the refractive index changes stepwise within the first lens unit 2 la. Furthermore, the above-described distribution example of the first lens portion 21a and the distribution example of the second lens portion 21b can be combined. As a result, an emitted laser beam that satisfies the desired emission condition can be obtained.
[0063] 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に 限定されないことは言うまでもない。例えば、上記実施形態では、面発光レーザ素子 の出射面は基板と反対側の面であった力 基板側の面であってもよ!/、。 [0063] While the preferred embodiment of the present invention has been described above, it is needless to say that the present invention is not limited to the above embodiment. For example, in the above embodiment, the surface emitting laser element The output surface of the force may have been the surface on the opposite side of the substrate.
[0064] また、出射光角度を精密に制御(コリメート光など)するようなマイクロレンズ 15を一 括して形成するには、計算により、面発光レーザ素子 3の構造に即した分布屈折率 構造の細かな設計をしておき、それに合わせて、元レンズ 13の曲率、第 2の誘電体 材料の屈折率分布、マイクロレンズ 15の外面形状を、出射角度を確認しながら、形 成すれば得られる。  [0064] In addition, in order to collectively form the microlens 15 that precisely controls the angle of the emitted light (collimated light, etc.), a distributed refractive index structure conforming to the structure of the surface emitting laser element 3 is calculated. In order to achieve this, it is possible to obtain the curvature of the original lens 13, the refractive index distribution of the second dielectric material, and the outer surface shape of the microlens 15 while confirming the emission angle. It is done.
[0065] ここで、面発光レーザ光源の製造方法は、基板上に形成された垂直共振器型の面 発光レーザ素子の出射面上に第 1の誘電体材料を積層する第 1の誘電体積層工程 と、出射面上に積層された第 1の誘電体材料を元レンズに形成する第 1のレンズ形成 工程と、元レンズ上に、第 2の誘電体材料を積層する第 2の誘電体積層工程と、面発 光レーザ素子よりレーザ光を出射し、その出射パターンに基づいて、元レンズ上に積 層された第 2の誘電体材料の外面形状を調整して、面発光レーザ素子に対応するマ イク口レンズを形成する第 2のレンズ形成工程とを備えることが好ましい。  Here, the method for manufacturing the surface emitting laser light source includes a first dielectric laminate in which a first dielectric material is laminated on an emission surface of a vertical cavity surface emitting laser element formed on a substrate. A first lens forming step for forming a first dielectric material laminated on the exit surface on the original lens; and a second dielectric laminate for laminating the second dielectric material on the original lens Laser light is emitted from the surface emitting laser element, and the outer surface shape of the second dielectric material stacked on the original lens is adjusted based on the emission pattern to support the surface emitting laser element. And a second lens forming step of forming a microphone opening lens.
[0066] また、第 2の誘電体積層工程において、元レンズの屈折率との間に段階的に屈折 率の差を設けて、第 2の誘電体材料を積層することが好ましい。このような構成では、 第 1、第 2の誘電体材料の界面において、その屈折率差に応じた反射量で、面発光 レーザ素子内部への反射光を得ることができる。したがって、屈折率差を調整するこ とによって、マイクロレンズでの面発光レーザ素子内部への反射量を所望の値にし、 モード制御することができる。  In the second dielectric layer stacking step, it is preferable to stack the second dielectric material by providing a stepwise difference in refractive index from the refractive index of the original lens. With such a configuration, reflected light to the inside of the surface emitting laser element can be obtained at the interface between the first and second dielectric materials with a reflection amount corresponding to the difference in refractive index. Therefore, by adjusting the refractive index difference, the amount of reflection of the microlens into the surface emitting laser element can be set to a desired value, and the mode can be controlled.
[0067] また、第 2の誘電体積層工程にぉ ヽて、元レンズ側カゝら外側に向けて屈折率が変 化するように、第 2の誘電体材料を積層することが好ましい。これにより、所望の出射 条件に合わせた分布屈折率構造を有するマイクロレンズを得ることができる。  [0067] In addition, it is preferable to laminate the second dielectric material so that the refractive index changes toward the outside from the original lens side over the second dielectric laminating step. Thereby, it is possible to obtain a microlens having a distributed refractive index structure adapted to a desired emission condition.
[0068] また、第 2の誘電体積層工程にぉ ヽて、元レンズ側カゝら外側に向けて屈折率が連 続的に変化するように、第 2の誘電体材料を積層することが好ましい。このように屈折 率を変化させることにより、面発光レーザ光源から出射される各角度の光を所望の方 向に徐々に屈折させ、光路長差を減少させることができる。これにより、面発光レーザ 光源から出射される光の収差を軽減することができる。  [0068] Further, during the second dielectric laminating step, the second dielectric material may be laminated so that the refractive index continuously changes from the original lens side toward the outside. preferable. By changing the refractive index in this way, light at each angle emitted from the surface emitting laser light source can be gradually refracted in a desired direction, and the optical path length difference can be reduced. Thereby, the aberration of the light emitted from the surface emitting laser light source can be reduced.
[0069] また、第 2の誘電体積層工程にぉ ヽて、元レンズ側カゝら外側に向けて屈折率が段 階的に変化するように、第 2の誘電体材料を積層することが好ましい。屈折率が段階 的に変化する界面において、その界面の前後の屈折率差に応じた反射量で面発光 レーザ素子内部への反射光を得ることができる。このような界面の数及び界面での屈 折率差を調整することによって、マイクロレンズでの面発光レーザ素子内部への反射 量を所望の値にし、モード制御することが可能となる。 [0069] In addition, during the second dielectric laminating step, the refractive index increases toward the outside from the original lens side. The second dielectric material is preferably laminated so as to change in a stepwise manner. At the interface where the refractive index changes stepwise, it is possible to obtain reflected light into the surface emitting laser element with an amount of reflection corresponding to the difference in refractive index before and after the interface. By adjusting the number of interfaces and the refractive index difference at the interfaces, it is possible to control the mode by setting the amount of reflection of the microlens into the surface emitting laser element to a desired value.
[0070] また、第 2の誘電体積層工程にぉ 、て、第 2の誘電体材料を、プラズマ CVD法によ り積層することが好ましい。プラズマ CVD法において、特に SiNの成膜では、 350°C 近辺においては屈折率が 2. 5であるが、成膜温度を下げると H (水素)が混入し屈折 率が低下する。そのため、積層時の温度を変えて成膜し、厚さ方向に屈折率分布を 変化させることが可能である。また、 SiOでは、 Ge [0070] Further, it is preferable that the second dielectric material is laminated by a plasma CVD method in the second dielectric laminating step. In the plasma CVD method, especially in the case of SiN film formation, the refractive index is 2.5 around 350 ° C, but when the film formation temperature is lowered, H (hydrogen) is mixed and the refractive index decreases. For this reason, it is possible to change the refractive index distribution in the thickness direction by changing the temperature at the time of lamination. For SiO, Ge
2 、 P、 B等をドーピングするなどして 屈折率を変化させることも可能である。それ以外の材料においても、各成膜条件を変 化させることで積層される誘電体の屈折率を変化させてマイクロレンズを形成すること ができる。  It is also possible to change the refractive index by doping with 2, P, B, etc. Even in other materials, the microlens can be formed by changing the refractive index of the dielectric to be laminated by changing each film forming condition.
[0071] また、第 2のレンズ形成工程にぉ 、て、反応性イオンエッチング法又はスパッタリン グ法によりマイクロレンズの外面形状を調整することが好ましい。これにより、マイクロ レンズのレンズ面の曲面を調整することができる。  [0071] Further, it is preferable to adjust the outer surface shape of the microlens by a reactive ion etching method or a sputtering method after the second lens forming step. Thereby, the curved surface of the lens surface of the micro lens can be adjusted.
[0072] また、面発光レーザ光源は、基板上に形成された垂直共振器型の面発光レーザ素 子と、面発光レーザ素子の出射面上に形成されたマイクロレンズとを備え、マイクロレ ンズは、誘電体力もなり、出射面側の中心部力も外側のレンズ面に向けて所定の分 布で屈折率が変化する分布屈折率構造に形成されて!ヽることが好ま ヽ。  [0072] Further, the surface emitting laser light source includes a vertical cavity surface emitting laser element formed on a substrate and a microlens formed on an emission surface of the surface emitting laser element. Is formed in a distributed refractive index structure in which the refractive index changes with a predetermined distribution toward the outer lens surface as well as the dielectric force! I prefer to speak.
[0073] 具体的な分布屈折率構造としては、マイクロレンズは、中心部を含む内側の第 1レ ンズ部とレンズ面を含む外側の第 2レンズ部とを備え、第 1レンズ部と第 2レンズ部と の間で段階的に屈折率が変化することが好ましい。第 1レンズ部と第 2レンズ部との 界面、及び第 2レンズ部の表面においては、屈折率差に応じた反射量で、面発光レ 一ザ素子内部への反射光を得ることができる。したがって、マイクロレンズでの面発光 レーザ素子内部への反射量が所望の値となるように屈折率差を調整して、モード制 御することができる。  [0073] As a specific distributed refractive index structure, the microlens includes an inner first lens portion including a center portion and an outer second lens portion including a lens surface, and the first lens portion and the second lens portion. It is preferable that the refractive index changes stepwise with the lens unit. At the interface between the first lens unit and the second lens unit and the surface of the second lens unit, reflected light into the surface emitting laser element can be obtained with a reflection amount corresponding to the difference in refractive index. Therefore, it is possible to control the mode by adjusting the difference in refractive index so that the reflection amount into the surface emitting laser element inside the microlens becomes a desired value.
[0074] また、マイクロレンズは、中心部を含む内側の第 1レンズ部とレンズ面を含む外側の 第 2レンズ部とを備え、第 2レンズ部は、第 1レンズ部側カゝらレンズ面側に向けて屈折 率が変化することが好ましい。これにより、第 1レンズ部との組み合わせで、所望の出 射条件に制御することができる。 [0074] Further, the microlens includes an inner first lens portion including a central portion and an outer first surface including a lens surface. It is preferable that the second lens unit includes a second lens unit, and the refractive index of the second lens unit changes from the first lens unit side toward the lens surface side. Thereby, it is possible to control to a desired projection condition in combination with the first lens unit.
[0075] この場合、第 2レンズ部における第 1レンズ部側カゝらレンズ面側に向けての屈折率 の変化が連続的であることが好ましい。このように屈折率を変化させることにより、面 発光レーザ光源から出射される各角度の光を所望の方向に徐々に屈折させ、光路 長差を減少させることができる。これにより、面発光レーザ光源から出射される光の収 差を軽減することができる。  [0075] In this case, it is preferable that the change in the refractive index from the first lens unit side toward the lens surface side in the second lens unit is continuous. By changing the refractive index in this way, light at each angle emitted from the surface emitting laser light source can be gradually refracted in a desired direction, and the optical path length difference can be reduced. Thereby, the convergence of the light emitted from the surface emitting laser light source can be reduced.
[0076] さらに、第 2レンズ部における第 1レンズ部側からレンズ面側に向けての屈折率の変 化が段階的であることが好ましい。このような構成では、第 2レンズ部内の屈折率が段 階的に変化する界面において、その界面の前後の屈折率差に応じた反射量で面発 光レーザ素子内部への反射光を得ることができる。このような界面の数及び界面での 屈折率差を調整することによって、マイクロレンズでの面発光レーザ素子内部への反 射量を所望の値にし、モード制御することが可能となる。  [0076] Further, it is preferable that the refractive index change from the first lens unit side to the lens surface side in the second lens unit is stepwise. In such a configuration, at the interface where the refractive index in the second lens portion changes stepwise, the reflected light to the inside of the surface emitting laser element can be obtained with a reflection amount according to the refractive index difference before and after the interface. Can do. By adjusting the number of interfaces and the refractive index difference at the interfaces, the amount of reflection of the microlens into the surface emitting laser element can be set to a desired value, and the mode can be controlled.
[0077] また、面発光レーザ光源は、面発光レーザ素子、及び対応するマイクロレンズを、 基板上に 1次元又は 2次元アレイ状に複数形成しても良い。上記の面発光レーザ光 源においては、レーザ光の出射角度が抑えられるため、高密度にアレイ化することが 可能となる。  [0077] In addition, in the surface emitting laser light source, a plurality of surface emitting laser elements and corresponding microlenses may be formed on the substrate in a one-dimensional or two-dimensional array. In the surface emitting laser light source described above, since the emission angle of the laser light can be suppressed, it is possible to form an array with high density.
産業上の利用可能性  Industrial applicability
[0078] 本発明は、所望の出射条件でレーザ光を得ることができる面発光レーザ光源の製 造方法及び面発光レーザ光源として利用可能である。 The present invention can be used as a surface emitting laser light source manufacturing method and a surface emitting laser light source capable of obtaining laser light under desired emission conditions.

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成された垂直共振器型の面発光レーザ素子の出射面上に第 1の誘電 体材料を積層する第 1の誘電体積層工程と、  [1] a first dielectric laminating step of laminating a first dielectric material on an emission surface of a vertical cavity surface emitting laser element formed on a substrate;
前記出射面上に積層された前記第 1の誘電体材料を元レンズに形成する第 1のレ ンズ形成工程と、  A first lens forming step of forming, on an original lens, the first dielectric material laminated on the emission surface;
前記元レンズ上に、第 2の誘電体材料を積層する第 2の誘電体積層工程と、 前記面発光レーザ素子よりレーザ光を出射し、その出射パターンに基づいて、前記 元レンズ上に積層された前記第 2の誘電体材料の外面形状を調整して、前記面発光 レーザ素子に対応するマイクロレンズを形成する第 2のレンズ形成工程と、  A second dielectric laminating step of laminating a second dielectric material on the original lens; and laser light is emitted from the surface emitting laser element, and is laminated on the original lens based on the emission pattern. Adjusting the outer surface shape of the second dielectric material to form a microlens corresponding to the surface emitting laser element;
を備えることを特徴とする面発光レーザ光源の製造方法。  A method of manufacturing a surface emitting laser light source, comprising:
[2] 前記第 2の誘電体積層工程において、前記元レンズの屈折率との間に段階的に屈 折率の差を設けて、前記第 2の誘電体材料を積層することを特徴とする請求項 1に記 載の面発光レーザ光源の製造方法。 [2] In the second dielectric layer stacking step, the second dielectric material is stacked in a stepwise difference in refractive index from the refractive index of the original lens. A method for manufacturing a surface emitting laser light source according to claim 1.
[3] 前記第 2の誘電体積層工程において、前記元レンズ側から外側に向けて屈折率が 変化するように、前記第 2の誘電体材料を積層することを特徴とする請求項 1又は 2 に記載の面発光レーザ光源の製造方法。 [3] The second dielectric material is laminated such that, in the second dielectric laminating step, the refractive index changes from the original lens side toward the outside. The manufacturing method of the surface emitting laser light source of description.
[4] 前記第 2の誘電体積層工程において、前記元レンズ側から外側に向けて前記屈折 率が連続的に変化するように、前記第 2の誘電体材料を積層することを特徴とする請 求項 3に記載の面発光レーザ光源の製造方法。 [4] In the second dielectric laminating step, the second dielectric material is laminated so that the refractive index continuously changes from the original lens side toward the outside. A method for manufacturing a surface emitting laser light source according to claim 3.
[5] 前記第 2の誘電体積層工程において、前記元レンズ側から外側に向けて前記屈折 率が段階的に変化するように、前記第 2の誘電体材料を積層することを特徴とする請 求項 3又は 4に記載の面発光レーザ光源の製造方法。 [5] In the second dielectric laminating step, the second dielectric material is laminated so that the refractive index changes stepwise from the original lens side toward the outside. 5. A method for producing a surface emitting laser light source according to claim 3 or 4.
[6] 前記第 2の誘電体積層工程にお 、て、前記第 2の誘電体材料を、プラズマ CVD法 により積層することを特徴とする請求項 1〜5のいずれか一項に記載の面発光レーザ 光源の製造方法。 [6] The surface according to any one of claims 1 to 5, wherein, in the second dielectric laminating step, the second dielectric material is laminated by a plasma CVD method. Manufacturing method of light emitting laser light source.
[7] 前記第 2のレンズ形成工程において、反応性イオンエッチング法又はスパッタリング 法により前記マイクロレンズの外面形状を調整することを特徴とする請求項 1〜6のい ずれか一項に記載の面発光レーザ光源の製造方法。 [7] The surface according to any one of [1] to [6], wherein in the second lens forming step, an outer surface shape of the microlens is adjusted by a reactive ion etching method or a sputtering method. Manufacturing method of light emitting laser light source.
[8] 基板上に形成された垂直共振器型の面発光レーザ素子と、 [8] A vertical cavity surface emitting laser element formed on a substrate;
前記面発光レーザ素子の出射面上に形成されたマイクロレンズと、を備え、 前記マイクロレンズは、誘電体力 なり前記出射面側の中心部力 外側のレンズ面 に向けて所定の分布で屈折率が変化する分布屈折率構造に形成されていることを 特徴とする面発光レーザ光源。  A microlens formed on the exit surface of the surface-emitting laser element, and the microlens has a refractive index with a predetermined distribution toward a lens surface outside the central force on the exit surface side as a dielectric force. A surface-emitting laser light source characterized by being formed in a changing refractive index structure.
[9] 前記マイクロレンズは、前記中心部を含む内側の第 1レンズ部と前記レンズ面を含 む外側の第 2レンズ部とを備え、前記第 1レンズ部と前記第 2レンズ部との間で段階 的に屈折率が変化することを特徴とする請求項 8に記載の面発光レーザ光源。 [9] The microlens includes an inner first lens portion including the central portion and an outer second lens portion including the lens surface, and is provided between the first lens portion and the second lens portion. 9. The surface emitting laser light source according to claim 8, wherein the refractive index changes step by step.
[10] 前記マイクロレンズは、前記中心部を含む内側の第 1レンズ部と前記レンズ面を含 む外側の第 2レンズ部とを備え、前記第 2レンズ部は、前記第 1レンズ部側から前記レ ンズ面側に向けて屈折率が変化することを特徴とする請求項 8又は 9に記載の面発 光レーザ光源。 [10] The microlens includes an inner first lens portion including the center portion and an outer second lens portion including the lens surface, and the second lens portion is formed from the first lens portion side. 10. The surface emitting laser light source according to claim 8, wherein a refractive index changes toward the lens surface side.
[11] 前記第 2レンズ部における前記第 1レンズ部側から前記レンズ面側に向けての前記 屈折率の変化が連続的であることを特徴とする請求項 10に記載の面発光レーザ光 源。  11. The surface emitting laser light source according to claim 10, wherein the change in the refractive index from the first lens portion side to the lens surface side in the second lens portion is continuous. .
[12] 前記第 2レンズ部における前記第 1レンズ部側から前記レンズ面側に向けての前記 屈折率の変化が段階的であることを特徴とする請求項 10又は 11に記載の面発光レ 一ザ光源。  12. The surface emitting laser according to claim 10, wherein the change in the refractive index from the first lens unit side to the lens surface side in the second lens unit is stepwise. One light source.
[13] 前記面発光レーザ素子、及び対応する前記マイクロレンズを、前記基板上に 1次元 又は 2次元アレイ状に複数形成してなる請求項 8〜 12のいずれか一項に記載の面 発光レーザ光源。  13. The surface emitting laser according to any one of claims 8 to 12, wherein a plurality of the surface emitting laser elements and the corresponding microlenses are formed on the substrate in a one-dimensional or two-dimensional array. light source.
PCT/JP2005/014909 2004-08-25 2005-08-15 Method for fabricating surface emission laser light source and surface emission laser light source WO2006022162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-245741 2004-08-25
JP2004245741A JP2006066538A (en) 2004-08-25 2004-08-25 Surface-emitting laser light source and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2006022162A1 true WO2006022162A1 (en) 2006-03-02

Family

ID=35967377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014909 WO2006022162A1 (en) 2004-08-25 2005-08-15 Method for fabricating surface emission laser light source and surface emission laser light source

Country Status (2)

Country Link
JP (1) JP2006066538A (en)
WO (1) WO2006022162A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192312A (en) * 2017-01-19 2019-08-30 欧司朗光电半导体有限公司 Semiconductor laser and method for manufacturing this semiconductor laser
CN113424090A (en) * 2019-02-08 2021-09-21 脸谱科技有限责任公司 Optical element for beam shaping and illumination

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246367B (en) * 2008-12-10 2013-05-29 皇家飞利浦电子股份有限公司 High power VCSEL with improved spatial mode
EP2636111B8 (en) * 2010-11-03 2020-08-19 TRUMPF Photonic Components GmbH Optical element for vertical external-cavity surface-emitting laser
JP5950114B2 (en) * 2012-10-01 2016-07-13 株式会社リコー Light source device, optical scanning device, and image forming apparatus
WO2019003627A1 (en) * 2017-06-28 2019-01-03 ソニー株式会社 Light-emitting element and method for manufacturing same
US11594859B2 (en) * 2017-07-18 2023-02-28 Sony Corporation Light emitting element and light emitting element array
DE102017122325A1 (en) 2017-09-26 2019-03-28 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component and method for producing radiation-emitting semiconductor components
JP7180145B2 (en) 2018-06-28 2022-11-30 富士フイルムビジネスイノベーション株式会社 Light-emitting element array and optical measurement system
WO2023171148A1 (en) * 2022-03-08 2023-09-14 ソニーグループ株式会社 Surface-emitting laser, surface-emitting laser array, and method for manufacturing surface-emitting laser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284489A (en) * 1989-04-26 1990-11-21 Canon Inc Semiconductor laser
JPH10335737A (en) * 1997-05-30 1998-12-18 Olympus Optical Co Ltd Semiconductor laser system
US6026111A (en) * 1997-10-28 2000-02-15 Motorola, Inc. Vertical cavity surface emitting laser device having an extended cavity
JP2000076682A (en) * 1998-09-01 2000-03-14 Seiko Epson Corp Surface emitting semiconductor laser and manufacture thereof
JP2002368333A (en) * 2001-06-02 2002-12-20 Heon-Su Jeon Surface emitting laser
JP2003344610A (en) * 2002-03-18 2003-12-03 Yamaha Corp Microlens array and its manufacturing method
JP2004072004A (en) * 2002-08-09 2004-03-04 Keiji Tanaka Light emitting element having micro-lens, and forming method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033352A1 (en) * 1996-03-08 1997-09-12 Nippon Aspherical Lens Co., Ltd. Lens, semiconductor laser element, device for machining the lens and element, process for producing semiconductor laser element, optical element, and device and method for machining optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284489A (en) * 1989-04-26 1990-11-21 Canon Inc Semiconductor laser
JPH10335737A (en) * 1997-05-30 1998-12-18 Olympus Optical Co Ltd Semiconductor laser system
US6026111A (en) * 1997-10-28 2000-02-15 Motorola, Inc. Vertical cavity surface emitting laser device having an extended cavity
JP2000076682A (en) * 1998-09-01 2000-03-14 Seiko Epson Corp Surface emitting semiconductor laser and manufacture thereof
JP2002368333A (en) * 2001-06-02 2002-12-20 Heon-Su Jeon Surface emitting laser
JP2003344610A (en) * 2002-03-18 2003-12-03 Yamaha Corp Microlens array and its manufacturing method
JP2004072004A (en) * 2002-08-09 2004-03-04 Keiji Tanaka Light emitting element having micro-lens, and forming method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192312A (en) * 2017-01-19 2019-08-30 欧司朗光电半导体有限公司 Semiconductor laser and method for manufacturing this semiconductor laser
US10797469B2 (en) 2017-01-19 2020-10-06 Osram Oled Gmbh Semiconductor laser and method for producing such a semiconductor laser
CN110192312B (en) * 2017-01-19 2021-09-24 欧司朗光电半导体有限公司 Semiconductor laser and method for producing such a semiconductor laser
CN113424090A (en) * 2019-02-08 2021-09-21 脸谱科技有限责任公司 Optical element for beam shaping and illumination
EP4040212A1 (en) * 2019-02-08 2022-08-10 Facebook Technologies, LLC Optical elements for beam-shaping and illumination
US11650403B2 (en) 2019-02-08 2023-05-16 Meta Platforms Technologies, Llc Optical elements for beam-shaping and illumination

Also Published As

Publication number Publication date
JP2006066538A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
WO2006022162A1 (en) Method for fabricating surface emission laser light source and surface emission laser light source
US10514596B2 (en) Integrated light pipe for optical projection
US9112330B2 (en) Optical element for vertical external-cavity surface-emitting laser
US6128134A (en) Integrated beam shaper and use thereof
US7329372B2 (en) Method for producing aspherical structure, and aspherical lens array molding tool and aspherical lens array produced by the same method
KR101623632B1 (en) Method for manufacturing spatial light modulation element, spatial light modulation element, spatial light modulator and exposure apparatus
JP2002026452A (en) Surface-emitting light source, method of manufacturing thereof, and light source for laser processing apparatus
US11747529B2 (en) Wafer level microstructures for an optical lens
US6913705B2 (en) Manufacturing method for optical integrated circuit having spatial reflection type structure
CN115241731A (en) Laser with beam shape and beam direction modification
CN109521507B (en) Diffractive optical element
US11822054B2 (en) Metasurface structure and method for producing metasurface structure
CN113484940B (en) Micro-lens array, preparation method thereof and vertical cavity surface emitting laser structure
JP2006091285A (en) Light emitting apparatus
KR100273134B1 (en) Single-mode surface-emitting laser
JP2004119582A5 (en)
JP2002214404A (en) LENS COMPRISING Al-CONTAINING SEMICONDUCTOR MATERIAL, PLANAR OPTICAL ELEMENT USING THE SAME AND METHOD FOR PRODUCING THE SAME
KR20050062289A (en) Method for producing a micro lenz
JP7328582B2 (en) How to make a monolithic mirror
JP2003211462A (en) Method for manufacturing aspherical surface structure, molding tool for aspherical surface lens array and aspherical surface lens array
JP3214964B2 (en) Diffractive optical element
CN114188815B (en) Lens-free focusing device and method of coherent array laser
CN219917900U (en) Vertical optical cavity surface emitting laser with wafer-level integrated optical micro lens
CN111696841B (en) Display panel and preparation method thereof
JP2006140382A (en) Optical element, manufacturing method thereof, surface emitting element array, and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase