JP3392888B2 - Selective growth of layers containing aluminum. - Google Patents

Selective growth of layers containing aluminum.

Info

Publication number
JP3392888B2
JP3392888B2 JP31805092A JP31805092A JP3392888B2 JP 3392888 B2 JP3392888 B2 JP 3392888B2 JP 31805092 A JP31805092 A JP 31805092A JP 31805092 A JP31805092 A JP 31805092A JP 3392888 B2 JP3392888 B2 JP 3392888B2
Authority
JP
Japan
Prior art keywords
layer
aluminum
sample
gallium arsenide
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31805092A
Other languages
Japanese (ja)
Other versions
JPH05226248A (en
Inventor
レニー アバーナスィ カミー
ジョン ピアートン スチーヴン
レン ファン
ウィリアム ウィスク パトリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of JPH05226248A publication Critical patent/JPH05226248A/en
Application granted granted Critical
Publication of JP3392888B2 publication Critical patent/JP3392888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【本発明の分野】本発明はガリウムひ素半導体デバイス
の作製方法、特にアルミニウム・ガリウムひ素のような
アルミニウムを含んだ層の選択的な成長方法に係る。
FIELD OF THE INVENTION The present invention relates to methods of making gallium arsenide semiconductor devices, and more particularly to selective growth of layers containing aluminum such as aluminum gallium arsenide.

【0002】[0002]

【本発明の背景】高速及び直接禁制帯の特長のために、
ガリウムひ素デバイスは、高速エレクトロニクス、光デ
バイス及び集積回路に用いる場合、かなりのことを約束
している。そのようなデバイスは典型的な場合、ガリウ
ムひ素及びアルミニウム・ガリウムひ素の複数の層を含
み、それらはn又はp形伝導形にドープされ、バイポー
ラ又は電界効果トランジスタのような半導体電子デバイ
スあるいは光検出器又は面発光レーザのような光デバイ
スとして動作するような形態をとる。
BACKGROUND OF THE INVENTION Due to the features of high speed and direct forbidden zones,
Gallium arsenide devices promise a great deal when used in high speed electronics, optical devices and integrated circuits. Such devices typically include multiple layers of gallium arsenide and aluminum gallium arsenide, which are doped to the n- or p-type conductivity, semiconductor electronic devices such as bipolar or field effect transistors, or photodetectors. Device or an optical device such as a surface emitting laser.

【0003】ガリウムひ素層構造を作製する好ましい方
法は、ジー・ジェイ・デービス(G.J.Davis)らに
より、ケムトロニクス(Chemtronics)3(1988)
に述べられている有機金属分子線エピタキシー(MOM
BE)のプロセスのような分子線エピタキシーである。
他の分子線プロセスについては、ダヴリュ・ティー・ツ
ァン(W.T.Tsang.)によりジャーナル・オブ・エ
レクトロニクス・マテリアルズ(Journal of Electroni
cs Materials)、235頁(1986)に述べられてい
る。
A preferred method of making a gallium arsenide layer structure is by GJ Davis et al., Chemtronics 3 (1988).
Organometallic molecular beam epitaxy (MOM
Molecular beam epitaxy like the process of BE).
For other molecular beam processes, see WT Tsang's Journal of Electronics Materials.
cs Materials ), page 235 (1986).

【0004】要するに、分子線プロセスは低圧成長室内
への基板の設置、基板の加熱及び分解して所望の層を形
成する気体分子の分子線を基板上に向けることを含む。
MBEとよばれるプロセスは典型的な場合、III族、
V族用には元素のソースと、ドーパント元素のみを用い
るが、MOMBEプロセスは各種の元素及び少なくとも
1つのIII族又はドーパント元素を供給する化合物気
体ソースを用いる。pnp及びnpnトランジスタの作
製に用いられる典型的なMOMBEプロセスについて
は、ともに1991年2月28日に申請された審査中の
特許、シー・アール・アバナシー(C.R.Abernath
y)ら、出願番号07/662549及び07/662
550に述べられている。
In summary, the molecular beam process involves placing a substrate in a low pressure growth chamber, heating the substrate and directing a molecular beam of gas molecules onto the substrate that decomposes to form the desired layer.
The process called MBE is typically a group III,
While only a source of elements and dopant elements are used for Group V, the MONBE process uses a compound gas source that supplies various elements and at least one Group III or dopant element. A typical MOMBE process used to fabricate pnp and npn transistors is described in the pending patent, C.R. Abernath, both filed February 28, 1991.
y) et al., application numbers 07/662549 and 07/662
550.

【0005】従来技術の分子線プロセスの1つの好まし
くない特徴は、アルミニウム・ガリウムひ素の成長中、
ソースとしてアルシン(AsH3 )又はひ素を用いるこ
とである。多くのデバイスの作製方式では、マスクされ
た基板のマスクされない限られた領域中に、アルミニウ
ム・ガリウムひ素層を選択的に再成長させることが必要
である。所望の低温(600℃)において、アルシン
又はひ素を用いた再成長は、非選択的で、マスクされて
いない基板上だけでなく、マスクの上にも成長すること
になる。
One unfavorable feature of prior art molecular beam processes is that during the growth of aluminum gallium arsenide,
Using arsine (AsH 3 ) or arsenic as the source. Many device fabrication schemes require selective regrowth of aluminum gallium arsenide layers in the unmasked, confined areas of the masked substrate. At the desired low temperatures ( < 600 ° C.), regrowth with arsine or arsenic will be non-selective and will grow on the mask as well as on the unmasked substrate.

【0006】選択的なAlGaAsの成長を実現しよう
とする努力によっても、成功は限られたものであった。
As又はAs2 はマスク表面に固着し、Alプリカーサ
分解の触媒となる。マスク表面上にAlを含む材料が核
生成するのを防止するためには、600℃を越える成長
温度が必要である。しかし、多くの電子デバイスの作製
にとって、より低温での成長が望ましい。従って、選択
的にアルミニウムを含んだ層を成長させる改善された方
法が必要である。
Efforts to achieve selective AlGaAs growth have also met with limited success.
As or As 2 adheres to the mask surface and serves as a catalyst for decomposition of the Al precursor. A growth temperature above 600 ° C. is required to prevent nucleation of Al-containing material on the mask surface. However, lower temperature growth is desirable for the fabrication of many electronic devices. Therefore, there is a need for an improved method of selectively growing a layer containing aluminum.

【0007】[0007]

【本発明の概要】アルミニウムを含んだ層を、ひ素プリ
カーサ・フェニルアルシン(PhAs)を用いて、分子
線プロセスにより成長させる。PhAsはアルシンより
活性で、ひ素より不活性であるため、それはIII−V
表面上では選択的に分解するが、マスク材料上では分解
しない。従って、従来のプロセスと違って、PhAsを
用いた成長により、マスクされていないガリウムひ素上
には選択的に成長するが、シリコン窒化物のような典型
的なマスク材料上への成長は防止される。
SUMMARY OF THE INVENTION Aluminum containing layers are grown by a molecular beam process using arsenic precursor phenylarsine (PhAs). Since PhAs is more active than arsine and less active than arsenic, it is III-V
It decomposes selectively on the surface but not on the mask material. Therefore, unlike conventional processes, growth with PhAs selectively grows on unmasked gallium arsenide, but prevents growth on typical mask materials such as silicon nitride. It

【0008】[0008]

【実施例】図面を参照すると、図1はアルミニウムを含
んだ層の堆積工程を示し、図2及び3は図1の堆積プロ
セス前後の典型的な試料の断面を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings, FIG. 1 shows a deposition step of a layer containing aluminum, and FIGS. 2 and 3 show cross sections of a typical sample before and after the deposition process of FIG.

【0009】図1Aに示されるように、最初の工程はガ
リウムひ素族のIII−V半導体の表面層13を有する
基板9を含む試料10の準備である。
As shown in FIG. 1A, the first step is the preparation of a sample 10 including a substrate 9 having a surface layer 13 of a gallium arsenide group III-V semiconductor.

【0010】図2に示されるように、試料10は半導体
層13のあらかじめ決められた領域12のみを露出する
シリコン窒化物のような非III−V材料のマスク層1
1を含むことができる。そのような試料は、マスク11
下及び層13の下にある領域でもさしつかえない異なる
ドーピングされた半導体層(図示されていない)の所望
の積み重ねを生成させるいくつかの前の工程により、生
じたものでよい。半導体はガリウムひ素、アルミニウム
・ガリウムひ素、インジウム・ガリウムひ素、アルミニ
ウムひ素、アルミニウム・インジウムひ素又はアルミニ
ウム・インジウムリンを含むガリウムひ素族の任意の材
料でよい。
As shown in FIG. 2, the sample 10 is a mask layer 1 of a non-III-V material such as silicon nitride that exposes only predetermined regions 12 of the semiconductor layer 13.
1 may be included. Such a sample is mask 11
It may be the result of several previous steps to produce the desired stack of differently doped semiconductor layers (not shown), which may also be in the region below and below layer 13. The semiconductor may be any material of the gallium arsenide family including gallium arsenide, aluminum gallium arsenide, indium gallium arsenide, aluminum arsenide, aluminum indium arsenide or aluminum indium phosphide.

【0011】図1Bに示された次の工程は、成長室とよ
ぶことができる真空にした容器中で、試料を加熱するこ
とである。試料10はインテバック・ガスソース・Ge
nIIのような成長室中に置かれ、10−4 torrより
低い圧力まで排気し、600℃以下の温度、好ましくは
500゜−550℃に加熱する。形成されたままの露出
された半導体表面には、残留酸化物のような不純物が本
質的になく、表面は当業者には周知の技術に従って、完
全に浄化すると有利である。
The next step, shown in FIG. 1B, is to heat the sample in an evacuated container that can be referred to as the growth chamber. Sample 10 is Intevac, Gas source, Ge
placed in the growth chamber such as nII, evacuated to less than 10- 4 torr pressure, 600 ° C. or less of the temperature, preferably heated to 500 ° -550 ° C.. The exposed as-formed semiconductor surface is essentially free of impurities such as residual oxides, and it is advantageous that the surface be thoroughly cleaned according to techniques well known to those skilled in the art.

【0012】図1Cに示されるように、次の工程は半導
体表面をフェニルアルシンの気体分子に露出させると同
時に、トリメチルアミン・アラン(TMAAl)のよう
なアルミニウムを含む気体プリカーサに露出させること
である。ここでは、所望のアルミニウムを含む材料はA
lGaAsで、表面はトリメチルガリウム(TMG)の
ようなガリウムを含む気体プリカーサに露出すべきであ
る。フェニルアルシンはエアプロダクツ・アンド・ケミ
カル社、アレンタウン、PAから入手できる。好ましく
は、プリカーサはすべて、0.1−20SCCMの範囲
の流速で基板上に向けられたH2 キャリヤガスを通し
て、成長室中に導入される。95オングストローム/分
のオーダーの速度で、半導体表面上にアルミニウム・ガ
リウムひ素の選択エピタキシャル成長が得られる。
As shown in FIG. 1C, the next step is to expose the semiconductor surface to gas molecules of phenylarsine and at the same time to a gas precursor containing aluminum, such as trimethylamine alane (TMAAl). Here, the desired aluminum-containing material is A
With lGaAs, the surface should be exposed to a gas precursor containing gallium such as trimethylgallium (TMG). Phenylarsine is available from Air Products and Chemicals, Allentown, PA. Preferably, all precursors are introduced into the growth chamber through H2 carrier gas directed onto the substrate at a flow rate in the range of 0.1-20 SCCM. Selective epitaxial growth of aluminum gallium arsenide is obtained on semiconductor surfaces at rates on the order of 95 Å / min.

【0013】得られる構造が、概略的に図3に描かれて
いる。図からわかるように、成長層14は半導体層13
上に選択的に形成され、マスク層11上には形成されな
い。もし必要なら、マスク層11は熱リン酸中でシリコ
ン窒化物を溶解させることにより、選択的に除去でき
る。PhAsを用いたこのプロセスは、ひ素プリカーサ
としてアルシンを用いた従来技術に対して、多くの利点
をもつ。PhAsはアルシンより広い成長温度範囲で、
選択成長を可能にする。特に、半導体電子及び光デバイ
スの作製に望ましい低温(600℃)において、選択
成長を可能にする。
The resulting structure is schematically depicted in FIG. As can be seen, the growth layer 14 is the semiconductor layer 13
It is selectively formed on the mask layer 11 and is not formed on the mask layer 11. If desired, mask layer 11 can be selectively removed by dissolving silicon nitride in hot phosphoric acid. This process with PhAs has many advantages over the prior art with arsine as the arsenic precursor. PhAs has a wider growth temperature range than arsine,
Enables selective growth. In particular, it enables selective growth at low temperatures ( < 600 ° C.), which is desirable for the fabrication of semiconductor electronic and optical devices.

【0014】PhAsはアルミニウム・ガリウムひ素の
p形層の選択成長に、特に有用である。なぜなら、アル
ミニウム・ガリウムひ素にとってp形ドーパントである
炭素の混入を除外しないからである。この効果の結果
は、図4を参照するとわかる。この図は各種のプリカー
サを用いて順次成長させた層について、深さに対して各
種元素の濃度をプロットしたものである。図示されるよ
うに、トリエチルガリウム(TEG)、トリメチルアミ
ン・アラン(TMAAl)及びひ素を用いた成長によ
り、約5×1016cm-3の炭素レベルを生じた。それに
対して、同じIII族のフラックスをフェニルアルシン
と組合わせた時、炭素含有量は約1.8×1018cm-3
に増加した。
PhAs is particularly useful for the selective growth of p-type layers of aluminum gallium arsenide. This is because the inclusion of carbon, which is a p-type dopant for aluminum gallium arsenide, is not excluded. The result of this effect can be seen with reference to FIG. This figure is a plot of the concentration of various elements with respect to the depth of layers successively grown using various precursors. As shown, growth with triethylgallium (TEG), trimethylamine alane (TMAAl) and arsenic yielded carbon levels of about 5 × 10 16 cm -3. On the other hand, when the same group III flux was combined with phenylarsine, the carbon content was about 1.8 × 10 18 cm -3.
Increased.

【0015】図5は本発明の方法を用いて有利に作製で
きる“エミッタ−アップ”pnpトランジスタの形のガ
リウムひ素デバイスの概略図である。図5に描かれたデ
バイス40は、トランジスタサブコレクタとして働く順
次成長させた層42を支持する基板41、コレクタ4
3、層45、46及び47から成るベース領域44を含
む。層46を、機能ベース層として述べるのが便利で、
それはスペーサ領域(専門家の中には、領域44全体を
ベース領域という人もある。)として働く包囲層45及
び47を伴う。次に、エミッタ層48に必要に応じて設
ける層49が続き、最後に層50及び51が続き、3つ
の層でエミッタ接触領域を構成する。
FIG. 5 is a schematic diagram of a gallium arsenide device in the form of an "emitter-up" pnp transistor that can be advantageously made using the method of the present invention. The device 40 depicted in FIG. 5 comprises a substrate 41 supporting a sequentially grown layer 42 acting as a transistor subcollector, a collector 4
3, including a base region 44 consisting of layers 45, 46 and 47. It is convenient to describe layer 46 as a functional base layer,
It involves enveloping layers 45 and 47 which act as spacer regions (in some experts the entire region 44 may be referred to as the base region). The emitter layer 48 is then followed by an optional layer 49, and finally by layers 50 and 51, the three layers constituting the emitter contact region.

【0016】下の表1は図5のデバイスのこの主要な層
を作成するのに用いられるプロセスを詳細に示す。DM
AAAはトリ−ジメチルアミノひ素をさし、ガリウムひ
素層を形成させるためにDMAAを用いる方法について
は、本件と同時に出願された本出願人らの審査中の特許
“ガリウムを含む層の選択成長法”に述べられている。
Table 1 below details the process used to create this major layer of the device of FIG. DM
AAA refers to tri-dimethylamino arsenide, and as to the method of using DMAA to form a gallium arsenide layer, the applicant's pending patent “Gallium-Containing Layer Selective Growth Method Co-filed concurrently with this case” ”.

【0017】[0017]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウムを含んだ層を成長させる工程を、
ブロックダイヤグラムで示す図である。
FIG. 1 shows a step of growing a layer containing aluminum.
It is a figure shown with a block diagram.

【図2】アルミニウム・ガリウムひ素の層を成長させら
れる典型的な試料の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a typical sample on which a layer of aluminum gallium arsenide can be grown.

【図3】成長後の図2の試料を示す図である。FIG. 3 shows the sample of FIG. 2 after growth.

【図4】各種プリカーサを用いた場合の、深さに対する
測定された濃度のグラフを示す図である。
FIG. 4 is a diagram showing a graph of measured concentration against depth when various precursors are used.

【図5】好ましい電子デバイスの概略図である。FIG. 5 is a schematic diagram of a preferred electronic device.

【符号の説明】[Explanation of symbols]

9 基板 10 試料 11 マスク層 12 領域 13 表面層、半導体層、層 14 成長層 40 デバイス 41 基板 42 層 43 コレクタ 44 ベース領域、領域 45,46,47 層 48 エミッタ層 49,50,51 層 9 substrates 10 samples 11 Mask layer 12 areas 13 Surface layer, semiconductor layer, layer 14 Growth layer 40 devices 41 substrate 42 layers 43 collector 44 Base area, area 45,46,47 layers 48 Emitter layer 49,50,51 layers

───────────────────────────────────────────────────── フロントページの続き (72)発明者 スチーヴン ジョン ピアートン アメリカ合衆国 07901 ニュージャー シィ,サミット,ユークリッド アヴェ ニュー 19−アパートメント 3 (72)発明者 ファン レン アメリカ合衆国 07059 ニュージャー シィ,ウォーレン,バークシャー ドラ イヴ 13 (72)発明者 パトリック ウィリアム ウィスク アメリカ合衆国 08812 ニュージャー シィ,グリーンブルック,ゴールド ス トリート 19 (56)参考文献 特開 平2−229721(JP,A) 特開 平3−3319(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/203,21/205 H01L 21/363,21/365 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Stephen John Pearton United States 07901 New Jersey, Summit, Euclid Avenue 19-Apartment 3 (72) Inventor Van Ren United States 07059 New Jersey, Warren, Berkshire Drive 13 ( 72) Inventor Patrick William Whisk United States 08812 New Jersey, Greenbrook, Gold Street 19 (56) References JP-A-2-229721 (JP, A) JP-A-3-3319 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21 / 203,21 / 205 H01L 21 / 363,21 / 365

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガリウムひ素族のIII−V半導体のマ
スクされていない表面部分を含むマスクされた試料を準
備する工程、 減圧した容器中で前記試料を加熱する工程及び前記マス
クされていない表面部分上にアルミニウムを含んだ材料
を選択的に成長させるように、前記試料をトリメチルア
ミン・アランを含む気体アルミニウムプリカーサとフェ
ニルアルシンに露出する工程を含む、前記試料上へのア
ルミニウムを含んだ材料層の選択的成長方法。
1. Preparing a masked sample comprising an unmasked surface portion of a gallium arsenide group III-V semiconductor, heating the sample in a depressurized container, and the unmasked surface portion. Selection of an aluminum-containing material layer on the sample comprising exposing the sample to a gaseous aluminum precursor containing trimethylamine alane and phenylarsine to selectively grow an aluminum-containing material thereon. Growth method.
【請求項2】 前記試料は500℃ないし600℃の範
囲の温度に加熱される請求項1に記載の方法。
2. The method according to claim 1, wherein the sample is heated to a temperature in the range of 500 ° C. to 600 ° C.
【請求項3】 ガリウムひ素族のIII−V半導体材料
の表面層と、前記表面層の一部を被覆し、選択された部
分を露出するマスク層を更に含む材料を準備する工程; 減圧した容器内で、前記材料を500℃ないし600℃
の範囲の温度に加熱する工程; 前記表面領域の前記選択された部分上に、アルミニウム
・ガリウムひ素の層を選択的に成長させるように、前記
試料をトリチルアミン・アランを含む気体アルミニウム
・プリカーサ、気体のガリウム・プリカーサ及びフェニ
ルアルシンに露出させる工程を含む、試料上へのアルミ
ニウム・ガリウムひ素層の成長方法。
3. Preparing a material further comprising a surface layer of a gallium arsenide group III-V semiconductor material and a mask layer that covers a portion of the surface layer and exposes selected portions of the surface layer; Inside, the material is 500 ℃ ~ 600 ℃
A gas aluminum precursor containing tritylamine alane so as to selectively grow a layer of aluminum gallium arsenide on the selected portion of the surface region; A method of growing an aluminum gallium arsenide layer on a sample comprising exposing to a gaseous gallium precursor and phenylarsine.
【請求項4】 前記ガリウム・プリカーサはトリメチル
ガリウムを含む請求項3に記載の方法。
4. The method of claim 3, wherein the gallium precursor comprises trimethylgallium.
【請求項5】 前記マスクが、シリコン窒化物である請
求項1記載の方法。
5. The method of claim 1, wherein the mask is silicon nitride.
JP31805092A 1991-11-27 1992-11-27 Selective growth of layers containing aluminum. Expired - Lifetime JP3392888B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79923891A 1991-11-27 1991-11-27
US799238 1991-11-27

Publications (2)

Publication Number Publication Date
JPH05226248A JPH05226248A (en) 1993-09-03
JP3392888B2 true JP3392888B2 (en) 2003-03-31

Family

ID=25175389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31805092A Expired - Lifetime JP3392888B2 (en) 1991-11-27 1992-11-27 Selective growth of layers containing aluminum.

Country Status (4)

Country Link
US (1) US5459097A (en)
EP (1) EP0544437B1 (en)
JP (1) JP3392888B2 (en)
DE (1) DE69233203T2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987055B2 (en) 2004-01-09 2006-01-17 Micron Technology, Inc. Methods for deposition of semiconductor material
DE102009058786A1 (en) * 2009-12-18 2011-06-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Method for producing locally structured semiconductor layers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553415A (en) * 1978-10-16 1980-04-18 Mitsubishi Electric Corp Selective epitaxial growing
JPH01308033A (en) * 1988-06-07 1989-12-12 Oki Electric Ind Co Ltd Formation of oxide film
US5171704A (en) * 1991-02-28 1992-12-15 At&T Bell Laboratories Gaas device fabrication utilizing metalorganic molecular beam epitaxy (mombe)
CA2059408A1 (en) * 1991-02-28 1992-08-29 Cammy R. Abernathy Fabrication of aluminum-containing semiconductor devices
US5227006A (en) * 1991-11-27 1993-07-13 At&T Bell Laboratories Method for selectively growing gallium-containing layers

Also Published As

Publication number Publication date
EP0544437B1 (en) 2003-09-17
EP0544437A2 (en) 1993-06-02
JPH05226248A (en) 1993-09-03
EP0544437A3 (en) 1993-09-01
US5459097A (en) 1995-10-17
DE69233203T2 (en) 2004-05-06
DE69233203D1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
JP3760663B2 (en) Method for producing group III nitride compound semiconductor device
JP3139445B2 (en) GaN-based semiconductor growth method and GaN-based semiconductor film
JP3093904B2 (en) Method for growing compound semiconductor crystal
JP3160914B2 (en) Gallium nitride based compound semiconductor laser diode
EP0497350A1 (en) Crystal growth method for gallium nitride-based compound semiconductor
JP2003327497A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR EPITAXIAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME
US5227006A (en) Method for selectively growing gallium-containing layers
JPH09134878A (en) Manufacture of gallium nitride compound semiconductor
JP3481427B2 (en) Crystal growth method for nitride semiconductor
JP3158651B2 (en) Compound semiconductor and method of manufacturing the same
JP3392888B2 (en) Selective growth of layers containing aluminum.
JP2003318187A (en) Method for manufacturing bipolar transistor
JP2000281499A (en) Preparation of gallium nitride single crystal
JP3326371B2 (en) Method for manufacturing compound semiconductor device
JPH0794409A (en) Formation of iii-v compound semiconductor thin film
JP3214349B2 (en) Semiconductor wafer having InGaN layer, method of manufacturing the same, and light emitting device having the same
JPH088460A (en) Method of manufacturing p-type algan semiconductor
JP3277809B2 (en) Compound semiconductor crystal growth method and heterojunction bipolar transistor
JPH08335555A (en) Fabrication of epitaxial wafer
JP2001298030A (en) P-type group iii nitride semiconductor, its manufacturing method, and manufacturing method of semiconductor light emitting device using p-type group iii nitride semiconductor
JP2794506B2 (en) Compound semiconductor heteroepitaxial growth method
JP2853631B2 (en) Method for producing gallium nitride single crystal thin film
JP2853226B2 (en) Semiconductor device and manufacturing method thereof
JP3213551B2 (en) Method and apparatus for vapor phase growth of III-V compound semiconductors
JP3408419B2 (en) Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

EXPY Cancellation because of completion of term