DE102009058786A1 - Method for producing locally structured semiconductor layers - Google Patents

Method for producing locally structured semiconductor layers Download PDF

Info

Publication number
DE102009058786A1
DE102009058786A1 DE102009058786A DE102009058786A DE102009058786A1 DE 102009058786 A1 DE102009058786 A1 DE 102009058786A1 DE 102009058786 A DE102009058786 A DE 102009058786A DE 102009058786 A DE102009058786 A DE 102009058786A DE 102009058786 A1 DE102009058786 A1 DE 102009058786A1
Authority
DE
Germany
Prior art keywords
semiconductor
substrate
gas
layer
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009058786A
Other languages
German (de)
Inventor
Evelyn Dr. 77652 Schmich
Fabian 79115 Kiefer
Stefan Dr. 79194 Reber
Stefan Dipl.-Phys. 79110 Lindekugel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Albert Ludwigs Universitaet Freiburg
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Albert Ludwigs Universitaet Freiburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Albert Ludwigs Universitaet Freiburg filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE102009058786A priority Critical patent/DE102009058786A1/en
Priority to EP10792850A priority patent/EP2513981A2/en
Priority to PCT/EP2010/007753 priority patent/WO2011072872A2/en
Priority to CN2010800579372A priority patent/CN102804409A/en
Publication of DE102009058786A1 publication Critical patent/DE102009058786A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer lokal strukturierten Halbleiterschicht auf einem Substrat, bei dem die Oberfläche des Substrates mit einem Reaktivgas beaufschlagt wird. Dabei findet ein Ätzen, Dotieren bzw. Abscheiden einer. Mit „strukturiert” sind nicht nur rein mechanisch bzw. topographische Strukturen gemeint, sondern auch lokale Dotierungierungen etc.The invention relates to a method for producing a locally structured semiconductor layer on a substrate, in which a reactive gas is applied to the surface of the substrate. This involves etching, doping or depositing one. “Structured” means not only purely mechanical or topographical structures, but also local doping etc.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer lokal strukturierten Halbleiterschicht auf einem Substrat, bei dem die Oberfläche des Substrates mit einem Reaktivgas beaufschlagt wird. Dabei findet ein Ätzen, Dotieren bzw. Abscheiden einer Halbleitersubstanz auf oder in das Substrat statt. Mit „strukturiert” sind nicht nur rein mechanisch bzw. topographische Strukturen gemeint, sondern auch lokale Dotierungierungen etc.The invention relates to a method for producing a locally structured semiconductor layer on a substrate, in which the surface of the substrate is acted upon by a reactive gas. In this case, an etching, doping or deposition of a semiconductor substance takes place on or in the substrate. By "structured" is meant not only purely mechanical or topographical structures, but also local doping etc.

Standardmäßig wird der Emitter für Si-Solarzellen in der Industrie mittels Diffusion planar hergestellt. Dabei wird aber in Kauf genommen, dass für niedrige Kontaktwiderstände hohe Oberflächendotierungen notwendig sind und damit die Oberfläche eine hohe Rekombinationsrate aufweist.By default, the emitter for Si solar cells is manufactured in the industry by diffusion planar. However, it is accepted that high surface doping is necessary for low contact resistances and thus the surface has a high recombination rate.

Selektive, d. h. in der Fläche strukturierte Emitter, werden bei hocheffizienten Solarzellen verwendet, um eine gute Vorderseitenpassivierung und geringe Augerrekombination (geringe Oberflächendotierung) sowie gute Querleitfähigkeit und niedrigen Kontaktwiderstand (hohe Oberflächendotierung) zu gewährleisten. Dabei wird z. B. eine flächige und niedrig dotierte Diffusion mit einer anschließenden tiefen und hochdotierten Diffusion an den Bereichen, die später unter den Kontakten liegen werden, durchgeführt. Es sind somit zwei Diffusionsschritte und ein Maskierungsprozess notwendig, der die Flächen zwischen den Kontakten bei der zweiten Diffusion schützt.Selective, d. H. Surface-structured emitters are used in high-efficiency solar cells to provide good front-side passivation and low auger recombination (low surface doping), as well as good transverse conductivity and low contact resistance (high surface doping). This z. B. a flat and low-doped diffusion with a subsequent deep and highly doped diffusion at the areas that will later be under the contacts performed. There are thus two diffusion steps and a masking process necessary to protect the areas between the contacts in the second diffusion.

Alternativ werden Laser-Verfahren angewendet, bei denen die Flächen unter den Kontakten gezielt dotiert werden. Dafür wird neben dem Diffusionsofen aber eine zusätzliche Laser-Anlage benötigt. Alternativ werden Emitterbereiche mit Hilfe von Maskierungsverfahren selektiv zurückgesetzt.Alternatively, laser methods are used in which the areas under the contacts are selectively doped. But in addition to the diffusion furnace but an additional laser system is needed. Alternatively, emitter regions are selectively reset using masking techniques.

Aufgabe der Erfindung ist es, den aufwändigen Diffusions-(und/oder Laser- oder Rückätz-)Prozess für die Herstellung selektiver Emitter mit einer Emitterabscheidung oder kombiniert mit Emitterrückätzen zu ersetzen.The object of the invention is to replace the complex diffusion (and / or laser or etching back) process for the production of selective emitters with an emitter deposition or combined with emitter etchings.

Diese Aufgabe wird durch das Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Mit Patentanspruch 15 werden Verwendungsmöglichkeiten des Verfahrens angegeben, während Patentanspruch 16 eine Solarzelle beschreibt, die eine Emitterschicht, die mit dem erfindungsgemäßen Verfahren hergestellt worden ist, umfasst. Die weiteren abhängigen Ansprüche stellen dabei vorteilhafte Weiterbildungen dar.This object is achieved by the method having the features of patent claim 1. Claims 15 to 15 indicate uses of the method, while claim 16 describes a solar cell comprising an emitter layer produced by the method according to the invention. The other dependent claims are advantageous developments.

Erfindungsgemäß wird somit ein Verfahren zur Herstellung einer lokal strukturierten Halbleiterschicht auf einem Substrat bereitgestellt, bei dem die Oberfläche des Substrats bereichsweise im Bereich der herzustellenden lokal strukturierten Halbleiterschicht zumindest einmal mit einem Gas zum Abscheiden, Dotieren und/oder Ätzen beaufschlagt wird.According to the invention, a method for producing a locally structured semiconductor layer on a substrate is thus provided, in which the surface of the substrate is applied at least once in regions of the locally structured semiconductor layer to be produced with a gas for deposition, doping and / or etching.

Das hier vorgeschlagene Verfahren bietet eine attraktive Alternative zu diffundierten selektiven Emittern mit entsprechenden, im Einzelnen weiter unten beschriebenen Vorteilen.The method proposed here offers an attractive alternative to diffused selective emitters with corresponding advantages described in detail below.

Das Wesen der Erfindung liegt darin, dass selektive Emitter durch Abscheiden einer strukturierten Schicht durch eine Schattenmaske, und/oder durch in-line Strukturierung mit einem Ätzgas hergestellt werden. Im Fall von Wafer- oder kristallinen Siliciummaterialien und Dünnschichtsolarzellen kann die epitaktische Emitterabscheidung besonders vorteilhaft sein, so dass in einem Prozessschritt selektive Emitter sehr schnell herstellbar sind.The essence of the invention is that selective emitters are made by depositing a patterned layer through a shadow mask, and / or by in-line patterning with an etching gas. In the case of wafer or crystalline silicon materials and thin-film solar cells, the epitaxial emitter deposition can be particularly advantageous, so that in one process step selective emitters can be produced very quickly.

Selektive epitaktische Emitter können innerhalb weniger Minuten hergestellt werden, da die Abscheiderate über 1 μm/min betragen kann und die optimalen Emitterdicken zwischen 1 und 5 μm sind. Dabei ergibt sich der Vorteil, dass besonders dicke hochdotierte Bereiche, die unter den Kontakten von Vorteil sind, schnell abgeschieden werden können (bei einer Diffusion dauert das Einbringen einer 2 μm tiefen Dotierung ca. 1–2 h). Das erfindungsgemäße Verfahren kann je nach Gaszusammensetzung um einen Faktor > 50 schneller einen Emitter herstellen.Selective epitaxial emitters can be made within a few minutes since the deposition rate can be above 1 μm / min and the optimum emitter thicknesses are between 1 and 5 μm. This results in the advantage that particularly thick highly doped regions, which are advantageous under the contacts, can be deposited quickly (in the case of diffusion, the introduction of a 2 μm deep doping takes approximately 1-2 hours). Depending on the gas composition, the process according to the invention can produce an emitter faster by a factor> 50.

Weiterhin kann das Emitterprofil nach Belieben gestaltet werden. Damit kann ungewollte Rekombination im Emitter vermieden und der Strom der Solarzelle erhöht werden. Die komplette selektive Emitterabscheidung erfolgt in-situ. Für Silicium-Dünnschichtsolarzellen kann zusätzlich das BSF und die Basis vorher in-situ abgeschieden werden.Furthermore, the emitter profile can be designed as desired. This avoids unwanted recombination in the emitter and increases the current of the solar cell. Complete selective emitter deposition occurs in-situ. In addition, for silicon thin-film solar cells, the BSF and the base may be previously deposited in-situ.

In einer bevorzugten Ausführungsform des Verfahrens ist vorgesehen, dass die bereichsweise Beaufschlagung dadurch erfolgt, dass die Oberfläche des Substrats durch mindestens eine Schattenmaske, deren Ausnehmungen der Struktur der herzustellenden lokal strukturierten Schicht entsprechen, und/oder gezielt über mindestens eine Düse mit dem Gas angeströmt wird.In a preferred embodiment of the method, it is provided that the areal exposure is effected by the surface of the substrate being flown through at least one shadow mask whose recesses correspond to the structure of the locally structured layer to be produced, and / or specifically via at least one nozzle with the gas ,

Durch geschickte Wahl der Maske und der Abscheideparameter können somit Emitter mit verschiedenen Schichtwiderständen angepasst auf das spätere Metallisierungsdesign abgeschieden werden. Die Maske hat einen entscheidenden Einfluss auf die Durchführung der späteren Metallisierung. Es bedarf dabei einer Justierung beim Drucken des Grids auf die selektive Emitterstruktur. Die durch die Maske beschichteten und die nicht beschichteten Bereiche können unterschiedliche Schichthöhe aufweisen. Wegen dieses Unterschieds ist es einfacher, das Grid beim Drucken auf die selektive Emitterstuktur zu justieren. Für die Justage können so z. B. optische Verfahren zum Einsatz kommen.By clever choice of the mask and the deposition parameters, emitters with different layer resistances can thus be deposited on the subsequent metallization design. The mask has a decisive influence on the implementation of the later metallization. It requires an adjustment when printing the grid on the selective emitter structure. The areas coated by the mask and uncoated areas may have different layer heights exhibit. Because of this difference, it is easier to adjust the grid to the selective emitter structure when printing. For the adjustment can be such. B. optical methods are used.

Bei der Ausführungsform des Verfahrens, bei der eine Düse eingesetzt wird, ist es bevorzugt, dass eine Düse verwendet wird, die eine integrierte Möglichkeit der Aktivierung des Gases aufweist, z. B. eine Möglichkeit zur Beheizung und/oder Plasma-Aktivierung des Gases.In the embodiment of the method employing a nozzle, it is preferred that a nozzle is used which has an integrated ability to activate the gas, e.g. B. a way to heat and / or plasma activation of the gas.

In einer weiteren vorteilhaften Ausführungsform des Verfahrens ist vorgesehen, dass die mindestens eine Schattenmaske und/oder die mindestens eine Düse zwischen 0,1 und 10 mm, bevorzugt zwischen 0,5 und 5 mm, besonders bevorzugt zwischen 1 und 2 mm von der Oberfläche beabstandet ist.In a further advantageous embodiment of the method, it is provided that the at least one shadow mask and / or the at least one nozzle are spaced between 0.1 and 10 mm, preferably between 0.5 and 5 mm, particularly preferably between 1 and 2 mm from the surface is.

Die Maske besteht bevorzugt aus einem Material, auf das nicht leicht abgeschieden wird (z. B. beschichtet mit SiO2, Si3N4, SiC und/oder Al2O3) und beim Rückätzen der Reaktorkammer nicht angegriffen wird. Ein regelmäßiges Rückätzen ist bei einer Abscheidung der selektiven Struktur vorteilhaft, damit sich die Maske nicht zusetzt.The mask is preferably made of a material that is not readily deposited (eg, coated with SiO 2 , Si 3 N 4 , SiC, and / or Al 2 O 3 ) and is not attacked when the reactor chamber is etched back. A regular re-etching is advantageous in a deposition of the selective structure, so that the mask is not added.

Erfindungsgemäß können somit lokal strukturierte Halbleiterschichten hergestellt werden, wobei der Bereich, in dem die Abscheidung des Halbleiters erfolgt, über große Bereiche variieren kann. Bevorzugt wird die Oberfläche des Substrates jedoch in einer Breite zwischen 0,1 und 20 mm, bevorzugt zwischen 0,2 und 2 mm, besonders bevorzugt zwischen 0,3 und 1 mm, mit dem Gas beaufschlagt, so dass sich entsprechend breite Halbleiterstrukturen herstellen lassen.According to the invention, locally structured semiconductor layers can thus be produced, wherein the region in which the deposition of the semiconductor takes place can vary over large areas. However, the surface of the substrate is preferably applied in a width between 0.1 and 20 mm, preferably between 0.2 and 2 mm, particularly preferably between 0.3 and 1 mm, with the gas, so that it is possible to produce correspondingly broad semiconductor structures ,

Vorteilhafte Reaktivgase, die erfindungsgemäß verwendet werden können, sind dabei ausgewählt aus der Gruppe bestehend aus Chlorwasserstoff, Wasserstoff, Chlorsilanen, Phosphan, Hydriden, Bortrichlorid, Trimethylphosphin und/oder gasförmigen Flouriden, insbesondere CF4 oder SF6 und/oder Mischungen hieraus.Advantageous reactive gases which can be used according to the invention are selected from the group consisting of hydrogen chloride, hydrogen, chlorosilanes, phosphine, hydrides, boron trichloride, trimethylphosphine and / or gaseous fluorides, in particular CF 4 or SF 6 and / or mixtures thereof.

Bevorzugte Temperaturen, bei denen das Verfahren abläuft, d. h. entweder Substrattemperaturen oder Reaktivgastemperaturen, als auch die Möglichkeit, dass sowohl das Substrat und das Reaktivgas auf die entsprechenden Temperaturen getempert sind, liegen dabei zwischen 200 und 2000°C, bevorzugt zwischen 500 und 1500°C. Besonders bevorzugte Ausführungsformen des Verfahrens sehen entweder vor, dass die Temperaturen zwischen 1000°C und 1200°C oder zwischen 500°C und 999°C liegen. Ebenso ist die Möglichkeit gegeben, dass das Verfahren unter einem Temperaturgradienten durchgeführt wird, also beispielsweise dass das Gas, mit dem die Oberfläche des Substrates beaufschlagt wird, über einen Bereich temperiert wird. Damit kann erzielt werden, dass mehr oder weniger Halbleiter auf dem dementsprechenden Substrat abgeschieden wird.Preferred temperatures at which the process expires, d. H. either substrate temperatures or reactive gas temperatures, as well as the possibility that both the substrate and the reactive gas are annealed to the appropriate temperatures, are between 200 and 2000 ° C, preferably between 500 and 1500 ° C. Particularly preferred embodiments of the method provide either that the temperatures are between 1000 ° C and 1200 ° C or between 500 ° C and 999 ° C. Likewise, there is the possibility that the process is carried out under a temperature gradient, that is, for example, that the gas, which is applied to the surface of the substrate, is tempered over a range. It can thus be achieved that more or fewer semiconductors are deposited on the corresponding substrate.

Es besteht somit die Wahl, folgende Prozesse durchzuführen:

  • 1. die Abscheidung von selektiven epitaktischen Schichten z. B. bei ca. 1100°C,
  • 2. die Abscheidung von selektiven mikrokristallinen Schichten z. B. bei Temperaturen unter 1000°C,
  • 3. die Eindiffusion von selektiven Strukturen bei Temperaturen zwischen 1100 und 700°C während des Abkühlens der Wafer,
  • 4. das Rückätzen von selektiven Strukturen vor oder nach Abscheideschritten.
It is therefore possible to carry out the following processes:
  • 1. the deposition of selective epitaxial layers z. At about 1100 ° C,
  • 2. the deposition of selective microcrystalline layers z. At temperatures below 1000 ° C,
  • 3. the diffusion of selective structures at temperatures between 1100 and 700 ° C during the cooling of the wafer,
  • 4. the re-etching of selective structures before or after separation steps.

Insbesondere ist eine CVD-Beschichtungsanlage dafür geeignet, das erfindungsgemäße Verfahren durchzuführen.In particular, a CVD coating plant is suitable for carrying out the method according to the invention.

Weiter vorteilhaft ist es, wenn das Verfahren als kontinuierliches Verfahren durchgeführt wird, wobei das Substrat relativ zu dem Bereich der Beaufschlagung mit Ätzgas in einer, zwei oder drei Dimensionen bewegt wird.It is further advantageous if the method is carried out as a continuous method, wherein the substrate is moved in one, two or three dimensions relative to the region of application of etching gas.

Für das Verfahren eignen sich eine Vielzahl von in Frage kommenden Substraten; vorteilhafte Substrate sind dabei ausgewählt aus Halbleitersubstraten, insbesondere Si-, GaAs-, Ge-, SiC-Halbleitersubstraten und/oder Kombinationen hieraus, Trägersubstraten mit einer Halbleiterbeschichtung, wobei die lokal strukturierte Halbleiterschicht auf der Halbleiterbeschichtung abgeschieden wird, Metallen, Gläsern und/oder Keramiken, sowie Kombinationen aus den zuvor genannten Substraten. Für die oben genannten Halbleiterbeschichtungen kommen insbesondere Beschichtungen in Frage, die beispielsweise aus Si, CdTe, CdS, CdSe, CuIn(Ga)Se und/oder CuIn(Ga)S bestehen. Bevorzugte Metalle, die strukturiert werden können, sind beispielsweise Molybdän und/oder Molybdän, das auf einem Glassubstrat aufgebracht ist. Für Gläser oder Keramiken kommen beispielsweise SiC, ZrSiO4, Si3N4 oder Sinter-Si-basierte Gläser bzw. Keramiken in Frage, ebenso ist jedoch eine Strukturierung von Graphit bzw. Kohlenstoff mit dem erfindungsgemäßen Verfahren möglich. Als Substrat kann selbstverständlich auch eine Solarzelle eingesetzt werden.For the method, a variety of suitable substrates are suitable; Advantageous substrates are selected from semiconductor substrates, in particular Si, GaAs, Ge, SiC semiconductor substrates and / or combinations thereof, carrier substrates with a semiconductor coating, wherein the locally structured semiconductor layer is deposited on the semiconductor coating, metals, glasses and / or ceramics , as well as combinations of the aforementioned substrates. For the above-mentioned semiconductor coatings are in particular coatings in question, which consist for example of Si, CdTe, CdS, CdSe, CuIn (Ga) Se and / or CuIn (Ga) S. Preferred metals that can be patterned are, for example, molybdenum and / or molybdenum deposited on a glass substrate. For glasses or ceramics, for example SiC, ZrSiO 4 , Si 3 N 4 or sintered Si-based glasses or ceramics come into question, but also structuring of graphite or carbon is possible with the method according to the invention. As a substrate, of course, a solar cell can be used.

Um die elektrischen Eigenschaften des Substrates bzw. der abgeschiedenen Halbleiterbeschichtung zu verbessern, ist es insbesondere vorteilhaft, wenn vor und/oder nach Durchführung des Verfahrens eine flächige Dotierung der Oberfläche des Halbleitersubstrats durchgeführt wird.In order to improve the electrical properties of the substrate or of the deposited semiconductor coating, it is particularly advantageous if a planar doping of the surface of the semiconductor substrate is carried out before and / or after the method has been carried out.

Zur Verbesserung der Strukturierung kann zusätzlich als sich anschließender Verfahrensschritt ein zumindest teilweises Rückätzen der lokal strukturierten Halbleiterschicht durchgeführt werden. In order to improve the structuring, at least partial etching back of the locally structured semiconductor layer can additionally be carried out as a subsequent method step.

Weiter ist es vorteilhaft, das Verfahren mehrmals nacheinander durchzuführen, so dass entweder vermehrt Halbleitermaterial abgeschieden werden kann oder auch gezielt andere Bereiche des Substrates mit Halbleitermaterialien strukturiert werden können, so dass sich auch komplexe Gefüge von Strukturen abgeschiedenen Halbleiters ergeben können.Furthermore, it is advantageous to carry out the method several times in succession, so that either increased amounts of semiconductor material can be deposited or else other areas of the substrate can be patterned with semiconductor materials, so that even complex structures of structures of deposited semiconductor can result.

Erfindungsgemäß wird weiter die Verwendung des im Voranstehenden beschriebenen Verfahrens angegeben, insbesondere bei der Herstellung von Solarzellen, zur Abscheidung von epitaktischen Halbleiterschichten auf Halbleitersubstraten, zur Abscheidung von mikrokristallinen Halbleiterschichten auf Halbleitersubstraten, zur Eindiffusion von lokal strukturierten dotierten Halbleiterschichten in Halbleitersubstrate, zur Strukturierung von Halbleiterschichten für die Serienschaltung, zur Strukturierung von Metallschichten für die Serienschaltung und/oder zur lokalen Metallabscheidung.The invention further specifies the use of the method described above, in particular in the production of solar cells, for the deposition of epitaxial semiconductor layers on semiconductor substrates, for the deposition of microcrystalline semiconductor layers on semiconductor substrates, for the diffusion of locally structured doped semiconductor layers into semiconductor substrates, for the patterning of semiconductor layers for the series connection, for patterning of metal layers for series connection and / or for local metal deposition.

Erfindungsgemäß ist ebenso eine Solarzelle umfasst, die eine Emitterschicht, die gemäß dem erfindungsgemäßen Verfahren herstellbar ist, aufweist.According to the invention, a solar cell is likewise included which has an emitter layer which can be produced according to the method according to the invention.

Im Folgenden werden die verschiedenen bevorzugten Ausführungsformen der Erfindung beispielhaft dargestellt, ohne die Erfindung auf spezielle Parameter zu beschränken. Insbesondere die Beispiele, die Emitter und Strukturierungen von Emittern betreffen, sind so zu verstehen, dass auch „normale” in-situ-Strukturierungen von abgeschiedenen/abzuscheidenden Schichten unter die Erfindung fallen.In the following, the various preferred embodiments of the invention are illustrated by way of example without restricting the invention to specific parameters. In particular, the examples concerning emitters and structurings of emitters are to be understood such that "normal" in-situ structurings of deposited / deposited layers are also included in the invention.

Beispiel 1example 1

Abscheidung von selektiven epitaktischen SchichtenDeposition of selective epitaxial layers

Die bei hohen Temperaturen hergestellten epitaktischen Schichten können mit Hilfe einer Maske selektiv abgeschieden werden (siehe 1). Dabei müssen die Wafer dicht entlang der Maske vorbeifahren um eine „Verschmierung” der Abscheidung zu verhindern. So ein kontinuierlicher Abscheide-Prozess kann in einer Hochdurchsatz-Atmosphärendruck-CVD-Anlage bewerkstelligt werden. Dabei fahren die Substrate an verschiedenen Abscheidekammern vorbei. Für eine selektive Emitterabscheidung könnte eine eigene Abscheidekammer mit einer hohen Dotierstoffkonzentration vorgesehen werden.The epitaxial layers produced at high temperatures can be selectively deposited by means of a mask (see 1 ). The wafers must pass closely along the mask to prevent "smearing" of the deposition. Such a continuous deposition process can be accomplished in a high throughput atmospheric pressure CVD plant. The substrates pass different deposition chambers. For a selective emitter deposition, a separate deposition chamber with a high dopant concentration could be provided.

Wichtig ist, dass ein regelmäßiger Rückätzschritt durchgeführt wird, damit die Maske sich nicht zusetzt und somit die beschichtete Fläche kleiner wird bzw. ganz verschwindet. Der Prozess ermöglicht sehr schnell sehr dicke Emitter abzuscheiden (Abscheideraten 1–4 μm/min).It is important that a regular etch-back step is performed so that the mask does not become clogged and thus the coated area becomes smaller or completely disappears. The process makes it possible to deposit very thick emitters very quickly (deposition rates 1-4 μm / min).

Beispiel 2Example 2

Abscheidung von selektiven mikrokristallinen oder polykristallinen SchichtenDeposition of selective microcrystalline or polycrystalline layers

Der in Beispiel 1 beschriebene Prozess kann auch bei niedrigeren Temperaturen stattfinden. Dabei werden mikro- oder polykristalline Schichten abgeschieden. Entsprechende Schichten können z. B. für Dünnschichtsolarzellen auf Fremdsubstraten, z. B. isolierendem Hochtemperaturglas, oder Keramik, verwendet werden.The process described in Example 1 can also take place at lower temperatures. In this case, micro- or polycrystalline layers are deposited. Corresponding layers can, for. B. for thin film solar cells on foreign substrates, eg. As insulating high temperature glass, or ceramic.

Diese benötigen immer strukturierte Elemente, z. B. zur Serienverschaltung, die normalerweise per Laser nach ganzflächiger Abscheidung erzeugt werden, mit dem hier beschriebenen Verfahren aber bereits während der Abscheidung hergestellt werden können.These always require structured elements, eg. As for series connection, which are normally generated by laser after full-area deposition, but can be prepared with the method described here already during the deposition.

Beispiel 3Example 3

Eindiffusion von selektiven Strukturen während des AbkühlensIndiffusion of selective structures during cooling

Statt einer Abscheidung eines hochdotieren Bereiches kann auch eine Dotierstoff-Diffusion durch die Maske stattfinden. Bei hohen Temperaturen kann eine Phosphin-Diffusion recht schnell tief in das Silicium eindringen. Ein Abkühlen mit 120 ppm Phosphin in der Reaktoratmosphäre bis zu einer Temperatur von 750°C reicht bereits, um die Dotierkonzentration an der Oberfläche der Si-Schicht von ca. 1018 atoms/cm3 um eine Größenordnung zu erhöhen.Instead of depositing a highly doped region, it is also possible for dopant diffusion to take place through the mask. At high temperatures, phosphine diffusion can quickly penetrate deeply into the silicon. Cooling with 120 ppm of phosphine in the reactor atmosphere up to a temperature of 750 ° C is already sufficient to increase the doping concentration on the surface of the Si layer of about 10 18 atoms / cm 3 by an order of magnitude.

Beispiel 4Example 4

Ätzen nach der EmitterabscheidungEtching after emitter deposition

Eine homogene 2-stufige Emitterschicht wird durch lokales Anblasen/in Kontakt bringen mit einem Ätzgas teilweise und strukturiert entfernt. Die nicht geätzten Emitterbereiche bleiben hochdotiert, z. B. für Kontaktierzwecke. Durch Überhitzen des Ätzgases kann die Selektivität erhöht werden, da an der („kalten”) Schicht das sich verteilende Gas schnell abkühlt und seine Reaktivität verliert.A homogeneous 2-stage emitter layer is removed by local blowing / contacting with an etching gas partially and structured. The non-etched emitter regions remain highly doped, z. B. for contacting purposes. By overheating the etching gas, the selectivity can be increased because at the ("cold") layer, the distributing gas cools rapidly and loses its reactivity.

Beispiel 5Example 5

Strukturierendes Ätzen nach der EmitterabscheidungStructuring etching after emitter deposition

Wählt man die richtige Temperatur des Ätzgases, können die rückgeätzten Bereiche gleichzeitig texturiert werden. Vorteile hierbei sind die hohe Absorption im rückgeätzten Bereich sowie eine kleine Oberfläche im nicht-geätzten Bereich (z. B. verminderte Rekombination bei Solarzellen-Kontakten auf diesen Bereich) auch durch Plasma erzeugte Gasmischungen.If one chooses the correct temperature of the etching gas, the re-etched areas can be textured at the same time. Advantages here are the high Absorption in the etched-back region as well as a small surface area in the non-etched region (eg reduced recombination in solar cell contacts on this region) also plasma generated gas mixtures.

Bei allen Ausprägungen kann es vorteilhaft sein, die Wafer in einer Wasserstoff/Phosphin Atmosphäre abzukühlen. Dabei wird eine Ausdiffusion des Phosphors nach der Emitter-Epitaxie verhindert. Durch die Phosphorhaltige Umgebung entsteht kein Konzentrationsgefälle in Richtung Gasphase, was eine Ausdiffusion bewirken würde. Für den Phosphor innerhalb der Siliziumschicht ist es also günstiger im Festkörper zu bleiben. Der Prozess kann sehr gut in einem industrienahen Durchlaufprozess integriert werden, da eine Abkühlung der Wafer immer erforderlich ist und nur eine definierte Atomsphäre erforderlich ist.In all instances, it may be advantageous to cool the wafers in a hydrogen / phosphine atmosphere. In this case, an outdiffusion of the phosphorus is prevented after the emitter epitaxy. The phosphorus-containing environment does not produce a concentration gradient in the direction of the gas phase, which would cause outdiffusion. For the phosphor within the silicon layer, it is therefore better to stay in the solid state. The process can be very well integrated in an industry-oriented continuous process, since a cooling of the wafer is always required and only a defined atomic sphere is required.

Prozessablaufprocess flow

Zuerst wird das moderat dotierte Emittervolumen flächig abgeschieden. Anschließend wird durch eine Maske der hochdotierte Bereich abgeschieden oder eindiffundiert. Ebenso ist die Abscheidung einer zweistufigen Schicht gefolgt von einem lokalen Abtragen der höher dotierten Schicht möglich.First, the moderately doped emitter volume is deposited surface. Subsequently, the highly doped region is deposited or diffused through a mask. Likewise, the deposition of a two-stage layer followed by a local removal of the higher doped layer is possible.

Die mit dem vorliegenden Verfahren herstellbaren Schichtfolgen bzw. Halbleiterbauteile sind in den 1 bis 3 näher dargestellt.The layer sequences or semiconductor components that can be produced by the present method are described in US Pat 1 to 3 shown in more detail.

1 beschreibt die Möglichkeit der integrierten Verschaltung mit einer abgeschiedenen Metallschicht. Dabei folgt zunächst eine sukzessive Abscheidung der Schicht 1 (hochdotierte p-Halbleiterschicht) sowie einer Schicht 2 (p-dotierte Halbleiterschicht) auf dem nicht leitfähigen Substrat 0, gefolgt von einem eventuellen lokalen Rückätzen der Schichten 1 und 2. Im Anschluss daran findet ein strukturiertes Abscheiden einer Schicht 3 (n-dotierte Halbleiterschicht) auf der Schicht 2 statt, sowie ein strukturiertes Abscheiden der Schicht 4, wobei die einzelnen Schichten durch das erfindungsgemäße Verfahren aufgebracht werden. Zur Herstellung der Schicht 1 muss der Prozess der Abscheidung von Schicht 1 bis 4 eventuell unterbrochen werden. Nach Abscheidung von Schicht 1 kann diese ex-situ rekristallisiert (z. B. durch Zonenschmelzen) und danach weiterbehandelt werden (z. B. in der Beschichtungsanlage durch Strukturieren). Dies gilt sinngemäß auch für die in den 3 bis 4 dargestellten Ausführungsformen. Dabei gehen die Vorteile einher, dass ein relativ einfacher Schichtaufbau erhalten werden kann, sowie das Metall als Fingerstruktur, mit gezielter Strukturierung hergestellt werden kann. 1 describes the possibility of integrated interconnection with a deposited metal layer. First, a successive deposition of the layer follows 1 (highly doped p-type semiconductor layer) and a layer 2 (p-type semiconductor layer) on the non-conductive substrate 0 followed by a possible local re-etching of the layers 1 and 2 , This is followed by a structured deposition of a layer 3 (n-type semiconductor layer) on the layer 2 instead, and a structured deposition of the layer 4 , wherein the individual layers are applied by the method according to the invention. For the production of the layer 1 must be the process of deposition of layer 1 to 4 may be interrupted. After deposition of layer 1 this can be re-crystallized ex-situ (eg by zone melting) and then further treated (eg in the coating plant by structuring). This applies mutatis mutandis to the in the 3 to 4 illustrated embodiments. The advantages associated with this are that a relatively simple layer structure can be obtained, and the metal can be produced as a finger structure with targeted structuring.

2 betrifft eine integrierte Verschaltung auf einem Halbleiterbauteil mit Metall und einem Isolator, der die verschiedenen Schichtfolgen voneinander trennt. Die Herstellung erfolgt durch flächige Abscheidung der Schichten 1, 2 und 3 auf dem nicht-leitfähigen Substrat 0, wobei die Schicht 1 eine hochdotierte p-Halbleiterschicht, die Schicht 2 eine dotierte p-Halbleiterschicht und die Schicht 3 eine n-dotierte Halbleiterschicht darstellen. Dem Abscheidungsschritt folgt ein lokaler Rückätzschritt der Schichten 1, 2 und 3 sowie die eventuelle Einbringung einer selektiven Emitterstruktur (gegebenenfalls lokales Rückätzen hochdotierter Emitter oder lokale Dotierung). Im Anschluss daran wird ein Isolator 5 abgeschieden, der beispielsweise durch Aufdrucken auf der Halbleiterstruktur herstellbar ist. In einem letzten Schritt erfolgt die Metallisierung, wobei eine das Halbleiterbauteil abschließende Metallschicht 4, beispielsweise in Form von Metallfingern, auf das Halbleiterbauteil aufgebracht wird. Über diese Metallfinger ist eine Kontaktierung der verschiedenen auf dem Substrat aufgebrachten Schichtfolgen miteinander möglich. Vorteilhaft dabei ist der sehr konservative Schichtaufbau sowie die hohe Flexibilität, die durch eine Streifenbreite pro Zelle bis 7 cm erreicht werden kann. 2 relates to an integrated circuit on a semiconductor device with metal and an insulator which separates the different layer sequences. The production takes place by laminar deposition of the layers 1 . 2 and 3 on the non-conductive substrate 0 , where the layer 1 a highly doped p-type semiconductor layer, the layer 2 a doped p-type semiconductor layer and the layer 3 represent an n-doped semiconductor layer. The deposition step is followed by a local re-etching step of the layers 1 . 2 and 3 and the possible introduction of a selective emitter structure (possibly local re-etching of highly doped emitters or local doping). Following this becomes an insulator 5 deposited, which can be produced for example by printing on the semiconductor structure. In a last step, the metallization takes place, wherein a semiconductor component final metal layer 4 , For example, in the form of metal fingers, is applied to the semiconductor device. By means of these metal fingers, a contacting of the different layer sequences applied to the substrate is possible with one another. The advantage here is the very conservative layer structure and the high flexibility, which can be achieved by a strip width per cell up to 7 cm.

In 2a ist eine Abwandlung der in 3 dargestellten Ausführungsform abgebildet, die eine integrierte Verschaltung mit Metall beschreibt, wobei eine Antireflexschicht als Isolator dient. Auch hier folgt zunächst eine flächige Abscheidung der Schichten 1, 2 und 3 auf Substrat 0, wobei die Schichten 1, 2 und 3 die gleichen Schichten, wie auch schon in 3 beschrieben, darstellen. Dem Abscheideschritt folgt ein lokales Rückätzen der Schichten 1, 2 und 3 sowie die Einbringung einer selektiven Emitterstruktur (gegebenenfalls lokales Rückätzen hochdotierter Emitter oder lokale Dotierung). Im Anschluss daran wird eine Antireflexschicht (die gleichzeitig eine Isolatorschicht darstellt) auf der Schicht 3 abgeschieden. Als letzter Schritt erfolgt eine Metallisierung, wobei eine Metallschicht 4 als abschließende Schicht auf dem Halbleiterbauteil abgeschieden wird. Besonders vorteilhaft hierbei ist, dass keine zusätzliche Isolatorschicht nötig ist.In 2a is a variation of the in 3 illustrated embodiment, which describes an integrated interconnection with metal, wherein an antireflection layer serves as an insulator. Here, too, a two-dimensional deposition of the layers follows 1 . 2 and 3 on substrate 0 , where the layers 1 . 2 and 3 the same layers, as already in 3 described, represent. The deposition step is followed by a local re-etching of the layers 1 . 2 and 3 and the introduction of a selective emitter structure (optionally local re-etching of highly doped emitter or local doping). Following this, an antireflection layer (which simultaneously constitutes an insulator layer) is applied to the layer 3 deposited. The last step is a metallization, wherein a metal layer 4 is deposited as a final layer on the semiconductor device. It is particularly advantageous here that no additional insulator layer is necessary.

In 3 ist eine selektive Emitterkontaktstruktur auf einem Standard-Wafer dargestellt, die mit dem erfindungsgemäßen Verfahren herstellbar ist. Dabei folgt eine flächige Abscheidung einer Schicht 3 (n-dotierter Emitter) auf einem Silizium-Wafer, im Anschluss daran eine lokale Abscheidung bzw. Aufdiffusion der Schicht 4 (hochdotierter n-Halbleiter). Im Anschluss daran erfolgt eine Standard-Metallisierung, wodurch eine Metallfingerstruktur 5 erzeugt wird. Alternativ zu der im Voranstehenden beschriebenen Vorgehensweise ist jedoch auch ein flächiges Abscheiden der Schichten 3 und 4, gefolgt von einem lokalen Rückätzen der Schicht 4, sowie im Anschluss eine Standard-Metallisierung möglich, um die beschriebene Halbleiterstruktur aufzubauen. Als Vorteile hierbei sind zu nennen, dass eine derartige Halbleiterstruktur mit nur äußerst geringem Aufwand erhalten werden kann.In 3 is a selective emitter contact structure shown on a standard wafer, which can be produced by the method according to the invention. This is followed by a planar deposition of a layer 3 (n-doped emitter) on a silicon wafer, followed by a local deposition or on-diffusion of the layer 4 (heavily doped n-type semiconductor). This is followed by a standard metallization, creating a metal finger structure 5 is produced. However, an alternative to the procedure described above is also the areal deposition of the layers 3 and 4 followed by a local re-etching of the layer 4 , and then a standard metallization possible to build the described semiconductor structure. As advantages here are to mention that such a semiconductor structure can be obtained with very little effort.

Claims (16)

Verfahren zur Herstellung einer lokal strukturierten Halbleiterschicht auf einem Substrat, bei dem die Oberfläche des Substrats bereichsweise im Bereich der herzustellenden lokal strukturierten Halbleiterschicht zumindest einmal mit einem Gas zum Abscheiden, Dotieren und/oder Ätzen beaufschlagt wird.A method for producing a locally structured semiconductor layer on a substrate, wherein the surface of the substrate is applied in regions in the region of the locally structured semiconductor layer to be produced at least once with a gas for depositing, doping and / or etching. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die bereichsweise Beaufschlagung dadurch erfolgt, dass die Oberfläche des Substrats a) durch mindestens eine Schattenmaske, deren Ausnehmungen der Struktur der herzustellenden lokal strukturierten Schicht entsprechen, und/oder b) gezielt über mindestens eine Düse mit dem Gas angeströmt wird.A method according to claim 1, characterized in that the regional application is effected in that the surface of the substrate a) by at least one shadow mask whose recesses correspond to the structure of the locally structured layer to be produced, and / or b) specifically via at least one nozzle is flown with the gas. Verfahren nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass das Anströmen mit einer Düse erfolgt, die eine integrierte Möglichkeit der Aktivierung des Gases aufweist, bevorzugt eine Möglichkeit zur Beheizung und/oder Plasma-Aktivierung des Gases.Method according to the preceding claim, characterized in that the flow occurs with a nozzle having an integrated possibility of activation of the gas, preferably a possibility for heating and / or plasma activation of the gas. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Schattenmaske und/oder die mindestens eine Düse zwischen 0,1 und 10 mm, bevorzugt zwischen 0,5 und 5 mm, besonders bevorzugt zwischen 1 und 2 mm von der Oberfläche beabstandet ist.Method according to one of the two preceding claims, characterized in that the at least one shadow mask and / or the at least one nozzle between 0.1 and 10 mm, preferably between 0.5 and 5 mm, more preferably between 1 and 2 mm from the surface is spaced. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Schattenmaske mit SiO2, Si3N4, SiC und/oder Al2O3 beschichtet ist.Method according to one of claims 2 to 4, characterized in that the shadow mask with SiO 2 , Si 3 N 4 , SiC and / or Al 2 O 3 is coated. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bereich der Beaufschlagung der Oberfläche mit dem Gas in der Breite zwischen 0,1 und 20 mm, bevorzugt zwischen 0,2 und 2 mm, besonders bevorzugt zwischen 0,3 und 1 mm begrenzt ist.Method according to one of the preceding claims, characterized in that the region of application of the gas to the surface is limited in the width between 0.1 and 20 mm, preferably between 0.2 and 2 mm, particularly preferably between 0.3 and 1 mm is. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gas ausgewählt ist aus der Gruppe bestehend aus Chlorwasserstoff, Wasserstoff, Chlorsilanen, Phosphan, Hydriden, Bortrichlorid, Trimethylphosphin und/oder gasförmigen Flouriden, insbesondere CF4 oder SF6 und/oder Mischungen hieraus.Method according to one of the preceding claims, characterized in that the gas is selected from the group consisting of hydrogen chloride, hydrogen, chlorosilanes, phosphine, hydrides, boron trichloride, trimethylphosphine and / or gaseous fluorides, in particular CF 4 or SF 6 and / or mixtures thereof , Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, a) dass die Temperatur des Substrats und/oder des Gases bei der Beaufschlagung zwischen 200 und 2000°C, bevorzugt zwischen 500 und 1500°C, weiter bevorzugt zwischen 1000°C und 1200°C oder zwischen 500°C und 999°C beträgt, oder b) dass das Verfahren unter einem Temperaturgradienten durchgeführt wird.Method according to one of the preceding claims, characterized a) that the temperature of the substrate and / or the gas when applied between 200 and 2000 ° C, preferably between 500 and 1500 ° C, more preferably between 1000 ° C and 1200 ° C or between 500 ° C and 999 ° C. , or b) that the process is carried out under a temperature gradient. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es mit einer CVD-Beschichtungsanlage durchgeführt wird.Method according to one of the preceding claims, characterized in that it is carried out with a CVD coating system. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren als kontinuierliches Verfahren durchgeführt wird, wobei das Substrat relativ zu dem Bereich der Beaufschlagung mit Ätzgas in einer, zwei oder drei Dimensionen bewegt wird.Method according to one of the preceding claims, characterized in that the method is carried out as a continuous process, wherein the substrate is moved in one, two or three dimensions relative to the area of application of etching gas. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat ausgewählt ist aus der Gruppe bestehend aus a) Halbleitersubstraten, insbesondere Si-, GaAs-, Ge-, SiC-Halbleitersubstraten und/oder Kombinationen hieraus, b) Trägersubstrate mit einer Halbleiterbeschichtung, wobei die lokal strukturierte Halbleiterschicht auf und/oder in der Halbleiterbeschichtung hergestellt wird, c) Metallen, d) Gläsern und/oder Keramiken, sowie e) Kombinationen aus den zuvor genannten Substraten.Method according to one of the preceding claims, characterized in that the substrate is selected from the group consisting of a) semiconductor substrates, in particular Si, GaAs, Ge, SiC semiconductor substrates and / or combinations thereof, b) carrier substrates with a semiconductor coating, wherein the locally structured semiconductor layer is produced on and / or in the semiconductor coating, c) metals, d) glasses and / or ceramics, as well e) combinations of the aforementioned substrates. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor und/oder nach Durchführung des Verfahrens eine flächige Dotierung der Oberfläche des Halbleitersubstrats durchgeführt wird.Method according to one of the preceding claims, characterized in that before and / or after performing the method, a planar doping of the surface of the semiconductor substrate is performed. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als weiterer, sich anschließender Verfahrensschritt ein zumindest teilweises Rückätzen der lokal strukturierten Halbleiterschicht durchgeführt wird.Method according to one of the preceding claims, characterized in that as a further, subsequent process step, an at least partial etching back of the locally structured semiconductor layer is performed. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren mehrmals durchgeführt wird.Method according to one of the preceding claims, characterized in that the method is carried out several times. Verwendung eines Verfahrens nach einem der vorhergehenden Ansprüche bei der Herstellung von Solarzellen, zur Abscheidung von epitaktischen Halbleiterschichten auf Halbleitersubstraten, zur Abscheidung von mikrokristallinen Halbleiterschichten auf Halbleitersubstraten, zur Eindiffusion von lokal strukturierten dotierten Halbleiterschichten in Halbleitersubstrate, zur Strukturierung von Halbleiterschichten für die Serienschaltung, zur Strukturierung von Metallschichten für die Serienschaltung und/oder zur lokalen Metallabscheidung.Use of a method according to one of the preceding claims in the production of solar cells, for deposition of epitaxial semiconductor layers on semiconductor substrates, for deposition of microcrystalline semiconductor layers on semiconductor substrates, for diffusion of locally structured doped semiconductor layers into semiconductor substrates, for structuring of semiconductor layers for series connection, for structuring of metal layers for series connection and / or for local metal deposition. Solarzelle, umfassend eine Emitterschicht, herstellbar nach einem Verfahren nach einem der Ansprüche 1 bis 14. Solar cell, comprising an emitter layer, producible according to a method according to one of claims 1 to 14.
DE102009058786A 2009-12-18 2009-12-18 Method for producing locally structured semiconductor layers Withdrawn DE102009058786A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102009058786A DE102009058786A1 (en) 2009-12-18 2009-12-18 Method for producing locally structured semiconductor layers
EP10792850A EP2513981A2 (en) 2009-12-18 2010-12-17 Method for producing locally structured semiconductor layers
PCT/EP2010/007753 WO2011072872A2 (en) 2009-12-18 2010-12-17 Method for producing locally structured semiconductor layers
CN2010800579372A CN102804409A (en) 2009-12-18 2010-12-17 Method for producing locally structured semiconductor layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009058786A DE102009058786A1 (en) 2009-12-18 2009-12-18 Method for producing locally structured semiconductor layers

Publications (1)

Publication Number Publication Date
DE102009058786A1 true DE102009058786A1 (en) 2011-06-22

Family

ID=43668268

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009058786A Withdrawn DE102009058786A1 (en) 2009-12-18 2009-12-18 Method for producing locally structured semiconductor layers

Country Status (4)

Country Link
EP (1) EP2513981A2 (en)
CN (1) CN102804409A (en)
DE (1) DE102009058786A1 (en)
WO (1) WO2011072872A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69233203T2 (en) * 1991-11-27 2004-05-06 At & T Corp. Process for the selective deposition of layers containing aluminum

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152824A (en) * 1977-12-30 1979-05-08 Mobil Tyco Solar Energy Corporation Manufacture of solar cells
IT1132906B (en) * 1979-10-17 1986-07-09 Licentia Gmbh SEMICONDUCTIVE LAYER SOLAR CELL
US5683547A (en) * 1990-11-21 1997-11-04 Hitachi, Ltd. Processing method and apparatus using focused energy beam
US5882468A (en) * 1996-02-23 1999-03-16 International Business Machines Corporation Thickness control of semiconductor device layers in reactive ion etch processes
US6815246B2 (en) * 2003-02-13 2004-11-09 Rwe Schott Solar Inc. Surface modification of silicon nitride for thick film silver metallization of solar cell
WO2007100933A2 (en) * 2006-01-12 2007-09-07 Kla Tencor Technologies Corporation Etch selectivity enhancement, deposition quality evaluation, structural modification and three-dimensional imaging using electron beam activated chemical etch
US8092601B2 (en) * 2006-12-13 2012-01-10 Ascentool, Inc. System and process for fabricating photovoltaic cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69233203T2 (en) * 1991-11-27 2004-05-06 At & T Corp. Process for the selective deposition of layers containing aluminum

Also Published As

Publication number Publication date
WO2011072872A2 (en) 2011-06-23
WO2011072872A3 (en) 2011-11-24
EP2513981A2 (en) 2012-10-24
CN102804409A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
EP0092540B1 (en) Method of gettering semiconductor devices
DE102007047231B4 (en) Silicon carbide semiconductor device and process for its production
DE112013005407B4 (en) Method for producing semiconductor epitaxial wafers, semiconductor epitaxial wafers, and method for producing solid-state image sensor devices
EP1997156B1 (en) Method for fabricating a semiconductor component with a specifically doped surface region using out-diffusion, and corresponding semiconductor component
DE102009005168A1 (en) Solar cell and method for producing a solar cell from a silicon substrate
DE4202154A1 (en) ELECTRONIC COMPONENTS WITH SEMICONDUCTIVE POLYCRYSTALLINE DIAMONDS USING AN INSULATING DIAMOND LAYER
DE112017006152T5 (en) solar cell production
DE112014005494T5 (en) A method of manufacturing a semiconductor epitaxial wafer, a semiconductor epitaxial wafer, and a method of manufacturing a solid state image sensor
EP2064750A2 (en) Method for simultaneously doping and oxidizing semiconductor substrates, and its use
DE102010006315B4 (en) Method for local high doping and contacting a semiconductor structure, which is a solar cell or a precursor of a solar cell
DE102018110190A1 (en) Silicon carbide epitaxial wafer, insulated gate silicon carbide bipolar transistor and method of making the same
EP1771879B1 (en) Semiconductor device with a passivation layer and method for production thereof
WO2015044122A1 (en) Method for producing a photovoltaic solar cell that comprises a heterojunction and a doping region introduced by diffusion on two different surfaces
WO2015165755A1 (en) Process for producing differently doped semiconductors
WO2013071925A2 (en) Method for producing a solar cell with a pecvd combination layer and solar cell with a pecvd combination layer
EP2823505B1 (en) Method for producing a doped region in a semiconductor layer
DE102009053818A1 (en) Doping of silicon layers from liquid silanes for electronics and solar applications
DE102009058786A1 (en) Method for producing locally structured semiconductor layers
EP0232515B1 (en) Structured semiconductor body
DE4406769C2 (en) Method for producing ohmic contacts on a SiC semiconductor body
DE2151346A1 (en) Forming monocrystalline-polycrystalline semiconductive - layer - on monocrystalline substrate
DE102018132244B4 (en) Process for the production of doped semiconductor layers
WO2011141142A1 (en) Semiconductor component comprising defect-rich layer for optimally contacting emitters, and method for the production thereof
DE102009021971A1 (en) Method for manufacturing solar cell utilized for power generation, involves completely covering surface of substrates by intermediate layer or secondary product till completion of diffusion process
CH670335A5 (en)

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee