JP3391194B2 - Method for producing high-strength hot-dip galvanized steel sheet with excellent surface properties - Google Patents

Method for producing high-strength hot-dip galvanized steel sheet with excellent surface properties

Info

Publication number
JP3391194B2
JP3391194B2 JP27369096A JP27369096A JP3391194B2 JP 3391194 B2 JP3391194 B2 JP 3391194B2 JP 27369096 A JP27369096 A JP 27369096A JP 27369096 A JP27369096 A JP 27369096A JP 3391194 B2 JP3391194 B2 JP 3391194B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
rolling
dip galvanized
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27369096A
Other languages
Japanese (ja)
Other versions
JPH10121139A (en
Inventor
俊明 占部
聡雄 小林
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP27369096A priority Critical patent/JP3391194B2/en
Publication of JPH10121139A publication Critical patent/JPH10121139A/en
Application granted granted Critical
Publication of JP3391194B2 publication Critical patent/JP3391194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、建材用途、特にス
チールハウスに用いられる柱、梁、けた、トラス、ブレ
ース、パネル等にロールフォーミング、プレスなどによ
り冷間成形された軽量形鋼に素材として用いられる板厚
1.6mm以下の引張強度400〜510MPaの高強
度溶融亜鉛系メッキ鋼板の製造技術に関する。 【0002】 【従来の技術】近年、スチールハウスなどの柱、梁、け
た、トラス、ブレース、パネル等の部材に用いられる建
材用途に、板厚0.8〜1.6mmの引張強度400〜
510MPaの高強度溶融亜鉛系メッキ鋼板の使用が検
討され始めている。 【0003】従来、板厚1.6mm以下の鋼板を製造す
る場合、スラブを一旦熱間圧延により中間板厚とした
後、酸洗により表面スケールを除去し、続いて冷間圧延
により最終板厚に圧延した後、連続溶融亜鉛めっきライ
ンで表面処理を施し製品としていた。 【0004】しかし、近年NIESからの安価な輸入鋼
材の参入が相次いでおり、従来の冷延鋼板へのめっきを
するプロセスではコスト面での競争が困難となってきて
いる。このような状況の中で、より低コストで前述の鋼
板を製造するためには、冷延工程を省略し熱延段階で最
終目標板厚に仕上げ、酸洗後、メッキラインで表面処理
することによる製造コスト低減が有望になってくる。 【0005】従来、熱延鋼板を素材とした高強度溶融亜
鉛メッキ鋼板の製造方法については多数の技術が開示さ
れている。例えば、特開平05-345953 号公報及び特開平
06-41682号公報では、C量を0.008%以下の極低炭
素鋼にMn,P添加で鋼の固溶強化を行い、さらにN
b,Tiによる組織制御及び強度上昇を狙った板厚1.
4mm以下の薄物熱延溶融亜鉛メッキ鋼板の製造方法が
開示されており、また、特開昭63-286523 号公報では、
引張強さが45〜60kgf/mm2 (441〜588MP
a)の高強度Zn−Al系溶融メッキ熱延鋼板に関する
技術が開示されている。 【0006】 【発明が解決しようとする課題】しかし、特開平05-345
953 号公報及び特開平06-41682号公報の技術では冷延工
程の省略が達成されるが、このような極低炭素系の鋼を
製鋼段階で溶製するためには、脱炭精錬設備であるRH
工程を追加しなければならないばかりか、Nb,Tiな
どの高価な合金元素を添加するため、鋼材溶製コストが
著しく高くなるため、冷延工程省略のメリットがなくな
ってしまう。 【0007】また、特開昭63-286523 号公報の技術で
は、熱延工程において850℃以上の高温で仕上げるた
め、熱延コイル表面に生成するスケール量が多く、スケ
ールロスによる歩留まりの低下や酸洗効率の低下を招い
てしまう。特に、板厚の薄い熱延鋼板においては同一重
量でのコイル長さが長くなるため、スケールロスあるい
は酸洗効率の低下は一般の板厚の厚い場合に比較し製造
コストへの影響度が著しく大きくなる。 【0008】本発明の目的は、建材用途の板厚0.8〜
1.6mmの引張強度400〜510MPaの高強度溶
融亜鉛系メッキ鋼板の製造方法に関して、スラブ製造コ
ストの低い素材から薄物熱延鋼板を製造するに際して、
Nb,Tiなどの強化元素を添加することなく、スケー
ル生成を抑制した材料歩留まりの高い溶融亜鉛系メッキ
素材を提供し、熱延条件及び溶融亜鉛メッキ時の加熱条
件の適正化により、表面性状に優れた高強度溶融亜鉛系
メッキ鋼板の製造方法を提供するものである。 【0009】 【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の表面性状に優れた高強度溶融亜鉛系メッ
キ鋼板の製造方法は、重量%で、C:0.08〜0.2
%と、Si:0.03%以下と、Mn:0.4〜1%
と、S:0.01〜0.04%とを含有し、残部は実質
的にFeよりなる組成を有する鋼から溶融亜鉛系メッキ
鋼板を製造する方法において、連続鋳造により製造され
た鋼を粗圧延後、仕上げ圧延を施すに際し、最終スタン
ドでの圧下率:R%、仕上げ圧延終了温度:FT℃、仕
上げ圧延終了から3秒間の平均冷却速度:v℃/se
c、及び巻取温度:CT℃を下記の(1),(2)式を
満足する条件で、仕上げ終了温度:FT℃で最終圧下
率:R%の熱間圧延を行う工程と、仕上げ圧延終了から
3秒間の平均冷却速度:v℃/secで冷却し、CT℃
で巻き取る工程と、巻き取った鋼板を酸洗した後600
℃を越える温度域に加熱し、溶融亜鉛系メッキを施す工
程と、を備えたことを特徴とする溶融亜鉛系メッキ鋼板
の製造方法である。 【0010】 f(T)={4.57×1011exp(−28456 /(T+273))}0.5 …(1) 1.4 f(FT+50)×(1−R/100)+30f(CT)+1.7 f(FT−1.5 v) ≦4.0 …(2) 【0011】 【発明の実施の形態】本発明者は、Nb,Tiなどの強
化元素を添加することなく、スラブ製造コストの低い素
材から薄物熱延鋼板を製造する際、所望の強度を有し、
且つ表面スケール生成を抑制した溶融亜鉛系メッキ鋼板
を提供するため、鋼材の熱延条件と、鋼板強度及び巻取
り終了後の表面スケール厚との関係、さらに溶融亜鉛メ
ッキ時の加熱条件と鋼板強度との関係について、鋭意研
究を重ねた。 【0012】その結果、熱延鋼板の巻取り終了後の表面
スケール厚は、仕上げ最終スタンドンドでの圧下率、仕
上げ圧延終了温度、仕上げ圧延終了から3秒間の平均冷
却速度及び巻取温度に比例するという知見が得られた。
また、溶融亜鉛メッキをするに先立ち、鋼板を一定温度
以上に加熱することにより、所望の強度が得られるとい
う知見も得られた。 【0013】同一重量の熱延コイルで比較すると、表面
スケール厚さが同じ場合、板厚の薄い熱延鋼板では、地
鉄のスケール化による材料歩留まりの低下及び酸洗効率
が著しく低下する。例えば、板厚1.2mmと2.4m
mの熱延鋼板で比較すると、鋼板表面のスケール厚さが
同じであれば、スケールロス及び酸洗に要する時間は2
倍となる。従って、材料歩留まり及び酸洗能率の向上を
図るためには、従来の厚い板厚の熱延鋼板より圧延終了
時点での表面スケール生成量を低減することが製造コス
ト低減に大きく寄与することになる。 【0014】スケールの生成は、生成する時の温度及び
その温度での保持時間により決定されるが、連続圧下を
受ける熱延プロセスにおける最終スケール厚さは、仕上
げ圧延及びその後巻き取られるまでのランアウト冷却が
短時間であるため温度が支配的である。また、仕上げ圧
延中においては、スケールは延性があるため圧延により
薄く伸ばされる。一方、巻取り後の冷却は徐冷であるた
め、仕上げ圧延時よりも時間の寄与が大きくなる。 【0015】以上の知見に基づき、本発明者は、Nb,
Tiなどの強化元素を添加することなく、巻取り終了後
の熱延鋼板の表面スケール厚に影響する熱延条件を示す
指標値(仕上げ最終スタンドンドでの圧下率、仕上げ圧
延終了温度、仕上げ圧延終了から3秒間の平均冷却速度
及び巻取温度の関数,前記(2)式)を一定範囲に制御
し、且つ溶融亜鉛メッキをするに先立ち、鋼板を一定温
度以上に加熱するようにして、所望の強度を有し、且つ
表面性状に優れた本発明の溶融亜鉛系メッキ鋼板の製造
方法を見出だし、本発明を完成した。すなわち、本発明
は、溶融亜鉛系メッキ鋼板の鋼組成及び製造条件を下記
範囲に限定することにより、建材用途の板厚0.8〜
1.6mmの引張強度400〜510MPaを有し、且
つ表面性状に優れた溶融亜鉛系メッキ鋼板を得ることが
できる。 【0016】以下に本発明の成分添加理由、成分限定理
由、及び製造条件の限定理由について説明する。 (1)成分組成範囲 C:0.08〜0.2% Cは鋼を強化するための安価な元素であるが、0.08
%未満では、400〜510MPaの引張強度を確保す
ることが困難であり、また、0.2%を越えて添加して
も大幅な強度上昇が得られず、添加コストが上昇するた
め経済的でない。従って、C量は0.08〜0.2%で
ある。 【0017】Si:0.03%以下 Siは鋼の強度上昇に有効な元素であるが、Siが0.
03%を越えて添加されると溶融亜鉛系メッキ時に不メ
ッキが発生してしまい、鋼板の表面性状が劣化してしま
うため、本発明においてはSiは積極的に添加せず、製
鋼段階で一般精錬プロセスで低減可能な上限量から上限
値は0.03%である。 【0018】Mn:0.4〜1% MnはCと同様に鋼の強度を上昇させる元素であるが、
0.4%未満では、400〜510MPaの引張強度を
確保することが困難であり、1%を越える添加に際して
は、製鋼段階で通常のフェロマンガンよりコストの高い
金属Mnの添加が必要となり、原料コストが上昇するだ
けでなく、強度も510MPaを越えてしまう、従っ
て、Mn量は0.4〜1%である。 【0019】S:0.01〜0.04% Sは固溶状態で存在することにより熱間加工時に脆化
し、板表面に割れを発生させ、熱延板段階で鋼板に表面
欠陥が発生し、溶融亜鉛系メッキ時にこの表面欠陥近傍
部で異常合金化反応が起こり表面外観が不均一となるた
め、上限を0.04%とした。下限については、鋼板表
面性状の観点からは少ないその表面欠陥の発生頻度は低
下するが、0.01%未満の低S成分とするためには、
製鋼段階において脱硫精錬工程が追加され鋼の溶製コス
トが著しく上昇し、経済的でない。従って、S量は0.
01〜0.04%である。 【0020】また、P,sol.Al,Nは本発明の効果を
阻害しない範囲での混入は許容される。 (2)溶融亜鉛系メッキ鋼板製造工程 上記の成分に調整した鋼を転炉にて溶製した後、連続鋳
造によりスラブにする。スラブは粗圧延により一旦粗バ
ーとする。スラブ鋳造後の熱延までのスラブ熱履歴は鋳
造後冷却することなく直ちに粗圧延する直接熱延、ある
いは一旦Ar点以下まで冷却して再加熱する再加熱法
のいずれでもかまわない。 【0021】次に、仕上げ圧延を施すに際し、入り側で
は高圧水によるデスケーリングなどにより脱スケールを
施し、連続熱間圧延機により、仕上げ終了温度:FT℃
で最終スタンドでの圧下率:R%の熱間圧延を行い、仕
上げ圧延終了から3秒間の平均冷却速度:v℃/sec
で冷却し、CT℃で巻き取る。 【0022】ここで、最終スタンドでの圧下率:R%、
仕上げ圧延終了温度:FT℃、仕上げ圧延終了から3秒
間の平均冷却速度:v℃/sec、及び巻取温度:CT
℃を下記の(1),(2)式を満足する条件とする。 【0023】 f(T)={4.57×1011exp(−28456 /(T+273))}0.5 …(1) 1.4 f(FT+50)×(1−R/100)+30f(CT)+1.7 f(FT−1.5 v) ≦4.0 …(2) この条件はスラブの熱間圧延段階において、粗圧延した
後、仕上げ圧延を施すに際し、熱延コイルの表面スケー
ル厚さを薄くし酸洗工程での能率改善及び仕上げ圧延以
降でのスケールロスの低減による材料歩留まりの改善を
目的に、設定されたものである。 【0024】本発明者は熱延鋼板の表面スケール厚の低
減に関して鋭意検討を進めたところ、熱延鋼板の巻取り
終了後の表面スケール厚は、仕上げ最終スタンドでの圧
下率:R%、仕上げ圧延終了温度:FT℃、仕上げ圧延
終了から3秒間の平均冷却速度:v℃/sec及び巻取
温度:CT℃に比例することが明らかとなった。 【0025】すなわち、仕上げ圧延においてはFTが低
いほどスケール生成量が小さく、また、最終仕上げ圧下
率が高いほど、仕上げ圧延時に生成されたスケールが圧
延により薄くなる。また、仕上げ圧延終了後のランアウ
ト冷却においては、より高温にある前半3秒間の平均冷
却速度が大きいほどランアウトでのスケール生成量は小
さくなる。また、巻取段階でのスケール生成量は巻取温
度が最も高温となるため、巻取温度が低いほど巻取後の
徐冷段階でのスケール生成量は低下する。 【0026】本発明においては、FT、R、CR、CT
については特に規定するものではなく、前記(2)式を
満足すれば熱延板段階での表面スケール厚さは薄くなり
酸洗能率及び材料歩留まりが改善される。 【0027】仕上げ圧延終了後の冷却は、ランアウト中
間温度管理によるランアウト水冷制御技術により、急速
冷却及び鋼板と空気の遮断により効果的にスケール生成
を抑制できる。巻取りは常法によればよいが、冷却段階
でのミスト冷却あるいはArガスなどの非酸化雰囲気中
での冷却も効果的にスケール生成を低減できる。 【0028】次に、巻き取った鋼板を酸洗した後600
℃を越える温度域に加熱し、溶融亜鉛系メッキを施す。
ここで、熱延鋼板の表面スケールを除去し、引き続く溶
融亜鉛系メッキにおけるメッキ密着性を向上させるため
に、巻き取った鋼板を加熱する前に酸洗を行う。 酸洗
においては、常法に従った塩酸酸洗でよいが、本発明法
は酸洗時間が著しく低減できるため、連続式溶融亜鉛メ
ッキラインの入り側に酸洗ラインを設置した設備におい
ても、ライン速度を下げることなく効果的に脱スケール
が可能である。 【0029】溶融亜鉛系メッキをするに先立ち、一旦鋼
板を600℃以上に加熱する理由は、この加熱処理によ
り表面の活性化を図り、メッキ密着性を向上させるため
と、鋼板の強度レベルを400〜510MPaに調整す
るためである。 【0030】600℃を越えた加熱は3%以上の水素雰
囲気で行うことにより、より効果的に鋼板表面の活性化
が可能となり、加熱時間は30秒以上3分以下が望まし
い。溶融亜鉛系メッキは本発明においては溶融亜鉛メッ
キ、溶融亜鉛−5%Alメッキ、溶融亜鉛−55%Al
メッキなどの亜鉛を含んだ溶融メッキを対象としてい
る。 【0031】このようにして、本発明の製造方法によれ
ば、表面性状に優れ且つ強度レベル400〜510MP
aを有する高強度溶融亜鉛系メッキ鋼板を得ることが可
能である。以下に本発明の実施例を挙げ、本発明の効果
を立証する。 【0032】 【実施例】表1に示す成分組成の本発明鋼(No.1〜6)及
び比較鋼(No.7〜10) を溶製しスラブとした後、122
0℃に加熱後、一旦粗圧延をした後、表2に示す条件で
仕上げ圧延を行い、巻き取り後コイルを冷却した。その
後、9%塩酸濃度、浴温90℃の酸洗ラインにて酸洗時
間10秒の酸洗により鋼板表面のスケール除去処理をし
た後、溶融亜鉛メッキラインにて700℃,30秒の加
熱後、溶融亜鉛メッキを施した。なお、表2においてサ
ンプルNo.1〜6,11〜14は本発明例の溶融亜鉛
メッキ鋼板であり、サンプルNo.7〜10,15〜1
7は比較例のの溶融亜鉛メッキ鋼板である。 【0033】次に、このメッキ材から圧延直角方向にJ
IS5号試験片を採取し、機械的特性を評価した。ま
た、これらの熱延後のコイルからサンプルを採取し、実
験室において9%塩酸濃度、浴温90℃の浴中に鋼板を
浸漬し、一定電流を鋼板と白金電極間に通電し、電位差
測定法により酸洗による完全脱スケール時間を測定し
た。 さらに、これらの熱延板を実験室において9%塩
酸濃度、浴温90℃の浴中で10秒酸洗し、溶融亜鉛メ
ッキ後の表面性状について調査した。○は表面性状良
好、×は表面性状不良を示す。 【0034】これらの評価結果を表3に示す。なお、同
表中の脱スケール時間比は、鋼No.2の内、前記
(2)式で4.0と算出された条件でのスケールの9%
塩酸濃度、浴温90℃の酸洗終了時間に対する他の条件
の熱延板の酸洗時間の比を示したものである。 【0035】表3より本発明のサンプル(No.1〜6,11〜
14)はいずれも引張強度400MPa(41kgf/mm2 )以
上を確保し、且つ表面性状にも優れていることがわか
る。これに対して比較サンプルNo.7、9は各々C、
Mnの添加量が足りないため引張強度が不足している。 【0036】一方、比較サンプルNo.8、10は各々
Si、Sの添加量が本発明の範囲を越えているため、溶
融亜鉛メッキ後の表面性状が劣化している。また、N
o.15、16、17は表面スケール厚に影響する熱延
条件の指標値(前記(2)式の値)が本発明の範囲の
4.0を越えており、酸洗処理後においてもスケールが
残存しメッキ時の表面性状が劣化したため、溶融亜鉛メ
ッキ後の表面性状が劣化している。 【0037】次に、鋼No.2,4のスラブより鋼片を
採取し、実験室の熱間圧延機により熱延時のスケール生
成試験を行い、鋼No.2の内、前記(2)式で4.0
と算出された条件でのスケールの9%塩酸濃度、浴温9
0℃の酸洗終了時間に対する他の条件の熱延板の酸洗時
間の比を図1に示す。図1より、前記(2)式に対応し
て酸洗終了時間が変化しており、(2)式の値が小さい
ほど酸洗時間を短縮することができることがわかる。 【0038】 【表1】 【0039】 【表2】 【0040】 【表3】【0041】 【発明の効果】本発明によれば、建材用途の板厚0.8
〜1.6mmの引張強度400〜510MPaの高強度
溶融亜鉛系メッキ鋼板の製造方法に関して、Nb,Ti
などの強化元素を添加することなく、スラブ製造コスト
の低い素材から薄物熱延鋼板を製造するに際して、スケ
ール生成を抑制した材料歩留まりの高い溶融亜鉛系メッ
キ素材を提供し、熱延条件及び溶融亜鉛メッキ時の加熱
条件の適正化により、表面性状に優れた高強度溶融亜鉛
系メッキ鋼板を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of cooling a column, a beam, a girder, a truss, a brace, a panel, and the like used for building materials, particularly for a steel house, by roll forming, pressing, or the like. The present invention relates to a technique for producing a high-strength hot-dip galvanized steel sheet having a sheet thickness of 1.6 mm or less and a tensile strength of 400 to 510 MPa, which is used as a material for a light-formed steel section formed between steel sheets. 2. Description of the Related Art In recent years, for building materials used for members such as columns, beams, girders, trusses, braces, panels and the like of steel houses, tensile strengths of 0.8 to 1.6 mm and a tensile strength of 400 to 1.6 mm are used.
The use of a 510 MPa high-strength hot-dip galvanized steel sheet has begun to be studied. Conventionally, when a steel sheet having a thickness of 1.6 mm or less is manufactured, the slab is temporarily made to have an intermediate thickness by hot rolling, the surface scale is removed by pickling, and then the final thickness is made by cold rolling. , And surface-treated by a continuous hot-dip galvanizing line to obtain a product. However, in recent years, inexpensive imported steel materials from NIES have been continuously entering, and it has become difficult to compete in terms of cost in the conventional process of plating cold-rolled steel sheets. Under these circumstances, in order to manufacture the above-mentioned steel sheet at lower cost, the cold rolling process is omitted, the final target thickness is completed in the hot rolling stage, pickling is performed, and surface treatment is performed on a plating line. Promising to reduce manufacturing costs. Conventionally, a number of techniques have been disclosed for a method of manufacturing a high-strength hot-dip galvanized steel sheet using a hot-rolled steel sheet as a material. For example, Japanese Patent Application Laid-Open No. 05-345953 and
In Japanese Patent Application Laid-Open No. 06-41682, solid-solution strengthening of ultra-low carbon steel having a C content of 0.008% or less is performed by adding Mn and P to the steel.
b, thickness of the sheet aimed at controlling the structure and increasing the strength by Ti.
A method for producing a hot-rolled hot-dip galvanized steel sheet having a thickness of 4 mm or less is disclosed, and JP-A-63-286523 discloses that
Tensile strength is 45-60 kgf / mm 2 (441-588MP
A technique relating to a) a high-strength hot-rolled Zn-Al-based hot-rolled steel sheet is disclosed. [0006] However, Japanese Patent Application Laid-Open No. 05-345
No. 953 and Japanese Patent Application Laid-Open No. 06-41682 achieve the omission of the cold rolling process.However, in order to melt such ultra-low carbon steel at the steel making stage, decarburization refining equipment is required. A certain RH
Not only must a process be added, but also expensive alloying elements such as Nb and Ti are added, so that the cost of smelting steel becomes extremely high, so that the merit of omitting the cold rolling process is lost. In the technique disclosed in Japanese Patent Application Laid-Open No. 63-286523, since the hot rolling step is performed at a high temperature of 850 ° C. or more, a large amount of scale is formed on the surface of the hot-rolled coil, and the yield is reduced due to scale loss and acidity is reduced. This leads to a decrease in washing efficiency. In particular, in a hot-rolled steel sheet with a small thickness, the coil length at the same weight becomes longer, so that the scale loss or the decrease in pickling efficiency has a remarkable effect on the manufacturing cost as compared with a general case of a thicker sheet. growing. An object of the present invention is to provide a sheet material having a thickness of 0.8 to 0.8 for building materials.
Regarding the method of manufacturing a high-strength hot-dip galvanized steel sheet having a 1.6 mm tensile strength of 400 to 510 MPa, when manufacturing a thin hot-rolled steel sheet from a material having a low slab manufacturing cost,
By providing a hot-dip galvanized material with a high material yield that suppresses scale formation without adding reinforcing elements such as Nb and Ti, the surface properties can be improved by optimizing the hot-rolling conditions and the heating conditions during hot-dip galvanizing. An object of the present invention is to provide a method for producing an excellent high-strength hot-dip galvanized steel sheet. Means for Solving the Problems In order to solve the above problems and achieve the object, the present invention uses the following means. (1) The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface properties according to the present invention is as follows.
%, Si: 0.03% or less, and Mn: 0.4 to 1%
And S: 0.01 to 0.04%, with the balance being a method of producing a hot-dip galvanized steel sheet from steel having a composition substantially consisting of Fe. After rolling, when performing finish rolling, the rolling reduction in the final stand: R%, finish rolling end temperature: FT ° C, average cooling rate for 3 seconds from the end of finish rolling: v ° C / sec.
c, and a step of performing hot rolling at a finishing temperature of FT ° C. and a final draft of R% at a winding temperature of CT ° C. satisfying the following formulas (1) and (2); Average cooling rate for 3 seconds from the end: cooling at v ° C / sec.
And pickling the rolled steel plate after 600
A step of heating to a temperature range exceeding ° C. and applying a hot-dip galvanized plating. F (T) = {4.57 × 10 11 exp (−28456 / (T + 273))} 0.5 (1) 1.4 f (FT + 50) × (1−R / 100) + 30f (CT) +1.7 f ( FT-1.5 v) ≦ 4.0 (2) DETAILED DESCRIPTION OF THE INVENTION The present inventor made a thin hot rolled steel sheet from a material having a low slab production cost without adding a reinforcing element such as Nb or Ti. Has the desired strength when manufacturing
In order to provide a hot-dip galvanized steel sheet with suppressed surface scale formation, the relationship between the hot rolling conditions of the steel material, the strength of the steel sheet and the thickness of the surface scale after winding, the heating conditions during hot-dip galvanizing, and the steel sheet strength We conducted intensive research on the relationship with. As a result, the surface scale thickness of the hot-rolled steel sheet after completion of the winding is proportional to the rolling reduction in the final final stand, the finish rolling finish temperature, the average cooling rate for 3 seconds after the finish rolling finish, and the winding temperature. Was obtained.
Further, it has been found that a desired strength can be obtained by heating the steel sheet to a certain temperature or higher before hot-dip galvanizing. [0013] When hot rolled coils of the same weight are compared, when the surface scale thickness is the same, in a hot rolled steel sheet having a small thickness, the reduction in material yield and the pickling efficiency due to the scaling of the base iron significantly decrease. For example, a plate thickness of 1.2 mm and 2.4 m
m, the time required for scale loss and pickling is 2 if the scale thickness on the steel sheet surface is the same.
Double. Therefore, in order to improve the material yield and the pickling efficiency, reducing the amount of surface scale generated at the end of rolling compared to the conventional hot-rolled steel sheet having a large thickness greatly contributes to the reduction in manufacturing cost. . The scale formation is determined by the temperature at which the scale is formed and the holding time at that temperature, and the final scale thickness in the hot rolling process subjected to continuous reduction is the final rolling and the run-out before winding. The temperature is dominant because the cooling is short. In addition, during the finish rolling, the scale is thin and stretched by rolling because the scale has ductility. On the other hand, the cooling after winding is slow cooling, so that the time contributes more than at the time of finish rolling. Based on the above findings, the present inventor has proposed that Nb,
Index values indicating the hot rolling conditions that affect the surface scale thickness of the hot-rolled steel sheet after winding without adding reinforcing elements such as Ti (rolling reduction in final finishing stand, finish rolling end temperature, finish rolling The average cooling rate and the function of the winding temperature for 3 seconds from the end, the formula (2)) are controlled within a certain range, and the steel sheet is heated to a certain temperature or more before hot-dip galvanizing. A method for producing a hot-dip galvanized steel sheet according to the present invention having excellent strength and excellent surface properties was found, and the present invention was completed. That is, the present invention limits the steel composition and the manufacturing conditions of the hot-dip galvanized steel sheet to the following ranges, so that the sheet thickness for building materials is 0.8 to 0.8.
A hot-dip galvanized steel sheet having a 1.6 mm tensile strength of 400 to 510 MPa and excellent surface properties can be obtained. The reasons for adding the components, the reasons for limiting the components, and the reasons for limiting the production conditions of the present invention are described below. (1) Component composition range C: 0.08 to 0.2% C is an inexpensive element for strengthening steel.
%, It is difficult to secure a tensile strength of 400 to 510 MPa, and even if it exceeds 0.2%, a significant increase in strength cannot be obtained, and the cost of addition increases, which is not economical. . Therefore, the C content is 0.08 to 0.2%. Si: 0.03% or less Si is an element effective for increasing the strength of steel.
If added in excess of 03%, non-plating occurs during hot-dip galvanizing, and the surface properties of the steel sheet deteriorate, so in the present invention, Si is not added positively and is generally used in the steel making stage. The upper limit is 0.03% from the upper limit that can be reduced in the refining process. Mn: 0.4 to 1% Mn is an element that increases the strength of steel like C,
If it is less than 0.4%, it is difficult to secure a tensile strength of 400 to 510 MPa, and if it exceeds 1%, it is necessary to add metal Mn which is more expensive than ordinary ferromanganese in the steel making stage. Not only does the cost rise, but the strength also exceeds 510 MPa, so the Mn content is 0.4-1%. S: 0.01% to 0.04% S exists in a solid solution state and becomes brittle at the time of hot working, causing cracks on the sheet surface and causing surface defects on the steel sheet at the hot rolling step. Since an abnormal alloying reaction occurs near the surface defect during hot-dip galvanizing and the surface appearance becomes non-uniform, the upper limit is made 0.04%. Regarding the lower limit, the frequency of occurrence of surface defects that are small from the viewpoint of the surface properties of the steel sheet decreases, but in order to obtain a low S component of less than 0.01%,
In the steelmaking stage, a desulfurization refining process is added, which significantly increases the cost of smelting steel and is not economical. Therefore, the amount of S is 0.1.
01 to 0.04%. Further, P, sol. Al and N are allowed to be mixed as long as the effects of the present invention are not impaired. (2) Hot-dip galvanized steel sheet manufacturing process After the steel adjusted to the above-mentioned components is melted in a converter, it is made into a slab by continuous casting. The slab is once turned into a rough bar by rough rolling. The slab heat history up to hot rolling after slab casting may be either direct hot rolling in which rough rolling is performed immediately without cooling after casting, or a reheating method in which the slab is cooled once to Ar 3 points or less and reheated. Next, when performing the finish rolling, the entry side is descaled by descaling with high-pressure water or the like, and the finishing end temperature is FT ° C. by a continuous hot rolling mill.
Then, hot rolling is performed at the final stand at a rolling reduction of R%, and an average cooling rate for 3 seconds from the end of the finish rolling: v ° C./sec.
And wind at CT ° C. Here, the rolling reduction at the final stand: R%,
Finish rolling finish temperature: FT ° C., average cooling rate for 3 seconds from finish roll finish: v ° C./sec, and winding temperature: CT
C is a condition that satisfies the following equations (1) and (2). F (T) = {4.57 × 10 11 exp (−28456 / (T + 273))} 0.5 (1) 1.4 f (FT + 50) × (1-R / 100) + 30f (CT) +1.7 f (FT-1.5v) ≦ 4.0 (2) The conditions are as follows: in the hot rolling step of the slab, after rough rolling and then finish rolling, the surface scale thickness of the hot-rolled coil is reduced and the pickling step is performed. It has been set for the purpose of improving the material yield by improving the efficiency and reducing the scale loss after finish rolling. The inventor of the present invention has conducted intensive studies on the reduction of the surface scale thickness of the hot-rolled steel sheet. It became clear that the rolling end temperature was in proportion to FT ° C., the average cooling rate for 3 seconds from the end of finish rolling: v ° C./sec, and the winding temperature was CT ° C. That is, in the finish rolling, the lower the FT, the smaller the amount of scale produced, and the higher the final finishing draft, the thinner the scale produced in the finish rolling by rolling. In run-out cooling after finishing rolling, the larger the average cooling rate in the first three seconds at a higher temperature, the smaller the amount of scale generated in run-out. Further, the amount of scale generated in the winding stage is the highest at the winding temperature. Therefore, the lower the winding temperature, the lower the amount of scale generated in the slow cooling stage after winding. In the present invention, FT, R, CR, CT
Is not particularly specified, and if the above expression (2) is satisfied, the thickness of the surface scale at the hot-rolled sheet stage is reduced, and the pickling efficiency and the material yield are improved. In the cooling after the finish rolling, the scale formation can be effectively suppressed by the rapid cooling and the cutoff of the steel sheet and the air by the run-out water cooling control technology by controlling the run-out intermediate temperature. Winding may be performed by a conventional method, but mist cooling in a cooling stage or cooling in a non-oxidizing atmosphere such as Ar gas can also effectively reduce scale formation. Next, after the rolled steel sheet is pickled,
Heat to a temperature exceeding ℃ and apply hot-dip galvanized plating.
Here, in order to remove the surface scale of the hot-rolled steel sheet and improve the plating adhesion in the subsequent hot-dip galvanizing, pickling is performed before heating the wound steel sheet. In pickling, hydrochloric acid pickling in accordance with a conventional method may be used, but the method of the present invention can significantly reduce the pickling time, so even in a facility where a pickling line is installed on the entrance side of the continuous galvanizing line, Effective descaling is possible without reducing the line speed. Prior to hot-dip galvanizing, the steel sheet is once heated to 600 ° C. or higher because the heat treatment activates the surface and improves the plating adhesion, and the strength level of the steel sheet is increased to 400 ° C. This is for adjusting the pressure to 510510 MPa. Heating above 600 ° C. is performed in a hydrogen atmosphere of 3% or more, whereby the steel sheet surface can be more effectively activated, and the heating time is preferably 30 seconds or more and 3 minutes or less. In the present invention, the hot-dip zinc-based plating is hot-dip galvanizing, hot-dip zinc-5% Al plating, hot-dip zinc-55% Al
It is intended for hot-dip plating containing zinc such as plating. As described above, according to the production method of the present invention, the surface properties are excellent and the strength level is 400 to 510 MPa.
It is possible to obtain a high-strength hot-dip galvanized steel sheet having a. Hereinafter, examples of the present invention will be described to demonstrate the effects of the present invention. EXAMPLES The steels of the present invention (Nos. 1 to 6) and comparative steels (Nos. 7 to 10) having the component compositions shown in Table 1 were melted to form slabs.
After heating to 0 ° C., rough rolling was performed once, then finish rolling was performed under the conditions shown in Table 2, and after winding, the coil was cooled. Then, the scale of the steel sheet surface is removed by pickling for 10 seconds in a pickling line having a 9% hydrochloric acid concentration and a bath temperature of 90 ° C., followed by heating at 700 ° C. for 30 seconds in a hot-dip galvanizing line. And hot-dip galvanized. In Table 2, the sample No. Sample Nos. 1 to 6, 11 to 14 are hot-dip galvanized steel sheets of the present invention. 7-10,15-1
7 is a hot-dip galvanized steel sheet of a comparative example. Next, from this plated material, J
IS5 test pieces were collected and evaluated for mechanical properties. Samples were taken from these hot-rolled coils, and the steel sheet was immersed in a 9% hydrochloric acid bath at a bath temperature of 90 ° C. in a laboratory. A constant current was passed between the steel sheet and the platinum electrode to measure the potential difference. The complete descaling time by pickling was measured by the method. Furthermore, these hot-rolled sheets were pickled in a 9% hydrochloric acid bath at a bath temperature of 90 ° C. for 10 seconds in a laboratory, and the surface properties after hot-dip galvanizing were examined. ○ indicates good surface properties, and X indicates poor surface properties. Table 3 shows the evaluation results. In addition, the descaling time ratio in the table is steel No. 9% of the scale under the condition calculated as 4.0 in the above formula (2) out of 2.
The ratio of the pickling time of the hot rolled sheet under other conditions to the hydrochloric acid concentration and the pickling end time at a bath temperature of 90 ° C. is shown. Table 3 shows that the samples of the present invention (Nos. 1 to 6,11 to
It can be seen that each of 14) secures a tensile strength of 400 MPa (41 kgf / mm 2 ) or more and has excellent surface properties. On the other hand, the comparative sample No. 7, 9 are each C,
The tensile strength is insufficient because the amount of Mn added is insufficient. On the other hand, Comparative Sample No. In Nos. 8 and 10, since the addition amounts of Si and S are beyond the range of the present invention, the surface properties after hot-dip galvanizing are deteriorated. Also, N
o. 15, 16, and 17 indicate that the index value of the hot rolling condition (the value of the formula (2)) affecting the surface scale thickness exceeds the range of 4.0 of the present invention, and the scale remains even after the pickling treatment. Since the surface properties at the time of plating have deteriorated, the surface properties after hot-dip galvanizing have deteriorated. Next, steel no. Steel slabs were collected from the slabs Nos. 2 and 4 and subjected to a scale generation test during hot rolling by a hot rolling mill in a laboratory. 2, 4.0 in the equation (2).
9% hydrochloric acid concentration and bath temperature 9
FIG. 1 shows the ratio of the pickling time of the hot-rolled sheet under other conditions to the pickling end time at 0 ° C. From FIG. 1, it can be seen that the pickling end time changes according to the above equation (2), and that the smaller the value of the equation (2), the shorter the pickling time. [Table 1] [Table 2] [Table 3] According to the present invention, a sheet thickness of 0.8 for building materials is used.
Regarding the method for producing a high-strength hot-dip galvanized steel sheet having a tensile strength of 400 mm to 1.6 mm and a tensile strength of 400 to 510 MPa, Nb, Ti
When manufacturing thin hot-rolled steel sheets from materials with low slab manufacturing cost without adding reinforcing elements such as hot-rolled steel, we provide hot-dip galvanized plating materials with high material yield with reduced scale generation, By optimizing the heating conditions during plating, a high-strength hot-dip galvanized steel sheet having excellent surface properties can be provided.

【図面の簡単な説明】 【図1】本発明の実施例に係る熱延条件と酸洗による完
全脱スケールに要する時間比との関係を示す図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a relationship between hot rolling conditions and a time ratio required for complete descaling by pickling according to an embodiment of the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 2/40 C23C 2/40 (56)参考文献 特開 昭63−149321(JP,A) 特開 平5−311244(JP,A) 特開 平5−125449(JP,A) 特開 昭60−165320(JP,A) 特開 平4−314828(JP,A) 特開 平5−105963(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/04 C22C 38/00 - 38/60 Continuation of the front page (51) Int.Cl. 7 Identification code FI C23C2 / 40 C23C2 / 40 (56) References JP-A-63-149321 (JP, A) JP-A-5-311244 (JP, A) JP-A-5-125449 (JP, A) JP-A-60-165320 (JP, A) JP-A-4-314828 (JP, A) JP-A-5-105596 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/00-8/04 C22C 38/00-38/60

Claims (1)

(57)【特許請求の範囲】 【請求項1】 重量%で、C:0.08〜0.2%と、
Si:0.03%以下と、Mn:0.4〜1%と、S:
0.01〜0.04%とを含有し、残部は実質的にFe
よりなる組成を有する鋼から溶融亜鉛系メッキ鋼板を製
造する方法において、 連続鋳造により製造された鋼を粗圧延後、仕上げ圧延を
施すに際し、最終スタンドでの圧下率:R%、仕上げ圧
延終了温度:FT℃、仕上げ圧延終了から3秒間の平均
冷却速度:v℃/sec、及び巻取温度:CT℃を下記
の(1),(2)式を満足する条件で、 仕上げ終了温度:FT℃で最終圧下率:R%の熱間圧延
を行う工程と、 仕上げ圧延終了から3秒間の平均冷却速度:v℃/se
cで冷却し、CT℃で巻き取る工程と、 巻き取った鋼板を酸洗した後600℃を越える温度域に
加熱し、溶融亜鉛系メッキを施す工程と、 を備えたことを特徴とする表面性状に優れた高強度溶融
亜鉛系メッキ鋼板の製造方法。 f(T)={4.57×1011exp(−28456 /(T+273))}0.5 …(1) 1.4 f(FT+50)×(1−R/100)+30f(CT)+1.7 f(FT−1.5 v) ≦4.0 …(2)
(57) [Claims 1] C: 0.08 to 0.2% by weight%;
Si: 0.03% or less, Mn: 0.4 to 1%, S:
0.01 to 0.04%, with the balance being substantially Fe
In the method for producing a hot-dip galvanized steel sheet from steel having a composition consisting of: a steel sheet produced by continuous casting, after rough rolling, and then to finish rolling, a rolling reduction in a final stand: R%, finish rolling end temperature : FT ° C., average cooling rate for 3 seconds from the end of finish rolling: v ° C./sec, and winding temperature: CT ° C. under the conditions satisfying the following formulas (1) and (2): Finishing end temperature: FT ° C. A step of performing hot rolling at a final rolling reduction of R%, and an average cooling rate of 3 seconds from the end of the finish rolling: v ° C / sec.
c) a step of cooling at a temperature of c and winding at CT ° C .; a step of pickling the wound steel sheet, heating the steel sheet to a temperature exceeding 600 ° C., and applying hot-dip galvanized plating. Manufacturing method of high strength hot-dip galvanized steel sheet with excellent properties. f (T) = {4.57 × 10 11 exp (−28456 / (T + 273))} 0.5 (1) 1.4 f (FT + 50) × (1−R / 100) + 30f (CT) +1.7 f (FT−1.5 v) ≦ 4.0… (2)
JP27369096A 1996-10-16 1996-10-16 Method for producing high-strength hot-dip galvanized steel sheet with excellent surface properties Expired - Fee Related JP3391194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27369096A JP3391194B2 (en) 1996-10-16 1996-10-16 Method for producing high-strength hot-dip galvanized steel sheet with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27369096A JP3391194B2 (en) 1996-10-16 1996-10-16 Method for producing high-strength hot-dip galvanized steel sheet with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH10121139A JPH10121139A (en) 1998-05-12
JP3391194B2 true JP3391194B2 (en) 2003-03-31

Family

ID=17531204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27369096A Expired - Fee Related JP3391194B2 (en) 1996-10-16 1996-10-16 Method for producing high-strength hot-dip galvanized steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3391194B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699764B2 (en) * 2011-04-11 2015-04-15 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
CN103741019B (en) * 2013-12-19 2016-04-20 马钢(集团)控股有限公司 A kind of hot rolled strip and production method thereof

Also Published As

Publication number Publication date
JPH10121139A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
EP1498506B1 (en) High tensile strength cold-rolled steel sheet having a high r-value, excellent strain age hardenability and natural aging resistance and method of producing the same
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
WO1984001585A1 (en) Process for manufacturing cold-rolled steel for deep drawing
JP3391194B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent surface properties
JP3646538B2 (en) Manufacturing method of hot-dip galvanized high-tensile steel sheet with excellent workability
JP3247909B2 (en) High-strength hot-dip galvanized steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3258704B2 (en) Hot-rolled steel sheet for enameling which has high strength after enamel firing and method for producing the same
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP3616472B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent workability
JPH10121140A (en) Production of high strength hot-dip galvanized steel sheet excellent in surface property
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JPS63145718A (en) Production of ultra-high-strength cold rolled steel sheet having excellent workability
JPS6237322A (en) Production of low yield ratio cold rolled high tensile steel plate having excellent surface characteristic and bendability
JP3687400B2 (en) Manufacturing method of high strength thin steel sheet with excellent workability and plating properties
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JPH0617124A (en) Production of hot-dip galvanized sheet of high tensile strength steel for refractory use
JP3068677B2 (en) Enamelled steel sheet having good deep drawability and aging resistance and method for producing the same
JP3247152B2 (en) Cold-rolled steel sheet for enamel having high strength after firing enamel and method for producing the same
JPH07102341A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen embrittlement resistance and its production
JPH079032B2 (en) Manufacturing method of high yield cold rolled steel sheet with low yield ratio and excellent fire resistance
JPH05339643A (en) Production of high strength cold rolled steel sheet excellent in deep drawability and galvanized steel sheet
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same
JP2951241B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability and enamel properties
JPS5989723A (en) Manufacture of steel sheet for working by continuous casting and direct hot rolling

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees