JP3390537B2 - Surface acoustic wave filter - Google Patents
Surface acoustic wave filterInfo
- Publication number
- JP3390537B2 JP3390537B2 JP19672894A JP19672894A JP3390537B2 JP 3390537 B2 JP3390537 B2 JP 3390537B2 JP 19672894 A JP19672894 A JP 19672894A JP 19672894 A JP19672894 A JP 19672894A JP 3390537 B2 JP3390537 B2 JP 3390537B2
- Authority
- JP
- Japan
- Prior art keywords
- acoustic wave
- surface acoustic
- electrode
- wave resonator
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、弾性表面波共振器を用
いた弾性表面波フィルタに関する。
【0002】
【従来の技術】近年、携帯電話やコードレス電話は小型
かつ軽量化が進み、急速に普及してきている。これら携
帯電話やコードレス電話の高周波回路として、小型、軽
量な弾性表面波共振器を用いた弾性表面波フィルタが採
用されている。携帯電話等の無線部に用いられるフィル
タの特性としては、帯域内において低損失であると共
に、帯域外減衰量が大きいことが要求される。このよう
な要求を満足するフィルタとして、図14に示す弾性表
面波フィルタが提案されている。
【0003】この弾性表面波フィルタは、図14(a)
に示すように、弾性表面波共振器Aを直列素子として、
弾性表面波共振器Bを並列素子として、交互にラダー型
に反復接続されたものである。この弾性表面波フィルタ
のインピーダンスの周波数特性を図14(b)に示す、
挿入損失の周波数特性を図14(c)に示す。
【0004】弾性表面波フィルタの直列素子Aである弾
性表面波共振器が、図14(b)で実線で示すように反
共振周波数f2の周波数特性を有し、並列素子Bである
弾性表面波共振器が、図14(b)で破線で示すように
共振周波数f1の周波数特性を有していると、弾性表面
波フィルタは、図14(c)に示すように、周波数f1
とf2間を通過帯域とする通過域特性を示す。
【0005】携帯電話等における弾性表面波フィルタの
仕様としては、システムにより中心周波数や通過帯域が
異なるため、システム毎にフィルタ設計値を変更した
り、圧電性基板の結晶方位を変更したり、圧電性基板の
材料自体を変更したりして対応しようとしていた。
【0006】
【発明が解決しようとする課題】弾性表面波フィルタの
特性は、一般的に、通過帯域を広げようとすると、急峻
なフィルタ特性が得られなくなる傾向があり、携帯電話
の周波数帯同志が近接しているような場合には不都合で
ある。弾性表面波フィルタの帯域幅を決定する大きな要
因は、圧電性基板の基板材料の電気機械結合係数K2 で
ある。したがって、圧電性基板の基板材料が決定されれ
ば、帯域幅の上限もほぼ決定され、帯域幅の下限やフィ
ルタ特性の急峻度もほぼ決定されてしまい、様々な仕様
を満足するように弾性表面波フィルタの特性を自由にコ
ントロールすることは困難であった。
【0007】本発明の目的は、帯域幅によらず急峻なフ
ィルタ特性を得たり、帯域幅を狭くしたりする等のフィ
ルタ特性を制御することができる弾性表面波フィルタを
提供することにある。
【0008】
【課題を解決するための手段】上記目的は、圧電性基板
と、前記圧電基板上に形成され、ラダー型に接続された
複数の弾性表面波共振器とを有する弾性表面波フィルタ
において、前記圧電性基板上に形成され、前記弾性表面
波共振器に直列又は並列に接続された付加容量を有する
ことを特徴とする弾性表面波フィルタによって達成され
る。
【0009】上述した弾性表面波フィルタにおいて、前
記付加容量は、前記圧電性基板上に形成された第1の電
極層と、前記第1の電極層上に形成された誘電体層と、
前記誘電体層上に形成された第2の電極層とを有するこ
とが望ましい。上述した弾性表面波フィルタにおいて、
前記付加容量の前記第1の電極層は、前記弾性表面波共
振器の入出力電極又は接地電極に接続され、前記第2の
電極層は、前記弾性表面波共振器の接地電極又は入出力
電極に接続され、前記付加容量は、前記弾性表面波共振
器に並列に設けられていることが望ましい。
【0010】上述した弾性表面波フィルタにおいて、前
記付加容量の前記第1の電極層又は前記第2の電極層
は、前記弾性表面波共振器の入出力電極に接続され、前
記付加容量は、前記弾性表面波共振器に直列に設けられ
ていることが望ましい。上述した弾性表面波フィルタに
おいて、前記弾性表面波共振器は、前記圧電性基板上に
互いに対向する一組のくし型電極を有し、前記弾性表面
波共振器の前記一組のくし型電極上に形成された誘電体
層を有し、前記付加容量は、前記一組のくし型電極を電
極とし、前記誘電体層を誘電体とし、前記弾性表面波共
振器に並列に設けられていることが望ましい。
【0011】上述した弾性表面波フィルタにおいて、前
記誘電体層は、酸化シリコン層又は窒化シリコン層であ
ることが望ましい。上述した弾性表面波フィルタにおい
て、前記付加容量は、前記圧電性基板上に形成され、前
記弾性表面波共振器の入出力電極に接続された第1の電
極と、前記圧電性基板上に、前記第1の電極と所定間隔
を隔てて対向する第2の電極と、前記第1の電極と前記
第2の電極間の前記圧電性基板からなる誘電体とを有
し、前記付加容量は、前記弾性表面波共振器に直列に設
けられていることが望ましい。
【0012】
【作用】本発明によれば、圧電性基板と、圧電基板上に
形成され、ラダー型に接続された複数の弾性表面波共振
器とを有する弾性表面波フィルタにおいて、圧電性基板
上に形成され、弾性表面波共振器に直列又は並列に接続
された付加容量を有するので、帯域幅によらず急峻なフ
ィルタ特性を得たり、帯域幅を狭くしたりして、フィル
タ特性を制御することができる。
【0013】上述した弾性表面波フィルタにおいて、付
加容量を、圧電性基板上に形成された第1の電極層と、
第1の電極層上に形成された誘電体層と、誘電体層上に
形成された第2の電極層とで構成したので、圧電性基板
上に簡単に設けることができる。上述した弾性表面波フ
ィルタにおいて、付加容量の前記第1の電極層を弾性表
面波共振器の入出力電極又は接地電極に接続し、第2の
電極層を弾性表面波共振器の接地電極又は入出力電極に
接続することにより、付加容量を弾性表面波共振器に並
列に設けてもよいし、付加容量の第1の電極層又は第2
の電極層を弾性表面波共振器の入出力電極に接続するこ
とにより、付加容量を弾性表面波共振器に直列に設けて
もよい。
【0014】上述した弾性表面波フィルタにおいて、弾
性表面波共振器は、圧電性基板上に互いに対向する一組
のくし型電極を有し、弾性表面波共振器の一組のくし型
電極上に形成された誘電体層を有し、付加容量を一組の
くし型電極を電極とし、誘電体層を誘電体とし、弾性表
面波共振器に並列に設けるようにすれば、素子面積を増
加することなく付加容量を設けることができる上述した
弾性表面波フィルタにおいて、誘電体層を酸化シリコン
層又は窒化シリコン層により形成すれば、絶縁耐性等信
頼性に優れ、良好な特性を得ることができる。
【0015】上述した弾性表面波フィルタにおいて、付
加容量は、圧電性基板上に形成され、弾性表面波共振器
の入出力電極に接続された第1の電極と、圧電性基板上
に、第1の電極と所定間隔を隔てて対向する第2の電極
と、第1の電極と第2の電極間の圧電性基板からなる誘
電体とを有するようにすれば、新たに誘電体層などを形
成することなく、付加容量を弾性表面波共振器に設ける
ことができる。
【0016】
【実施例】本発明の第1の実施例による弾性表面波フィ
ルタを図1及び図2を用いて説明する。本実施例による
弾性表面波フィルタは、複数の弾性表面波共振器S1、
S2、S3、S4をラダー型に接続して構成されてい
る。直列素子及び並列素子の一部に付加容量を並列接続
することにより、フィルタ特性の急峻度が大きくなるよ
うにしている。
【0017】図1(a)に示すように、1段目の直列素
子A′は、弾性表面波共振器S1に付加容量Cd1′が並
列接続され、1段目の並列素子B′は、弾性表面波共振
器S2に付加容量Cd2′が並列接続され、2段目の直列
素子Aは、弾性表面波共振器S3だけにより構成され、
2段目の並列素子Bは、弾性表面波共振器S4だけによ
り構成されている。
【0018】本実施例による弾性表面波フィルタの等価
回路を図1(b)に示す。1段目の直列素子A′の等価
回路は、弾性表面波共振器S1の等価容量C1、等価イ
ンダクタンスL1、端子間容量Cd1と、並列接続された
付加容量Cd1′からなり、1段目の並列素子B′の等価
回路は、弾性表面波共振器S2の等価容量C2、等価イ
ンダクタンスL2、端子間容量Cd2と、並列接続された
付加容量Cd2′からなり、2段目の直列素子Aの等価回
路は、弾性表面波共振器S3の等価容量C3、等価イン
ダクタンスL3、端子間容量Cd3からなり、2段目の並
列素子Bの等価回路は、弾性表面波共振器S4の等価容
量C4、等価インダクタンスL4からなる。
【0019】本実施例による弾性表面波フィルタの周波
数特性を図2に示す。図2(a)はインピーダンスの周
波数特性であり、図2(b)は挿入損失の周波数特性で
ある。図2(a)、(b)において、実線は、容量を付
加しなかった場合の特性であり、破線は、付加容量Cd
1′と付加容量Cd2′を並列接続した場合の特性であ
る。
【0020】一般に、弾性表面波共振器Sの等価容量を
Co、等価インダクタンスをLo、端子間容量をCdと
すると、共振周波数fr、反共振周波数faは次式によ
り示される。
fr=(1/2π){1/(Co・Lo)1/2 }
fa=(1/2π){(1/Lo)(1/Co+1/C
d)}1/2
ここで、弾性表面波共振器Sの端子間に付加容量Cd′
が並列接続されると、反共振周波数fa′が次式に示す
ように共振周波数側にシフトする。
【0021】fa′=(1/2π)×{(1/Lo)
(1/Co+1/(Cd+Cd′)}1/2
本実施例の場合、弾性表面波共振器S1に付加容量Cd
1′が並列接続され、弾性表面波共振器S2に付加容量
Cd2′が並列接続されており、図2(a)に破線で示す
ように、弾性表面波共振器S1、S2の反共振周波数が
共振周波数側に変化し、見掛上の電気機械結合係数K2
が小さくなる。したがって、図2(b)に破線で示すよ
うに、通過帯域の挿入損失の急峻度が大きくなり、急峻
なフィルタ特性を得ることができる。また、図2(a)
において、弾性表面波共振器S1、S2は共振周波数f
1=f2になるように設計されている。
【0022】このように本実施例によれば、ラダー型に
接続された弾性表面波共振器の一部に容量を付加するこ
とにより、急峻なフィルタ特性を得ることができる。本
発明の第2の実施例による弾性表面波フィルタを図3及
び図4を用いて説明する。本実施例による弾性表面波フ
ィルタは、2つの弾性表面波共振器S1、S2をラダー
型に接続して構成されている。全ての直列素子及び並列
素子に付加容量を並列接続することにより、帯域幅を狭
くするようにしている。
【0023】図3(a)に示すように、1段目の直列素
子A′は、弾性表面波共振器S1に付加容量Cd1′が並
列接続され、1段目の並列素子B′は、弾性表面波共振
器S2に付加容量Cd2′が並列接続されている。本実施
例による弾性表面波フィルタの等価回路を図3(b)に
示す。直列素子A′の等価回路は、弾性表面波共振器S
1の等価容量C1、等価インダクタンスL1、端子間容
量Cd1と、並列接続された付加容量Cd1′からなり、並
列素子B′の等価回路は、弾性表面波共振器S2の等価
容量C2、等価インダクタンスL2、端子間容量Cd2
と、並列接続された付加容量Cd2′からなっている。
【0024】本実施例による弾性表面波フィルタの周波
数特性を図4に示す。図4(a)はインピーダンスの周
波数特性であり、図4(b)は挿入損失の周波数特性で
ある。図4(a)、(b)において、実線は、容量を付
加しなかった場合の特性であり、破線は、付加容量Cd
1′と付加容量Cd2′を並列接続した場合の特性であ
る。また、図4(a)において、弾性表面波共振器S
1、S2は共振周波数f1=f2になるように設計され
ている。
【0025】前述したように、一般に、弾性表面波共振
器の端子間に付加容量を並列接続すると、反共振周波数
が共振周波数側にシフトする。本実施例の場合、弾性表
面波共振器S1に付加容量Cd1′が並列接続され、弾性
表面波共振器S2に付加容量Cd2′が並列接続されてお
り、図4(a)に破線で示すように、弾性表面波共振器
S1、S2の反共振周波数が共振周波数側に大きく変化
する。したがって、図4(b)に破線で示すように、通
過帯域幅を狭くしたフィルタ特性を得ることができる。
【0026】このように本実施例によれば、ラダー型に
接続された弾性表面波共振器に容量を付加することによ
り、圧電性基板を変えることなく、通過帯域幅をコント
ロールすることができる。本発明の第3の実施例による
弾性表面波フィルタを図5乃至図10を用いて説明す
る。
【0027】本実施例による弾性表面波フィルタは、圧
電性基板10として36°回転Y板LiTaO3 基板1
0上に、複数の弾性表面波共振器S1〜S10をラダー
型に接続して構成されている。直列素子及び並列素子の
一部に付加容量を並列接続することにより、フィルタ特
性の急峻度が大きくなるようにしている。図5に示すよ
うに、1段目の直列素子A′は、弾性表面波共振器S1
に付加容量Cd1′が並列接続され、1段目の並列素子
B′は、弾性表面波共振器S2に付加容量Cd2′が並列
接続され、2段目乃至4段目の直列素子Aは、弾性表面
波共振器S3、S5、S7だけにより構成され、2段目
乃至4段目の並列素子Bは、弾性表面波共振器S4、S
6、S8だけにより構成され、5段目の直列素子A′
は、弾性表面波共振器S9に付加容量Cd9′が並列接続
され、5段目の並列素子B′は、弾性表面波共振器S1
0に付加容量Cd10 ′が並列接続されている。
【0028】弾性表面波共振器Sは、図6に示すよう
に、100対程度の櫛形の励起用電極12(図6
(c))を、50対程度の反射器14、16(図6
(b))により挟むようにして構成されている。直列素
子である弾性表面波共振器Sに付加容量Cdを付加した
構造の一例を図6に示す。図6(a)に示すように、励
起用電極12の入力電極12Aと出力電極12Bから、
それぞれ電極層18、20を図6(a)右方向に延ば
し、反射器16の右側で重ね合わせるようにする。すな
わち、図6(d)に示すように、圧電性基板10上に形
成された電極層18、20を、シリコン酸化膜22を挟
んで重ね合わせている。これにより、弾性表面波共振器
Sの入力電極12Aと出力電極12Bの間に付加容量C
dが並列接続される。
【0029】並列素子である弾性表面波共振器Sに付加
容量Cdを付加した構造の一例を図7に示す。並列素子
の場合、弾性表面波共振器Sの出力側は接地されるの
で、図7(a)に示すように、励起用電極12の出力電
極12Bは反射器14、16に共通接続されて接地され
る。また、入力側では、反射器14、16から電極層2
4が中央方向に延ばされ、図7(b)に示すように、そ
の上にシリコン酸化膜22を介して入力電極12Aが形
成される。これにより、弾性表面波共振器Sの入力電極
12Aと接地(出力電極12B)の間に付加容量Cdが
並列接続される。
【0030】付加容量Cdの容量値は、シリコン酸化膜
22をP−CVDにより形成した場合、その誘電率は
4.3程度であるから、シリコン酸化膜22の膜厚を
0.8μmで、電極が重なりあった面積を0.2×0.
2mm程度にすると、付加容量Cdは2pF程度とな
る。なお、誘電体膜としてシリコン酸化膜22を利用す
ると、絶縁耐性等信頼性に優れ、良好な特性を得ること
ができる。また、P−CVDを使用する場合には、シリ
コン酸化膜を低温で製造することができるので、素子へ
のダメージを回避することができると共に、緻密で良好
な膜質の誘電体膜を得ることができる。
【0031】本実施例による弾性表面波フィルタの周波
数特性を図8に示す。図8(a)はインピーダンスの周
波数特性であり、図8(b)は挿入損失の周波数特性で
ある。容量を付加しなかった弾性表面波共振器の場合、
図8(a)に実線で示すように、共振周波数と反共振周
波数の差が約3%であるのに対し、付加容量を並列接続
した弾性表面波共振器の場合、図8(a)に破線で示す
ように、共振周波数と反共振周波数の差が約1.7%で
ある。
【0032】本実施例では、容量を付加しない場合の共
振周波数と、容量を付加した場合の共振周波数とを所望
の周波数に一致させるために、弾性表面波共振器の電極
ピッチを変化させている。このようにして一部の弾性表
面波共振器に付加容量を並列接続し、共振周波数を一致
させて、図5に示すように構成した弾性表面波フィルタ
の周波数特性を図8(b)に示す。実線は、容量を付加
することなく構成した弾性表面波フィルタの特性であ
り、破線は、容量を付加した本実施例の弾性表面波フィ
ルタの特性である。図8(b)から明らかなように、容
量を付加することにより、フィルタ特性が急峻となる。
【0033】このように本実施例によれば、ラダー型に
接続された弾性表面波共振器の一部に容量を付加するこ
とにより、急峻なフィルタ特性を得ることができる。上
記実施例では、弾性表面波共振器に付加容量を並列接続
したが、弾性表面波共振器に付加容量を直列接続するこ
とによっても、帯域幅によらず急峻なフィルタ特性を得
たり、帯域幅を狭くしたりして、フィルタ特性を制御す
ることが可能である。
【0034】弾性表面波共振器Sに付加容量Cdを直列
接続した構造の一例を図9に示す。図9(a)に示すよ
うに、励起用電極12の入力電極12Aを、2つの電極
層12Aa、12Abに分割し、図9(b)、(c)に
示すように、これら電極層12Aaと電極層12Abを
シリコン酸化膜22を挟んで重ね合わせている。これに
より、弾性表面波共振器Sの入力電極12Aに付加容量
Cdが直列接続される。
【0035】弾性表面波共振器Sに付加容量Cdを直列
接続した構造の他の例を図10に示す。図10(a)に
示すように、励起用電極12の入力電極12Aを、2つ
の電極層12Aa、12Abに分割し、圧電性基板10
上で所定距離を隔てて対向させる。電極層12Aaと電
極層12Abの間にはシリコン酸化膜等の誘電体を新た
に設けることはしていないが、図10(b)に示すよう
に、電極層12Aa、12Ab間に誘電体である圧電性
基板10が挟まれたコンデンサの構造となる。これによ
り、弾性表面波共振器Sの入力電極12Aに付加容量C
dが直列接続される。
【0036】圧電性基板10である36°回転Y板Li
TaO3 基板の比誘電率はε22(深さ方向)=42、ε
33(伝搬方向)=42であるので、電極層12Aa、1
2Abの長さが1mmで、0.1mmの間隔を隔てて対
向しているとすると、付加容量は0.02pFとなる。
なお、付加容量の容量値を大きくしたい場合には、図1
0(c)に示すように、電極層12Aa、12Abの櫛
形電極とし、対向する実効長さを長くすればよい。
【0037】本発明の第4の実施例による弾性表面波フ
ィルタを図11乃至図13を用いて説明する。本実施例
による弾性表面波フィルタは、圧電性基板10として3
6°回転Y板LiTaO3 基板10上に、複数の弾性表
面波共振器S1〜S6をラダー型に接続して構成されて
いる。全ての直列素子及び並列素子に付加容量を並列接
続することにより、帯域幅を狭くするようにしている。
【0038】図11に示すように、1段目の直列素子
A′は、弾性表面波共振器S1に付加容量Cd1′が並列
接続され、1段目の並列素子B′は、弾性表面波共振器
S2に付加容量Cd2′が並列接続され、2段目の直列素
子A′は、弾性表面波共振器S3に付加容量Cd3′が並
列接続され、2段目の並列素子B′は、弾性表面波共振
器S4に付加容量Cd4′が並列接続され、3段目の直列
素子A′は、弾性表面波共振器S5に付加容量Cd5′が
並列接続され、3段目の並列素子B′は、弾性表面波共
振器S6に付加容量Cd6′が並列接続されている。
【0039】本実施例では、前述した構造により個々の
弾性表面波共振器に付加容量を設けてもよいが、全ての
弾性表面波共振器に容量を付加するという特徴を考慮し
た構造例を図12に示す。図12(a)は弾性表面波共
振器の断面図であり、図12(b)は励起用電極12の
一部を拡大した平面図であり、図12(c)はF−F′
線断面図である。
【0040】この構造例では、図12(a)に示すよう
に、弾性表面波共振器S1〜S6上全面にシリコン酸化
膜26を形成する。励起用電極12、反射器14、16
を全て覆うようにシリコン酸化膜26を形成すると、こ
のシリコン酸化膜26を誘電体とする付加容量が形成さ
れる。図12(b)に示すように、一組のくし型電極1
2、12′は互いに対向するように形成されているの
で、全面にシリコン酸化膜26が形成されると、図12
(c)に示すように、一組のくし型電極12、12′間
の圧電性基板10上にシリコン酸化膜26が存在するこ
とになる。したがって、一組のくし型電極12、12′
を対向する電極とし、シリコン酸化膜26を誘電体とす
る付加容量Cdが、弾性表面波共振器S1〜S6に並列
接続される。
【0041】くし型電極12、12′が100対であ
り、その開口長Aを0.3mm、電極指のピッチLを1
0μm、電極層の厚さHを0.7μm、メタライズ比を
1:1、シリコン酸化膜26の誘電率を4.3程度とす
ると、付加容量Cdの容量値は0.1pF程度となる。
本実施例による弾性表面波フィルタの周波数特性を図1
3に示す。実線は、容量を付加しなかった場合の特性で
あり、破線は、付加容量を並列接続した場合の特性であ
る。
【0042】容量を付加しなかった場合に比べ、付加容
量を並列接続した場合、破線で示すように、通過帯域幅
が狭くなったフィルタ特性を得ることができる。このよ
うに本実施例によれば、ラダー型に接続された弾性表面
波共振器に容量を付加することにより、圧電性基板を変
えることなく、通過帯域幅をコントロールすることがで
きる。
【0043】本発明は上記実施例に限らず種々の変形が
可能である。例えば、上記実施例では誘電体膜としてシ
リコン酸化膜を用いたが、シリコン窒化膜などの他の誘
電体膜を用いてもよい。また、誘電体膜の形成方法とし
ては、P−CVD法の他に、他のCVD法や、スパッタ
法により形成してもよい。
【0044】
【発明の効果】以上の通り、本発明によれば、本発明に
よれば、圧電性基板と、圧電基板上に形成され、ラダー
型に接続された複数の弾性表面波共振器とを有する弾性
表面波フィルタにおいて、圧電性基板上に形成され、弾
性表面波共振器に直列又は並列に接続された付加容量を
有するので、帯域幅によらず急峻なフィルタ特性を得た
り、帯域幅を狭くしたりして、フィルタ特性を制御する
ことができる。
【0045】上述した弾性表面波フィルタにおいて、付
加容量を、圧電性基板上に形成された第1の電極層と、
第1の電極層上に形成された誘電体層と、誘電体層上に
形成された第2の電極層とで構成したので、圧電性基板
上に簡単に設けることができる。上述した弾性表面波フ
ィルタにおいて、付加容量の前記第1の電極層を弾性表
面波共振器の入出力電極又は接地電極に接続し、第2の
電極層を弾性表面波共振器の接地電極又は入出力電極に
接続することにより、付加容量を弾性表面波共振器に並
列に設けてもよいし、付加容量の第1の電極層又は第2
の電極層を弾性表面波共振器の入出力電極に接続するこ
とにより、付加容量を弾性表面波共振器に直列に設けて
もよい。
【0046】上述した弾性表面波フィルタにおいて、弾
性表面波共振器は、圧電性基板上に互いに対向する一組
のくし型電極を有し、弾性表面波共振器の一組のくし型
電極上に形成された誘電体層を有し、付加容量を一組の
くし型電極を電極とし、誘電体層を誘電体とし、弾性表
面波共振器に並列に設けるようにすれば、素子面積を増
加することなく付加容量を設けることができる上述した
弾性表面波フィルタにおいて、誘電体層を酸化シリコン
層又は窒化シリコン層により形成すれば、絶縁耐性等信
頼性に優れ、良好な特性を得ることができる。
【0047】上述した弾性表面波フィルタにおいて、付
加容量は、圧電性基板上に形成され、弾性表面波共振器
の入出力電極に接続された第1の電極と、圧電性基板上
に、第1の電極と所定間隔を隔てて対向する第2の電極
と、第1の電極と第2の電極間の圧電性基板からなる誘
電体とを有するようにすれば、新たに誘電体層などを形
成することなく、付加容量を弾性表面波共振器に設ける
ことができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave filter using a surface acoustic wave resonator. [0002] In recent years, portable telephones and cordless telephones have been reduced in size and weight and have been rapidly spreading. A surface acoustic wave filter using a small and lightweight surface acoustic wave resonator is employed as a high-frequency circuit of these portable telephones and cordless telephones. The characteristics of a filter used in a radio unit such as a mobile phone are required to have a low loss in a band and a large amount of attenuation outside a band. As a filter satisfying such requirements, a surface acoustic wave filter shown in FIG. 14 has been proposed. This surface acoustic wave filter is shown in FIG.
As shown in the figure, using the surface acoustic wave resonator A as a series element,
The surface acoustic wave resonators B are connected in parallel in a ladder type using the parallel elements as parallel elements. FIG. 14B shows a frequency characteristic of the impedance of the surface acoustic wave filter.
FIG. 14C shows the frequency characteristics of the insertion loss. A surface acoustic wave resonator which is a series element A of a surface acoustic wave filter has a frequency characteristic of an anti-resonance frequency f2 as shown by a solid line in FIG. When the resonator has the frequency characteristic of the resonance frequency f1 as shown by a broken line in FIG. 14B, the surface acoustic wave filter operates at the frequency f1 as shown in FIG.
4 shows passband characteristics having a passband between f2 and f2. [0005] The specifications of the surface acoustic wave filter in a cellular phone or the like are different since the center frequency and the pass band differ depending on the system. Therefore, the filter design value is changed for each system, the crystal orientation of the piezoelectric substrate is changed, Or to change the material of the conductive substrate itself. Generally, the characteristics of a surface acoustic wave filter tend to be such that a steep filter characteristic cannot be obtained when an attempt is made to widen a pass band. This is inconvenient when is close to each other. Major factor in determining the bandwidth of the surface acoustic wave filter is an electro-mechanical coupling coefficient K 2 of the substrate material of the piezoelectric substrate. Therefore, if the substrate material of the piezoelectric substrate is determined, the upper limit of the bandwidth is also substantially determined, and the lower limit of the bandwidth and the steepness of the filter characteristics are also substantially determined. It was difficult to freely control the characteristics of the wave filter. An object of the present invention is to provide a surface acoustic wave filter capable of controlling a filter characteristic such as obtaining a steep filter characteristic regardless of the bandwidth or narrowing the bandwidth. An object of the present invention is to provide a surface acoustic wave filter having a piezoelectric substrate and a plurality of surface acoustic wave resonators formed on the piezoelectric substrate and connected in a ladder form. The surface acoustic wave filter is formed on the piezoelectric substrate, and has an additional capacitance connected in series or parallel to the surface acoustic wave resonator. In the above-described surface acoustic wave filter, the additional capacitance includes a first electrode layer formed on the piezoelectric substrate, a dielectric layer formed on the first electrode layer,
It is desirable to have a second electrode layer formed on the dielectric layer. In the surface acoustic wave filter described above,
The first electrode layer of the additional capacitance is connected to an input / output electrode or ground electrode of the surface acoustic wave resonator, and the second electrode layer is connected to a ground electrode or input / output electrode of the surface acoustic wave resonator. And the additional capacitance is desirably provided in parallel with the surface acoustic wave resonator. In the above-described surface acoustic wave filter, the first electrode layer or the second electrode layer of the additional capacitance is connected to an input / output electrode of the surface acoustic wave resonator, and the additional capacitance is It is desirable to be provided in series with the surface acoustic wave resonator. In the above-described surface acoustic wave filter, the surface acoustic wave resonator has a pair of comb-shaped electrodes facing each other on the piezoelectric substrate, and the pair of comb-shaped electrodes of the surface acoustic wave resonator Wherein the additional capacitance is provided in parallel with the surface acoustic wave resonator, with the pair of comb electrodes serving as electrodes, the dielectric layer serving as a dielectric, and Is desirable. In the above-described surface acoustic wave filter, the dielectric layer is preferably a silicon oxide layer or a silicon nitride layer. In the above-described surface acoustic wave filter, the additional capacitance is formed on the piezoelectric substrate, and a first electrode connected to an input / output electrode of the surface acoustic wave resonator; A second electrode opposed to the first electrode at a predetermined interval, and a dielectric made of the piezoelectric substrate between the first electrode and the second electrode; It is desirable to be provided in series with the surface acoustic wave resonator. According to the present invention, there is provided a surface acoustic wave filter having a piezoelectric substrate and a plurality of surface acoustic wave resonators formed on the piezoelectric substrate and connected in a ladder form. And has an additional capacitance connected in series or parallel to the surface acoustic wave resonator, so that a steep filter characteristic can be obtained regardless of the bandwidth, or the bandwidth can be narrowed to control the filter characteristic. be able to. [0013] In the above-described surface acoustic wave filter, the additional capacitance is formed by the first electrode layer formed on the piezoelectric substrate;
Since it is composed of the dielectric layer formed on the first electrode layer and the second electrode layer formed on the dielectric layer, it can be easily provided on the piezoelectric substrate. In the above-described surface acoustic wave filter, the first electrode layer of the additional capacitance is connected to the input / output electrode or the ground electrode of the surface acoustic wave resonator, and the second electrode layer is connected to the ground electrode or the input electrode of the surface acoustic wave resonator. By connecting to the output electrode, the additional capacitance may be provided in parallel with the surface acoustic wave resonator, or the first electrode layer or the second
The additional capacitance may be provided in series with the surface acoustic wave resonator by connecting the electrode layer to the input / output electrodes of the surface acoustic wave resonator. In the above-described surface acoustic wave filter, the surface acoustic wave resonator has a pair of comb electrodes facing each other on the piezoelectric substrate, and the pair of comb electrodes is provided on the pair of surface electrodes. The device area can be increased by providing the formed dielectric layer, providing an additional capacitance as a pair of comb-shaped electrodes as electrodes, using the dielectric layer as a dielectric, and providing the dielectric layer in parallel with the surface acoustic wave resonator. In the above-described surface acoustic wave filter in which an additional capacitance can be provided without forming the dielectric layer, if the dielectric layer is formed of a silicon oxide layer or a silicon nitride layer, excellent characteristics such as insulation resistance and excellent characteristics can be obtained. In the above-described surface acoustic wave filter, the additional capacitance is formed on the piezoelectric substrate, the first electrode connected to the input / output electrode of the surface acoustic wave resonator, and the first capacitance on the piezoelectric substrate. A second electrode facing the first electrode at a predetermined interval, and a dielectric composed of a piezoelectric substrate between the first electrode and the second electrode to form a new dielectric layer or the like. Without adding, the additional capacitance can be provided in the surface acoustic wave resonator. A surface acoustic wave filter according to a first embodiment of the present invention will be described with reference to FIGS. The surface acoustic wave filter according to the present embodiment includes a plurality of surface acoustic wave resonators S1,
S2, S3, and S4 are connected in a ladder configuration. By connecting an additional capacitor in parallel to a part of the series element and the parallel element, the steepness of the filter characteristic is increased. As shown in FIG. 1A, a first-stage series element A 'has an additional capacitance Cd1' connected in parallel to a surface acoustic wave resonator S1, and a first-stage parallel element B 'has an elastic The additional capacitance Cd2 'is connected in parallel to the surface acoustic wave resonator S2, and the second-stage series element A is constituted only by the surface acoustic wave resonator S3.
The second-stage parallel element B includes only the surface acoustic wave resonator S4. FIG. 1B shows an equivalent circuit of the surface acoustic wave filter according to this embodiment. The equivalent circuit of the first-stage series element A 'includes an equivalent capacitance C1, an equivalent inductance L1, an inter-terminal capacitance Cd1 of the surface acoustic wave resonator S1, and an additional capacitance Cd1' connected in parallel. The equivalent circuit of the element B 'includes an equivalent capacitance C2, an equivalent inductance L2, an inter-terminal capacitance Cd2 of the surface acoustic wave resonator S2, and an additional capacitance Cd2' connected in parallel. Is composed of an equivalent capacitance C3, an equivalent inductance L3, and an inter-terminal capacitance Cd3 of the surface acoustic wave resonator S3. The equivalent circuit of the second-stage parallel element B is equivalent to the equivalent capacitance C4, equivalent inductance L4 of the surface acoustic wave resonator S4. Consists of FIG. 2 shows the frequency characteristics of the surface acoustic wave filter according to this embodiment. FIG. 2A shows the frequency characteristics of the impedance, and FIG. 2B shows the frequency characteristics of the insertion loss. 2 (a) and 2 (b), the solid line indicates the characteristic when no capacitance is added, and the broken line indicates the additional capacitance Cd.
This is a characteristic when 1 'and the additional capacitance Cd2' are connected in parallel. In general, assuming that the equivalent capacitance of the surface acoustic wave resonator S is Co, the equivalent inductance is Lo, and the capacitance between terminals is Cd, the resonance frequency fr and the antiresonance frequency fa are expressed by the following equations. fr = (1 / 2π) {1 / (Co · Lo) 1/2 } fa = (1 / 2π) {(1 / Lo) (1 / Co + 1 / C
d)} 1/2 where an additional capacitance Cd ′ is provided between the terminals of the surface acoustic wave resonator S.
Are connected in parallel, the anti-resonance frequency fa 'shifts to the resonance frequency side as shown in the following equation. Fa '= (1 / 2π) × {(1 / Lo)
(1 / Co + 1 / (Cd + Cd ′))} 1/2 In the case of the present embodiment, the additional capacitance Cd is added to the surface acoustic wave resonator S1.
1 'are connected in parallel, the additional capacitance Cd2' is connected in parallel to the surface acoustic wave resonator S2, and the anti-resonance frequency of the surface acoustic wave resonators S1 and S2 is reduced as shown by the broken line in FIG. It changes to the resonance frequency side, and the apparent electromechanical coupling coefficient K 2
Becomes smaller. Therefore, as shown by the broken line in FIG. 2B, the steepness of the insertion loss in the pass band increases, and a steep filter characteristic can be obtained. FIG. 2 (a)
, The surface acoustic wave resonators S1 and S2 have a resonance frequency f
It is designed so that 1 = f2. As described above, according to this embodiment, a steep filter characteristic can be obtained by adding a capacitance to a part of the surface acoustic wave resonator connected in a ladder configuration. A surface acoustic wave filter according to a second embodiment of the present invention will be described with reference to FIGS. The surface acoustic wave filter according to the present embodiment is configured by connecting two surface acoustic wave resonators S1 and S2 in a ladder type. The bandwidth is narrowed by connecting additional capacitors in parallel to all the series elements and parallel elements. As shown in FIG. 3A, the first-stage series element A 'has an additional capacitance Cd1' connected in parallel to the surface acoustic wave resonator S1, and the first-stage parallel element B 'has an elastic An additional capacitance Cd2 'is connected in parallel to the surface acoustic wave resonator S2. FIG. 3B shows an equivalent circuit of the surface acoustic wave filter according to the present embodiment. The equivalent circuit of the series element A 'is a surface acoustic wave resonator S
1 comprises an equivalent capacitance C1, an equivalent inductance L1, an inter-terminal capacitance Cd1 and an additional capacitance Cd1 'connected in parallel. The equivalent circuit of the parallel element B' is equivalent to the equivalent capacitance C2 of the surface acoustic wave resonator S2 and the equivalent inductance L2. , Terminal capacitance Cd2
And an additional capacitor Cd2 'connected in parallel. FIG. 4 shows the frequency characteristics of the surface acoustic wave filter according to this embodiment. FIG. 4A shows the frequency characteristic of the impedance, and FIG. 4B shows the frequency characteristic of the insertion loss. 4 (a) and 4 (b), the solid line shows the characteristics when no capacitance is added, and the broken line shows the additional capacitance Cd.
This is a characteristic when 1 'and the additional capacitance Cd2' are connected in parallel. In FIG. 4A, the surface acoustic wave resonator S
1, S2 is designed so that the resonance frequency f1 = f2. As described above, generally, when an additional capacitor is connected in parallel between the terminals of a surface acoustic wave resonator, the anti-resonance frequency shifts toward the resonance frequency. In the case of this embodiment, the additional capacitance Cd1 'is connected in parallel to the surface acoustic wave resonator S1, and the additional capacitance Cd2' is connected in parallel to the surface acoustic wave resonator S2, as shown by the broken line in FIG. Then, the anti-resonance frequencies of the surface acoustic wave resonators S1 and S2 greatly change to the resonance frequency side. Therefore, as shown by the broken line in FIG. 4B, it is possible to obtain a filter characteristic with a narrow pass band width. As described above, according to the present embodiment, the pass band width can be controlled without changing the piezoelectric substrate by adding a capacitance to the ladder-type surface acoustic wave resonator. A surface acoustic wave filter according to a third embodiment of the present invention will be described with reference to FIGS. The surface acoustic wave filter according to the present embodiment has a 36 ° rotation Y-plate LiTaO 3 substrate 1 as the piezoelectric substrate 10.
A plurality of surface acoustic wave resonators S <b> 1 to S <b> 10 are connected in a ladder-type configuration. By connecting an additional capacitor in parallel to a part of the series element and the parallel element, the steepness of the filter characteristic is increased. As shown in FIG. 5, the first-stage series element A ′ includes a surface acoustic wave resonator S1.
, An additional capacitor Cd1 'is connected in parallel, a first-stage parallel element B' is connected in parallel with a surface acoustic wave resonator S2, and an additional capacitor Cd2 'is connected in parallel. The parallel elements B of the second to fourth stages are constituted only by the surface acoustic wave resonators S3, S5, and S7, and the surface acoustic wave resonators S4, S
6, the fifth-stage series element A '
Is an additional capacitor Cd9 'connected in parallel to the surface acoustic wave resonator S9, and the fifth parallel element B' is connected to the surface acoustic wave resonator S1.
0 is connected in parallel with an additional capacitor Cd10 '. As shown in FIG. 6, the surface acoustic wave resonator S is composed of about 100 pairs of comb-shaped excitation electrodes 12 (FIG. 6).
(C)) is replaced with about 50 pairs of reflectors 14 and 16 (FIG. 6).
(B)). FIG. 6 shows an example of a structure in which an additional capacitance Cd is added to a surface acoustic wave resonator S which is a series element. As shown in FIG. 6A, from the input electrode 12A and the output electrode 12B of the excitation electrode 12,
Each of the electrode layers 18 and 20 is extended rightward in FIG. 6A, and is superposed on the right side of the reflector 16. That is, as shown in FIG. 6D, the electrode layers 18 and 20 formed on the piezoelectric substrate 10 are overlapped with the silicon oxide film 22 interposed therebetween. Thereby, the additional capacitance C is provided between the input electrode 12A and the output electrode 12B of the surface acoustic wave resonator S.
d are connected in parallel. FIG. 7 shows an example of a structure in which an additional capacitance Cd is added to a surface acoustic wave resonator S which is a parallel element. In the case of a parallel element, the output side of the surface acoustic wave resonator S is grounded. Therefore, as shown in FIG. 7A, the output electrode 12B of the excitation electrode 12 is commonly connected to the reflectors 14 and 16 and grounded. Is done. On the input side, the reflectors 14 and 16 pass through the electrode layer 2.
4 is extended in the center direction, and as shown in FIG. 7B, an input electrode 12A is formed thereon via a silicon oxide film 22. Thereby, the additional capacitance Cd is connected in parallel between the input electrode 12A of the surface acoustic wave resonator S and the ground (output electrode 12B). The capacitance value of the additional capacitance Cd is such that when the silicon oxide film 22 is formed by P-CVD, its dielectric constant is about 4.3. Is 0.2 × 0.
When the distance is about 2 mm, the additional capacitance Cd is about 2 pF. When the silicon oxide film 22 is used as the dielectric film, excellent characteristics such as insulation resistance and excellent characteristics can be obtained. Further, when P-CVD is used, the silicon oxide film can be manufactured at a low temperature, so that damage to the element can be avoided and a dense and good-quality dielectric film can be obtained. it can. FIG. 8 shows the frequency characteristics of the surface acoustic wave filter according to this embodiment. FIG. 8A shows the frequency characteristics of impedance, and FIG. 8B shows the frequency characteristics of insertion loss. In the case of a surface acoustic wave resonator with no added capacitance,
As shown by the solid line in FIG. 8A, the difference between the resonance frequency and the anti-resonance frequency is about 3%. On the other hand, in the case of the surface acoustic wave resonator in which additional capacitors are connected in parallel, FIG. As shown by the broken line, the difference between the resonance frequency and the anti-resonance frequency is about 1.7%. In this embodiment, the electrode pitch of the surface acoustic wave resonator is changed so that the resonance frequency when no capacitance is added and the resonance frequency when the capacitance is added match the desired frequency. . FIG. 8B shows the frequency characteristics of the surface acoustic wave filter configured as shown in FIG. 5 by connecting the additional capacitance in parallel to some of the surface acoustic wave resonators and matching the resonance frequencies. . The solid line shows the characteristics of the surface acoustic wave filter configured without adding a capacitance, and the broken line shows the characteristics of the surface acoustic wave filter of this embodiment with the added capacitance. As is clear from FIG. 8B, the filter characteristics become steep by adding the capacitance. As described above, according to the present embodiment, a steep filter characteristic can be obtained by adding a capacitance to a part of the surface acoustic wave resonator connected in a ladder configuration. In the above embodiment, the additional capacitance is connected in parallel to the surface acoustic wave resonator. However, by connecting the additional capacitance in series to the surface acoustic wave resonator, a sharp filter characteristic can be obtained regardless of the bandwidth, , The filter characteristics can be controlled. FIG. 9 shows an example of a structure in which the additional capacitance Cd is connected in series to the surface acoustic wave resonator S. As shown in FIG. 9A, the input electrode 12A of the excitation electrode 12 is divided into two electrode layers 12Aa and 12Ab, and as shown in FIGS. The electrode layers 12Ab are overlapped with the silicon oxide film 22 therebetween. Thereby, the additional capacitance Cd is connected in series to the input electrode 12A of the surface acoustic wave resonator S. FIG. 10 shows another example of the structure in which the additional capacitance Cd is connected in series to the surface acoustic wave resonator S. As shown in FIG. 10A, the input electrode 12A of the excitation electrode 12 is divided into two electrode layers 12Aa and 12Ab, and the piezoelectric substrate 10
It is made to oppose at a predetermined distance above. Although no new dielectric such as a silicon oxide film is provided between the electrode layers 12Aa and 12Ab, as shown in FIG. 10B, a dielectric is provided between the electrode layers 12Aa and 12Ab. It has a capacitor structure in which the piezoelectric substrate 10 is sandwiched. Thereby, the additional capacitance C is applied to the input electrode 12A of the surface acoustic wave resonator S.
d are connected in series. The 36 ° rotated Y plate Li which is the piezoelectric substrate 10
The relative dielectric constant of the TaO 3 substrate is ε 22 (depth direction) = 42, ε
Since 33 (propagation direction) = 42, the electrode layers 12Aa, 1
Assuming that the length of 2Ab is 1 mm and opposing each other with an interval of 0.1 mm, the additional capacitance is 0.02 pF.
In order to increase the capacitance value of the additional capacitance, FIG.
As shown in FIG. 0 (c), the comb electrodes of the electrode layers 12Aa and 12Ab may be used, and the effective length of the opposing electrodes may be increased. A surface acoustic wave filter according to a fourth embodiment of the present invention will be described with reference to FIGS. The surface acoustic wave filter according to the present embodiment has
A plurality of surface acoustic wave resonators S <b> 1 to S <b> 6 are connected in ladder form on a 6 ° rotating Y-plate LiTaO 3 substrate 10. The bandwidth is narrowed by connecting additional capacitors in parallel to all the series elements and parallel elements. As shown in FIG. 11, a first-stage series element A 'has an additional capacitance Cd1' connected in parallel to a surface acoustic wave resonator S1, and a first-stage parallel element B 'has a surface acoustic wave resonance element. An additional capacitor Cd2 'is connected in parallel to the resonator S2, a second-stage series element A' is connected in parallel to the surface acoustic wave resonator S3, and an additional capacitor Cd3 'is connected to the surface acoustic wave resonator S3. The additional capacitance Cd4 'is connected in parallel to the wave resonator S4, the third series element A' is connected to the surface acoustic wave resonator S5 in additional capacitance Cd5 ', and the third parallel element B' is An additional capacitance Cd6 'is connected in parallel to the surface acoustic wave resonator S6. In this embodiment, an additional capacitance may be provided in each surface acoustic wave resonator by the above-described structure, but a structural example taking into account the feature of adding capacitance to all surface acoustic wave resonators is shown in FIG. FIG. FIG. 12A is a cross-sectional view of the surface acoustic wave resonator, FIG. 12B is an enlarged plan view of a part of the excitation electrode 12, and FIG. 12C is FF ′.
It is a line sectional view. In this structure example, as shown in FIG. 12A, a silicon oxide film 26 is formed on the entire surface of the surface acoustic wave resonators S1 to S6. Excitation electrode 12, reflectors 14, 16
When silicon oxide film 26 is formed so as to cover the entire area, an additional capacitance using silicon oxide film 26 as a dielectric is formed. As shown in FIG. 12B, one set of comb-shaped electrodes 1
2 and 12 'are formed so as to face each other, so that when the silicon oxide film 26 is formed on the entire surface, FIG.
As shown in (c), a silicon oxide film 26 is present on the piezoelectric substrate 10 between the pair of comb electrodes 12 and 12 '. Therefore, a pair of comb electrodes 12, 12 '
Are connected in parallel to the surface acoustic wave resonators S1 to S6. The comb electrodes 12, 12 'are 100 pairs, the opening length A is 0.3 mm, and the electrode finger pitch L is 1
When the thickness H of the electrode layer is 0.7 μm, the metallization ratio is 1: 1, and the dielectric constant of the silicon oxide film 26 is about 4.3, the capacitance value of the additional capacitance Cd is about 0.1 pF.
FIG. 1 shows a frequency characteristic of the surface acoustic wave filter according to the present embodiment.
3 is shown. The solid line shows the characteristics when no capacitance is added, and the broken line shows the characteristics when the additional capacitance is connected in parallel. When the additional capacitors are connected in parallel as compared with the case where no capacitors are added, it is possible to obtain a filter characteristic with a narrower pass band as shown by a broken line. As described above, according to the present embodiment, the pass bandwidth can be controlled without changing the piezoelectric substrate by adding a capacitance to the ladder-type surface acoustic wave resonator. The present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, a silicon oxide film is used as the dielectric film, but another dielectric film such as a silicon nitride film may be used. Further, as a method of forming the dielectric film, other than the P-CVD method, the dielectric film may be formed by another CVD method or a sputtering method. As described above, according to the present invention, according to the present invention, a piezoelectric substrate and a plurality of surface acoustic wave resonators formed on the piezoelectric substrate and connected in a ladder form are provided. A surface acoustic wave filter having an additional capacitance formed on a piezoelectric substrate and connected in series or in parallel to the surface acoustic wave resonator, so that a steep filter characteristic can be obtained regardless of the bandwidth, , The filter characteristics can be controlled. In the above-described surface acoustic wave filter, the additional capacitance is formed by the first electrode layer formed on the piezoelectric substrate,
Since it is composed of the dielectric layer formed on the first electrode layer and the second electrode layer formed on the dielectric layer, it can be easily provided on the piezoelectric substrate. In the above-described surface acoustic wave filter, the first electrode layer of the additional capacitance is connected to the input / output electrode or the ground electrode of the surface acoustic wave resonator, and the second electrode layer is connected to the ground electrode or the input electrode of the surface acoustic wave resonator. By connecting to the output electrode, the additional capacitance may be provided in parallel with the surface acoustic wave resonator, or the first electrode layer or the second
The additional capacitance may be provided in series with the surface acoustic wave resonator by connecting the electrode layer to the input / output electrodes of the surface acoustic wave resonator. In the above-described surface acoustic wave filter, the surface acoustic wave resonator has a pair of comb electrodes facing each other on the piezoelectric substrate, and the pair of comb electrodes is provided on the pair of surface electrodes. The device area can be increased by providing the formed dielectric layer, providing an additional capacitance as a pair of comb-shaped electrodes as electrodes, using the dielectric layer as a dielectric, and providing the dielectric layer in parallel with the surface acoustic wave resonator. In the above-described surface acoustic wave filter in which an additional capacitance can be provided without forming the dielectric layer, if the dielectric layer is formed of a silicon oxide layer or a silicon nitride layer, excellent characteristics such as insulation resistance and excellent characteristics can be obtained. In the above-described surface acoustic wave filter, the additional capacitance is formed on the piezoelectric substrate, the first electrode connected to the input / output electrode of the surface acoustic wave resonator, and the first capacitance on the piezoelectric substrate. A second electrode facing the first electrode at a predetermined interval, and a dielectric composed of a piezoelectric substrate between the first electrode and the second electrode to form a new dielectric layer or the like. Without adding, the additional capacitance can be provided in the surface acoustic wave resonator.
【図面の簡単な説明】
【図1】本発明の第1の実施例による弾性表面波フィル
タを示す図である。
【図2】本発明の第1の実施例による弾性表面波フィル
タの周波数特性を示すグラフである。
【図3】本発明の第2の実施例による弾性表面波フィル
タを示す図である。
【図4】本発明の第2の実施例による弾性表面波フィル
タの周波数特性を示すグラフである。
【図5】本発明の第3の実施例による弾性表面波フィル
タを示す図である。
【図6】本発明の第3の実施例の弾性表面波フィルタに
おける直列素子である弾性表面波共振器の構造の一例を
示す図である。
【図7】本発明の第3の実施例の弾性表面波フィルタに
おける並列素子である弾性表面波共振器の構造の一例を
示す図である。
【図8】本発明の第3の実施例による弾性表面波フィル
タの周波数特性を示すグラフである。
【図9】弾性表面波共振器に付加容量を直列接続した構
造の一例を示す図である。
【図10】弾性表面波共振器に付加容量を直列接続した
構造の他の例を示す図である。
【図11】本発明の第4の実施例による弾性表面波フィ
ルタを示す図である。
【図12】本発明の第4の実施例の弾性表面波フィルタ
における弾性表面波共振器の構造の一例を示す図であ
る。
【図13】本発明の第4の実施例による弾性表面波フィ
ルタの周波数特性を示すグラフである。
【図14】従来の弾性表面波フィルタを示す図である。
【符号の説明】
10…圧電性基板
12…励起用電極
12A…入力電極
12B…出力電極
14、16…反射器
18、20、24…電極層
22、26…シリコン酸化膜
A、A′…直列素子
B、B′…並列素子
S1〜S10…弾性表面波共振器
C1〜C4…等価容量
L1〜L4…等価インダクタンス
Cd1〜Cd4…端子間容量
Cd1′〜Cd10 ′…付加容量BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a surface acoustic wave filter according to a first embodiment of the present invention. FIG. 2 is a graph showing a frequency characteristic of the surface acoustic wave filter according to the first embodiment of the present invention. FIG. 3 is a diagram illustrating a surface acoustic wave filter according to a second embodiment of the present invention. FIG. 4 is a graph showing frequency characteristics of a surface acoustic wave filter according to a second embodiment of the present invention. FIG. 5 is a diagram showing a surface acoustic wave filter according to a third embodiment of the present invention. FIG. 6 is a diagram illustrating an example of a structure of a surface acoustic wave resonator that is a series element in a surface acoustic wave filter according to a third embodiment of the present invention. FIG. 7 is a diagram illustrating an example of a structure of a surface acoustic wave resonator that is a parallel element in a surface acoustic wave filter according to a third embodiment of the present invention. FIG. 8 is a graph showing a frequency characteristic of a surface acoustic wave filter according to a third embodiment of the present invention. FIG. 9 is a diagram showing an example of a structure in which an additional capacitance is connected in series to a surface acoustic wave resonator. FIG. 10 is a diagram showing another example of a structure in which an additional capacitance is connected in series to a surface acoustic wave resonator. FIG. 11 is a diagram illustrating a surface acoustic wave filter according to a fourth embodiment of the present invention. FIG. 12 is a diagram illustrating an example of a structure of a surface acoustic wave resonator in a surface acoustic wave filter according to a fourth embodiment of the present invention. FIG. 13 is a graph showing frequency characteristics of a surface acoustic wave filter according to a fourth embodiment of the present invention. FIG. 14 is a diagram showing a conventional surface acoustic wave filter. DESCRIPTION OF SYMBOLS 10: Piezoelectric substrate 12 ... Exciting electrode 12A ... Input electrode 12B ... Output electrodes 14, 16 ... Reflectors 18, 20, 24 ... Electrode layers 22, 26 ... Silicon oxide films A, A '... Series Element B, B '... Parallel elements S1 to S10 ... Surface acoustic wave resonators C1 to C4 ... Equivalent capacitance L1 to L4 ... Equivalent inductance Cd1 to Cd4 ... Terminal capacitance Cd1' to Cd10 '... Additional capacitance
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−22074(JP,A) 特開 平6−167384(JP,A) 特開 平6−152317(JP,A) 特開 昭64−68114(JP,A) 特開 平7−273597(JP,A) 特開 平5−235684(JP,A) (58)調査した分野(Int.Cl.7,DB名) H03H 9/145 H03H 9/64 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-22074 (JP, A) JP-A-6-167384 (JP, A) JP-A-6-152317 (JP, A) JP-A 64-64 68114 (JP, A) JP-A-7-273597 (JP, A) JP-A-5-235684 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H03H 9/145 H03H 9 / 64
Claims (1)
され、ラダー型に接続された複数の弾性表面波共振器と
を有する弾性表面波フィルタにおいて、 前記圧電性基板上に形成され、前記弾性表面波共振器に
接続された付加容量を有し、前記付加容量は、前記圧電
性基板上に形成された第1の電極層と、前記第1の電極
層上に形成された誘電体層と、前記誘電体層上に形成さ
れた第2の電極層とを有し、前記付加容量の前記第1の
電極層は、前記弾性表面波共振器の入出力電極又は接地
電極に接続され、前記第2の電極層は、前記弾性表面波
共振器の接地電極又は入出力電極に接続され、前記付加
容量は、前記弾性表面波共振器に並列に設けられている
ことを特徴とする弾性表面波フィルタ。(57) Patent Claims 1. A piezoelectric substrate, formed on said piezoelectric substrate, the surface acoustic wave filter having a plurality of surface acoustic wave resonators connected in a ladder, wherein formed on the piezoelectric substrate, have a connected additional capacitance to said surface acoustic wave resonator, the additional capacity, the piezoelectric
A first electrode layer formed on a conductive substrate, and the first electrode
A dielectric layer formed on the layer; and a dielectric layer formed on the dielectric layer.
A second electrode layer, and the first capacity of the additional capacitance is provided.
The electrode layer is an input / output electrode of the surface acoustic wave resonator or a ground.
Connected to an electrode, wherein the second electrode layer is provided with the surface acoustic wave.
Connected to the ground electrode or input / output electrode of the resonator,
The surface acoustic wave filter, wherein a capacitor is provided in parallel with the surface acoustic wave resonator .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19672894A JP3390537B2 (en) | 1994-08-22 | 1994-08-22 | Surface acoustic wave filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19672894A JP3390537B2 (en) | 1994-08-22 | 1994-08-22 | Surface acoustic wave filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0865089A JPH0865089A (en) | 1996-03-08 |
JP3390537B2 true JP3390537B2 (en) | 2003-03-24 |
Family
ID=16362610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19672894A Expired - Lifetime JP3390537B2 (en) | 1994-08-22 | 1994-08-22 | Surface acoustic wave filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3390537B2 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3383508B2 (en) * | 1995-03-15 | 2003-03-04 | 松下電器産業株式会社 | Surface acoustic wave filter |
JPH09167937A (en) * | 1995-12-18 | 1997-06-24 | Oki Electric Ind Co Ltd | Surface acoustic wave filter |
JP3721229B2 (en) * | 1996-06-12 | 2005-11-30 | 東洋通信機株式会社 | Surface acoustic wave filter |
JP3285790B2 (en) * | 1997-05-13 | 2002-05-27 | 富士通株式会社 | Oscillator circuit |
DE19730710C2 (en) * | 1997-07-17 | 2002-12-05 | Epcos Ag | Surface acoustic wave filter with improved slope |
JP3401408B2 (en) * | 1997-07-22 | 2003-04-28 | 沖電気工業株式会社 | Surface acoustic wave filter |
JPH11330904A (en) * | 1998-05-13 | 1999-11-30 | Oki Electric Ind Co Ltd | Resonator type surface acoustic wave filter |
JP3387469B2 (en) * | 2000-01-18 | 2003-03-17 | 株式会社村田製作所 | Surface acoustic wave device and surface acoustic wave filter |
JP4377525B2 (en) * | 2000-05-31 | 2009-12-02 | 京セラ株式会社 | Surface acoustic wave filter |
JP4154949B2 (en) * | 2002-08-06 | 2008-09-24 | 松下電器産業株式会社 | SAW filter |
JP2004128928A (en) * | 2002-10-03 | 2004-04-22 | Murata Mfg Co Ltd | Surface acoustic wave filter and communication device |
JP3827232B2 (en) * | 2003-05-13 | 2006-09-27 | Tdk株式会社 | Filter device and duplexer using the same |
JP2005033246A (en) * | 2003-07-07 | 2005-02-03 | Matsushita Electric Ind Co Ltd | Saw filter and electronic device using the same |
JP2005136588A (en) * | 2003-10-29 | 2005-05-26 | Sharp Corp | Piezoelectric thin film resonator, filter, filter bank, filter bank integrated power amplifier, and high-frequency communication apparatus |
JP2005311568A (en) * | 2004-04-20 | 2005-11-04 | Sony Corp | Filter device and transceiver |
DE102005032058B4 (en) * | 2005-07-08 | 2016-12-29 | Epcos Ag | HF filter with improved backbone suppression |
JP2007036856A (en) * | 2005-07-28 | 2007-02-08 | Fujitsu Media Device Kk | Resonator, filter and antenna branching filter |
JP2008109413A (en) * | 2006-10-25 | 2008-05-08 | Fujitsu Media Device Kk | Elastic wave device and filter |
DE102006057340B4 (en) * | 2006-12-05 | 2014-05-22 | Epcos Ag | DMS filter with improved adaptation |
JP5441095B2 (en) | 2008-01-31 | 2014-03-12 | 太陽誘電株式会社 | Elastic wave device, duplexer, communication module, and communication apparatus |
WO2009119007A1 (en) | 2008-03-27 | 2009-10-01 | 株式会社村田製作所 | Surface acoustic wave filter device |
DE102008052222B4 (en) * | 2008-10-17 | 2019-01-10 | Snaptrack, Inc. | Antenna duplexer with high GPS suppression |
JP5310855B2 (en) | 2009-12-01 | 2013-10-09 | 株式会社村田製作所 | Antenna matching device, antenna device, and mobile communication terminal |
DE112011100580B4 (en) | 2010-05-13 | 2017-02-09 | Murata Manufacturing Co., Ltd. | Device for elastic waves |
CN103392213B (en) * | 2011-02-25 | 2016-07-06 | 株式会社村田制作所 | Variable-capacitance element and tunable optic filter |
JP5548303B2 (en) * | 2011-02-25 | 2014-07-16 | 株式会社村田製作所 | Tunable filter and manufacturing method thereof |
WO2013061926A1 (en) | 2011-10-24 | 2013-05-02 | 株式会社村田製作所 | Surface acoustic wave device |
DE102013100286B3 (en) | 2013-01-11 | 2014-06-05 | Epcos Ag | Wideband filter in branching technology |
KR101689662B1 (en) * | 2013-04-10 | 2016-12-26 | 가부시키가이샤 무라타 세이사쿠쇼 | Duplexer |
DE102014112676A1 (en) * | 2014-09-03 | 2016-03-03 | Epcos Ag | Filter with improved linearity |
CN107078720B (en) * | 2014-10-06 | 2021-12-24 | 株式会社村田制作所 | Ladder filter and duplexer |
KR101700840B1 (en) * | 2014-11-13 | 2017-02-01 | (주)와이솔 | Capacitor for saw filter, saw filter and method of manufacturing thereof |
WO2016190216A1 (en) * | 2015-05-22 | 2016-12-01 | 京セラ株式会社 | Elastic wave device and communication device |
US10305447B2 (en) | 2015-11-13 | 2019-05-28 | Resonant Inc. | Acoustic wave filter with enhanced rejection |
US9608595B1 (en) * | 2015-11-13 | 2017-03-28 | Resonant Inc. | Acoustic wave filter with enhanced rejection |
CN208539864U (en) * | 2016-03-08 | 2019-02-22 | 株式会社村田制作所 | Acoustic wave device and duplexer |
WO2018079284A1 (en) | 2016-10-28 | 2018-05-03 | 株式会社村田製作所 | Ladder type filter, duplexer, and elastic wave filter apparatus |
WO2018079522A1 (en) * | 2016-10-28 | 2018-05-03 | 京セラ株式会社 | Acoustic wave filter, acoustic wave device, duplexer, and communication device |
WO2019065274A1 (en) * | 2017-09-28 | 2019-04-04 | 株式会社村田製作所 | Filter device, multiplexer, high-frequency front-end circuit, and communication device |
CN111527696B (en) * | 2017-12-19 | 2023-09-26 | 株式会社村田制作所 | elastic wave device |
KR102587884B1 (en) * | 2018-08-13 | 2023-10-10 | 가부시키가이샤 무라타 세이사쿠쇼 | acoustic wave filter |
-
1994
- 1994-08-22 JP JP19672894A patent/JP3390537B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0865089A (en) | 1996-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3390537B2 (en) | Surface acoustic wave filter | |
US7688161B2 (en) | Acoustic wave device and filter using the same | |
KR100290804B1 (en) | Surface acoustic wave filter | |
EP0269064B1 (en) | Filter combining surface acoustic wave resonators | |
US7098758B2 (en) | Acoustically coupled thin-film resonators having an electrode with a tapered edge | |
US7498898B2 (en) | Surface acoustic wave filter, and saw duplexer | |
US7170370B2 (en) | Filter device capable of obtaining attenuation characteristic of sharpness in narrow band width and branching filter using the same | |
US6034577A (en) | Integrated interdigital electrode saw filter with specified distances between input/output electrodes | |
WO1999023757A1 (en) | Acoustic wave ladder filter with effectively increased coupling coefficient and method of providing same | |
KR100809120B1 (en) | Bulk accoustic wave filter | |
JPH09167937A (en) | Surface acoustic wave filter | |
KR20050021309A (en) | Film bulk acoustic resonator and method of producing the same | |
EP1010244A1 (en) | Improved saw filter using low-pass configuration and method of providing the same | |
US5694095A (en) | Surface acoustic wave resonance device adapted to simple and precise adjustment of resonant frequency | |
JPH10341135A (en) | Surface acoustic wave device | |
US10886893B2 (en) | Reduced-size guided-surface acoustic wave (SAW) devices | |
JPS60126907A (en) | Single response composite piezoelectric oscillating element | |
WO2007066608A1 (en) | Composite filter | |
JP3155639B2 (en) | Surface acoustic wave resonator and method of manufacturing the same | |
JPH09130204A (en) | Acoustic wave filter and its manufacture | |
EP0637873A2 (en) | SAW filter | |
WO1999029039A1 (en) | Saw ladder filter with split resonators and method of providing same | |
KR100308220B1 (en) | Acoustic wave resonator and filter with double reflective gratings | |
JPH0440705A (en) | Longitudinal double mode surface acoustic wave filter | |
JP3839866B2 (en) | Surface acoustic wave filter and method of forming pass frequency band |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030107 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110117 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110117 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120117 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130117 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |